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Abstract
Sensors, electronic devices, and smart systems have invaded the market and our daily lives. As a result, their utility in smart 
home contexts to improve the quality of life, especially for the elderly and people with special needs, is getting stronger and 
stronger. Therefore, many systems based on smart applications and intelligent devices have been developed, for example, 
to monitor people’s environmental contexts, help in daily-life activities, and analyze their health status. However, most 
existing solutions have drawbacks related to accessibility and usability. They tend to be expensive and lack generality and 
interoperability. These solutions are not easily scalable and are typically designed for specific constrained scenarios. This 
paper tackles such drawbacks by presenting SHPIA 2.0, an easily scalable, low-cost, multi-purpose smart home platform 
for intelligent applications. It leverages low-cost Bluetooth Low Energy (BLE) devices featuring both BLE connected and 
BLE broadcast modes, to transform common objects of daily life into smart objects. Moreover, SHPIA 2.0 allows the col-
lection and automatic labeling of different data types to provide indoor monitoring and assistance. Specifically, SHPIA 2.0 
is designed to be adaptable to different home-based application scenarios, including human activity recognition, coaching 
systems, and occupancy detection and counting. The SHPIA platform is open source and freely available to the scientific 
community, fostering collaboration and innovation.

Keywords  Smart home platform · Automatic data annotation · Automatic data collection · Human activity recognition · 
BLE broadcast mode · BLE connected mode

Introduction

Nowadays, smart systems have invaded our daily lives with a 
plethora of devices, mainly from consumer electronics, like 
smartwatches, smartphones, digital assistants, and domestic 

appliances with intelligent capabilities to autonomously 
drive modern homes. These are generally based on wireless 
protocols, like WiFi, Bluetooth Low Energy (BLE) and Zig-
Bee, low-cost sensing components, including Passive Infra-
Red (PIR), Radio-Frequency Identification (RFID)-based 
technologies, and several other types of environmental sen-
sors. These devices communicate with each other without 
the need for human intervention, thus contributing to the 
implementation of the Internet of Things (IoT) paradigm [1]. 
Their number is continuously increasing, and their versatility 
enables several opportunities for different scenarios, ranging 
from simple environmental monitoring solutions to more 
complex autonomous control systems, in both private life 
(i.e., at home) and public contexts (i.e., social and working 
environments). Without claiming to be exhaustive, exam-
ples of applications can be found in healthcare [2, 3] and 
elderly assistance [4, 5], in smart building for Human Activ-
ity Recognition (HAR) [6], and energy management [7, 8], 
as well as in smart industries [9], smart cities [10], and the 
recognition of environmental context [11]. On this wave, the 
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Ambient Intelligence (AmI) research area aims to empower 
human capabilities through smart, sensitive, adaptive, and 
responsive environments to human necessity. Such environ-
ments lead to a superior and innovative level the interaction 
between people and technology [12, 13]. A different research 
area, part of the AmI, is the Ambient Assisted Living (AAL) 
[5, 13, 14]. AAL are concepts, products, and services that 
combine new technologies and the social environment to 
improve the quality of life for all its users, particularly for 
people with special needs [5]. As shown in Fig. 1, IoT, AmI, 
and AAL are deeply interconnected, and smart home sys-
tems identify an entity able to provide the basics for integrat-
ing and implementing intelligent HAR algorithms, which 
make decisions based on the data perceived from the smart 
home architecture [6].

In particular, concerning private life, in the last decade, 
the idea of a smart home has become of central interest, 
where its main aim concerns the recognition of the activities 
performed by the environment occupants (e.g., cooking, sit-
ting down, sleeping, etc.), and the detection of changes in the 
environmental status due to such activities (e.g., temperature 
variation related to the opening or closing of a window) [15, 
16]. The concept of home, indeed, includes different conno-
tations, and according to [17], it is characterized as a place 
for (a) security and control, (b) activity, (c) relationships and 
continuity, and (d) identity and values. Thus, to guarantee 
and promote these peculiarities, the design of a smart home 
cannot ignore the need of implementing the capability of 
recognizing human activities through HAR systems to pro-
vide real-time information about people’s behaviors. HAR 
algorithms are based on pattern recognition models fed with 
data perceived by on-body sensors, environmental sensors, 
and daily-life smart devices [16, 18]. The recognized activi-
ties can vary from simple walking to recognizing compound 
activities such as cooking, cleaning, or watching TV [18]. 
These algorithms, together with smart devices, represent the 
foundation for implementing and integrating intelligent sys-
tems, which autonomously take decisions and support life 
activities in our homes.

The literature concerning smart home platforms is 
extremely vast and differentiated, which makes it impos-
sible to summarize them exhaustively. Concentrating on 
the academic research domain, among the most known 
and cheapest solutions, we can cite the CASAS platform 
proposed in [19]. It integrates several ZigBee-based sen-
sors for door, light, motion, and temperature monitoring at 
a total cost of $2,765. Based on the data collected by the 
platform, the authors were able to recognize ten different 
Activities of Daily Life (ADLs) executed by the environ-
ment occupants achieving, on average, approximately 60% 
accuracy.

Similarly, in [20], the authors proposed a HAR model, fed 
with data collected through a smart home platform based on 
motion, door, temperature, light, water, and bummer sensors, 
to classify more than ten ADLs, achieving approximately 
55% accuracy.

In [21], a study is presented where the authors installed a 
sensor network composed of motion sensors, video cameras, 
and a bed sensor that measures sleep restlessness, pulse, 
and breathing levels, in 17 flats of an aged eldercare facility. 
They gathered data for 15 months on average (ranging from 
3 months to 3 years). The collected information was used to 
prevent and detect falls and recognize ADLs by identifying 
anomalous patterns.

In [22], the authors used an application to continually 
record raw data from a mobile device by exploiting the 
microphone, WiFi scan module, device heading orientation, 
light proximity, step detector, accelerometer, gyroscope, 
magnetometer, and other built-in sensors. Then, time-series 
sensor fusion and techniques such as audio processing, WiFi 
indoor positioning, and proximity sensing localization were 
used to determine ADLs with high accuracy.

Moreover, when developing a strategy to deploy tech-
nology for discreet in-home health monitoring, several 
questions arise concerning, for example, the types of sen-
sors that should be used, their location, and the kind of 
data that should be collected. In [23], the authors intensely 
studied such issues, pointing out that no clear answer can 

Fig. 1   Venn diagram of the 
involved research areas
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be identified. Still, the perceived data must be accurately 
evaluated to provide insights into such questions.

Recently, relevant pilot projects, such as HomeSense 
[24, 25], have been developed and presented to demon-
strate seniors’ benefits and adherence response to the 
designed smart home architecture. HomeSense exposes 
the visualization of activity trends over time, periodic 
reporting for case management, custom real-time notifi-
cations for abnormal events, and advanced health status 
analytics. HomeSense includes magnetic contact, passive 
infrared motion, energy, pressure, water, and environmen-
tal sensors.

However, all these innovative systems and applications 
frequently present disadvantages in terms of accessibility 
and applicability. In several cases, they are based on ad hoc 
and costly devices (e.g., cameras) which are not accessible 
to everyone. In fact, as discussed in [26], among 844 revised 
scientific contributions, the system cost is the principal rea-
son for the failure of projects concerning the design of smart 
health/home systems.

