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Abstract
An important part of the Industry 4.0 vision is the use of machine learning (ML) techniques to create novel capabilities 
and flexibility in industrial production processes. Currently, there is a strong emphasis on MLOps as an enabling collection 
of practices, techniques, and tools to integrate ML into industrial practice. However, while MLOps is often discussed in 
the context of pure software systems, Industry 4.0 systems received much less attention. So far, there is only little research 
focusing on MLOps for Industry 4.0. In this paper, we discuss whether MLOps in Industry 4.0 leads to significantly dif-
ferent challenges compared to typical Internet systems. We provide an initial analysis of MLOps approaches and identify 
both context-independent MLOps challenges (general challenges) as well as challenges particular to Industry 4.0 (specific 
challenges) and conclude that MLOps works very similarly in Industry 4.0 systems to pure software systems. This indicates 
that existing tools and approaches are also mostly suited for the Industry 4.0 context.
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Introduction

Industry 4.0 aims at the next industrial evolution in manu-
facturing, this time based on digital technologies. A core 
part of it is the use of machine learning (ML) to enable more 
intelligent, flexible, and efficient industrial production pro-
cesses. Scenarios like lot-size one, predictive maintenance, 
or supply-chain optimization can significantly transform 
business models in Industry 4.0 [1]. Currently, Machine 
Learning Operations (MLOps) as a collection of methods, 
techniques, and tools for integrating ML into software devel-
opment practice is widely discussed as an enabler for large-
scale ML applications [2, 3]. Currently, research on MLOps 

focuses mostly on software systems without an embedded 
component.

As Industry 4.0 aims at applying ML to industrial produc-
tion, the need for MLOps in this context is clear. Thus, an 
important question is whether the specific context of Indus-
try 4.0, i.e., complex, large-scale Cyber-Physical Systems 
(CPS), changes the challenges to the application of MLOps. 
The aim of this paper is to discuss challenges of applying 
MLOps in an Industry 4.0 context. As a result we identify 
challenges to MLOps that are specific to the Industry 4.0 
context or to specific scenarios within Industry 4.0 (specific 
challenges) and challenges that are roughly comparable to 
MLOps in other contexts (general challenges). This serves 
as a basis for finding solutions to address the identified novel 
challenges. Hence, this paper aims at researchers working on 
platforms in an Industry 4.0 environment.

The paper is structured as follows: “Related Work” pro-
vides an overview of the related work. “MLOps in Industry 
4.0” introduces our understanding of MLOps, which relies 
on existing models, but with an adaptation to the Industry 
4.0 context. “Challenges” is the core of the paper and pre-
sents the challenges we could identify. We discuss these in 
an integrated manner in “Discussion”, while “Conclusion” 
concludes the paper.
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Related Work

We conducted a systematic literature review follow-
ing the guideline proposed by Kitchenham et al. [4] to 
find the typical activities related to MLOps. The method 
used is described in detail in a technical report (review 
protocol) [5]. Included are peer-reviewed and published 
research studies, such as conference and journal papers 
using the term MLOps or Machine Learning Operations. 
We also included articles where the terms above were not 
the main or only purpose of the article. All entries from 
January 2015 to May 2022 were considered here. Excluded 
are duplicate versions of studies, studies in other languages 
than English, not peer-reviewed studies, books, grey litera-
ture, studies that just mention MLOps or Machine Learn-
ing Operations without explanation or using it, and studies 
without reference to the MLOps activities, as well as talks 
without available information like protocols or notes, and 
posters. The corresponding search engines are listed in 
Table 1 together with dates of the searches. ACM Digital 
Library is a full-text collection of articles published by the 
Association of Computing Machinery (ACM), including 
all magazines and conference articles. Further, it contains 
a bibliographic database containing publications from all 
major publishers of computing literature [6]. IEEE Xplore 
digital library allows for discovery and access to journal 
and conference papers on computer science, electrical 
engineering, and electronics. It is a research database for 
articles published by the Institute of Electrical and Elec-
tronic Engineers (IEEE) and other publishers [7]. Science 
Direct allows searching for scientific and medical pub-
lications. It provides access to a bibliographic database 
of the publisher Elsevier [8]. These digital libraries were 
selected because they are the biggest and most common 
search engines for publications in software engineering.

The general search process began with the definition 
of the review protocol [5]. Then, the search engines were 
selected. Keywords were defined that could be used to find 
the subject of the topic. The papers found were filtered 
based on inclusion and exclusion criteria and then used to 
identify MLOps activities.

