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Abstract
Over the last decade, the proliferation of Internet of Things (IoT) devices has risen dramatically. The exponential growth of 
IoT device ecosystems has led to a rise in the risks and cybercrimes associated with the IoT. Because of their malleability, 
IoT devices are more susceptible to persistent attacks. Forensic investigation of attacks on IoT devices can be challenging 
for security experts due to the limited processing and memory capabilities of these devices. The existing methods are often 
complex for IoT environment and providing moderate results. The primary objective of this research is to determine and 
recommend a secured framework for the IoT that maintains data integrity. This research proposes a simple scheme called 
Multi-level Data Integrity Model with Dual Immutable Digital Key based Forensic Analysis (MLDIM-DIDKbFA) for 
securing the IoT data. A digital key is generated which is used for validation of nodes during data transmission. Cyber-
attack detection Forensic analysis due to possible cyber-attack is performed if any violation to data integrity is detected 
in IoT network. The proposed model was contrasted with two state-of-the-art existing models Binary Classifiers for Data 
Integrity Detection in Wearable IoT Edge Devices (BCDTED) and Distributed Estimation against Data Integrity Attacks in 
IoT Systems (DEA-DIA). The parameters used for comparison are time and accuracy for node registration, immutable key 
generation, intermediate node verification, multi-level data integrity verification, forensic analysis etc. It is found that our 
proposed method is providing better results compared to the other two existing systems. As a result, the proposed forensic 
system boosts the effectiveness and credibility of IoT environment forensics.
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Introduction

The IoT refers to a network of computers and other elec-
tronic gadgets that may exchange information and resources 
safely through the web. The IoT is superior to existing net-
works because it requires fewer human interactions, provides 
a broader context, and can be easily expanded [1].

Home automation, wearable tech, smart firefighting, 
smart metering, improved production, and intelligent struc-
tures are just a few examples of the many innovations made 
possible by the widespread use of IoT [2]. The security of 
IoT devices is still an issue, despite the fact that their use 
cases are expanding all the time. Manufacturers of IoT gadg-
ets are more concerned with making their products more 
appealing to consumers by adding new features and func-
tionalities and streamlining their designs to make the gadgets 
smarter and more cost-effective. Inadequate protections have 
led to a rise in cyber-attacks on Internet of Things gadgets 
in recent years.

This article is part of the topical collection “SWOT to AI-embraced 
Communication Systems (SWOT-AI)” guest edited by Somnath 
Mukhopadhyay, Debashis De, Sunita Sarkar and Celia Shahnaz.
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Smart cities, smart homes, smart healthcare, etc. are just a 
few examples of where the IoT is gaining traction. As a result 
of this increased connectivity, several novel uses have been 
developed for IoT devices. The downside is that IoT devices 
may be used in public places or even dangerous areas [3], 
making them vulnerable to a wide range of threats. Because 
of their inherent simplicity, IoT devices are frequently 
compromised. Large volumes of data generated by many IoT 
devices could be utilized to control vital industrial facilities, 
wearable medical equipment, traffic signals [4], and so on. 
Data manipulation attacks are among the most damaging 
that an adversary can execute against an IoT device [5]. An 
adversary’s goal in such an assault is to alter IoT data in 
a way that causes the system to malfunction and lead to 
bad control decisions. Incorrect temperature readings, for 
instance, could lead to the control unit of a factory arbitrarily 
switching on and off the cooling system, potentially resulting 
in serious damage to the equipment and even injuries to the 
workers. As a result, assaults on the IoT that involve data 
tampering can result in substantial economic loss, damages 
to infrastructure, and even human injury [6]. This research 
proposes an integrity detection method to identify data 
manipulations in IoT devices as a solution to this problem.

To keep data accurate and comprehensive is to ensure 
its integrity. However, there are several ways in which 
messages might go wrong during wireless transmission 
in IoT applications [7], including attenuation, distortion, 
and the introduction of noise [8]. When there is an error, 
the receiver is unable to accurately decode the signal and 
obtain the intended symbol. Error-correcting codes, often 
known as channel coding [9], are necessary for data security. 
Error-correcting codes guarantee reliable operation of IoT 
infrastructure. They protect the reliability of communication 
channels even when environmental factors such as noise, 
deformation, and attenuation are present [10]. One of the 
easiest and most well-known error-detection systems in 
digital communication uses the parity bit. Information is 
divided up into chunks [11]. Each block has an extra bit 
added to it so that the sum of the 11 bits already present in 
the block, plus the extra bit, adds up to an even number. If 
there is even a single bit error in the block, the number of 
ones will be off. Consequently, this enables the isolation of 
individual mistakes.

