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Abstract
Shape expression (ShEx) is a novel schema language for RDF/graph data and is already in use in various domains. For vari-
ous kinds of schema and data including ShEx and RDF graph, query containment is one of the major fundamental problems 
and related to many important applications, e.g., determining independence of queries from updates and rewriting queries 
using views. In particular, ShEx is a schema language that defines the data structure of graphs, and thus considering query 
containment from the perspective of graph structure under such a schema language is intrinsically an interesting problem. In 
this paper, we consider a query containment problem under ShEx, where a query is defined as a pattern graph with projec-
tion. We adopt a graph-theoretic approach to deal with the containment problem, and propose a new algorithm for solving 
the problem. In our experiments, we first verified that the results of our algorithm were correct for all the examined queries. 
We also show that ShEx types effectively reduce the search space for checking pattern query containment.

Keywords  RDF · Query containment · Graph data

Introduction

Over the years, RDF/graph data have been used in various 
fields. For various kinds of data including RDF/graph, query 
containment is one of the major fundamental problems. 
Here, query containment is the problem of determining if the 

result of a query is always included in the result of another 
query. In addition to being theoretically interesting in its 
own right, query containment is related to many important 
applications: query optimization, determining independence 
of queries from updates, and rewriting queries using views.

In this paper, we consider a query containment problem 
under Shape Expression (ShEx). Here, ShEx is a novel 
schema language for RDF/graph data, which is being 
steered by the Shape Expression Community Group. ShEx 
is designed for capturing structural features of RDF/graph 
data. An ShEx schema assigns types to the nodes of an RDF/
graph data and allows defining a set of types that impose 
structural constraints on nodes and their immediate neigh-
bors using a regular bag expression (RBE) [2]. ShEx is 
applicable in multiple contexts, e.g., model development, 
legacy review, and model documentation [3]. In addition, 
large amount of data are being generated and exchanged in 
some advanced areas, e.g., smart cities [4, 5], and studies are 
being made to manage such data as RDF [6, 7]. ShEx can 
also be applied to such areas.

RDF Schema (RDFS) has long been known and used 
as a schema language for RDF. However, RDFS is actu-
ally an ontology description language rather than a struc-
tural schema definition language [2]. As the application of 
RDF/graph data becomes more widespread, the need for 
schema languages for specifying the structural aspects of 
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such data increases. With this background, new schema 
languages, such as Shape Expression (ShEx) and Shapes 
Constraint Language (SHACL), have been proposed. ShEx 
shares many fundamental features with Shapes Constraint 
Language (SHACL) [8]; thus, the results of this paper can 
also be applied to SHACL.

As for query language, we focus on pattern graph with 
projection. For example, Fig. 1 depicts a tiny example con-
sisting of three nodes in which only the value of circled 
node u1 is an output. Intuitively, u1, u2, u3 stand for a student, 
course, and professor, respectively, and thus, this query out-
puts any student taking a course taught by his/her supervisor. 
Consider solving the containment problem for such a query. 
If neither projection nor schema is considered, the problem 
is equivalent to subgraph isomorphism; q1 is contained in q2 
if and only if q2 is a subgraph of q1 . This no longer holds; 
however, if projection is allowed and schema is presented. 
That is, even if q1 is not a subgraph of q2 and vice versa, one 
of q1 and q2 may contain the other. For example, consider 
Fig. 2, where u1, v1 are student nodes, u2, v2 are course nodes, 
and u3, v3 are professor nodes. Suppose that schema S asserts 
that “name” is mandatory for students and courses, and that 
q1, q2 are queries under S. Then, whether q1 ⊈ q2 holds 
depends on S; q1 ⊈ q2 if the projections and S are ignored, 
q1 ⊆ q2 otherwise.

To deal with this problem, we devised a novel simple 
algorithm for checking pattern query containment under 
ShEx schema. For given pattern queries q1 and q2 , the algo-
rithm first finds a correspondence between the nodes of q1 
and q2 , which is obtained from a maximum common sub-
graph of q1 and q2 . This problem is NP-hard, but the running 
time can be reduced using the ShEx types which can narrow 
the search space. Based on the correspondence, we check if 
there is an edge e in q2 but not in q1 , such that e affects the 

query containment w.r.t. q1 . If there is no such edge in q2 , 
then the algorithm concludes that q1 is contained in q2 . We 
show the soundness of the algorithm. In our experiments, 
we generated hundreds of pairs of queries, and we verified 
that the results of our algorithm were correct for all the pairs 
of the generated queries. We also showed that ShEx types 
can be used to reduce the search space for checking pattern 
query containment.