After an initial search, we used specific keywords, 
which are combined to form a search query based on the 

scope of the literature review: ("MLOps" OR "ML Ops" 
OR "ML-Ops" OR "Machine Learning Operations").

MLOps are defined in Sect.  “MLOps Definition”. Its 
activities are described in Sect.  “MLOps Activities”, life-
cycles in Sect.  “MLOps Life-Cycles”, and automation in 
Sect.  “Automation”.

MLOps Definition

MLOps is specialized DevOps principles for the ML appli-
cation domain [2, 9–11]. DevOps describes practices that 
integrate software development with IT system operations. 
It uses experiences from these two areas for continuous 
improvement of the quality of software systems. Further, it 
reduces costs and time to deployment. Especially, DevOps 
provide insight from operations during development [9].

MLOps is frequently described as a collection of tech-
niques and tools, practices, or processes for ML deployment 
in production [2, 12, 13]. In addition, MLOps is designed 
to significantly lower the time-to-delivery [11, 14, 15]. The 
deployment process can be done manually or automati-
cally [14]. However, to reduce the time-to-delivery, MLOps 
aims to increase the level of automation [10, 16, 17]. A 
very important property often associated with MLOps is 
the reproducibility and repeatability of the models [10, 18]. 
This creates the need for versioning of data, models, code 
and configurations [19–21]. CI (continuous integration), 
CD (continuous deployment) [10, 22], and CT (continuous 
training) [23–25] are considered to be fixed components of 
MLOps [11, 12, 26]. In CI, changes made by developers are 
continuously integrated into a repository. A project build 
is then automatically executed, and the changes are inte-
grated into the code via CD and published to the production 
environment [9]. CT provides automated re-training of ML 
models [23].

MLOps Activities

The activities most frequently used related to MLOps are 
data collection, data analysis, data preparation, model build-
ing, model training, model evaluation, model selection, 
model packaging, model deployment, and model monitor-
ing. Their appearance in the literature is shown in Table 2. In 
addition, the following terms appear sporadically: planning/
analysis and design [23], requirements engineering [23], 
data cleaning [19], feature engineering [27–29], divide the 
data into training, testing, and cross-validation sets [11, 25], 
hyperparameter tuning [11, 25]/optimization [10, 29], model 
registering [30], algorithm configuration [10, 27], (code) 
testing [10, 11, 25], (system) integration [24, 25], releasing 
[25], infrastructure management [25], output production [28, 
31]/operate [10]/inference [16], versioning [10, 19–21].

Table 1  Search engines used for the systematic literature review and 
the corresponding search dates

Search engines Search date

ACM Digital Library 2022/05/31
IEEE XPlore 2022/05/24
Elsevier/Science Direct 2022/05/31
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MLOps Life‑Cycles

Various MLOps cycles can be found in the literature. These 
have similarities, as described above, but also differences 
to the traditional DevOps life-cycle. However, the ML 
cycle can be combined with the DevOps cycle with some 
modifications to provide a CI/CD workflow for intelligent 
applications [13]. The two following life-cycles of MLOps 
are described in the literature, highlighting the relation to 
DevOps. The MLOps life-cycle used by Symeonidis et al. 
includes three phases: ML, development, and operations 
[12]. Van der Goes uses a variant with four stages [10]. 
Here, the ML stage is divided into data management and 
modeling. Each stage consists of a cycle with tasks that con-
nect the cycles. A very similar life cycle with four stages is 
presented by Tamburri et al. [31]. It also includes data as a 
separate cycle, but differs in the activities included. Another 
MLOps life-cycle by Ranawana et al. [23] describes a life-
cycle which forms a pipeline with manual and automated 
steps and a feedback loop from the last step "Operate, Moni-
tor & Maintain" to the step "Analysis & Design".

Automation

ML encompasses different technologies, algorithms, tools, 
and libraries. For this reason, a product pipeline is made 
up of a series of connections ranging from hardware to 

software, from raw data storage to the dissemination of 
information, from web services to endpoint software. It is 
unrealistic to manage all of these pieces manually [33]. To 
simplify the handling of this complexity, MLOps aims at 
automation. Here, DevOps principles and approaches are 
applied to automate ML activities [12]. Well-known cloud 
providers such as Microsoft Azure, Google Cloud and Ama-
zon AWS provide ready-made solutions. However, automa-
tion also happens in-house. Tools such as DVC, Airflow, and 
Git are used here.