Limitations in processing power and memory mean that 
only a small subset of possible instruction sets can be exe-
cuted by IoT devices [12]. Therefore, they can’t record, track, 
and analyze data sent by IoT gadgets. Because of this, foren-
sic investigation of attacks on IoT devices has proven chal-
lenging for security researchers. Because of these constraints, 
gathering evidence might be difficult during a forensic inves-
tigation [13]. Enhancing the network’s resilience and security 
in an IoT environment calls for specialized tools and methods. 
More powerful forensic procedures need to be developed and 

used for the research and examination of IoT devices [14]. 
The forensic analysis method is an effective tool for avoiding 
the aforementioned problems. To automate the process of 
detecting attacks on IoT devices and creating the associated 
logs and alarms, a forensic analysis framework is proposed 
in this research. To establish the perpetrator, motive, and 
effects of a security breach, a thorough post attack investiga-
tion known as a forensic analysis is conducted. It is similar 
to Security Incident Management (SIM) [15], in which secu-
rity events on a network are identified and then acceptable 
actions are taken to accommodate for compromised security 
standards. Network auditing is a pre-examination of the vul-
nerabilities in a network, while forensic analysis is a post-
study of the security breaches that documents how and when 
something happened [16].

A remote logging server circumvents the framework’s data 
gathering constraints. To facilitate forensic investigation, 
communication from IoT devices is diverted to a logging 
server where alarms and logs of malicious attack traffic [17] 
are generated and kept. A forensic server generates new cop-
ies of these logs and analyses them for clues about assaults 
and their perpetrators [18]. The four phases of any forensic 
analysis are data collection, inspection, analysis, and docu-
mentation and reporting. Information pertinent to a certain 
assault is gathered in the course of data collecting [19]. The 
main issue was data collecting, which was hampered by the 
limited processing capability of IoT devices. When attacks 
were suspected, no evidence was ever located [20]. The pro-
posed solution employs a monitoring node in the network 
that maintains logs of malicious traffic and generates alerts 
to receiving nodes for detecting attacks. The cloud based data 
integrity verification model is shown in Fig. 1.

To aid with IoT forensic analysis, the proposed system 
combines a machine learning model with specialized forensic 
analysis reporting model. In addition to assisting in the crea-
tion of rules for attack detection, the forensic server can also 
provide a fresh alarm whenever malicious traffic is detected 
in the network [21]. These attack rules are considered into 
the proposed system. Automated defense against attacks is 
provided by machine learning. After these steps have been 
completed, several reports detailing the type, frequency, and 
potential responses to attacks are generated [22]. With this 
forensic information, the full picture of the attack can be ana-
lyzed and the perpetrators can be tracked down.

The forensic analysis process initially considers the evi-
dence identification process from public datasets and then 
collection of samples is performed. The data collected 
will be analyzed for forensic process and then the attribute 
ranges are documented that is used for future processing. 
The presentation is performed to use the values for analysis 
for integrity verification. There are four main steps in the 
forensic process: finding prospective evidence, collecting 
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it, analyzing it, and writing a report. The forensic analysis 
process is shown in Fig. 2.

It takes a lot of data analysis and intelligent computation 
to spot threats and attacks in an IoT environment. To detect 
threats, these platforms make use of cutting-edge computer 
systems based on machine learning and smart computing. 
To discover and reveal the presence of adversaries, digital 
forensics requires extensive data analysis, such as retrieving 
and authenticating system logs, assessing information stored 
in blockchains, etc. To facilitate virtualized resource sharing, 
it collects and analyses data from access and system logs 
using blockchain technology. In the early stages, adversary 
classification and differentiation are aided by the management 

of system-related records, audit systems, and access controls. 
This aids in isolating the source of the attack and preventing 
it from spreading to other systems. Paradigms in machine 
learning facilitate the differential appraisal and examination of 
exact information over time and with less complexity. Regular 
testing and training are carried out over a wide range of data 
collected from the IoT ecosystem to detect the presence of 
such threats. Information analysis and consequences based on 
trust, authorization, and authentication are crucial in making 
security-related decisions. This research proposes a Multi-level 
Data Integrity Model with Dual Immutable Digital Key based 
Forensic Analysis for securing the IoT data.

For digital forensics to be admissible in court, evidence 
management must adhere to strict legal criteria. The acquired 
evidence must be shown to be authentic and unaltered. The 
investigation of computer-related crimes requires the use of 
specialized computer forensics software and associated toolkits 
in accordance with generally acknowledged procedures and 
criteria. By its very nature, digital evidence is fragile, and any 
mistakes in its treatment or investigation render it unusable 
as evidence. Because digital evidence can be altered easily, 
it must be collected, preserved, and documented with the 
utmost care. Investigators in the field of computer forensics 
must operate ethically because their work will be scrutinized 
by a court of law if the case ends up there.

Any system that stores, processes, or retrieves data must 
be designed, implemented, and used with the utmost care to 
ensure data integrity during the whole duration of the data’s 
life cycle. Even within the same broad field of computers, 
the phrase might have wildly varied meanings depending 
on the exact situation. Data integrity is the safeguarding 
of data against unauthorized alteration [23]. Data privacy 
refers to the protection of personally identifiable information 
while it is accessible to the public. Any group or individual 
can benefit from adhering to strict data privacy guidelines. 
Information on a person’s life and circumstances is 
necessarily limited. Users may choose whether or not to 
share the information. There is little room for privacy for 
anyone if there is no system in place to protect it. There 
is a clear distinction between data security, which is 
generally understood to involve protecting and preserving 
the information users provide from other unknown persons, 
and data privacy, which is the act of determining who has 
access to the data and for what purpose.