The rest of this paper is organized as follows. Sec-
tion “Preliminaries” gives preliminary definitions. Sec-
tion “Algorithm for checking query containment” describes 
an algorithm for checking query containment under ShEx. 
Section  “Experiments” presents experimental results. 
Section “Related work” presents the related works. Sec-
tion “Conclusion” summarizes this paper.

Preliminaries

Let Σ be a set of labels. A labeled directed graph (graph 
for short) over Σ is denoted G = (V ,E) , where V is a set of 
nodes and E ⊆ V × Σ × V  is a set of edges. An edge labeled 
by l from a node v to a node v′ is denoted (v, l, v�) . A pat-
tern graph (or query) is denoted q = (V(q),E(q),P) , where 
(V(q), E(q)) is a graph and P is a tuple of output nodes. 
For example, the query in Fig. 1 is denoted (V(q), E(q), P), 
where

By Ans(q, G), we mean the set of answer tuples of q over G. 
For example, consider the pattern query q in Fig. 1 and the 
graph G in Fig. 3. Then, Ans(q,G) = {(v1), (v2)}.

The content model of type in ShEx can be modeled as 
regular bag expression (RBE) [2]. RBE is defined similarly 
to regular expression except that RBE uses unordered con-
catenation instead of ordered concatenation. Let Γ be a set 
of types. Then, RBE over Σ × Γ is recursively defined as 
follows.

•	 � and a∶∶t ∈ Σ × Γ are RBEs. � denotes “empty bag” 
having 0 occurrences of any symbol.

V(q) = {u1, u2, u3},

E(q) = {(u1, supervisor, u3), (u1, takes, u2), (u3, teaches, u2)},

P = (u1).

Fig. 1   Example of pattern query with projection

Fig. 2   Queries q1 and q2

Fig. 3   Example of valid graph G 
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•	 If r1, r2,… , rk are RBEs, then r1|r2|⋯ |rk is an RBE, 
where | denotes disjunction.

•	 If r1, r2,… , rk are RBEs, then r1 ∥ r2 ∥ ⋯ ∥ rk is an RBE, 
where ∥ denotes unordered concatenation.

•	 If r is an RBE, then r∗ , r+ , and r? are RBEs. Here, ‘ ∗ ’ 
indicates zero or more repetitions of r, r+ = r ∥ r∗ , and 
r? = �|r.

For example, let r = (a∶∶t1|b∶∶t2) ∥ c∶∶t3 be an RBE. 
Since ∥ is unordered, r matches not only a∶∶t1 c∶∶t3 and 
b∶∶t2 c∶∶t3 but also c∶∶t3 a∶∶t1 and c∶∶t3 b∶∶t2 . In the fol-
lowing, we assume that any RBE is single occurrence, i.e., 
for any a∶∶t ∈ Σ × Γ and any RBE r, a :  : t occurs at most 
once in r.

A ShEx schema is denoted S = (Σ,Γ, �) , where Γ is a set 
of types and � is a function from Γ to the set of RBEs over 
Σ × Γ . For example, let S = (Σ,Γ, �) be a ShEx schema, 
where Σ = {takes, supervisor, teaches} , Γ = {t1, t2, t3} , and

In RBE, a :  : t matches an edge e if the label of e is a and 
the target node of e is of type t. Thus, assuming that each 
node in Fig. 3 is of the type colored in red, the type of each 
node vi matches the outgoing edges of vi . Thus G is a valid 
graph of S.

For queries q1, q2 , and an ShEx schema S, q2 contains q1 
over S if for any valid graph G of S, Ans(q1,G) ⊆ Ans(q2,G).

Algorithm for Checking Query Containment

Our algorithm is based on the node correspondence between 
q1 and q2 . Such a correspondence may already be known in 
some cases, e.g., when comparing an updated query and 
its original one, we can easily identify the correspondence 
between their nodes. However, this is not always the case. 
Thus, our algorithm: 

1.	 firstly finds node correspondences between q1 and q2 
(“Finding node correspondence”) if necessary, and then

2.	 Under the obtained node correspondences, the algorithm 
checks the containment of q1 and q2 (“Checking contain-
ment”).

