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Abstract
The failure of river bridges due to scour depth is a significant issue worldwide. The traditional scour depth estimation equa-
tions available in the literature are derived from a particular dataset and suitable for a limited range of situations. There is 
no general formula available in the literature which is applicable to all circumstances. The prediction of scour depth around 
bridge piers is essential for ensuring the safety and stability of foundations. This paper demonstrates the applicability and 
efficiency of hybrid artificial intelligence (AI) models, namely adaptive neuro-fuzzy inference system (ANFIS) and genetic 
algorithm-based artificial neural network (GA-ANN) in the prediction of scour depth upstream of bridge piers. Affecting 
parameters such as pier length, pier width, flow velocity, flow depth, skew and median sediment size are taken into account 
to predict scour depth around piers at non-cohesive bed sediments. The hybrid AI model development considered 267 field 
data compiled from published literature. The results show that the hybrid AI techniques are effective in predicting scour 
depth around bridge piers with high accuracy and outperform other traditional models. The results of the study also indicate 
the encouraging performance of the GA-ANN model in accurate estimation of scour depth compared to regression-based 
formulae as well as ANFIS model. Thus, GA-ANN model can be used as an effective tool for the prediction of scour depth 
at bridge piers and designing safe bridge pier structure.
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Introduction

Scour is the removal of bed material around or near hydrau-
lic structures such as, abutments and piers situated in flow-
ing water [1]. Scour depth is a critical parameter that deter-
mines the stability of bridge foundations. It is influenced by 
several factors, including the velocity of water, the shape 
of the structure, the soil type, and the water level. It can 

significantly impact the safety and integrity of bridge struc-
tures. Around 60% of bridge failures in the United States 
are due to the scour [2], which results in financial losses 
along with loss of lives. To prevent bridge failure caused 
by scour depth, safe bridge foundation design is required 
which necessitates accurate prediction of scour depth around 
bridge piers and abutments. The underestimation of scour 
depth may lead to bridge failure, while overestimation will 
increase the construction costs. Thus, it is immensely essen-
tial to develop an efficient scour depth estimation model for 
economic foundation design, ensuring the longevity of the 
bridge structures and preventing catastrophic failures.

Local scour at piers is a complex phenomenon resulted 
from the complicated mechanism of flow around the struc-
ture [3]. It is affected by many parameters which is diffi-
cult to understand and thus experimental investigations to 
develop general scour depth estimation equations remains 
incomplete. The empirical equations available in the litera-
ture [4–8] are derived using a conventional experimental 
approach whose predictive accuracy is limited to particular 
conditions.
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Artificial intelligence (AI) modeling has emerged as a 
promising approach for predicting scour depth, as it can 
account for the complex interactions between various fac-
tors that influence scour depth. AI models can learn from 
existing data to make predictions, allowing for accurate and 
efficient scour depth estimation.

In recent years, researchers have proposed various AI 
models for predicting scour depth around hydraulic struc-
tures, including artificial neural networks (ANNs) [9–15], 
support vector machine (SVM) [16–20], fuzzy logic system 
(FLS) [21, 22], genetic algorithms (GA) [23, 24], Gene-
expression programming (GEP) [25–29] and Particle swarm 
optimization (PSO) [30, 31]. These models considered vari-
ous factors that affect scour depth, such as flow velocity, 
sediment characteristics, and pier geometry. ANNs are popu-
lar for their ability to learn complex relationships between 
inputs and outputs, while fuzzy logic and genetic algorithms 
are also effective in handling uncertainty and nonlinearity in 
the data. The use of AI modeling for scour depth prediction 
upstream of bridge piers has the potential to significantly 
improve bridge safety and reduce maintenance costs. By 
providing accurate predictions of scour depth, AI models 
can help bridge engineers design more robust structures and 
develop more effective maintenance plans.

Despite the potential of AI modeling for scour depth pre-
diction, there are still challenges that need to be addressed. 
These include the lack of high-quality data, the need for 
reliable and accurate input parameters, and the difficulty 
in generalizing the model to new conditions. To overcome 
these challenges, researchers are developing new techniques 
and approaches for data collection, data preprocessing, and 
model training. Moreover, the literature survey reveals 
that there is a lack of comparative study between Adaptive 
Neuro-Fuzzy Inference System (ANFIS) and genetic algo-
rithm-based artificial neural network (GA-ANN) in predict-
ing bridge pier scour depth.