Literature Survey

Arlene John et al. [24] evaluated and contrasted a number 
of AI-based binary classifiers for verifying the authenticity 
of data collected by IoT-enabled wearable sensors. The 
amount of information saved and sent can be reduced by 
detecting data corruption at the network’s periphery and 

Fig. 1  Cloud based data integrity verification model

Fig. 2  Forensic analysis process
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then removing it. As a result, IoT devices can function with 
less memory and less electricity. In this paper, we look at a 
number of machine learning-based classifiers for validating 
ECG data. The feature vectors are computed using Signal 
Quality Indices (SQIs) that are low-complexity measures of 
kurtosis and skewness.

The IoT is a cutting-edge innovation that has the potential 
to revolutionize many different markets by enabling real-
time data collecting to boost productivity while cutting 
costs. The IoT is helping Maritime Transportation Systems 
(MTSs) prevent ship collisions, boost shipping efficiency, 
and cut down on revenue loss for harbors and shipyards. IoT-
enabled MTS create a vast quantity of real-time data that, 
when paired with previous data, that was used to efficiently 
anticipate the future trajectories and concentrations of 
vessels on the sea. However, the MTS marine traffic data 
cannot be handled efficiently using conventional big data 
analysis techniques, and its validity must be verified before 
it can be used for purposes such as the prediction of vessel 
paths and high-density zones. Liu et al. [25] designed a data 
integrity checking scheme for IoT-enabled MTS that is both 
adaptable and capable of restoring original data. Erasure 
coding is used to encode vessel data blocks in the proposed 
approach.

For generic IoT applications, Wu et al. [26] provided 
a safe distributed estimation approach that is immune 
to data integrity assaults. A resilient optimal estimation 
target for protecting the entire IoT system is constructed by 
capitalizing on the attackers’ spatial sparsity. A phony data 
processor is then created to mitigate the negative outcomes 
of the assaults. The method’s convergence is examined. It 
demonstrates that under practical conditions wherein all 
communication connections and sent data are arbitrarily 
compromised the estimation error will converge to be 
uniformly constrained for all circumstances. To back up 
theoretical findings, the author also gave simulation results 
using a model Internet of Things network consisting of 50 
nodes and 145 edges.

As MTSs that take advantage of the IoT continue to 
evolve, it will become increasingly important to not only 
store the huge amounts of data created by these systems 
in a cost-effective and dependable manner, but also to 
analyze this data as soon as possible. Users can save their 
information in the Cloud-based Maritime Transportation 
Systems (CMTS) without having to worry about factors like 
cost, storage space, physical location, etc. However, CMTS 
also raises significant security concerns, the most pressing 
of which is the integrity protection of outsourced data, which 
is essential to the security, dependability, and efficiency 
of shipping channels. To address this issue, Li et al. [27] 
provided a method of auditing CMTS data for integrity 
that is both dynamic and based on the user’s identification. 
By conducting audits in batches, this system reduces the 

administrative load associated with key management and 
boosts auditing efficiency. This approach not only eliminates 
the communication overhead of the auditing phase, but 
also has the lowest computing cost across all entities, as 
demonstrated by a comparison of its performance with that 
of similar schemes.

Threatening cyber-assaults against the IoT-based smart 
grid include data integrity attacks (DIA). An attacker has a 
difficult time obtaining or inferring the branch parameters. 
Time and circumstance can alter or upset them. Zhang et al. 
[28] developed the whole category of DIA by designing the 
zero-parameter-information DIA (ZDIA), which allows the 
attacker to carry out covert data tampering attacks without 
knowing the parameters of the branches being targeted. 
Such an attack can be built with only the cut line’s topology 
information. In addition, the author broaden the scope of 
ZDIA to include scenarios in which a bus or super-bus has 
only a few cut lines leading to the outside world.

Yazid et  al. [29] discussed a fresh authentication 
strategy for IoT-based vehicle monitoring systems. The 
proposed technology, which is based on parallel hash 
chains, is well suited for low-cost and power-efficient IoT 
gadgets. The need to send secret keys over the network is 
eliminated since encryption keys are continuously created 
on parallel hash chains on both the IoT device and the 
server. Two transmission handshakes are all that are needed 
for identification and data transmission with the suggested 
technique. It eliminates the need for on-device random 
number generation, which is both hardware intensive and a 
possible security risk in IoT devices.

Cryptographic hash functions have the critical property 
of being unable to distinguish between two files if even a 
single bit of the input is altered. However, a hash function 
that preserves similarity is essential in computer forensics 
since it allows for the discovery of previously unknown 
material. Forensics investigators are having a difficult time 
figuring out how to use data from these gadgets. For efficient 
application management, Mahrous et al. [30] introduced a 
blockchain-based IoT computer forensics architecture that 
employs both the conventional hash for authentication and 
the fuzzy hash in order to build the Blockchain’s Merkle 
tree. When compared to traditional hashing methods, fuzzy 
hashing increases the likelihood that damaging information 
may be uncovered.