Thus, if we already know the node correspondence between 
q1 and q2 , then we use the algorithm of “Checking contain-
ment” directly, otherwise we first use the algorithm of “Find-
ing node correspondence” and then the one of “Checking 
containment”.

�(t1) =(takes∶∶t2)
∗ ∥ (supervisor∶∶t3)?,

�(t2) =�,

�(t3) =(teaches∶∶t2)
∗.

Finding Node Correspondence

We assume that the size of output tuples of q1 and q2 are 
identical (otherwise, q1 and q2 are incomparable), and thus, 
we can identify the correspondence between the output 
nodes of q1 and q2 . Thus, in the following, we consider find-
ing correspondences of between their non-output nodes.

Node correspondence is expressed by function �() . Let 
u ∈ V(q1) . We write �(u) = v (and we also write �(v) = u ) 
if u corresponds to v ∈ V(q2) , and �(u) = vnil if there is no 
node corresponding to u, where vnil is a new node not in 
V(q2).

Algorithm 1 finds the “maximum” correspondence(s) 
between q1 and q2 . We first identify the type of each node in 
q1 and q2 under ShEx schema S (lines 1 and 2). This is done 
by the algorithm for checking satisfiability of pattern queries 
[9], since the type of each node is identified during check-
ing satisfiability. We check node correspondence in order of 
distance from the output node(s) using queue Q introduced 
in line 3. In line 5, since u can correspond to only a node in 
q2 of the same type, T(u) collects such nodes for u. In lines 
8–10, FindCandidates checks whether u corresponds to v in 
T(u),1 and then, traverse descendants of u and v recursively 
to find their correspondences. Finally, among the obtained 
correspondences in C, we find maximum ones. This is done 
by, for each correspondence � in C, computing a maximum 
common edge subgraph of q1 and q2 under � and choosing 
maximum ones among them (lines 11–23).

Algorithm 1 FindNodeCorrespondences
Input: ShEx schema S = (Σ,Γ, δ), queries q1, q2
Output: set of node correspondences
1: λ1 ← FindNodeType(q1, S)
2: λ2 ← FindNodeType(q2, S)
3: Let Q be a queue. Add Q the nodes in q1 adjacent to/from some output node.
4: Get a node u from Q
5: T (u) ← {v | v ∈ V (q2), λ1(u) = λ2(v)}
6: C ← ∅
7: µ ← nil
8: for each v ∈ T (u) ∪ {vnil} do
9: C ← C ∪ FindCandidates(q1, q2, Q, u, v, µ)

10: end for
11: max ← 0, Mmax ← ∅
12: A1 ← CreateAdjacencyMatrix(q1)
13: for each µ ∈ C do
14: A2 ← CreateAdjacencyMatrix(q2, µ)
15: n ← CountCommonEdge(A1, A2)
16: if n > max then
17: max ← n
18: Mmax ← {µ}
19: else if n = max then
20: Mmax ← Mmax ∪ {µ}
21: end if
22: end for
23: return Mmax

1  In line 8, we have “dummy” node vnil as well as T(u) in case that 
T(u) = � . In line 9, copies of Q and � are passed into FindCandidates.
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Algorithm 2 FindCandidates
Input: queries q1, q2, queue Q, nodes u ∈ V (q1), v ∈ V (q2), node correspondence µ
Output: set of node correspondences between q1 and q2
1: if Adj(q1, u) ∩ µ(Adj(q2, v)) = ∅ then
2: µ(u) ← v
3: else
4: µ(u) ← vnil
5: end if
6: N ← {u ∈ Adj(q1, u) | u is neither visited yet nor an output node}
7: Add the nodes in N to Q
8: if Q is not empty then
9: Get a node u from Q

10: else // all nodes are visited
11: return {µ}
12: end if
13: C(u ) ← {v | v ∈ T (u ),∀u ∈ V (q1)µ(u) = v}
14: C ← ∅
15: for each v ∈ C(u ) ∪ {vnil} do
16: C ← C ∪ FindCandidates(q1, q2, Q, u , v , µ)
17: end for
18: return C