Some projects targeting the definition of low-cost solu-
tions have also been proposed, but they are generally devoted 
to monitoring or recognizing single activities and/or specific 
use-case scenarios, thus lacking generality, or requiring the 
final users to install several non-inter-operable solutions in 
their homes [26]. For example, in [27] a set of very low-cost 
projects focusing on solutions for helping visually impaired 
people are presented. Nevertheless, as has been extensively 
discussed in the recent literature [28–31], less effort has 
been spent in designing solutions that use low-cost Objects 
of Daily Life (ODLs) to monitor and recognize people’s 
activity in general.

Table 1 presents an overview of similar research-oriented 
smart home architectures, advantages, disadvantages, and 
comparisons with SHPIA 2.0.

Furthermore, the existing smart home environments 
require annotating the collected data based on the video 
registration of the environment for training the pattern rec-
ognition algorithms, which is of central importance for the 
implementation of efficient HAR algorithms. Unfortunately, 
the annotation process is generally a very time-consuming 
manual activity, while only a few prototypical automatic 
approaches are currently available in the literature [34, 35].

On the other side, commercial smart home platforms like 
Google Home, Google Nest, Samsung Smart Home, and 
Amazon Home offer convenience and connectivity but come 
with certain limitations, particularly concerning the needs 
of researchers:

–	 Interoperability: A major limitation is the lack of com-
patibility with devices from different brands. These plat-
forms tend to prioritize their own proprietary products, 
making it difficult for users to integrate devices from 
other manufacturers.

–	 Restrictions: Commercial platforms may have limited 
customization options, restricting users from fully tailor-
ing their smart home setups to suit their specific require-
ments.

–	 Privacy and security concerns: There are concerns about 
data privacy and security, as these platforms collect and 
store user data in known data centers (cloud), potentially 
exposing users to privacy risks.

–	 Cost: The economic cost can be significant, as users 
and researchers may need to invest in specific branded 

Table 1   Existing similar architectures

Aim Used sensors Advantages Disadvantages

MavHome [15] Intelligent agent home 
simulator

Temperature, pressure, 
brightness, motion

Accurate, prediction algo-
rithm, act on the environ-
ment

Cost, not scalable

PlaceLab [32] Smart home activity recogni-
tion

Temperature, pressure, 
brightness, motion, 
infrared, colored cameras, 
switch

Accurate, adaptable to new 
contexts

Cost, privacy, not scalable

CARE [33] Smart home activity recogni-
tion

Temperature, switch, immer-
sion, humidity

Alerting to caregiver, reduced 
costs

Cost, not scalable

CASAS [19] Smart home activity recogni-
tion

Temperature, brightness, 
door, motion

Easily configurable, low 
energy consumption, act on 
environment

Cost, not scalable

Krishnan et al. [20] Activity recognition Temperature, brightness, 
door, motion, controller and 
actuators

Identifies new activities, acts 
on environment

Not tested on real envi-
ronment

SHPIA 2.0 Multi-purpose data collection 
architecture

temperature, pressure, bright-
ness, motion, RF-sensing

Low-costs, easy configura-
tion, low energy consump-
tion, battery-based, scalable

–
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devices or subscriptions to access the full range of fea-
tures and functionalities.

–	 Accessibility: Data accessibility problems can arise 
due to data being locked behind proprietary systems, 
restricted by privacy regulations, stored in complex or 
incompatible formats, or limited by inadequate infra-
structure or technology. Ensuring proper data accessibil-
ity is crucial for researchers, businesses, and individuals 
to make informed decisions and leverage data for various 
purposes effectively.

Paper Contribution: According to the previous considera-
tions and the limitation of existing solutions, this paper pre-
sents SHPIA 2.0, an easily scalable, low-cost, multi-purpose 
smart home platform for intelligent applications. It is based 
on the use of low-cost BLE-based devices, which make daily 
objects smart. These devices allow collecting and automati-
cally labeling of different types of data to provide intelli-
gent services in smart homes. By exploiting these devices, 
SHPIA 2.0 flexibly collects and annotates data represent-
ing the interaction between humans and the environment 
they live in, and hence the related behaviors. These datasets 
represent the first step to develop and train HAR-based sys-
tems which can be exploited in intelligent applications for 
several indoor monitoring and coaching scenarios. SHPIA 
2.0 can be set up with less than $200 and operates in a ubiq-
uitous and not invasive manner (i.e., no camera is required). 
SHPIA’s software is available to the scientific community 
through a public GitHub repository [36].

Scope of SHPIA 2.0: SHPIA is not intended as a commer-
cial system. Instead, it is primarily designed for research-
ers and utilization in research activities. Unlike commercial 
platforms, SHPIA provides researchers, enthusiasts, and 
developers with an accessible alternative that encourages 
collaboration, customization, and innovation. Its open-
source nature fosters a community of users who can leverage 
SHPIA’s capabilities to explore novel applications, experi-
ment with new protocols, and contribute to the advancement 
of the smart home domain. Additionally, SHPIA’s afford-
ability makes it an attractive option for users who may not 
have the financial resources to invest in expensive commer-
cial solutions. By reducing barriers to entry, SHPIA enables 
a broader user base to actively participate in smart home 
research and development.

SHPIA vs. SHPIA 2.0: This paper extends our recent con-
ference paper “SHPIA: A Low-Cost Multi-purpose Smart 
Home Platform for Intelligent Applications [37]". The con-
ference paper supports only one specific type of sensor (i.e., 
Thingy 52) communicating with the data collector node (i.e., 
Android smartphone) through BLE connected mode, thus 
limiting the number of sensors simultaneously linked to the 
data collector node to 11. Instead, SHPIA 2.0 implements 
the following new features:

–	 Supports both BLE connected and BLE broadcast net-
work topology;

–	 Besides Nordic Thingy 52 devices, it supports a wide 
variety of BLE beacon devices such as, Estimote Stick-
ers, Estimote Locators, Global Tag, and Smartphone 
BLE simulators;

–	 Supports iBeacon and Eddystone broadcasting protocols;
–	 More than 11 (i.e., hundred) nodes can be simultaneously 

used;
–	 Enables the simultaneous transmission of both inertial 

and environmental data.

Paper Organization: The rest of the paper is organized as 
follows. Section “Preliminaries” introduces preliminary 
information concerning the devices and the communication 
protocols used in SHPIA 2.0. Section “SHPIA 2.0 architec-
ture” details the SHPIA 2.0 architecture and describes how it 
enables data collection and labeling. Section “SHPIA evalu-
ation” showcases and discusses the experimental results and 
application scenarios. Finally, Section “Conclusions and 
Future Works” concludes the paper with final remarks.

Preliminaries

SHPIA 2.0 supports two types of BLE devices (aka., SHPIA 
nodes): a) the Nordic Thingy 52 supporting the BLE con-
nected mode, and BLE beacons supporting the BLE broad-
cast mode, shown in Fig. 2. Such devices are highly versatile 
and present a complete set of characteristics, summarized 
below in this section. However, these devices can be eas-
ily replaced, without affecting SHPIA functionalities, with 
many other BLE-based units available on the market, pro-
vided that they allow the collection of similar data through 
their sensors.