When it comes to the IoT and its capacity for facilitating 
smart mobility, the Internet of Vehicles (IoV) has emerged 
as a crucial data sensing and processing platform. Users of 
the IoV and law enforcement authorities benefit from the 
combined efforts of both the cameras installed in vehicles and 
those stationed along the roadways. To provide these foren-
sic services effectively, it is crucial to ensure that data flow 
between vehicles is both secure and private. In this research, 
Zhang et  al. [31] presented an incentive authentication 
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scheme (LIAS) that is both lightweight and practical for use 
in IoV forensic services. The layers of LIAS’s architecture 
are the cloud, the fog, and the user. The privacy and security 
concerns around forensic services in IoV for ITS inspired this 
research. The purpose is to strengthen vehicle security and 
privacy without sacrificing the convenience and efficiency 
of data sharing across vehicles. To make the most of the 
capabilities of near-user edge devices and the links between 
fog nodes and devices, fog-assisted IoV is introduced. The 
challenges of protecting the privacy and security of automo-
biles persist, though. Furthermore, information diffusion in 
automobiles could be easily tracked due to the inherent flaw 
of wireless communication.

As the amount of data transmitted by email continues 
to rise, investigators are faced with the formidable issue of 
extracting the necessary semantic information from the mas-
sive amounts of emails, which slows down the investigation. 
The offender now has an advantage when trying to cover 
their tracks. Existing keyword-based search algorithms and 
filtering frequently result in irrelevant, short-sequence emails 
that bypass important content. To address the aforementioned 
shortcoming, Hina et al. [32] offered a novel efficient method 
for multiclass email classification called SeFACED, which 
makes use of Long Short-Term Memory (LSTM) based 
Gated Recurrent Neural Network (GRU). SeFACED can pro-
cess long dependencies of 1000 + characters, not just short 
ones. By comparing its results to those of more conventional 
machine learning methods, deep learning models, and state-
of-the-art research, SeFACED is able to fine-tune the param-
eters of LSTM-based GRUs for optimal performance.

The increased use of encryption technology in recent 
years has presented significant hurdles to computer forensic 
investigation by making it easier for criminals to conceal 
damaging data from security regulatory bodies. As a 
result, research into methods for detecting and analyzing 
encrypted data is essential. In this study, Li et al. [33] offered 
an approach to decryption that uses deep convolutional 
neural networks. The unprocessed information is initially 
transformed into two-dimensional matrices for use as the 
network’s input. Then, representative features are provided as 
the input of succeeding layers using the multiscale extraction 
of features process with different activation functions. The 
next step is to use the residual learning operation to improve 
feature discrimination. This method is used to build a network 
that can automatically learn the global context of encrypted 
data by extracting it. The proposed technique also reliably 
identifies encrypted data using a variety of algorithms.

There has been a dramatic rise in the amount of cyber 
assaults targeting IoT environments recently. The human 
and monetary costs at all levels of the Internet of Things 
were high as a result of this. The occurrences of attacks 
that have attacked the IoT system or its components have 
become increasingly difficult to identify as cybercriminals 

have been using anti-forensics activities and deploying 
strategies and tools to mask their tracks. As a result, the 
frequency and severity of cyber-attacks against the IoT 
are both increasing, leading to attacks that are both more 
efficient and more sophisticated. Conventional safety 
and forensics solutions, especially in terms of obtaining 
evidence for attack investigation, are insufficient to 
prevent and analyze such cyber-attacks. Therefore, there 
is a pressing want for clearly defined, sophisticated, and 
sophisticated forensics investigation methodologies to 
foil anti-forensics methods and identify and apprehend 
cybercriminals. Jean-Paul A. Yaacoub et al. [34] discussed 
the rise of anti-anti-forensics as a new forensics defense 
mechanism against anti-forensics operations and covers the 
many forensics and anti-forensics approaches that can be 
implemented in the IoT sector, including tools, techniques, 
types, and problems. Forensics investigators would 
benefit from knowing the various anti-forensics tools, 
methodologies, and techniques used by cybercriminals.

Combining AI with other technologies can boost their 
efficiency. Smart IoT refers to Internet of Things gadgets 
that also incorporate artificial intelligence. Wearable devices 
allow for remote control of smart Internet of Things gadg-
ets. Sensors on wearable electronics like smartwatches and 
smartbands collect data about their users in order to tailor 
their services to them. Due to the fact that the generated data 
are saved in the wearable device’s storage, accessing this 
data from the device can be helpful in solving crimes. There-
fore, Kim et al. [35] offered a forensic paradigm for wear-
able devices that goes beyond indirect forensics and relies 
instead on direct interactions made by wireless or interfaces. 
The ecosystem of wearable gadgets served as inspiration for 
the forensic paradigm, which was then broken down into 
separate categories for digital and physical investigation. 
We tested the forensic model on wearables from Samsung, 
Apple, and Garmin to ensure its versatility.