MLOps helps develop and deploy all ML development 
steps and supports deployment  [25]. It often automates 
model training, evaluation, deployment and monitoring [23]. 
Further, it includes integration, test, release, deployment and 
infrastructure management [11]. Consequently, there are dif-
ferent types of automation. On the one hand, it is possible to 
automate the ML pipeline end-to-end [11]. In addition, the 
ML steps can be automated, for example, to independently 
search for suitable ML methods, hyperparameters and con-
figurations [16, 28]. Furthermore, it is possible to automate 
the infrastructure management [28]. 

Pipeline automation: An end-to-end pipeline is a pipe-
line for process automation [21]. By pipeline automation, 
we mean automatic actions to avoid manual activities and 
delays. For this purpose, the preceding ML steps must be 
started automatically, which are required for the subsequent 
model deployment [13, 14]. CI, CD, and CT are used to 

Table 2  MLOps activities

Study Year Data collection Data analysis Data 
prepara-
tion

Model building Model training Model 
evalua-
tion

Model 
selec-
tion

Model 
packag-
ing

Model 
deploy-
ment

Monitoring

[2] 2019 X X X X X X X
[27] 2020 X X X X X X
[13] 2020 X X X X
[31] 2020 X X X X X
[19] 2020 X X X X
[10] 2021 X X X X X X X X X
[28] 2021 X X X X X
[23] 2021 X X X X X
[11] 2021 X X X X X X
[14] 2021 X X X X X
[30] 2021 X X X X X X X
[32] 2021 X X
[25] 2021 X X X X X X
[29] 2022 X X X X X X X X
[16] 2022 X X X X X X X
[33] 2022 X X X X X
[17] 2022 X X X X X X
[21] 2022 X X X X X X
[12] 2022 X X X X X X X X X
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make ML algorithms run automatically [16, 28, 34]. For 
example, Bash and Python scripts or process automation 
software can be used to implement process automation [20]. 
Today, many tools help automate the ML pipeline [12].

MLOps-step automation: If automatic retraining is 
required as part of CT, an automatic trigger is needed to 
start the ML pipeline. For example, data and models may 
change, resulting in a worse outcome. Automatic data and 
model monitoring can detect this at an early stage. For exam-
ple, a threshold in model performance can trigger retraining 
[2, 30]. If such a correlation does not exist, e.g., customer 
feedback can be used as a trigger [35]. Appropriate func-
tions must be provided for this purpose. AutoML can further 
automate individual ML steps. For example, an AutoML 
pipeline can implement the steps of data preparation, model 
creation, hyperparameter tuning, evaluation, and validation 
[12]. Iterative learning algorithms automatically tune the 
control parameters in this process [36]. Newly available 
technologies also increasingly enable automatic ML feature 
selection, data labeling, and model generation [23].

Infrastructure management: Some tools handle iterative 
tasks that take a long time and allow the creation of mod-
els with high scalability, efficiency, and productivity, while 
maintaining quality [20]. Thus, they can perform tasks of the 
pipeline components. These components of the pipeline can 
be deployed on devices on-site or in the cloud [28, 30]. The 
deployment often depends on the performance needs and 
the hardware used in the specific use case. For this reason, 
tools and platforms are required that can handle the nec-
essary hardware needs. These tools often depend on cloud 
platforms and are offered as Software as a Service (SaaS) 
models. Further, infrastructure-as-code can help manage and 
provision the infrastructure with physical and virtual servers 
[20]. Container technology that packs code, libraries, and 
configuration files for a deployment helps to realize this kind 
of cloud deployment. The containers can be orchestrated and 
coordinated using scripts or special tools [9].

MLOps in Industry 4.0

MLOps aims to enhance the automation and quality of intel-
ligent systems [26]. It combines principles from DevOps 
with machine learning. The flexibility provided by DevOps 
principles is beneficial to machine learning (ML) as, typi-
cally, several iterations need to occur to identify well-work-
ing ML models and then adapt them over time as the situa-
tion changes in the application.

High‑Level Structure of the MLOps Cycle

Figure 1 represents a high-level structure of the MLOps 
cycle. This structure is divided into several steps: a manual 

step (Sect.  “Manual Step”), an MLOps/Automation step 
(Sect.  “Automation/MLOps”), and a model application step 
(Sect.  “Model Application”). The steps are explained in 
detail below.