Nordic Thingy 52

The Nordic Thingy 52 is a compact, power-optimized, multi-
sensor device designed for collecting data of various type 
based on the nRF52832 System on Chip (SoC), built over a 
32-bit ARM CortexTM-M4F CPU. The nRF52832 is fully 
multiprotocol, capable of supporting Bluetooth 5, Blue-
tooth mesh, BLE, Thread, Zigbee, 802.15.4, ANT, and 2.4 
GHz proprietary stacks. Furthermore, the nRF52832 uses 
a sophisticated on-chip adaptive power management sys-
tem achieving exceptionally low energy consumption. This 
device integrates two types of sensors: (i) environmental and 
(ii) inertial. Environmental concern temperature, humidity, 
air pressure, light intensity, and air quality sensors (i.e., CO2 
level). Instead, inertial concerns accelerometer, gyroscope, 
and compass sensors. Besides the data directly measured by 
the integrated sensors, the Thingy computes over the edge 
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the following information: quaternion, rotation matrix, pitch, 
roll, yaw, and step counter. Concerning the communication 
capabilities, Thingy 52 instantiates a two-side BLE com-
munication with the data aggregator device, unlike BLE 
beacons. Unfortunately, this limits the number of simul-
taneously connected devices on the data aggregator side, 
thus reducing the architecture’s scalability. For example in 
Android v11, there can be connected simultaneously up to 
11 Thingy nodes.

The communication between Thingy 52 and the data 
aggregator occurs at a frequency that goes from 0.1 Hz to 
133 Hz, making SHPIA adaptable to applications scenarios 
were high sampling frequencies are required. Moreover, 
since the BLE provides the possibility to send more than just 
one value into every single transmitted package, the sensor’s 
sampling frequency is not limited to 133 Hz (i.e., the maxi-
mal frequency of the BLE communication), but it enables 
the sensor to sample at higher frequencies (e.g., 200 Hz).

BLE Beacons

BLE beacons, introduced in 2011 with the introduction of 
the iBeacon protocol by Apple, are low-cost and reduced 
size devices that broadcast their identifier to nearby BLE 
receivers, an overview of such devices is reported in Fig. 2. 
They enable smartphones, tablets, and other devices to per-
form specific actions based on the broadcasted data. Besides 
advertising, beacons can transmit data perceived by built-
in sensors, such as temperature, pressure, acceleration, or 
brightness. Since there is not a established connection, the 
data aggregator device (aka., BLE receiver) can perceive the 
data frames broadcasted from more than 100 beacons1. Thus, 
such technology is highly scalable and reduces constraints 
related to the maximal number of beacons deployable into 
the environment.

SHPIA 2.0 makes use of three types of BLE beacon 
devices. Estimote beacons2, in particular the Estimote loca-
tor and Estimote sticker beacons, and Global Tag beacons3, 
communicating through iBeacon, and Eddystone protocols. 
Finally, BLE beacons present a significantly extended bat-
tery life, ranging from 6 months to 5 years, depending on 
the battery size, device transmission power, and advertising 
frequency. This is due to the advertising frequency going 
from 1 frame emitted every 10 seconds (i.e., 0.1 Hz) to 10 
frames emitted each second (i.e., 10 Hz) [38]. Furthermore, 
SHPIA 2.0 can integrate any other type of beacons imple-
menting the iBeacon/Eddystone advertising Protocol Data 
Unit (PDU) shown in Fig. 3.

BLE Network Topologies

One of the main characteristics of BLE communication tech-
nology concerns the capability to enable communication 
among most of the existing IoT devices available nowadays. 
BLE technology is supported by almost every modern plat-
form, such as iOS, Android, Windows, Linux, or standalone 
devices like Beacons or Single Board Computers (SBC), 
regardless of the constraints these devices have to endure.

In particular, the BLE protocol has been designed with 
a special focus on reduced battery consumption and scal-
ability. This is made possible, thanks to the support of three 
different network topologies: (a) broadcast, (b) connected, 
and (c) mixed. SHPIA architecture enables both connected 
and broadcast topologies. Moreover, BLE supports the utili-
zation of two types of devices: (a) peripheral and (b) central, 
defined as follows:

–	 Peripheral devices are small, low-power, resource-con-
strained devices (e.g., BLE beacons, Thingy 52, heart 

Fig. 2   SHPIA 2.0 supported 
devices: BLE beacons (i.e., esti-
mote locator, estimote sticker, 
and global tag) and the nordic 
thingy 52 sensor kit

1  At the price of a small increment of data loss.

2  www.​estim​ote.​com.
3  www.​global-​tag.​com/.

https://estimote.com/
https://www.global-tag.com/
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rate monitors, or proximity tags) that can connect to a 
much more powerful central device.

–	 Central devices usually present higher processing and 
memory capabilities (e.g., smartphones, computers, 
SBC, or tablets).

Figure 4 presents an overview of the BLE network topolo-
gies and the involved type of devices.

SHPIA supports both broadcast and connected BLE 
topologies (i.e., mixed topolgy). When working on broad-
cast topology, the SHPIA data collection node (i.e., smart-
phone) behaves as the observer device, and the BLE bea-
cons (shown in Section "BLE Beacons") behave as the 
BLE broadcaster device. The latter broadcast a BLE data 
packet at a defined sampling rate that is received by all the 

BLE observer devices in the range of action; no pear-to-
pear connection is used. Instead, when working on con-
nected topology, the SHPIA data collection node (i.e., 
smartphone) behaves as a central device and instantiates 
a connection toward one or more peripheral devices (i.e., 
Thingy 52 SHPIA nodes).

Table  2 presents an overview on the main advan-
tages and disadvantages of the described BLE network 
topologies.

Performance Measurements

The performance of the different pattern recognition and 
regression models trained over the data collected by the 
SHPIA platform are measured in terms of Specificity, Sensitiv-
ity, Precision, and Accuracy, concerning the pattern recogni-
tion models, and Root Mean Square Error (RMSE) and Mean 
Absolute Error (MAE) concerning the regression models [39]. 
Such metrics are defined as follows:

(1)Specificity =
tn

tn + fp
,

(2)Sensitivity =
tp

tp + fn
,

Fig. 3   Advertising PDU of a iBeacon and b eddystone [38]

Fig. 4   Bluetooth low energy 
(BLE) network topologies

Table 2   Advantages and disadvantages of the different BLE network 
topologies

BLE topology Advantages Disadvantages

Broadcast Easily scalable Broadcast data at a 
frequency in the 
range 0.1 Hz–10 
Hz

Connected Transmit data at a frequency 
in the 1 Hz–133 Hz

Scalable only by 
adding new BLE 
central devices
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Here, tp represents the number of true positives, tn repre-
sents the number of true negatives, fn represents the num-
ber of false negatives, fp the number of false positives, xi 
the ground truth value, yi predicted value, and n number of 
samples in the dataset.

SHPIA 2.0 Architecture

This section introduces the core of the SHPIA 2.0 architec-
ture, which is shown in Fig. 5. In particular, it describes the 
principal agents composing its architecture, and how a smart 

(3)Precision =
tp

tp + fp
,

(4)Accuracy =
tp + tn

tp + tn + fp + fn
,

(5)RMSE =

√√√√
n∑

i=1

(xi − yi)
2,

(6)MAE =

n∑

i=1

|xi − yi|.

home environment can be defined and configured for ena-
bling data collection. From now on, we refer to SHPIA 2.0 
as SHPIA, and to the BLE beacons and Thingy 52 devices 
as SHPIA nodes.