The literature survey analyzed numerous forensic models 
for data integrity and also key handling models are analyzed. 
Based on the analysis done, there are some limitations identi-
fied in the traditional models like less key size, using keys for 
multiple times and easily cracking of keys. The integrity vio-
lations are also made even stronger models are designed. The 
performance levels of the traditional models can be enhanced 
using strong cryptography models and accurate authentica-
tion models that can enhance the performance levels of the 
cryptography and data integrity models for forensic analysis.

Proposed Method

Traditional digital forensics makes it simpler to track down 
and identify hacked devices that may contain useful forensic 
evidence. However, the variety and unique qualities of IoT 
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devices make forensics an uphill conflict. Including smart 
appliances, smart meters, smart hubs, virtual assistants, and 
various wearables, there can be up to seventeen separate 
possible evidence sources in a modern smart home. In 
addition, the fluidity of the IoT ecosystem causes borders 
to blur as devices are continually moving in and out of a 
particular network, either automatically or because the user 
has physically relocated them. The devices’ mobility across 
many networks makes it difficult to demarcate cases.

The proposed model data integrity verification and foren-
sic analysis for cyber-attack detection is shown in Fig. 3.

Initially to perform data transmission the nodes in the 
IoT has to register. After registration for each and every 
node a digital key will be generated. The digital key will 
be used only for one time. with the help of digital key the 
nodes will be authorized. So attacker nodes cannot act as 
a normal node, as attacker nodes are not provided with 
digital key. After digital key is generated a random node 
is selected for data transmission and that node undergoes 
verification process to prove its authenticity. At multilevel, 
after the node authentication the data that is transmitted 
will be verified. Once the verification process completes 
then the forensics analysis starts if there is any attack on 
the data or the node. Finally, the list of attackers will be 
generated based on the attackers within the network.

Any system that stores, processes, or retrieves data 
must be designed, implemented, and used with the utmost 
care to ensure data integrity during the whole duration 
of the data’s life cycle. Even within the same broad field 
of computers, the phrase might have wildly varied mean-
ings depending on the exact situation. Data integrity is the 
safeguarding of data against unauthorized alteration. Data 
privacy refers to the protection of personally identifiable 
information while it is accessible to the public. Any group 
or individual can benefit from adhering to strict data pri-
vacy guidelines. Information on a person’s life and circum-
stances is necessarily limited. Users may choose whether 
or not to share the information. There is little room for 
privacy for anyone if there is no system in place to protect 
it. There is a clear distinction between data security, which 
is generally understood to involve protecting and preserv-
ing the information users provide from other unknown 
persons, and data privacy, which is the act of determining 
who has access to the data and for what purpose.

This research proposes a Multi-level Data Integrity 
Model with Dual Immutable Digital Key based Forensic 
Analysis (MLDIM-DIDKbFA) for securing the IoT data.

The following algorithm provides the pseudocode for 
Data Integrity verification and Forensic analysis for cyber-
attack detection.

Algorithm 

Fig. 3  Proposed framework
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Consider a set of nodes N = {N1, N2,…, Nm} where there 
can be m number of IoT nodes in a network. Initially the 
node registrations are performed where each node informa-
tion is maintained by the network manager for further com-
munication. The node registration is performed as

Here nodearr() is the model used to consider the IoT node 
address and the node entry time for registration is considered 
using timeInst() of current node n and the maximum range 
of IoT network is considered using getnoderange() model. 
Th is the threshold value added during the registration for 
avoiding attackers to mislead the registration of nodes.

After each node set Nm are registered with the network, 
each node is assigned with a digital immutable key that 
cannot be altered in the network. The digital key is used for 
validation of nodes during data transmission. The digital 
node is used for only one time by a node. The immutable 
digital key generation is performed as

(1)nodeaddr(n) = getlogaddr(n) ∈ getphaddr(n)

(2)
NregSet[M] =

M∑

n=1

nodeaddr(n)

+ timeInst(n) +
getnoderange(n)

nextNodeaddr(n)
+ Th

(3)TimeS ← getTime(MMSS)

(4)Rval ← rand(1, getnoderange[M])

(5)Min ← input(n)where len(n) > 5

(6)Max ← input(n)where n > min

(7)Ival ← getPrime(Min,Max)

(8)Sval ← Input(n)where n⟨Rval and n⟩Ival

To monitor the data transmission and behavior of IoT 
nodes in the network, arbitrary node AN is selected that 
has best delivery rate and low delay levels. The arbitrary 
node selection is performed as

Here µ is the node computational capability level, δ is the 
transmission success rate. The node whose computational 
capabilities and transmission rate are maximum is selected 
as AN node for monitoring the IoT network.