This paper reviews the state-of-the-art AI modeling tech-
niques for predicting scour depth upstream of bridge piers, 
focusing on their advantages and limitations. The paper pre-
sents two hybrid AI models, namely ANFIS and GA-ANN, 
for the prediction of scour depth upstream of bridge piers. 
A performance analysis of the AI-based models is carried 
out in this study. Finally, sensitivity analysis is conducted 

to assess the significance of each affecting parameter on 
pier scour depth. The paper also discusses the challenges 
and future research directions in this area, with the aim of 
advancing the development of reliable and accurate AI mod-
els for scour depth prediction.

Development of Scour Depth Estimation 
Model

The development of the scour depth estimation model begins 
with the collection of data published in the literature. The 
dataset is then compiled and processed to feed into the AI 
models. In the next step, the empirical formulae which are 
based on the parameters of the present dataset are selected. 
The ANFIS and GA-ANN model development are also 
described in this section.

Data Collection

Different AI-based research has been carried out in the 
recent past for estimation of scour depth. The AI techniques 
and the parameters used in AI modeling for pier scour pre-
diction are shown in Table 1.

In the present study, scour depth around piers is mod-
eled as a function of pier length (l), pier width (b), flow 
velocity (V), flow depth (h), skew (ϴ) and median sediment 
size (d50). The U.S. Department of Transportation report 
[32] has been used to compile the dataset for scour depth 
upstream of the bridge pier with non-cohesive sediments. 
Table 2 presents the ranges of data values for the 267 field 

Table 1  AI-based scour depth 
modeling techniques

Author Parameter AI Technique

Khan et al. [14] b, l, g, U, y, d50, σg GEP and ANN
Sharafi et al. [15] b, l, g, U, y, r, n, d50, σg, ρs ANN, ANFIS and SVM
Khan et al. [21] b, U, y, d50 ANN and genetic function
Shamshirband et al. [22] b, l, Fr, U, Uc, y, Re, d50, and σg; PSO
Dang et al. [23] b, g, U, Uc, y, Re, d50 ANN-PSO
Nil and Das [24] b, U, Uc, y, Fr, d50 SVM

Table 2  Ranges of the parameters

Variable Unit Minimum Maximum

Pier length m 0.3 5.5
Pier width m 2.4 27.4
Flow velocity m/s 0 4.5
Flow depth m 0.1 22.5
Skew deg 0 85
Median sediment Size mm 0.06 95
Scour depth m 0 7.7
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measurements of local scour at upstream of a bridge pier, 
which constitute the dataset considered in the present study.

To enhance the effectiveness of the training process of 
AI models, dataset is normalized within the range of 0 and 
1 using the formula:

where X is the original data, X_min is the minimum value 
of the data, and X_max is the maximum value of the data. 
The resulting X_normalized values fall within the range of 
0–1. It can help to prevent large values from dominating the 
analysis and can improve the accuracy of machine learn-
ing algorithms. The normalized values of the parameters 
pier length, pier width, flow velocity, flow depth, skew and 
median sediment size were used as input parameters to the 
AI models and that of scour depth was used as target values.

Empirical Formulae

The effectiveness of the developed hybrid AI models is 
assessed by comparing their performance with empirical 
formulae [4, 5, 8] presented in Table 3.

In this context, b represents the pier width, y0 stands 
for the approach flow depth, V0 refers to the approach flow 
velocity, d50 denotes the median sediment size, and ds rep-
resents the scour depth.

Adaptive Neuro‑fuzzy Inference System

ANFIS is a hybrid intelligent system that combines the 
learning capabilities of artificial neural networks and the 
fuzzy logic principles of fuzzy inference systems [33]. It 
can capture the nonlinear relationships between the input 
and output variables and provide interpretable results. The 
ANFIS is composed of five layers, each performing a spe-
cific task. The first layer is the input layer, which receives 
the input data and passes it to the fuzzification layer. The 
fuzzification layer converts the crisp input variables into 
fuzzy sets using membership functions. The third layer is 
the rule layer, which combines the outputs of the fuzzi-
fication layer and generates a set of fuzzy if–then rules. 

X_normalized = (X − X_min)∕(X_max−X_min),

The fourth layer is the defuzzification layer, combines the 
consequent part of the fuzzy rule and generates the crisp 
output. Finally, the output layer produces the predicted 
scour depth. A typical architecture of the ANFIS model 
is shown in Fig. 1.