Manual Step

The MLOps cycle typically begins with a business problem 
to be solved by ML. The initial step in MLOps to solve this 
problem is always manual and is performed in an analysis 
environment. This allows to first understand the problem 
and solution possibilities using ML. We investigate whether 
and how the problem can be solved and which algorithms 
work best to solve the problem. Usually, initial data analysis 
requires significant amounts of data and powerful hardware 
for initial experiments with different ML methods. In this 
initial step some ML tasks can be automated with autoML 
and hyperparameter tuning on the experimental hardware.

Based on the results of this step, a high-level architecture 
for the MLOps solution is created. This includes considera-
tions of the infrastructure in the production environment and 
related requirements. We must adapt the ML model to these 
requirements. This takes the ML method, SE architecture, 
hardware architecture, configuration, and, if applicable, even 
the architecture of the CPS into account and may even evolve 
them, if necessary. In particular, this defines the deployment 
of the various MLOps components and under which condi-
tions they are triggered.

Automation/MLOps

Then, we automate the pipeline to solve our problem and 
deploy it to the production environment. One input to the 
high-level architecture definition is whether automated 
retraining of models should be supported as well (Step 2). 
On the one hand, this depends on the outcome of the model 

1. Manual
step

2. Autom./
MLOps

High 
level

architecture

Deployed
model

3. Model
applica�on

Monitoring
Feedback

Business 
problem/ 

idea

Fig. 1  High-level structure of the MLOps cycle [37]



SN Computer Science           (2023) 4:828  Page 5 of 11   828 

SN Computer Science

development; on the other, it depends on business decisions. 
For example, in critical business cases automatic retraining 
could be a problem. If ML is used for control and auto-
matic retraining is conducted without human intervention, 
the behavior of a system may change in unexpected and 
negative ways. Also, the type of algorithms identified in the 
model development significantly influence the high-level 
system architecture, e.g., neural networks have very differ-
ent resource implications vs. random forest classification.

A key step in MLOps is the ramping up of ML into pro-
duction. Before that, it is crucial to versioning data, models, 
code, and configuration to make the ML models repeatable 
and traceable. Continuous integration and deployment bring 
ML models smoothly into production. Integration can also 
include testing such as A/B and shadow testing.

Model Application

Finally, there is always a model application stage (Step 3), 
which is often performed on edge devices. The details of 
the architecture will have a strong influence on the hardware 
resources as well as the ML components used, as we will 
discuss in Sect. Challenges.

Usually, the ML model is monitored in production. The 
purpose of monitoring is to determine whether the model 
is still working properly. This involves ML performance 
measurements such as model precision and accuracy as well 
as monitoring for changes in the input data like data drift. 
Based on monitoring information, automated model adapta-
tions can be triggered (automated MLOps) or it can be sig-
naled that such adaptations may need to be done manually, 
leading to a redefinition of the machine learning approach. 
For this purpose, a threshold can be used to determine if re-
training is necessary.

In some cases, when re-training has no (positive) effect, it 
is necessary to go back to the business problem and rethink 
the model from scratch including the high level architecture.

MLOps Model

While Fig. 1 provides a high-level overview of MLOps in 
Industry 4.0, we need a more detailed MLOps model to 
define the individual challenges. Various life-cycle mod-
els have been proposed for MLOps [10]. Two MLOps life-
cycles are predominant in the literature. Symeonidis et al. 
depict an MLOps life-cycle with three stages: ML, develop-
ment, and operations [12]. Van der Goes describes a vari-
ant with four stages [10]. Here, the ML stage is subdivided 
into data management and modeling. Each stage consists of 
a cycle with tasks. These tasks connect the cycles to each 
other.

However, these models do not address the specific 
activities of MLOps, but make clear that ML is added to 

DevOps principles. Moreover, they do not include cross-
cutting activities. Therefore, we propose a new life-cycle.

Our lifecycle model is based on the activities identi-
fied in the related works in Table 2. It defines the phases 
(Fig. 2): Data Engineering, Model Engineering, and Oper-
ations, each consisting of several activities; they are com-
plemented by supporting activities. These phases, together 
with associated activities are described below. They all 
depend on the overarching high level architecture in the 
industrial environment.

Data Engineering

Data engineering comprises the initial activities that are 
exclusively related to data. These include data collection, 
data analysis, and data preparation. Still, these activities 
are often among the most time-consuming. 