Each IoT Node  Ni will be allowed to initiate data 
transmission only after validation. The IoT node validation 
during transmitting and receiving is performed by the AN 
node that is performed as

If T is active, then the sender can transmit and receive 
cans receive the data. The node validation is performed 
only when the key status is 1. Otherwise new key request 
of remaining L nodes is made to the AN node.

It is known that data integrity has been preserved when it 
is guaranteed to be free of corruption and readily available 
only by authorized parties. Data integrity, the maintenance 
and guarantee of accurate and consistent information across 
all communication channels so as to prevent attackers from 
modifying the data, must be taken into account in the 
development, execution, and maintenance of any system that 
maintains, processes, or retrieves data. The data integrity 
verification is performed as

(9)Ikset =

M∑

n=1

Rval⊕ Sval

Rval||Ival

(10)Dkey[M] =

M∏

n=1

Ikset &&Rval

Sval⊕ Ikset
≪ 2

(11)Dkey[Status] ← 1 if (getTime(MMSS))<TimeS + 15

(12)

Anode[M] =

M∐

n=1

Node(NregSet(n)) +max(�(n)) +max(�(n))

(13)
NValid[M] =

M∑

n=1

Node(NregSet(n)) + Dkey(n) ← Anode(Dkey(n))

{
set T ← active if Dkey[Status] == 1

T ← deactivate Otherwise

Kreq[L] =

L∑

n=1

getKey(NregSet(n)) → AN(Dkey){if Dkey[Status] == 0
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The cyber-attack detection forensic analysis is performed 
if an attack is detected in the network causing violation to 
data integrity. The forensic analysis report is performed and 
the attack causing nodes ATK{A1,  A2,….  AN} are generated 
as

Experimental Results

This research proposes a Multi-level Data Integrity Model 
with Dual Immutable Digital Key based Forensic Analysis 
(MLDIM-DIDKbFA) for securing the IoT data. The 
proposed model is compared with the traditional Binary 
Classifiers for Data Integrity Detection in Wearable IoT Edge 
Devices (BCDTED) [25] and Distributed Estimation against 
Data Integrity Attacks in IoT Systems (DEA-DIA) [26]. 
Generally blockchain is used to maintain the security, but to 
create a block and to insert the data and update the data in a 
block it is a time consuming process and the time complexity 
will be increased. So the proposed model consumes less time 
for maintaining the data integrity, without using blockchain 
the proposed model is maintaining high data integrity levels 
when compared to the existing model. The proposed model 
when compared with the traditional models performs better 
in node registration time levels. The time taken for node 
registration of proposed model is less than the traditional 
models. The immutable digital key generation accuracy 
levels of the proposed model is high than the traditional 
models. The intermediate node verification accuracy levels 
is observed as high than the traditional models. The forensic 
analysis accuracy levels of the proposed model is high that 
reflects that the proposed model performance is high in 
multiple levels.

The proposed model also performs nodes registration to 
maintain nodes information to the network for node to node 
communication. The nodes can be easily recognized in the 
network. The Node registration time levels of the proposed 
and existing models are shown in Table 1 and Fig. 4. In the 
IoT network, each node establishes a wireless contact with 
other nodes for information transmission. Each node in the 
network have to register with the network administrator so 

(14)

Dintegrity[M] =

M�

n=1

simm(D(NregSet(n)), D(NregSet(n + 1))

𝜆

+min (NregSet(D))

⎧
⎪
⎨
⎪
⎩

setInt ← MaxifNValid == 1andD(simm)andkey ∈ DKey[M] = G

setInt ← NormifNValid == 1andD(simm)andkey ∈ DKey[M] < G

disimilar otherwise

(15)ATKset[M] =

M∑

n=1

NregSet(n)

noderange(M)
+

{
Node(NregSet(n)) ← Nodeaddr(n)if (Int ← disimilar and Norm)

Node(NregSet(n)) ← if (nodeadrr(n)) ∉ NregSet[M]

that node information is used and node recognition will be 
done easily with the unique identity allocated after registra-
tion. The proposed model takes only 12 ms for registering 
300 nodes and allocating unique identities for future com-
munication. The time it consumes for registration is very less 

than the traditional models that consumes 18.6 and 21 ms, 
respectively for 300 nodes.

A immutable digital key is a key that is used by nodes 
in IoT for the verification to involve in communication that 

Table 1  Node registration time levels

Nodes in the 
network

Models considered

Proposed MLDIM-
DIDKbFA model

Existing 
BCDTED 
model

Existing 
DEA-DIA 
model

50 10.2 17 16.7
100 10.5 17.2 17.4
150 11 17.6 18.5
200 11.3 18.1 19
250 11.6 18.4 20
300 12 18.6 21

Fig. 4  Node registration time levels
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is used to avoid cyber-attacks in the network. The forensic 
investigation can be performed for the detection of attacks. 
For nodes validation, the immutable digital key is helpful. 
The Immutable Digital Key Generation accuracy levels 
of the proposed and traditional models are represented in 
Table 2 and Fig. 5. The proposed model generates immuta-
ble keys for the nodes in IoT network for authentication of 
nodes during transmission. The keys generated are strong 
and cannot be tampered. The Immutable digital key gen-
eration process achieved accuracy of 97.6% for generating 
keys for 300 nodes. The proposed model uses lightweight 
cryptography technique for this key generation that is strong 
and accurate. The traditional models achieved 92.6 and 89.8 
percent accuracy that is very less when contrasted with the 
traditional models.