Consider the fuzzy if–then rule:
If (x is Ai) and (y is Bi) then (z is fk = pkx + qky + rk).
Considering x and y as two inputs belonging to the 

fuzzy sets Ai and Bi, respectively and bell-shaped mem-
bership function (μ), the fuzzification layer will convert 
the crisp values as follows:

where, x is the input, ai, bi and ci are adjustable parame-
ters that govern bell-shaped function. The firing strength 
is obtained in the second layer by multiplying membership 
function values, i.e.

The firing strengths from all the rules are then normal-
ized to obtain the normalized firing strengths:

(1)
�Ai

(x) =
1

1 +
|||
x−ci

ai

|||

2bi
,

(2)wk = �Ai
(x) ∗ �Bi

(y).

(3)wk =
wk∑
k wk

.

Table 3  Scour depth estimation formulae

Author Formula

Blench-Inglis [4] ds = 1.53b0.25V0.5
0

y0.5
0
d−0.125
50

− y0

Laursen and Toch [5] ds = 1.5b0.7y0.3
0

Lee and Sturm [8] ds

b
= 5 log

(
b

d50

)

− 4, 6 <= b∕d50 <= 25

ds

b
=

1.8

(0.02b∕d50 − 0.2) + 1
+ 1.3, 25 < b∕d50

Fig. 1  ANFIS architecture
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The normalized firing strengths are used in subsequent 
layers of ANFIS to determine the output of the layer 4, 
as shown in (4), which is then added together to get the 
final result:

where p, q and r are the adjustable consequent parameters.
ANFIS models are trained using a hybrid learning 

algorithm that combines the backpropagation algorithm 
used in artificial neural networks with the least-squares 
method used in fuzzy inference systems. During the train-
ing process, the ANFIS model adjusts the parameters of 
its membership functions and fuzzy rules to minimize the 
difference between the predicted output and the actual out-
put of the system.

In recent years, numerous studies have been conducted to 
investigate the accuracy and reliability of ANFIS in predict-
ing scour depth around hydraulic structures. For instance, 
Muzzammil and Ayyub [34] developed an ANFIS model to 
predict the scour depth around bridge piers based on labora-
tory data. The results showed that the ANFIS model outper-
formed ANN and traditional regression models in predicting 
the scour depth around bridge piers. Similarly, an ANFIS 
model was used to predict the scour depth in long contrac-
tions. The results showed that the ANFIS model achieved 
higher prediction accuracy than SVM and empirical equa-
tions [35]. The performance of ANFIS was compared with 
ANN and empirical formulae for predicting scour depth 
around bridge piers. The results showed that ANFIS out-
performed the other methods in terms of accuracy and reli-
ability [36]. An improved ANFIS-based model proposed in 
[37] for predicting scour depth at abutment and was found 
to have a higher level of accuracy than the other models. 
ANFIS and GEP have been employed in the estimation of 
scour depth around bridge piers and the results of the study 
shows that ANFIS is more efficient than the GEP model [38]

The ANFIS framework provides an effective and flexible 
tool for predicting scour depth around piers. By combining 
the strengths of ANNs and FLSs, ANFIS can effectively 
capture the complex, non-linear relationships between input 
parameters and scour depth. ANFIS can also handle uncer-
tainty and incorporate expert knowledge, making it a power-
ful tool for predicting scour depth in a variety of scenarios.

Genetic Algorithm‑Artificial Neural Network Model

The GA-ANN model for predicting scour depth upstream 
of the bridge pier is proposed in this study. It is a hybrid 
intelligent system that combines the benefits of both genetic 
algorithms and artificial neural networks. GA is a search 
algorithm that is inspired by the natural selection process 
and can be used to optimize complex problems. ANN is a 

(4)zk = wk ∗ fk = wk

(
pkx + qky + rk

)
,

data-driven model that can capture complex relationships 
between input and output variables. The GA-ANN model 
integrates these two models to optimize the ANN architec-
ture and improve the prediction accuracy.

The GA-ANN model consists of two stages. The first 
stage is the optimization stage, where the GA algorithm was 
used to optimize the ANN architecture. The GA algorithm 
searches for the optimal weights and biases of the ANN by 
minimizing the error function between the predicted and 
observed values. The fitness function for the hybrid model 
was determined as the mean difference between the scour 
depth values predicted by the model and those obtained 
through measurements. In the second stage, the optimized 
ANN was employed to forecast the scour depth around the 
bridge piers by employing the back-propagation (BP) algo-
rithm which fine-tunes the final weights of the model. The 
architecture of the GA-ANN model is shown in Fig. 2.