Data collection: This provides a basis for machine 
learning. The collected data can include machine data, 
product information, customer data, behavioral data, etc. 
Data can be collected, e.g., by web scraping, counting 
actions in a process, or querying records relevant to the 
business case, such as required information on the factory 
floor. The relevant data needs to be determined based on 
the use case and typically provides insights into the effec-
tiveness and quality of the production process.

Data analysis: This step aims at understanding the 
data and its quality, e.g., by identifying outliers. The data 
analysis aims to extract meaningful insights and patterns. 
This is a crucial step in developing and deploying machine 
learning models, as it helps to identify critical features and 
variables that can be used to train the models effectively. 
Typically, statistical and ML methods are used. Ultimately, 
data analysis is essential for ensuring machine learning 
models’ accuracy, reliability, and effectiveness.

High level architecture

Data Engineering

Model Engineering

Suppor�ng ac�vi�es

Versioning

Infrastructure

Tools

Automa�on

Opera�ons

Data 
collec�on

Data 
analysis

Data 
prepara�on

Model 
building

Model 
training

Model 
evalua�on

Model 
selec�on

Model 
packaging

Model 
deployment

Monitoring

CI/CD 
tes�ng

Fig. 2  MLOps activities [37]
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Data preparation: Transformations are applied, e.g, for 
data cleaning or value imputation. Feature transformation 
can also be done here [27].

Model Engineering

Model Engineering includes all steps that primarily serve 
to create a model. It ends when the model is tested and 
deployed. In the structure given in Fig. 1 this can either be 
performed manually (especially in the first iteration) or in 
an automated way. Typically, an ML pipeline is created at 
this stage so that when repetitive operations are performed 
manually, there are no potential errors that can slow down 
the MLOps process. Model Engineering comprises model 
building, model training, model evaluation, model selection, 
and model packaging. 

Model building: Model building aims at creating the nec-
essary machine learning models. This includes the identifi-
cation of the relevant approaches (e.g., neural networks vs. 
decision trees), determining corresponding model structures, 
and potentially determining hyperparameters.

Model training: Candidate ML models are trained and 
fitted to the data.

Model evaluation: ML models are evaluated on test data 
[33].

Model selection: The most appropriate (usually the best 
best performing) ML model is selected (or multiple mod-
els, if there are several problems, which are addressed by 
ML techniques). Potentially further fine-tuning is performed 
[27].

Model packaging: The final ML models are packaged as 
one or more application components or as a "model as a 
service" [38].

Operations

MLOps involves thinking about the quality of the model 
in the real world upfront. The operation phase, which is 
described here, must take that into account. It includes CI/
CD testing, model deployment, and monitoring activities. 

CI/CD-Testing: The ML model can be integrated into the 
code and tested before deployment to get insights in advance 
whether and how it works in production. As part of continu-
ous integration and deployment, special tests for features, 
data, models, ML infrastructure, and monitoring for ML are 
run to ensure quality of the deployed system.

Model deployment: The production-ready ML models are 
deployed as part of the production system [29].

Monitoring: Real data may behave differently than a train-
ing set. Since data in the real world can change constantly, 
models may stop working after some time. The performance 
(quality) of the ML models is continuously monitored to 
determine whether a manual or automated intervention is 

necessary [29]. Although ML methods are highly appreci-
ated in Industry 4.0 settings, according to our experience, 
the application in production settings is sometimes a bit con-
servative, i.e., automatically adjusting an existing or deploy-
ing a new version of a working ML model is judged rather 
sceptically. Thus, at least the option to manually approve 
such an intervention is often requested.

Supporting Activities

There are also supporting activities. These are a prerequisite 
for one or more of the activities, or for an MLOps imple-
mentation. These activities include providing infrastructure 
components, versioning, automation, and providing tools. 

Infrastructure: The necessary infrastructure components, 
including the relevant hardware, required to develop, deploy, 
and run complex ML systems must be selected, acquired, 
installed, and maintained. Often, this also involves data 
integration activities, e.g., in Industry 4.0 settings to obtain 
additional data from ERP (Enterprise Resource Planning) or 
MES (Manufacturing Execution System) systems.

Versioning: When experimenting, it may be unclear 
which models were trained with which data, features, and 
configurations to obtain a particular result. For this reason, 
versioning of the code, data, ML model, and configuration 
details is required [20]. In addition, versioning is often desir-
able to revert to the last working model to avoid or at least 
minimize (production) downtime. Versioning is also con-
sidered an ML safety mechanism, especially when manual 
approvals of modified ML models are required. In this case, 
an updated version of the ML model can be tested, and the 
old version can be easily restored if not approved.