Agents

The agents involved in the SHPIA architecture are classified 
as abstract agents and real agents. The abstract agents are 
necessary to analyze the status of the environment (in terms 
of included objects and environmental conditions) and the 
status of people living in it (in terms of presence, number, 
movements, and accomplished actions). On the other side, 
real agents are represented by the people occupying the envi-
ronment, their smartphones, and the SHPIA nodes. SHPIA 
enables communication capabilities among real agents as 
described below in the paper.

Environment Definition

Concerning the home environment, SHPIA defines it as a set 
composed of the home itself, people inside it, and available 
ODLs. In particular, ODLs enclose mobile objects (bottles, 
pills container, keys, etc.) and motionless objects (e.g., doors, 

Fig. 5   Schematic view of the 
SHPIA 2.0 architecture
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desks, coffee machine, etc.) present inside the environment, as 
those shown in Fig. 5.

Therefore, given a set of mobile ODLs (M) and a set of 
motionless ODLs (Ml), the environment (E) is formally 
defined as: where T is a set of SHPIA nodes, D is a data aggregator 

node, while fs and fl are functions that associate, respec-
tively, a SHPIA node with each mobile (M) and motionless 
(Ml) ODL. The data aggregator D identifies the device that 
collects the data perceived by the SHPIA nodes, behaving as 

E = {{M ∪Ml}, fs, fl, T ,D}, with

fs ∶ M ⟶ T ,

fl ∶ Ml ⟶ T ,

Fig. 6   SHPIA 2.0 Android mobile application. a authentication page, b environments page, c sub-environment page, d sensor in sub-environ-
ments, e and f real-time data visualization, and g settings page
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a gateway toward a Cloud database. SHPIA uses an Android-
based smartphone as data aggregator.

Environment Configuration

To handle the definition of the environment, we designed the 
Android application shown in Fig. 6. It allows the users to 
create one or more environments and associate a SHPIA node 
to each ODL of interest. In addition, this application allows 
real-time visualization of the perceived data and enables the 
smartphone to operate as the data aggregator.

Figure 7 presents the steps that the user has to perform 
to configure the smart environment by means of the mobile 
application.

User Account Creation

In this first step, the SHPIA application allows, if not already 
existing, the creation of a user profile to associate the collected 
data. Once the user is verified, she/he can set the IP address 
of a Cloud-based NoSQL database from the setting page, to 
which the data will be transmitted. We want to emphasize 
that the transmitted data can be saved at any NoSQL database 
deployed on such IP. Users, for analysis purposes, need only 
to know the format that the SHPIA mobile application uses 
to save the data. Listing 1.1 provides an overview of the user 
account data structure in SHPIA.

Create Environment

Once authenticated, the user can create one or more environ-
ments, as introduced in Section "Environment Definition", 

by defining its name (i.e., env_id) and geographical address 
(i.e., address). Alternatively, if the environment already 
exists, the user can share it with other SHPIA users (Button 
Join Ambient in Fig. 6 a). Listing 1.2 provides an overview 
of the environment data structure in SHPIA.

Create Sub‑environment

SHPIA users can create as many environments as needed, 
and an environment is typically composed of other sub-
environments, as showed in Fig. 6c. For example, an apart-
ment consists of a lounge, a kitchen, two bedrooms, and two 
bathrooms. SHPIA does not present any limit in the depth of 
nested sub-environments (i.e., it can configure sub-environ-
ments of a sub-environment of … of an environment). This 
specific feature has been developed by considering the pos-
sibility of adopting SHPIA also in industrial, scholastic, or 
smart city scenarios. Moreover, SHPIA can also be used for 
not environmental-related contexts. For example, the users 
can adopt it for implementing a wireless body area network 
by associating the SHPIA nodes to body parts instead of 
environments or ODLs, as in [40]. Overall, environments 
and sub-environments are described as shown in the example 
of Listing 1.2. Besides, env_id and address, the environ-
ments and sub-environments are identified by owner, crea-
tion_time, list of sub_environments and a brief description.

Select Node Types

Once the environments and sub-environments have been 
created, the user can select the type of SHPIA nodes she/
he wants to use. This enables SHPIA to operate only with 

Fig. 7   SHPIA environmental 
configuration work-flow



	 SN Computer Science            (2024) 5:42    42   Page 10 of 17

SN Computer Science

nodes communicating through BLE connected mode (i.e., 
Nordic Thingy 52), only nodes communicating through BLE 
broadcast mode (i.e., BLE beacons), or both types of nodes 
as depicted in Fig. 6d.

Create Smart ODLs

Once the environment has been created and the types of 
nodes decided, the user can finally attach a SHPIA node 
to each mobile or motionless ODL of interest, transform-
ing it into a smart ODL. At this point, the user is required 
to move his/her smartphone close (< 10 cm) to the ODL 
equipped with the SHPIA node to allow SHPIA to recog-
nize it. SHPIA automatically associates the nearest SHPIA 
node by exploiting the Received Signal Strength Indicator 
(RSSI) measurement (Fig. 6d). RSSI, often used in Radio 
Frequency (RF)–based communication systems, indicates 
the power level at which the data frames are received. The 
higher the RSSI value, the stronger the signal and the closer 
the receiver and the emitter are. The RSSI is used to reduce 
possible wrong associations in the presence of a high num-
ber of BLE devices distributed in the environment.

For each ODL, SHPIA stores the information’s shown 
in Listing 1.3.

As shown, the user has complete control over each smart 
ODL since she/he can decide the type of sensor to enable, 
the list of enabled sensors is present in the node description. 
Nevertheless, if the specified node does not support the ena-
bled sensors, only those actually available will be activated.

Data Collection

After the environment definition and the association of 
ODLs with SHPIA nodes, the SHPIA mobile app will start 
collecting data from them (Fig. 6e and  f). The data per-
ceived by the SHPIA nodes are transmitted to the smart-
phone and internally stored as JSON documents. As soon as 
an Internet connection is available, all data are transmitted to 
the remote NoSQL database (Fig. 6g). Listing 1.4 shows an 
example of the data perceived by the SHPIA node defined 
in Listing 1.3.

Attributes deviceID, on_aggreg_time and on_device_time 
uniquely identify the document; the rest represents the data 
perceived by the device’s sensors and the RSSI value meas-
ured by the smartphone. The on_aggreg_time variable rep-
resents the timestamp when the aggregator receives the data. 
Instead, on_device_time represents the timestamp when the 
data is perceived on the node. Finally, deviceID is used to 
identify the (sub-) environment to which the node is asso-
ciated. We want to emphasize that the transmitted data can 
be saved at any NoSQL database deployed on the target IP 
(Fig. 6g). SHPIA users, for analysis purposes, necessitate only 
to know the data format (i.e., Listings 1.1, 1.2, 1.3, and 1.4) 
that the SHPIA mobile application adopts to store the data.

SHPIA Evaluation

This section deals with the evaluation of the performance 
of the SHPIA data aggregator to show the lightweight of 
the Android application in terms of power consumption and 
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use of resources. In addition, it illustrates four application 
scenarios where SHPIA can operate. Such scenarios do not 
require any modification of the SHPIA platform, thus prov-
ing its versatility.

Data Aggregator Performance Evaluation

The performances of four Android smartphones with dif-
ferent characteristics and prices have been evaluated while 
acting as data aggregators for the SHPIA platform. The char-
acteristics of the tested smartphones are reported in Table 3.