For a node u in q1 and v in q2 , FindCandidates recur-
sively traverses the descendants of u and v and finds corre-
spondences between the nodes (Algorithm 2). For a query 
q = (V(q),E(q),P) , by Adj(q, u) , we mean the set of nodes 
adjacent to/from u in q. More precisely

First, in lines 1–5, we check whether u should corre-
spond to v or not. This is done by checking whether 
u and v have a “common” adjacent node, where 
�(Adj(q2, v)) = {�(v�) ∣ v� ∈ Adj(q2, v)} . If there is such a 
node, then �(u) is set to v; otherwise, �(u) is set to vnil . In 
lines 6, we collect the nodes adjacent to u that are not visited 
yet. If such nodes are found, then the nodes are added to Q in 
line 7. If Q is not empty, then we get the next node u′ from Q 
(line 9). Otherwise, � is returned as the result, since all the 
nodes are visited. Finally, for each node v′ in q2 , such that v′ 
is of the same type as u′ and that v′ is not correspond to any 
node in q1 yet, call FindCandidates to traverse the descend-
ants of u′ and v′ in lines 16.

For example, consider queries q1 and q2 shown in Fig. 4, 
and suppose that the type of each node is obtained as 
shown in the figure. By the assumption, output nodes x1 
and x2 of q1 correspond to y1 and y2 of q2 , respectively, but 
no correspondence for the other nodes is known. In step 
3 of Algorithm 1, u1 and u2 are added to Q. Suppose that 
u2 is taken from Q in line 4. Since �1(u2) = t2 , we have 

Adj(q, u) ={u� ∈ V(q) ∣ (u, l, u�) ∈ E(q)

or (u�, l, u) ∈ E(q) for some l and u}.

T(u2) = {v1, v2} in line 5. Suppose that FindCandidates is 
called with u = u2 and v = v1 in line 9. In line 1 of Find-
Candidates, Adj(q1, u2) ∩ �(Adj(q2, v1)) = {x1, x2} ; thus, we 
have �(u2) = v1 in line 2. In lines 6 and 7, no nodes are added 
to Q. In line 9, u1 is taken from Q. Then, C(u1) = � in line 13 
and FindCandidates is called with u = u1 and v = vnil . Then, 
�(u1) is set to vnil in line 4, and since Q is empty � is returned 
in line 11. Thus, we have �(x1) = y1 , �(x2) = y2 , �(u2) = v1 , 
and �(u1) = vnil . Based on this correspondence, in lines 
12 and 14 of Algorithm 1, we create adjacency matrices 
of q1 and q2 , as shown in Fig. 5. There are three elements 
(colored red) appearing in both matrices at the same posi-
tion, meaning that we have three common edges between q1 
and q2 under the correspondence. Thus, we have n = 3 and 
Mmax = {�}.

Checking Containment

Let G be a graph. By u(G), we mean the undirected graph 
obtained by replacing each directed edge of G with an undi-
rected one. A subgraph G′ of G is weakly biconnected if 
any one node in u(G�) is removed, and the resulting undi-
rected subgraph remains connected. A subgraph G′ of G is 
weakly biconnected component if G′ is a maximal weakly 
biconnected subgraph. For an edge e = (v, a, v�) in q2 , 
(�(v), a,�(v�)) is called the corresponding edge of e in q1.

For queries q1, q2 and a ShEx schema S, we check if 
q1 ⊆ q2 as follows: 

1.	 For each edge e in q2 , if e is not “answer-reducing” for 
q1 and its corresponding edge e′ is not in q1 , then add 
e′ to q1 . Here, an “answer-reducing” edge is an edge, 
such that adding its corresponding edge to q1 reduces 
the answer of q1 ; in other words, the answer of q1 is not 
preserved.

2.	 If q2 is a subgraph of q1 , then return “true” (i.e., q1 ⊆ q2 ), 
otherwise return “false”.

We show the idea of “answer-reducing” edge with an exam-
ple. Let q1, q2 be queries shown in Fig. 6 with �(v1) = u1 , 
�(v2) = u2 , �(v3) = u3 , �(v4) and �(v5) are new nodes. Let 
S = (Σ,Γ, �) be a ShEx schema, where Γ = {t1, t2, t3} and � 
is defined as follows:

Fig. 4   Queries q1 and q2

Fig. 5   Adjacency matrices of q1 and q2
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Then, (v1, d, v4) is not answer-reducing, as any node matched 
by u1 must have an edge labeled by d under any valid graph 
of S. Thus, we can safely add (u1, d, u4) to q1 without reduc-
ing the answer of q1 . On the other hand, (v5, a, v3) is answer-
reducing, since (v5, a, v3) imposes an additional constraint 
that v3 must be referenced by some edge labeled by a, mean-
ing that adding (u5, a, u3) reduces the answer of q1 . Then, 
(v3, c, v2) is also answer-reducing, as adding (u3, c, u2) to q1 
yields a new weakly biconnected component (the triangle 
consisting of u1, u2, u3 ), which imposes an extra constraint 
on q1 that u2 and u3 must be connected by an edge labeled by 
c. Moreover, (v3, e, v2) is answer-reducing, as in �(t3) e∶∶t2 
is qualified by ?, meaning that every node of type t3 does 
not have an edge labeled by e. In Fig. 6, a query obtained 
by adding (u1, d, u4) to q1 does not contain q2 as a subgraph; 
thus, our algorithm concludes that q1 ⊈ q2.

To define answer-reducing edge formally, we also 
need min/max occurrences of label-type pair a :  : t in an 
RBE. Let r be an RBE over Σ × Γ and a∶∶t ∈ Σ∶∶Γ . The 
minimum occurrence and maximum occurrence of a :  : t, 
denoted minocc(r, a∶∶t) and maxocc(r, a∶∶t) , respectively, 
are defined as follows.

•	 If r = a∶∶t , then minocc(r, a∶∶t) = maxocc(r, a∶∶t) = 1

.
•	 If r = r�∗ and a :  : t is in r′ , then minocc(r, a∶∶t) = 0 and 

maxocc(r, a∶∶t) = ∞.
•	 I f  r = r�+  and  a   :     :   t  i s  i n  r′  ,  t h en 

minocc(r, a∶∶t) = minocc(r�, a∶∶t)  a n d 
maxocc(r, a∶∶t) = ∞.

•	 If r = r�? and a :  : t is in r′ , then minocc(r, a∶∶t) = 0 
and maxocc(r, a∶∶t) = maxocc(r�, a∶∶t).

•	 If r = r1|r2|⋯ |rn or r = r1 ∥ r2 ∥ ⋯ ∥ rn , and a  :    :  t 
is in ri , then minocc(r, a∶∶t) = minocc(ri, a∶∶t) and 
maxocc(r, a∶∶t) = maxocc(ri, a∶∶t).

�(t1) =a∶∶t2 ∥ (b∶∶t3)? ∥ d∶∶t2,

�(t2) =�,

�(t3) =c∶∶t2 ∥ (e∶∶t2)?.

By �(u) , we mean the type of node u. For example, in Fig. 6, 
�(u1) = t1 , �(u2) = t2 , and so on. For an edge e = (v1, a, v2) 
in q2 , we say that e is answer-reducing for q1 if one of the 
following conditions holds: 

(a)	 �(v1) ∈ V(q1) and minocc(�(�(v1)), a∶∶�(v2)) = 0 , i.e., 
a∶∶�(v2) is qualified by ? or ∗ in �(�(v1)).

(b)	 �(v1) ∈ V(q1)  ,  minocc(�(�(v1)), a∶∶�(v2)) ≥ 1  , 
maxocc(�(�(v1)), a∶∶�(v2)) = ∞ , and q1 already has 
another edge (�(v1), a, u3) , such that �(u3) = �(�(v2)).

(c)	 Adding the corresponding edge of e to q1 yields a new 
“incoming” edge of �(v1) , i.e., �(v2) is a new node and 
�(v1) ∈ V(q1).

(d)	 Adding the corresponding edge of e to q1 yields a new 
weakly biconnected component consisting of three or 
more edges.

(e)	 If the corresponding edge of e is added to q1 , then it is 
under a disjunctive operator of �(�(v1)) and q1 has no 
other edge under the disjunctive operator.

For example, in Fig. 6, (a) applies to (v3, e, v2) , (c) applies to 
(v5, a, v3) , and (d) applies to (v3, c, v2) . As for (e), assume that

If an edge (�(v1), d, u) is added to q1 , where u is a new node, 
�(v1) cannot have an outgoing edge e′ labeled by f due to the 
disjunction operator, meaning that q1 can no longer match 
any graph having an edge matching e′ . Thus, (v1, d, v4) is 
answer-reducing under the assumption.