Automation: Various steps in the overall lifecycle are 
often automated. This requires the implementation of these 
steps, either using existing automation capabilities or imple-
menting them in special ways.

Tools: Tools for developing ML applications are needed. 
This includes domain-specific tools like domain-oriented 
modeling or simulation (e.g., for factories or machines in 
an Industry 4.0 scenario).

Challenges

This section presents challenges relevant to using MLOps 
in an Industry 4.0 environment. We identified them based 
on our project experience as well as based on literature 
related to the described tasks. The challenges are organ-
ized based on the MLOps activities model in Fig. 2. We 
distinguish between data engineering, model-engineering, 
operations, monitoring, and support-activity-related chal-
lenges. Challenges exist in all of these activity groups. The 
focus of our discussion is always: which activity does not 
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cause additional difficulties, and what additional difficul-
ties exist in MLOps for Industry 4.0 over more traditional 
MLOps scenarios. Of course, this may vary depending on 
project-specific requirements. The identified challenges are 
divided into general and specific challenges. General chal-
lenges also exist in situations in other contexts, while spe-
cific challenges relate exclusively to specific situations in 
Industry 4.0 scenarios.

Data‑Related Tasks

Here, we describe the challenges in the data-related MLOps 
tasks.

Data collection: Depending on the scenario, various tech-
nical challenges exist. Data acquisition requires suitable sen-
sors and data transmission in the factory environment as data 
collection starts in the manufacturing machine and ends in 
the software system. Depending on the application, real-time 
requirements exist and large amounts of data are transmit-
ted or stored. We need specific information in accurate time 
intervals delivered by sensors and transmitted to the ML 
component.

If suitable technical conditions exist, i.e., machines with 
the appropriate equipment, in which the sensors and the 
respective networking are adequately dimensioned, apply-
ing MLOps is more straightforward, as one only has to think 
about potential problems in storing the relevant amounts of 
data.

Otherwise, problems may arise in meeting the require-
ments for the analysis. In this case, data collection for 
MLOps becomes very difficult as converting or adapting 
existing hardware and software may involve a significant 
effort. For example, adding additional sensors to a machine 
is a non-trivial task. In a worst-case scenario, whole 
machines, infrastructures, or manufacturing lines must be 
redeployed or exchanged. 

Data analysis: Data analysis involves the extraction of 
meaningful insights and patterns, which are dependent on 
domain knowledge. Domain knowledge is usually required 
to understand underlying processes and correlations in the 
data. Typically, this is performed with a sample data set out-
side the Industry 4.0 environment. Thus, there is no unusual 
complexity in this task.

Data preparation: Features are single independent vari-
ables in data that serve as input to an ML system. These 
features usually describe characteristics of the production 
process. In data preparation, features are provided online 
for inference and offline for experiments and training. This 
is often implemented in the form of feature stores to real-
ize reproducibility and versioning using feature and meta-
data registries [3]. Before feature selection, it is common 
to deal with data in the Big Data range. After the selection, 
which takes place during pre-processing, the data sets to be 

processed are usually smaller. We need hardware on the fac-
tory floor that is fast enough to pre-process the data.

The following specific challenges arise: Real-time 
requirements typically apply when data preparation is done 
as a pre-processing step in model inference in production. 
In this case, the frequency and size of samples required for 
further steps and the capabilities of existing hardware influ-
ence how challenging this activity is. High-quality hardware 
and software measures may be required in the production 
environment with high real-time requirements. However, the 
applicability and availability of such hardware may be lim-
ited by technical factory floor regulations, e.g., electrical or 
mechanical norms, as well as by budget restrictions. Further, 
factory floor regulations include rules like data protection 
laws, internal company regulations, or even relays for com-
panies with an increased demand for protection. Sometimes 
customers do not want a change in their existing hardware 
infrastructure because a production line must not be inter-
rupted, and possibly the maintenance and repair complexity 
should not increase.

Model‑related Tasks

Here, we describe the identified challenges in the model-
related MLOps activities.

In general, if the model building, model training, model 
evaluation and model selection activities are part of an auto-
mated pipeline, there is a need for additional software, hard-
ware, and infrastructure considerations (see Sect.  “Support 
Activities” below). 