Instead, Table 4 presents the results of profiling the data 
aggregator nodes over a collection phase of 4/4/4 hours, 
by using five SHPIA nodes (i.e., Thingy 52) with sensors 
sampling data set at 50Hz, 100Hz, and 200Hz. The data 
aggregator nodes were placed over a table at the height of 
100 cm. Instead, the Thingy devices were associated with 
different desks. The distance between the data aggregator 
and the thingy nodes varied between 2 and 7 meters. Overall, 
the average RAM use per hour was < 119 Mbh, the storage 
memory use was < 138 Mbh4, and the battery usage was 
< 594 mAh5. On average, CPU usage and data loss were 
respectively 32 % and 0 %.

It is worth noting that smartphones executing an Android 
version older than v11 can be connected simultaneously 
with up to seven Thingy 52. Instead, smartphones running 
Android v11 can support the simultaneous connection with 
up to 11 Thingy 52. To cope with scenarios requesting the 
utilization of a higher number of Nordic Thingy 52 nodes, 
SHPIA implements a computation balancing module that 
allows different smartphones (thus, different users sharing 

the same environment) to automatically balance the num-
ber of Thingy 52 devices connected to them and save their 
information on the same dataset. Thus, in practice, SHPIA 
can handle more than 11 Thingy devices by jointly using 
more than one smartphone. Moreover, this balancing process 
helps to further reduce smartphone battery consumption.

These results show that the proposed platform works 
well on different data aggregator nodes, proving there is no 
need to buy costly top-level smartphones to run the SHPIA 
application.

SHPIA Nodes Battery Duration

Concerning the SHPIA nodes battery duration we observed 
the following. The Nordic Thingy 52 nodes efficiently oper-
ate at a sampling frequency of 200 Hz for more than three 
days without recharging the battery. In addition, a lower 
sampling frequency would further extend the battery life 
consistently for both smartphone and BLE nodes [41].

Instead, as certified by the manufacturers, the BLE bea-
cons efficiently operate for more than one year at a sam-
pling frequency of 1 Hz. In particular, the Estimote Locators 
nodes can operate for almost five years due to their larger 
battery capacity, and Estimote stickers and Global Tags can 
operate for one year. Nevertheless, based on the defined 
power transmition and sampling rate, the battery duration 
will significantly variate [38].

SHPIA Application Scenarios

In the following, we provide an overview of four dif-
ferent applications exploiting the SHPIA platform: (a) 

Table 3   Characteristics of the 
tested data aggregator nodes

Model RAM (GB) Storage (GB) Battery (mAh) Weight (g) Price ($) Android version

Honor 7S 2 16 3020 142 78 8.1
LG X Power 2 2 16 4500 164 89 8.1
Galaxy S9 4 64 3000 163 262 10.0
One Plus 6 8 128 3300 177 375 10.0

Table 4   Data aggregators 
profiling

 Frequency (Hz) Honor 7S Galaxy S9 edge LG X Power 2 One Plus 6 Average

50 100 200 50 100 200 50 100 200 50 100 200 50 100 200

RAM (MB/h) 93 93 92 127 132 140 100 100 110 130 135 170 112 115 128
Storage (MB/h) 50 100 196 48 99 198 104 127 219 74 141 295 69 116 227
CPU (%) 35 46 55 19 21 23 40 50 50 10 16 25 26 33 38
Battery (mAh) 1150 1208 1389 360 360 390 225 450 630 320 322 322 513 585 682
Data loss (%) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4  Cumulative, if the Internet connection is missing, e.g., 1190 Mb in 
10 hours without connectivity. 5  270 mAh excluding the results of the Honor 7S smartphone.
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environmental monitoring, (b) occupancy detection and 
counting, (c) automatic data annotation of ADLs, and finally, 
(d) virtual coaching.

Environmental Monitoring

The primary use of SHPIA is that of collecting data con-
cerning environmental conditions. For example, we used 
SHPIA to monitor a working office, shown in Fig. 8, shared 
by ten persons. We associated the Thingy 52 devices with 
5 motionless nodes (indicated by red arrows in Fig. 8) and 
six mobile nodes (indicated by green arrows in Fig. 8) to 
perceive the environment status. The Honor 7S smartphone, 
described in Table 3, permanently connected to the electric 
current acted as a data collector. The Thingy 52 associated 
with the motionless nodes were placed as follows: one at 
the office door, two on the windows, one on the desk at the 
office center, and one inside the locker. Instead, the mobile 
nodes were used to monitor different ODLs and the activity 
that employees performed on them (e.g., one Thingy 52 was 
attached to a bottle of water). The data collection process 
was conducted for two consecutive weeks.

Table 5 shows an overview of the collected data. The 
first column introduces the used sensors. The second and 
third columns show the sensor sampling frequency and 
the measurement unit. Column four shows the number of 
samples collected by the system during the two weeks (i.e., 
12,09,600 seconds). Column five identifies the number of 
data sources (SHPIA nodes). Finally, the last column shows 
the memory space required to store the sensed data. The 
last row concerns the collection of RSSI data, since the data 
collector extracts and associates the reception timestamp, 
the RSSI measure, and the emitter identity to each received 
BLE packet.

Once collected through SHPIA, such data were success-
fully used by a HAR-based analyzer to perform environ-
mental monitoring, recognition of people’s actions (e.g., 
drinking), and localization of ODLs and people in the envi-
ronment. Because of the adopted low sampling frequency, 
the mobile and motionless BLE nodes perfectly worked for 
the overall duration of the experiments (2 weeks) without 
being recharged.

Fig. 8   Office 1.71. Motionless (red) and mobile (green) nodes and data collector (gray)

Table 5   Results of data 
collection

Sensor type Frequency (Hz) Measure unit # of samples # of BLE 
devices

Stored data

Temperature 0.33 Celsius 2016000 5 ≈ 15 Mb
Pressure 0.33 Bar 2016000 5 ≈ 15 Mb
Brightness 0.33 Lux 2016000 5 ≈ 15 Mb
Acceleration 10 m∕s2 133056000 11 ≈ 1 Gb
RSSI 10 dBm 133056000 11 ≈ 1 Gb



SN Computer Science            (2024) 5:42 	 Page 13 of 17     42 

SN Computer Science

Occupancy Detection and Counting

Occupancy detection and counting represent a fundamental 
knowledge for implementing smart energy management sys-
tems, as well as solutions for security and safety purposes 
[42]. Existing techniques for occupancy detection and count-
ing can be categorized as (a) not device free [43] and (b) 
device free [44]. The SHPIA platform provides the capabil-
ity to implement both categories.

Not Device Free: Concerning the former, SHPIA can 
detect a user inside an environment by estimating the dis-
tance between the user’s smartphone and an SHPIA node 
associated with the environment itself, based on the RSSI 
measurement. To test this scenario, we evaluate the accuracy 
of the distance estimation between the user’s smartphone 
and ODLs equipped with Thingy 52 node. Since radio signal 
transmission highly depends on the environment characteris-
tics [45], we limited the tests on this scenario to a maximum 
distance of 5 meters between the receiver and the emitters. 
The evaluation has been performed on three different dis-
tance ranges: (a) 0–5 m, (b) 0–3 m, and (c) 0–2 m using two 
opposite setups: (i) the smartphone in the user’s hand and 
the ODL in a fixed position, and (ii) the ODL on the user’s 
hand and the smartphone in a fixed position.