We now present our algorithm (Algorithm 3). In lines 1 
and 2, biconnected components can be obtained by linear-
time depth first search [10]. In line 3, our algorithm finds a 
set M(q1, q2) of node correspondences � between the nodes 
of q1 and q2 . For each correspondence � in M(q1, q2) , the 
algorithm checks if q1 is contained in q2 w.r.t. � , as fol-
lows (lines 4–19): if neither q1 nor q2 contains any weakly 
biconnected component of size less than three, we use Add-
Edge immediately (lines 5 and 6). The AddEdge algorithm 
adds, for each edge e in q2 , its corresponding edge e′ to q1 
if e′ is not in q1 and not answer-reducing (lines 1–6 in Add-
Edge). Then, the algorithm checks if q2 is a subgraph of the 
“extended” q1 , i.e., the query obtained from the original q1 
by adding the non answer-reducing edges (line 7). If this is 
true, then the algorithm returns true, i.e., q1 ⊆ q2 . Consider 
the “else” part of the Main algorithm (line 7–15), i.e., the 
case where q1 or q2 contains one or more weakly biconnected 
components of size three or more. In this case, we first check 
if q2 contains a weakly biconnected component c that is not 
contained in any weakly biconnected component of q1 (line 
10). If so, the result is set to false, since c imposes an extra 
restriction to q2 and, thus, q2 cannot contain q1 . Otherwise, 
AddEdge is applied to q1, q2 (line 13).

�(t1) = a∶∶t2 ∥ (b∶∶t3)? ∥ (d∶∶t2|f∶∶t2).

Fig. 6   Queries q1 and q2 . q2 contains three answer-reducing edges and 
one non answer-reducing one
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Algorithm 3 Main
Input: ShEx schema S = (Σ,Γ, δ), queries q1, q2
Output: true or false
1: BC(q1) ← FindWeaklyBiconnectedComponets(q1)
2: BC(q2) ← FindWeaklyBiconnectedComponets(q2)
3: M(q1, q2) ← FindNodeCorrespondences(q1, q2)
4: for each µ ∈ M(q1, q2) do
5: if ∀c ∈ BC(q1) |c| < 3 and ∀c ∈ BC(q2) |c| < 3 then
6: Result ← AddEdge(q1, q2, S, µ)
7: else
8: BC3(q1) ← {c ∈ BC(q1) | |c| ≥ 3}
9: BC3(q2) ← {c ∈ BC(q2) | |c| ≥ 3}

10: if for some c ∈ BC3(q2), there is no c ∈ BC3(q1) s.t. c is a subgraph of c
then

11: Result ← false
12: else
13: Result ← AddEdge(q1, q2, S, µ)
14: end if
15: end if
16: if Result = true then
17: break
18: end if
19: end for
20: return Result

Algorithm 4 AddEdge
Input: ShEx schema S = (Σ,Γ, δ), queries q1, q2, node correspondence µ
Output: true or false
1: for each e ∈ E(q2) do
2: Let e be the corresponding edge of e in q1 w.r.t. µ
3: if e /∈ E(q1) and e is not answer-reducing for q1 then
4: add e to q1
5: end if
6: end for
7: if q2 is a subgraph of q1 then
8: return true
9: end if

10: return false

We have the following.

Theorem 1  Let S be an ShEx schema and q1, q2 be queries. 
If the algorithm returns true, then q1 ⊆ q2 under S.

Proof (sketch)  Assume that the algorithm returns “true”. 
This means that if condition in line 7 of AddEdge holds, 
i.e., q2 is a subgraph of the “extended” q1 . To distinguish 
the “extended” q1 and the original one, let q′

1
 be the query q1 

when the algorithm reaches the line 7 of AddEdge. q′
1
 may 

have been added some edges that are not answer-reducing. 
However, it is easy to see that adding any edges that are 
not answer-reducing does not change the answer of q1 , i.e., 
Ans(q�

1
,G) = Ans(q1,G) for any valid graph G. Moreover, 

since q2 is a subgraph of q′
1
 , we have Ans(q�

1
,G) ⊆ Ans(q2,G) 

for any valid graph G. Thus, we have Ans(q1,G) ⊆ Ans(q2,G) 
for any valid graph G. 	�  ◻

Thus, the soundness of the algorithm holds. The proof of 
the completeness of the algorithm is a future work, but the 
experiment shown below suggests that the algorithm can 
detect query containment without omissions.