Model building, training, evaluation, and selection: Auto-
mated training is increasingly required. If this takes place 
outside the Industry 4.0 environment, which is often the 
case, there is no impact on regular operation. However, due 
to the need of retraining, there is also in performing these 
steps within a factory environment. In this case additional 
hardware resources and software infrastructures like GPUs 
or ML implementations for embedded devices are needed 
within the factory.

Model packaging: In model packaging, the particular 
constraints of the available infrastructure in the factory 
like hardware resources must be taken into account. The 
hardware resources can be special hardware like GPU/TPU/
FPGA. Also, the network bandwidth, operating systems and 
storage capacities are sometimes limited, adapted or unique 
for the use in the production environment.

Operations-related tasks: The following challenges 
address operations-related tasks that relate to activities 
required for deployment and during ongoing operations in 
the MLOps environment.

CI/CD testing: As large parts of a CI/CD testing envi-
ronment will be in a classical IT-environment, no special 
challenges stem from this part. However, there is a general 
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challenge: the heterogeneity of hardware and operating sys-
tems typical of Industry 4.0 can make these tasks more com-
plex than usual, which leads to additional tests.

Also, intelligent methods require special CI/CD tests. 
These include tests for features and data, model develop-
ment, ML infrastructure, and monitoring tests for ML serv-
ing, e.g., performance. A particular challenge is that ML 
elements are typically analyzed on a statistical basis, while 
traditional testing requires correctness of each individual 
test case. Moreover, in automated adaptation scenarios, even 
these tasks may happen within a factory environment, mak-
ing this a rather complex task. 

Model deployment: MLOps activities can be performed 
on the factory floor, in the cloud, or in corporate IT envi-
ronments. Specifically, in the case of the factory floor, edge 
resources are needed, leading to the typical problems of suf-
ficient and appropriate resources to ensure necessary techni-
cal performance requirements.

Monitoring: In Industry 4.0, monitoring physical pro-
cesses is an integral part. Ideally, the existing monitoring 
solution is suitable for MLOps or can be extended easily. 
If this is not the case, e.g., if physical separation of groups 
or networks is required, a specific challenge arises. Addi-
tional hardware requirements or development efforts become 
necessary.

Support Activities

Support Activities are cross-cutting activities related to 
infrastructure, tools, versioning and automation. Here, we 
address challenges referring to support activities. 

Infrastructure: A major, general challenge related to the 
infrastructure is heterogeneity, which is even more signifi-
cant than for MLOps in information systems. Some parts 
need to run in an embedded context, some in corporate IT 
environments. Embedded devices are devices that contain 
a particular purpose computing system. Corporate IT may 
have restrictions on IT that cannot be bypassed. In case that 
automates model engineering activities to some extent, there 
even exists the case that for the same steps, multiple different 
infrastructures are needed (IT vs. embedded).

Hybrid cloud infrastructures offer numerous benefits. 
Companies can keep confidential data on-premise while tak-
ing advantage of the cloud, e.g., the ability to scale resources 
as needed. Further, with a hybrid cloud setup, businesses 
can quickly and easily spin up additional resources when 
demand increases without investing in hardware or software. 
This reduces the risk of over-provisioning.

Existing computing frameworks like TensorFlow are 
typically unavailable as implementations on the factory 
floor. Rather, this requires special frameworks available for 
edge computing that may not bring the same features, e.g., 
TensorFlow-light. The higher the level of automation and 

the requirements for the properties associated with MLOps 
become, the more difficult it is to deploy them in the envi-
ronment of IoT and edge devices. This leads to adapted 
frameworks for specific use in particular situations.

Another general problem is the lack of widely and homo-
geneously adopted standards, which is partially due to 
(expensive) legacy machines or retrofitting of factory equip-
ment. Legacy machines do not support communication with 
other systems. This also leads to a lack of standardization of 
tools, making tool selection in the context of Industry 4.0 a 
significant challenge.

The extent to which parts of the MLOps cycle are auto-
mated varies significantly among cases. Of course, several 
steps, like deployment or productive operation, are usually 
automated.

We envision that some degree of automated adaptation 
will also become standard practice in Industry 4.0. Never-
theless, difficult questions will remain about what may be 
changed independently in the model during productive oper-
ation. In particular, changes by self-adaptation may impact 
hardware requirements and reliability.

MLOps emphasizes the management of interdependen-
cies among data, models, and code. Thus, versioning this 
information is essential. If this information should be avail-
able at edge nodes, e.g., as feature stores, appropriate ver-
sioning infrastructure must also be available there. 