Table 6 presents the results obtained by seven different 
regression models trained on RSSI data perceived at 60 Hz. 
The models were trained in two ways: using the raw data, 
and using features extracted from one-second RSSI time 
windows. The quality of the achieved results is shown in 
terms of Root Mean Square Error (RMSE) and Mean Abso-
lute Error (MAE) while estimating the distance in centim-
eters between the emitter and the receiver. The Random For-
est model achieved the lowest RMSE/MAE value in both the 
raw and the feature-based data representation. The second 
most performing model was Gradient Boosting. Overall, we 
achieved an RMSE on raw RSSI data of 51 cm in the range 
0–5 m, 17 cm in the range 0–3 m, and 12 cm in the range 
0–2 m. Moreover, in terms of MAE, the features performed 

better than the raw data: 28 cm (range 0–5 m), 8 cm (range 
0–3 m), and 8 cm (range 0–2 m). Furthermore, the most 
essential characteristics of these regression models regard 
the reduced memory and computation requirements, making 
them suitable for running on mobile and hardware-constraint 
devices.

Device Free: The second category of occupancy detec-
tion and counting systems behave more intelligently. In fact, 
users do not need to carry any device. By using SHPIA, we 
can detect their presence and number based on the variations 
of the RSSI measurements associated with the BLE signals 
received by the data aggregator from Thingy 52 located in 
the environment. The idea is that RSSI measurement fluc-
tuations are generated by people’s presence and movements 
inside the environment. Figure 9 shows very clearly the dif-
ference between nocturnal (red plot [8:00 PM–8:00 AM]) 
and diurnal (blue plot [8:00 AM–8:00 PM]) RSSI obser-
vations at the office shown in Fig. 8. The same concept is 
applied as regards the occupancy counting scenario (aka., 

Table 6   Distance estimation results based on RSSI measurements captured at 60 Hz

Regression model 0–5 m 0–3 m 0–2 m

Raw data Features Raw data Features Raw data Features

RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE

Gradient boosting 51 31 57 33 17 12 30 15 12 9 30 15
Random forest 51 31 55 28 17 12 25 8 12 9 25 8
Linear 74 58 104 79 27 22 80 60 22 16 80 60
Ridge 74 58 69 45 27 22 60 39 22 16 60 39
RANSAC 84 54 113 86 28 21 85 59 43 26 82 59
Bayesian 74 58 233 158 27 22 229 171 22 16 229 171
TheilSen 78 54 96 70 29 21 89 65 24 18 89 65

Fig. 9   Office 1.71. RSSI fluctuation between night and day for occu-
pancy detection
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identification of the number of people present inside or in 
the environment).

We carried out tests in a university classroom (8.8 m x 
8.6 m) with 15 study stations (chairs + tables) involving six 
different subjects. One female (29 years, 1.58 m height) and 
five males (25–29 years, 1.75–1.95 m height) were involved 
in the experiment. Subjects entered and left the environment 
in an undefined order with the only constraint that they must 
stay in the environment at least for one minute. Besides, the 
following environmental situations were recreated: (i) all 
standing still, (ii) all standing in motion, (iii) all seated, and 
iv) some standing in motion and some sitting.

Table 7 presents the achieved results using five differ-
ent BLE nodes connected to SHPIA. Tests were performed 
over five different well-known classification models6. Col-
umns two to five show results in terms of specificity, sensi-
tivity, precision, and comprehensive accuracy. Overall, the 
SVM model with a linear kernel achieved the most notice-
able results. Among all the other models, such a model 
requires higher computational capabilities; however, the 
Keras library provides a Quasi-SVM model implementa-
tion for Android-based mobile devices, thus enabling the 
SHPIA data collector on-device recognition capabilities. 
Furthermore, the selected models have a reduced hyper-
parameterization space, thus requiring less training time. 
In future research, we plan to investigate other alternative 
models (e.g., MLP), considering their potential for computa-
tion on resource-constrained devices. By verifying the clas-
sification errors in detail, we observed that the incorrectly 
classified samples are related to the situation in which people 
inside the environment are all seated, independently by their 
number.

Table 8 presents the results obtained on raw and features 
data concerning the occupancy counting scenario. The out-
come is an estimation of the number of persons in the envi-
ronment. The lower the RMSE, the higher the estimation 
accuracy. In particular, the proposed occupancy counting 
system, given a set of features identifying a one-second time 
window of RSSI measurements, estimates the number of 

people in the environment with a RMSE of 0.5 and a MAE 
of 0.3. Using the raw dataset, we achieved a RMSE of 0.7 
and a MAE of 0.4. As for the occupancy detection scenarios, 
the estimation error is amplified when all people inside the 
environment are sitting down.

Automatic Annotation of ADLs

As already mentioned in Section “Introduction”, one of 
the most significant limitations in the HAR research area 
concerns the creation of the learning dataset through a data 
annotation process. This process usually requires extensive 
manual work, during which at least two annotators associate 
data samples (e.g., perceived through inertial sensors) with 
labels that identify the activity (e.g., sleeping, eating, drink-
ing, cooking, and many others) based on a video recording of 
the context. SHPIA can automatically annotate these activi-
ties by assigning, as shown in Fig. 10, an SHPIA node to 
specific objects or locations in the environment (e.g., by asso-
ciating the Estimote Sticker to the eating table, to the working 
desk, the bottle of water, the bed, etc.) and by estimating the 
distance between the SHPIA data collector (i.e., the smart-
phone that the user is carrying) and the SHPIA node.

Thus, when the user is eating, SHPIA assigns the label 
“eating” to the data collected from the smartphone, based on 
the estimated distance between the nearest SHPIA node (i.e., 
the one on the table) and the user’s smartphone. Preliminary 
results in this direction [34] showed that the approach works 
properly for activities requiring more than 30 seconds to 
be performed (e.g, intensively washing hands, or cooking).

Virtual Coaching

Virtual coaching capabilities can be easily supported by the 
SHPIA platform. A virtual coaching system (VCS) is an 
ubiquitous system that supports people with cognitive or 
physical impairments in learning new behaviors and avoid-
ing unwanted ones. By exploiting SHPIA, we set up a VCS 
comprising a set of smart objects used to identify the user 
needs and to react accordingly. For example, let us imagine 

Table 7   Occupancy detection results

Model Specificity % Sensitivity % Precision % Accuracy %

kNN 98.72 99.10 99.10 99.10
WkNN 98.29 99.02 99.03 99.10
LDA 99.83 99.70 99.70 99.70
QLDA 99.78 99.77 99.77 99.77
SVM 99.82 99.86 99.81 99.82

Table 8   Occupancy estimation results

Regression Model Raw data Features

RMSE MAE RMSE MAE

Gradient boosting 0.9 0.6 0.5 0.3
Random forest 0.7 0.4 0.5 0.3
Linear 1.4 1.0 1.3 1.0
Ridge 1.4 1.0 2.5 4.2
RANSAC 1.8 1.3 3.3 3.3
Bayesian 1.4 1.0 2.1 2.1
TheilSen 1.9 1.2 2.0 1.8

6  k-Nearest Neighbor (kNN), Weighted kNN (WkNN), Linear Dis-
criminant Analysis (LDA), Quadratic LDA (QLDA), Support Vector 
Machine (SVM).
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a person requiring a new medical treatment based on pill’s 
assumption that initially forgets to respect the therapy. By 
attaching a BLE tag to the pills container SHPIA can moni-
tor pills assumption. The user carries the smartphone (e.g., 
into the pocket), and when he/she approaches the pills con-
tainer, SHPIA estimates the distance between the user and 
the container. Figure 11 present an overview on RSSI meas-
urements distribution on distance variation between SHPIA 
nodes (emitter) and SHPIA data collector.