The predictive ability of the genetic algorithm-based 
model was observed to be remarkably promising in estimat-
ing the depth of bridge pier scour [24]. The utilization of the 
GA approach can be highly effective in predicting the maxi-
mum scour depth around the bridge pier [39]. The GA-ANN 
model is used for the prediction of seasonal groundwater 
table depth in Uttar Pradesh, India [40]. The hybrid GA-
ANN model demonstrated better predictive ability than the 
traditional GA models. The GA-ANN model also provides 
superior predictive performance for scour depth, with the 
highest correlation coefficient and lowest Root Mean Square 
Error than the Radial basis function network and SVM [41].

No
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weights

Select two sets of weights

Employ crossover and 

mutation operator

New population

Output

Perform BP training

Stop GA training

Stop

Generate randomize 

set of initial weights

Termination  
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fulfilled?
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Fig. 2  GA-ANN model
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Methodology

The proposed hybrid AI modeling approach comprises three 
main steps:

Step 1: Data Preparation: The first step is to collect and 
preprocess the data. The dataset compiled from the litera-
ture [32] contains six input parameters viz. pier length, pier 
width, flow velocity, flow depth, skew and median sediment 
size and scour depth as an output parameter. The data was 
cleaned, normalized, and split into training (80%) and test-
ing (20%) sets.

Step 2: Hybrid AI Modeling: The second step is to 
develop data-driven AI models. Two hybrid AI models, 
ANFIS and GA-ANN, were used in this study. Both models 
contain six nodes in the input layer corresponding to six 
affecting parameters and one node in the output layer. These 
models were trained using the training dataset to learn the 
relationship between the input variables and the scour depth. 
The network parameters i.e. weights are adjusted during the 
training phase of the ANFIS and GA-ANN to minimize the 
error between target and predicted values. In addition, the 
parameters of the membership functions and fuzzy rules of 
ANFIS are modified during the training process to reach the 
target values. The trained models were evaluated using the 
testing dataset.

Step 3: Performance validation: The third step is to vali-
date the performance of hybrid AI models by comparing 
the results with physical-based models. Three empirical 
equations available in the literature [4, 5, 8] were used in 
this study. The physical-based models were evaluated using 
the compiled dataset and the performance was compared 
with AI models. Moreover, a comparative analysis of ANFIS 
and GA-ANN performances was carried out on the testing 
dataset.

Results and Discussion

To compare the models, both ANFIS and GA-ANN were 
trained and tested using the same dataset of scour depth 
upstream of bridge piers. The performance of the mod-
els were evaluated using statistical metrics such as, mean 

absolute error (MAE), root mean square error (RMSE) and 
coefficient of determination (R2) between the predicted and 
target values. The optimal configurations for each model 
were determined based on the minimum MAE and RMSE 
values, as well as the maximum R2 values during testing. 
The optimal hybrid AI models, as well as the empirical for-
mulae were compared by tabulating their respective perfor-
mance index values in Table 4.

Table 4 reveals that the hybrid computational models 
are capable of accurately predicting scour depth, as both 
the models have significantly smaller MAE and RMSE 
values with the actual data during the training as well as 
testing phases, in comparison to the empirical formula. 
The hybrid models also achieved higher  R2 values than the 
empirical models, indicating a stronger linear relationship 
between the predicted and observed scour depth. Moreover, 
the ANFIS model demonstrated better performance dur-
ing training, with a smaller error margin of MAE = 0.0021, 
RMSE = 0.0076, and a higher R2 = 0.9853 than the GA-
ANN model, which had MAE = 0.0026, RMSE = 0.0087, 
and R2 = 0.9827. However, during testing on new data, the 
GA-ANN model outperformed the ANFIS model. Thus, the 
study suggests that the GA-ANN model exhibits better per-
formance than ANFIS model in the prediction of scour depth 
upstream of the bridge pier. The performance of the different 
models under consideration with respect to errors between 
estimated and target values are pictorially depicted in Fig. 3.

Table 4  AI versus traditional 
models

Method Training Testing

MAE RMSE R2 MAE RMSE R2

Blench-Inglis [4] 0.1178 0.1839 0.8763 0.1423 0.2016 0.8361
Laursen and Toch [5] 0.1792 0.2482 0.6176 0.1985 0.2653 0.5952
Lee and Sturm [8] 0.0994 0.1251 0.7651 0.1126 0.1473 0.6982
ANFIS 0.0021 0.0076 0.9853 0.0105 0.0154 0.9516
GA-ANN 0.0026 0.0087 0.9827 0.0034 0.0099 0.9767

0

0.05

0.1

0.15

0.2

0.25

0.3

Blench-Inglis Laursen and 

Toch  

Lee and Sturm ANFIS GA-ANN

MAE
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Fig. 3  Performance of scour depth estimation models
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The optimal results of hybrid AI models, i.e. the model 
configuration with minimum error and maximum  R2 value 
during testing along with the corresponding training results 
are shown in Figs. 4 and 5.