Finally, consider the complexity of the problem. Since the 
query satisfiability problem is subsumed by the complement 

of the query containment problem and the query satisfiabil-
ity problem under ShEx is NP-hard [9], the query contain-
ment problem can be shown to be intractable; thus, our algo-
rithm requires exponential time in the worst case. However, 
as shown in the next section, our algorithm runs efficiently 
for actual RDF data.

Experiments

In this section, we present the result of our experiments. 
The algorithm was implemented in Python 3.9.0, and all the 
experiments were executed on a machine with Quad-Core 
Intel Core i5 CPU, 8.00 GB RAM, and Mac OS Monte-
rey 12.2.1. We assume that node correspondence between 
query q1 and q2 is unknown (except output nodes) for all the 
experiments.

The metrics for the experiments are based on the fol-
lowing. First, the proposed algorithm is sound as shown in 
Theorem 1, but its completeness is not given. Therefore, we 
examine the latter property in the first experiment. Second, 
as discussed in the previous section, this problem is inher-
ently intractable; therefore, we check how much computation 
time is required to solve the problem on actual data in the 
second experiment.

Schemas and Queries

In selecting schema/data, we considered the following 
points. First, it is desirable to use both synthetic and real 
data. In addition, since this study targets pattern queries, it 
is desirable to use a schema including cycles as well as tree 
structures. Thus, we prepared two ShEx schemas: the one 
was based on SP2Bench [11], which consists of 11 types. 
The other was created from a fragment of the Wikidata 
schema, edition of a written work (E36), which consists of 
6 types.

We generated queries based on the following idea: when 
checking containment of two different queries, the struc-
tures of the queries are usually similar to each other, and the 
structures of the queries rarely differ significantly. Therefore, 
we first create a “base query”, and then, we create “derived 
queries” from the base query, so that the derived queries 
have “similar” structures to each other. The derived queries 
from the same base query constitute the same “query set”. 
Thus, our experiment are conducted as follows: 

1.	 We created ten base queries, five for SP2Bench and five 
for Wikidata schema.

2.	 From each base query, we created 15 derived queries, 
which constitute a query set.
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3.	 For each query set, we ran the proposed algorithm for 
15P2 = 210 pairs of 15 queries in the query set and meas-
ured execution time, etc.

A base query is constructed as follows: initially, query q is 
empty. Then, for given schema S (represented by a graph) 
and query size k (# of edges), we randomly chooses an 
edge from S and adds it to q, repeating until the size of q 
reaches k. To do this, we made a program that constructs 
a base query and we created the 5 × 2 = 10 base queries 
by the algorithm (Table 1).

For each base query, we create 15 derived queries. Let 
q be a base query, S be an ShEx schema (represented by 
a graph), and k be a query size. Then, a query of size k 
derived from q is constructed as follows: 

1.	 Let qd be an empty query. Add an edge of q to qd , repeat-
ing until the dice coefficient between q and qd becomes 
greater than or equal to 0.6.

2.	 Choose an edge e in S connected to some node in qd , 
and add e to qd , repeating until the size of qd is equal to 
k. Return qd as the result.

For each base query, we specify five sizes 3, 4,… , 7 
and run the above method 3 times for each size; thus, 
we obtain 5 × 3 = 15 queries for each base query. The 15 
queries constitute a query set of q.

For example, Fig. 7 shows the base query and a derived 
query for the SP2Bench_a_0 query set. The base query 
and the derived query have four edges in common, two 
edges (v2, creator, v1) and (v3, rdf ∶, x1) are deleted from 
the base query, and one edge (v!, type, v4) is added to the 
derived query.

Results

Using the two ShEx schemas and the queries obtained 
above, we conducted two experiments. We first calculated 
precision and recall, and then, we measured the execution 
time of the algorithm.

Precision and Recall

We compare the precision and recall of our algorithm and 
those of a baseline. Here, we used a subgraph isomor-
phism algorithm (extended for projection) as the baseline, 
since there is no other containment algorithm for pattern 
query with projection under ShEx.