It can also understand when the user opens and closes the 
cap based on the received motion information emitted by 
the BLE tag attached to the container. Thus, it is possible to 
understand, with greater accuracy, whether the user has taken 
medicines or not. If the person does not take medicines, the 
system warns him. Otherwise, the system remains silent. A 
prototype of such a system has been proposed in [46].

Conclusions and Future Works

This paper presented SHPIA 2.0, a platform exploiting low-
cost BLE devices and an Android mobile application that 
transforms ODLs into smart objects. It allows effective and 
efficient data collection for implementing various solutions 
in smart home and HAR scenarios. SHPIA works in a ubiq-
uitous and non-invasive way, using only privacy-preserving 
devices such as inertial and environmental sensors. Its versa-
tility has been evaluated by discussing four monitoring sce-
narios concerning the automatic data annotation of ADLs, 
occupancy detection and counting, coaching systems, and 
environmental monitoring. Moreover, despite the mentioned 
scenarios, SHPIA can be easily used in other scenarios such 
as industrial, smart buildings, smart cities, or human activity 
recognition. Nevertheless, although we have already imple-
mented a computation balancing system that overcomes 
SHPIAs scalability issue, SHPIA 2.0 was upgraded by inte-
grating support for BLE broadcasting network topology, 
transforming it into an easily scalable architecture.

While SHPIA shows its adaptability and scalability for 
applications in smart homes, industrial settings may provide 
particular complications that call for careful attention. Due 
to differences in hardware and communication standards, 
integration with current industrial systems and protocols 
may be difficult. To ensure smooth operations, a thorough 
assessment of the resilience and dependability of SHPIA in 
industrial settings is also required. As sensitive data and cru-
cial activities are frequently handled in industrial environ-
ments, security and privacy issues also need to be addressed. 
Despite these possible problems, SHPIA has bright promise 
for expanding smart solutions in industrial domains with 
appropriate adaption and industry expert participation. To 
make SHPIA 2.0 a workable and efficient tool for indus-
trial applications, more study and development are required. 
Finally, compared to existing commercial systems, SHPIA 

Fig. 10   Overview of the proposed SHPIA-based HAR automatic data annotation methodology

Fig. 11   RSSI measurements distribution on distance variation
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stands out with its affordable use of low-cost BLE devices, 
versatile and scalable platform, focus on user privacy, and 
open-source availability. These unique features position 
SHPIA as a compelling alternative to existing commercial 
systems that researchers in the field of IoT, HAR, AAL, and 
AmI can use to eliminate the existing limitations and chal-
lenges in their research.

Funding  Open access funding provided by University of Stavanger & 
Stavanger University Hospital.

Declarations 

Conflict of interest  Authors declare no conflict of interest.

 Ethical Approval  This article does not contain any studies with human 
participants or animals performed by any of the authors.

Open Access   This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article's Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article's Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

	 1.	 Gubbi J, Buyya R, Marusic S, Palaniswami M. Internet of things 
(iot): a vision, architectural elements, and future directions. Futur 
Gener Comput Syst. 2013;29(7):1645–60.

	 2.	 Acampora G, Cook DJ, Rashidi P, Vasilakos AV. A sur-
vey on ambient intelligence in healthcare. Proc IEEE. 
2013;101(12):2470–94.

	 3.	 Keller M, Olney B, Karam R. A secure and efficient cloud-con-
nected body sensor network platform. In: IFIP International Inter-
net of Things Conference. Springer; 2021. p. 197–214.

	 4.	 Rachakonda L, Mohanty SP, Kougianos E. cstick: a calm stick for 
fall prediction, detection and control in the iomt framework. In: 
IFIP International Internet of Things Conference. Springer; 2021. 
p. 129–145.

	 5.	 Rashidi P, Mihailidis A. A survey on ambient-assisted liv-
ing tools for older adults. IEEE J Biomed Health Inform. 
2013;17(3):579–90.

	 6.	 Bouchabou D, Nguyen SM, Lohr C, LeDuc B, Kanellos I, et al. 
A survey of human activity recognition in smart homes based on 
iot sensors algorithms: taxonomies, challenges, and opportunities 
with deep learning. Sensors. 2021;21(18):6037.

	 7.	 Ehlers GA, Beaudet J. System and method of controlling an 
HVAC system. 2006. US Patent 7,130,719.

	 8.	 Pourbehzadi M, Niknam T, Kavousi-Fard A, Yilmaz Y. IoT in 
smart grid: energy management opportunities and security chal-
lenges. In: IFIP International Internet of Things Conference. 
Springer; 2019. p. 319–327.

	 9.	 Fernández-Caramés TM, Fraga-Lamas P. A review on human-
centered IoT-connected smart labels for the industry 4.0. IEEE 
Access. 2018;6:25939–57. https://​doi.​org/​10.​1109/​ACCESS.​
2018.​28335​01.

	10.	 Kirimtat A, Krejcar O, Kertesz A, Tasgetiren MF. Future trends 
and current state of smart city concepts: a survey. IEEE Access. 
2020;8:86448–67.

	11.	 Zou H, Jiang H, Yang J, Xie L, Spanos C. Non-intrusive 
occupancy sensing in commercial buildings. Energy Build. 
2017;154:633–43.

	12.	 Costa R, Carneiro D, Novais P, Lima L, Machado J, Marques A, 
Neves J. Ambient assisted living. In: 3rd Symposium of Ubiqui-
tous Computing and Ambient Intelligence 2008. Springer; 2009. 
p. 86–94.

	13.	 Cook DJ, Augusto JC, Jakkula VR. Ambient intelligence: tech-
nologies, applications, and opportunities. Pervasive Mob Comput. 
2009;5(4):277–98.

	14.	 Dohr A, Modre-Opsrian R, Drobics M, Hayn D, Schreier G. The 
internet of things for ambient assisted living. In: 2010 seventh 
international conference on information technology: new genera-
tions. Ieee; 2010. p. 804–809.

	15.	 Cook DJ, Youngblood M, Heierman EO, Gopalratnam K, Rao S, 
Litvin A, Khawaja F. Mavhome: An agent-based smart home. In: 
Pervasive Computing and Communications, 2003.(PerCom 2003). 
Proceedings of the First IEEE International Conference on. IEEE; 
2003. p. 521–524.

	16.	 Abdallah ZS, Gaber MM, Srinivasan B, Krishnaswamy S. Activity 
recognition with evolving data streams: a review. ACM Comput 
Surv (CSUR). 2018;51(4):71.

	17.	 Gram-Hanssen K, Darby SJ. Home is where the smart is? Evaluat-
ing smart home research and approaches against the concept of 
home. Energy Res Soc Sci. 2018;37:94–101.