In IoT, each node will transmit the data to the neighbor 
nodes for successful data transmission. The nodes in the 
IoT can be authenticated for maintaining data integrity. The 

attack detection can be performed with node verification. 
Table 3 and Fig. 6 show the Intermediate Node Verification 
Accuracy Levels of the proposed and existing model. The 
proposed model performs intermediate node verification for 
analyzing node performance levels. The node performance 
metrics like loss, delay and transmission rate are analyzed 
and the proposed model achieved 98.2% accuracy in assess-
ing 300 nodes in the IoT network. The traditional models 
achieved 92.5% and 94.8% respectively for 300 nodes that is 
less than the existing models. The integrity model performs 
better in verification of node performance levels.

There are a number of reasons why it’s crucial to safeguard 
IoT data. One benefit of data integrity is that it guarantees 
data can be recovered and searched, as well as traced and con-
nected. Stability, performance, and reusability are all boosted 
by safeguarding data accuracy and validity. Data integrity 
helps in avoiding modification of data with attacks. The multi-
level data integrity verification time levels of the proposed 
and existing models are shown in Table 4 and Fig. 7. The pro-
posed model performs multi-level data integrity verification 

Table 2  Immutable digital key generation accuracy levels

Nodes in the 
network

Models considered

Proposed MLDIM-
DIDKbFA model

Existing 
BCDTED 
model

Existing 
DEA-DIA 
model

50 96.1 91 87.5
100 96.3 91.3 88.1
150 96.7 91.6 88.4
200 97.1 92 89
250 97.4 92.2 89.5
300 97.6 92.6 89.8

Fig. 5  Immutable digital key generation accuracy levels

Table 3  Intermediate node verification accuracy levels

Nodes in the 
network

Models considered

Proposed MLDIM-
DIDKbFA model

Existing 
BCDTED 
model

Existing 
DEA-DIA 
model

50 96.8 90 93.3
100 97.1 90.5 93.7
150 97.4 91 94.1
200 97.7 91.5 94.3
250 98 92 94.6
300 98.2 92.5 94.8

Fig. 6  Intermediate node verification accuracy levels
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for checking if they is any tampering or modifications in the 
forensic data that helps in strong integrity verification. The 
proposed model performs multi-level data integrity verifica-
tion by assessing 300 nodes in only 16.4 ms. The time con-
sumed by the proposed model for multi-level data integrity 
verification at each node is very less than the traditional mod-
els who achieved this in 18.7 and 19.8 ms, respectively.

A cyber-attack is any intrusion into a computer, network, 
or other electronic device with the intent of obtaining, alter-
ing, or deleting data. Malware, social engineering, and sys-
tems vulnerabilities are only some of the tools at the attack-
er’s disposal. Any attempt to gain unauthorized access to a 
network, personal computer, or digital device with the goal 
to steal, expose, modify, disable, or damage data, applica-
tions, or other assets is considered a cyber-attack. The cyber 
attack detection accuracy levels of the existing and proposed 
models are shown in Table 5 and Fig. 8. The proposed model 
detects the cyber-attacks in the network with an accuracy of 
98.5% for 300 nodes. The proposed model accuracy levels 
are very high than the traditional models who achieved 95.4% 

and 91.2% respectively. The proposed model analyzes each 
node attributes and change in the attribute ranges and detects 
the cyber-attacks accurately. Multiple attack patterns can be 
recognized in the proposed model.

Latency refers to the amount of time IoT network takes 
for a data packet to travel from its point of origin to its 
final destination. Latency is typically expressed in terms 
of milliseconds. A IoT power consumption decreases 
the longer it is dormant. This also means less chances 
for nodes to communicate with another and share data. 
Because of this, the gadget will run more slowly, a phe-
nomenon called as latency. The latency levels of the pro-
posed model is shown in Table 6 and Fig. 9. The proposed 
model uses light weight cryptography for key generations 
and performs multi-level integrity for each node in IoT 
network. The proposed model strategy in forensic analysis 
and data integration uses simple mathematical models that 
provides high security and low maintenance. The latency 

Table 4  Multi-level data integrity verification time levels

Nodes in the 
network

Models considered

Proposed MLDIM-
DIDKbFA model

Existing 
BCDTED 
model

Existing 
DEA-DIA 
model

50 14.8 16.3 18
100 15.2 17 18.4
150 15.5 17.2 19
200 15.8 17.8 19.2
250 16.1 18.2 19.5
300 16.4 18.7 19.8

Fig. 7  Multi-level data integrity verification time levels

Table 5  Cyber-attack detection accuracy levels

Nodes in the 
network

Models considered

Proposed MLDIM-
DIDKbFA model

Existing 
BCDTED 
model

Existing 
DEA-DIA 
model

50 97.3 92.6 87
100 97.6 93.1 88
150 97.8 93.6 89
200 98 94 90
250 98.3 94.5 91
300 98.5 95.4 91.2

Fig. 8  Cyber-attack detection accuracy levels
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levels of the model is very less than the traditional models 
in which proposed model observes 11.4% delay levels that 
is very less than the traditional models that observes 17.6 
and 19 percent latency levels, respectively.