Tools: Tools are a general challenge. Typically, a more 
complex tool environment is required for MLOps in Indus-
try 4.0. This is due to the fact that some steps will be done 
manually in an IT-environment, but also corresponding 
tools in the embedded environment are needed. Also, tools 
that address the specifics of the industry environment (e.g., 
cross-compilation) are required. Special tools like simula-
tion environments may also be needed to study the impact 
of ML solutions. In particular, if they influence the factory 
behavior.

Discussion

Typically, existing MLOps life-cycle models do not describe 
that some activities can be either performed manually or 
in an automated way at different points in time. With our 
revised model of MLOps, we tried to capture this.

An essential part of MLOps in Industry 4.0, which is typi-
cally not present in other MLOps models, is the definition 
of a high-level architecture. This is particularly relevant as 
a connection to software engineering. Hence, we introduced 
this here.

Applying MLOps principles in an Industry 4.0 con-
text is not very specific. Challenges exist mainly for the 
reason that it is a heterogeneous environment, and many 
individual solutions are involved. A full-scale architecture 
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and implementation must cover the whole environment 
of the cyber-physical system, or at least interface with 
relevant existing solutions in this context. This is particu-
larly challenging due to severe resource constraints on 
the embedded devices and the complexity introduced due 
to the many different hardware platforms and operating 
environments and increasingly distributed computing. If 
self-adaptation is introduced and corresponding model 
engineering happens on edge devices, the complexity of 
the environment becomes even more severe. Addition-
ally, it remains unclear when and under what conditions 
a high-level architecture needs to be re-built or when a 
re-learning of the existing pipeline is sufficient.

The majority of MLOps activities are of similar com-
plexity in an Industry 4.0 case as in information systems. 
This counts for activities used with a CPS, as well. The 
main reason is that they are typically performed outside 
the factory infrastructure, especially if not automated. 
This applies to "Data analysis" and the majority of model-
related tasks.

The starting level of the technical infrastructure and 
the aimed degree of automation influence the overall 
complexity of implementing MLOps in Industry 4.0. The 
Infrastructure is complex and involves heterogeneity and 
individual solutions. Challenges arise, especially in not-
model-related activities under certain conditions. It is 
highly case-dependent whether MLOps is challenging to 
implement in Industry 4.0. For example, technical chal-
lenges arise in data-related tasks when already existing 
devices are not ready for data collection for the specific 
use case of an ML model or its execution. Operations are 
problematic when particular implementations are required, 
or more resources are needed.

Some automated adaptation scenarios may become 
standard practice and ease ML activities. For CI/CD Test-
ing, the existence of digital twins may be leveraged using 
existing virtualization and simulation capabilities to test 
the models.

If applied, standardization activities like OPC UA 
companion specs [39], and Asset Administration Shells 
[40] may ease data collection and analysis in the future 
by providing well-defined interfaces in addition to precise 
semantics. Nevertheless, these technologies are not widely 
adopted.

Today, some guidance, best practices, frameworks, and 
platforms already exist to facilitate MLOps in IoT environ-
ments (and thus Industry 4.0): Ruf et al. discuss a selection 
of benefits using MLOps in industrial scenarios [41]. A digi-
tal twin architecture with MLOps techniques is proposed by 
Fujii et al. [42]. An MLOps framework for automated ML at 
the edge is described by Raj et al. [30]. None of these takes 
a broad view of problems in MLOps in Industry 4.0 as we 
do here.

Conclusion

MLOps is an important set of practices and activities, which 
are key to the implementation of modern ML-based software 
solutions. It is also strongly related to DevOps principles, 
making it all the more important at the intersection with 
software engineering. MLOps in Industry 4.0 has, however, 
not yet received the necessary level of attention.

In this paper, we discussed challenges from the perspec-
tive of MLOps in Industry 4.0 and how they differ from 
MLOps challenges in other contexts. Overall, we conclude 
that most Industry 4.0 MLOps challenges exist in a similar 
manner in the more traditional software engineering context. 
Some additional challenges exist, at least in some applica-
tion scenarios. In particular, we could identify significant 
(specific) challenges for four activities. Most of the chal-
lenges are not unique to Industry 4.0, a positive indicator 
for using existing technologies and practices in this context 
as well. We plan to study these and the corresponding ways 
to address them in more detail in the future. For this pur-
pose, we will conduct industry studies around MLOps and 
apply what we have learned to platforms and frameworks 
that implement MLOps for Industry 4.0.
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