	18.	 Demrozi F, Pravadelli G, Bihorac A, Rashidi P. Human activity 
recognition using inertial, physiological and environmental sen-
sors: a comprehensive survey. IEEE Access. 2020;8:210816–36.

	19.	 Cook DJ, Crandall AS, Thomas BL, Krishnan NC. Casas: a smart 
home in a box. Computer. 2013;46(7):62–9.

	20.	 Krishnan NC, Cook DJ. Activity recognition on streaming sensor 
data. Pervasive Mob Comput. 2014;10:138–54.

	21.	 Skubic M, Alexander G, Popescu M, Rantz M, Keller J. A smart 
home application to eldercare: current status and lessons learned. 
Technol Health Care. 2009;17(3):183–201.

	22.	 Wu J, Feng Y, Sun P. Sensor fusion for recognition of activities 
of daily living. Sensors. 2018;18(11):4029.

	23.	 Wang J, Spicher N, Warnecke JM, Haghi M, Schwartze J, Deserno 
TM. Unobtrusive health monitoring in private spaces: the smart 
home. Sensors. 2021;21(3):864.

	24.	 VandeWeerd C, Yalcin A, Aden-Buie G, Wang Y, Roberts M, 
Mahser N, Fnu C, Fabiano D. Homesense: design of an ambient 
home health and wellness monitoring platform for older adults. 
Heal Technol. 2020;10(5):1291–309.

	25.	 Wang Y, Yalcin A, VandeWeerd C. Health and wellness moni-
toring using ambient sensor networks. J Ambient Intell Smart 
Environ. 2020;12(2):139–51.

	26.	 Granja C, Janssen W, Johansen MA. Factors determining the suc-
cess and failure of ehealth interventions: systematic review of the 
literature. J Med Internet Res. 2018;20(5):e10235.

	27.	 Balakrishnan M. ASSISTECH: an accidental journey into assis-
tive technology. Berlin: Springer International Publishing; 2021. 
p. 57–77.

	28.	 Morita PP, Sahu KS, Oetomo A. Health monitoring using smart 
home technologies: scoping review. JMIR Mhealth Uhealth. 
2023;11:e37347.

	29.	 Sahrab AA, Marhoon HM. Design and fabrication of a low-cost 
system for smart home applications. J Robot Control (JRC). 
2022;3(4):409–14.

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/ACCESS.2018.2833501
https://doi.org/10.1109/ACCESS.2018.2833501


SN Computer Science            (2024) 5:42 	 Page 17 of 17     42 

SN Computer Science

	30.	 Facchinetti G, Petrucci G, Albanesi B, De Marinis MG, Piredda 
M. Can smart home technologies help older adults manage their 
chronic condition? A systematic literature review. Int J Environ 
Res Public Health. 2023;20(2):1205.

	31.	 Li W, Yigitcanlar T, Liu A, Erol I. Mapping two decades of smart 
home research: a systematic scientometric analysis. Technol Fore-
cast Soc Change. 2022;179:121676.

	32.	 Intille SS, Larson K, Tapia EM, Beaudin JS, Kaushik P, Nawyn J, 
Rockinson R. Using a live-in laboratory for ubiquitous computing 
research. In: International Conference on Pervasive Computing; 
Springer. 2006. p. 349–365.

	33.	 Kröse B, Van Kasteren T, Gibson C, Van Den Dool T. et al. Care: 
context awareness in residences for elderly. In: International Con-
ference of the International Society for Gerontechnology, Pisa, 
Tuscany, Italy. 2008; p. 101–105.

	34.	 Demrozi F, Jereghi M, Pravadelli G. Towards the automatic data 
annotation for human activity recognition based on wearables and 
BLE beacons. In: 2021 IEEE International Symposium on Inertial 
Sensors and Systems (INERTIAL). IEEE; 2021. p. 1–4.

	35.	 Demrozi F, Turetta C, Machot FA, Pravadelli G, Kindt PH. A 
comprehensive review of automated data annotation techniques 
in human activity recognition. arXiv preprint arXiv:​2307.​05988 
(2023).

	36.	 SHPIA. https://​github.​com/​IoT4C​areLab/​SHPIA/ (2022). 
Accessed 14 Nov 2022.

	37.	 Demrozi F, Pravadelli G. Shpia: a low-cost multi-purpose smart 
home platform for intelligent applications. In: IFIP International 
Internet of Things Conference. Springer; 2022. p. 217–234.

	38.	 Jeon KE, She J, Soonsawad P, Ng PC. Ble beacons for internet of 
things applications: survey, challenges, and opportunities. IEEE 
Internet Things J. 2018;5(2):811–28.

	39.	 Powers DMW. Evaluation: from precision, recall and f-measure 
to roc, informedness, markedness and correlation. J Mach Learn 
Technol. 2011;2:37–63.

	40.	 Jeong S, Kim T, Eskicioglu R. Human activity recognition using 
motion sensors. In: Proceedings of the 16th ACM conference on 
embedded networked sensor systems. New York, NY, USA: Asso-
ciation for Computing Machinery; 2018. p. 392–393.

	41.	 Kindt PH, Yunge D, Diemer R, Chakraborty S. Energy modeling 
for the bluetooth low energy protocol. ACM Trans Embed Comput 
Syst (TECS). 2020;19(2):13.

	42.	 Salimi, S., Hammad, A. Critical review and research roadmap of 
office building energy management based on occupancy monitor-
ing. Energy and Buildings (2018).

	43.	 Yang J, Pantazaras A, Chaturvedi KA, Chandran AK, Santamouris 
M, Lee SE, Tham KW. Comparison of different occupancy count-
ing methods for single system-single zone applications. Energy 
Build. 2018;172:221–34.

	44.	 Zou H, Zhou Y, Yang J, Spanos CJ. Device-free occupancy detec-
tion and crowd counting in smart buildings with wifi-enabled iot. 
Energy Build. 2018;174:309–22.

	45.	 Demrozi F, Costa K, Tramarin F, Pravadelli G. A graph-based 
approach for mobile localization exploiting real and virtual land-
marks. In: 2018 IFIP/IEEE International Conference on Very 
Large Scale Integration (VLSI-SoC). IEEE; 2018. p. 249–254.

	46.	 Demrozi F, Serlonghi N, Turetta C, Pravadelli C, Pravadelli G. 
Exploiting bluetooth low energy smart tags for virtual coaching. 
In: 2021 IEEE 7th World Forum on Internet of Things (WF-IoT) 
IEEE; 2021. p. 470–475.

Publisher's Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

http://arxiv.org/abs/2307.05988
https://github.com/IoT4CareLab/SHPIA/

	SHPIA 2.0: An Easily Scalable, Low-Cost, Multi-purpose Smart Home Platform for Intelligent Applications
	Abstract
	Introduction
	Preliminaries
	Nordic Thingy 52
	BLE Beacons
	BLE Network Topologies
	Performance Measurements

	SHPIA 2.0 Architecture
	Agents
	Environment Definition
	Environment Configuration
	User Account Creation
	Create Environment
	Create Sub-environment
	Select Node Types
	Create Smart ODLs
	Data Collection


	SHPIA Evaluation
	Data Aggregator Performance Evaluation
	SHPIA Nodes Battery Duration
	SHPIA Application Scenarios
	Environmental Monitoring
	Occupancy Detection and Counting
	Automatic Annotation of ADLs
	Virtual Coaching


	Conclusions and Future Works
	References