Figures 4 and 5 demonstrate a comparison between the 
measured scour depth values and the predicted scour depth 
values. The results indicate that the ANFIS model exhibits 
lower training error with most of the data points falling near 
the diagonal line than the GA-ANN model. However, the 
scatter plots of test cases indicate relatively larger deviations 
from the diagonal line for the ANFIS model, resulting in a 
greater testing error compared to the GA-ANN model.

Finally, the sensitivity tests were carried out with best 
performing model, i.e. GA-ANN model to determine the 
relative influence of each affecting parameter on scour 
depth around bridge piers. This was achieved by elimi-
nating one affecting parameter at a time. The results thus 
obtained are summarizes in Table 5. When performing 
sensitivity analysis, if the removal of a parameter causes a 
significant change in performance indices, it indicates that 
the parameter is highly sensitive. On the other hand, if the 
change in performance indices is minimal, it suggests that 
the parameter is less sensitive.

Fig. 4  ANFIS predicted versus 
measured scour depth

Fig. 5  GA-ANN predicted ver-
sus measured scour depth

Table 5  Sensitivity analyses of 
the affecting parameters

Parameter Training Testing

MAE RMSE R2 MAE RMSE R2

GA-ANN without l 0.0173 0.0379 0.8895 0.0209 0.0421 0.8806
GA-ANN without b 0.0287 0.0484 0.8739 0.0351 0.0545 0.8673
GA-ANN without d50 0.0101 0.0106 0.9624 0.0112 0.0127 0.9576
GA-ANN without h 0.0160 0.0185 0.9032 0.0187 0.0232 0.9218
GA-ANN without V 0.0156 0.0163 0.9517 0.0175 0.0196 0.9437
GA-ANN without ϴ 0.0119 0.0142 0.9586 0.0136 0.0168 0.9541
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After conducting a sensitivity analysis, the findings indi-
cated that the model produced the highest error and the low-
est coefficient of determination when the pier width was 
excluded. As a result, the pier width was identified as the 
parameter with the greatest influence on scour depth and is 
considered more sensitive compared to the other parameters. 
Additionally, the results showed that sediment size has the 
least impact on scour depth.

The findings of the study demonstrate the efficacy of hybrid 
AI techniques in accurately predicting scour depth around 
bridge piers, surpassing the performance of traditional models. 
Additionally, the study highlights the promising performance 
of the GA-ANN model, which outperforms regression-based 
formulae and ANFIS models in estimating scour depth with 
precision. Consequently, the GA-ANN model proves to be a 
valuable tool for reliably predicting scour depth at bridge piers 
and facilitating the design of secure bridge pier structures.

Conclusion

The results of the study show that both ANFIS and GA-ANN 
can be used to accurately predict the scour depth around bridge 
piers. The models were trained using data from previous 
experiments and validated using unseen data. The predicted 
values were compared with the actual values and the results 
showed that both models had a high degree of accuracy. The 
AI models have outperformed empirical formula with sig-
nificantly smaller errors and higher coefficient of determina-
tion values. Moreover, the GA-ANN model outperformed 
the ANFIS in terms of prediction accuracy. The study high-
lights the significance of the GA-ANN model for predicting 
scour depth upstream of bridge piers. Accurate predictions 
of scour depth can help engineers to design safer and more 
reliable bridges. The use of the hybrid GA-ANN technique 
can help in designing effective countermeasures to prevent 
or mitigate the effects of scour. Furthermore, the sensitivity 
analysis conducted in this study revealed that the pier width is 
the most significant factors affecting the scour depth. In this 
study, there has been significant progress in the development 
of an effective AI tool for estimating scour depth. However, 
the developed models may still be enhanced by availability of 
more quality data and adjusting the algorithmic framework 
of the techniques appropriately. Although the current model 
efficiently predicts scour depth, it would be beneficial to obtain 
additional experimental data and observations to create more 
generalized models. Validating these models with real-world 
scenarios would be more effective for practical use. Further, 
the study considered six input parameters, and thus for any 
alteration on the number of input parameters, the model archi-
tecture has to be updated accordingly. The present study is lim-
ited in exploring the potential of the GA-ANN model, further 
comprehensive study can be carried out with other relatively 
new AI-based models.
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