When a security breach occurs or when a node of a 
network breaks the rules or the law, a forensic analysis is 
conducted to determine what happened and which node is 
turned as an attacker node, forensic analysis is frequently 
associated with the presentation of evidence to the court. 
The four main steps in any forensic investigation include 

collecting potential evidence, examining that evidence, 
writing up a report, and presenting the results. Table 7 
and Fig. 10 represents the forensic analysis accuracy levels 
of the existing and proposed models.

Forensic analysis serves the overarching goal of 
analyzing, recovering, documenting, and preserving 
evidence for a given case. There are four steps involved in 
the data forensics process: collection, analysis, reporting, 
and presentation. Data forensic investigations may employ 
a number of different methods. Cross-drive analysis is 
one method used for this purpose since it can connect 
data found on different drives. There are a number of 
administrative and legal difficulties that investigators must 
contend with in addition to the more obvious technological 
obstacles. Attributing malicious conduct in cyberspace 
can be challenging due to the intricacies of cyber threats 
and attacks. There are many different standards for data 
forensics, but they are not universally accepted, and there 
is no central authority to guarantee that practitioners are 
competent and adhering to best practices.

The proposed model performs node authentication, 
multi-level node integrity verification and analyzes the 
node attributes and changes observed. The nodes that 
are causing cyber-attacks can be easily detected with 
the change in attributes and integrity violations. The 
proposed model performs node assessments at each level 
and observes 98.6% accuracy in forensic data analysis. 
The traditional models accuracy levels are very less 
that are observed as 92% and 89.8% accurate in forensic 
data analysis and reporting. The results shows that the 
proposed model performance in multiple aspects are high 
that represents that when the proposed model is made 

Table 6  Latency levels

Nodes in the 
network

Models considered

Proposed MLDIM-
DIDKbFA model

Existing 
BCDTED 
model

Existing 
DEA-DIA 
model

50 10.1 15.2 16
100 10.4 15.6 16.5
150 10.7 16 17
200 11 16.5 17.2
250 11.2 17.2 18
300 11.4 17.6 19

Fig. 9  Latency levels

Table 7  Forensic analysis accuracy levels

Nodes in the 
network

Models considered

Proposed MLDIM-
DIDKbFA model

Existing 
BCDTED 
model

Existing 
DEA-DIA 
model

50 97.6 88 88
100 97.9 89.2 88.2
150 98.1 89.5 88.6
200 98.3 90 89
250 98.5 91 89.4
300 98.6 92 89.8

Fig. 10  Forensic analysis accuracy levels
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available in real time forensic analysis, it will be useful in 
data analysis and achieves better accuracy in predictions.

Conclusion

Forensic analysis is the process of thoroughly investigating 
an attack after the fact to determine what motivated the 
attacker. The suggested forensic analysis solution gets 
around the constraints of IoT devices, such as their limited 
battery life and storage space. The suggested forensic 
system improves the efficiency and credibility of IoT device 
forensics in a direct-connected setting. Network traffic is 
diverted to the logging server and analyzed by comparing 
it to rules without disrupting connection between devices. 
The forensics server stores and can recreate these logs of 
malicious traffic using a variety of methods. When assaults 
are logged on IoT devices, not only are the logs recreated, 
but a dataset is also made. Data manipulation attacks are 
particularly dangerous because they can cause widespread 
disruption to an IoT system. An adversary’s goal in such 
an assault is to alter IoT data in a way that causes the 
system to malfunction and lead to bad control decisions. 
Large volumes of private information are generated by IoT 
devices. Internet-of-Things devices, however, are open to 
cyber threats because they rely on the public Internet for data 
transport. It's possible that widespread harm and outages 
could emerge from an attack that tampers with or modifies 
data in order to disrupt data. Multiple reports are then 
generated to summarize the specifics of the attack, including 
the sort of attack, the frequency with which it was launched, 
and any potential next steps. With this forensic information, 
the full picture of the attack can be documented, and the 
perpetrators can be tracked down. The proposed model 
achieved 98.5% accuracy in data integrity verification and 
optimized forensic evaluation metrics can be applied. More 
assaults, categorized and sub-categorized, can be added to 
broaden the scope of this study. To further expand the reach 
of hybrid machine learning based forensic investigation, the 
dataset of everyday IoT devices can be utilized and Hash 
based MAC can also be applied.

Data availability Dataset generated or used during this work is 
available with the corresponding author and may be provided on 
reasonable request.
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