Tables 2 and 3 show the precision and recall obtained 
for the ten query sets, respectively. Overall, our algorithm 
shows better performance over the baseline. As shown by 
Theorem 1, if our algorithm returns “true”, then we have 
q1 ⊆ q2 , which is consistent with the precision values of 
Table 2. Moreover, the recall values in Table 3 show a sig-
nificant improvement over the baseline. The recall values 
of the baseline algorithm vary across the different query 
sets; the more pairs of queries s.t. q1 ⊆ q2 a query set con-
tains, the lower the recall tends to be.

Table 1   List of base queries

Query set name ShEx schema Contain bicon-
nected component?

# of edges

SP2Bench_a_0 SP2Bench Yes 6
SP2Bench_a_1 SP2Bench Yes 3
SP2Bench_n_2 SP2Bench No 4
SP2Bench_n_3 SP2Bench No 5
SP2Bench_n_4 SP2Bench No 6
Wikidata_a_0 Wikidata Yes 5
Wikidata_a_1 Wikidata Yes 5
Wikidata_n_2 Wikidata No 4
Wikidata_n_3 Wikidata No 5
Wikidata_n_4 Wikidata No 6

Fig. 7   Base query and derived query for SP2Bench_a_0

Table 2   Precision of the proposed and baseline algorithms

Proposed algorithm Baseline

SP2Bench_a_0 1.00 0.976
SP2Bench_a_1 1.00 0.843
SP2Bench_n_2 1.00 0.738
SP2Bench_n_3 1.00 0.857
SP2Bench_n_4 1.00 0.881
Wikidata_a_0 1.00 0.900
Wikidata_a_1 1.00 0.714
Wikidata_n_2 1.00 0.424
Wikidata_n_3 1.00 0.657
Wikidata_n_4 1.00 0.881
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Execution Time

Then, we measured the execution time of our algorithm. The 
algorithm uses ShEx types to narrow the search space when 
finding node correspondences. To see the effect of this, we 
also prepared a baseline algorithm, which is identical to the 
proposed algorithm except that the baseline does not use 
ShEx types when finding node correspondence. Execution 
time was measured using Ruby’s Benchmark module.

For each pair of queries, we executed each algorithm ten 
times and calculated its mean execution time. Table 4 shows 
the mean execution time of 210 pairs for each query set. 
Table 5 shows the mean execution time for each query size 
under the SP2Bench schema. Similarly, Table 6 shows the 
mean execution time for each query size under the Wikida-
ta’s ShEx schema.

From the results of Table 4, we can see that the proposed 
algorithm runs much faster than the baseline. This indicates 
that ShEx types can effectively reduce the search space for 
finding node correspondences between queries.

As shown in Tables 5 and 6, the execution time tends to 
increase as the query size increases. However, the increase 

is proportional to the query size, and it is unlikely that the 
execution time increases considerably even if the query size 
increases slightly.

Related Work

Query containment has been a popular problem in data man-
agement field including relational database and XML. For 
example, Shmueli considered complexity of the containment 
problem for datalog queries [12], Calvance et al. considered 
the decidability of query containment under schema [13], 
and Wood proposed an algorithm for solving XPath query 
containment problem under DTDs [14]. Studies on XPath 
query containment with/without schemas are summarized in 
[15]. Chen and Rundensteiner study the problem of XQuery 
containment [16].

As for RDF/graph data, Pichler and Skritek studied query 
containment for a SPARQL fragment without schema [17]. 
Abbas et al. studied complexity of SPARQL containment 
under ShEx without projection [18]. Saleem et al. proposed 
a framework of SPARQL query containment without schema 
[19]. Chekol et al. studied complexity of query containment 
problem for SPARQL fragments under RDF Schema [20]. 
Mailis et al. proposed an index for RDF query containment 
without schema [21]. Mirko et al. propose an SPQRQL 
query containment solver without ShEx [22].

To the best of our knowledge, however, no studies on 
pattern graph with projection containment under ShEx have 
been done. Moreover, most previous studies for query con-
tainment are based on logic, and our study is unprecedented 
in adopting a graph-theoretic approach. Thus, we believe 

Table 3   Recall of the proposed and baseline algorithms

Proposed algo-
rithm

Baseline # of pairs 
s.t. q1 ⊆ q2

SP2Bench_a_0 1.00 0.688 16
SP2Bench_a_1 1.00 0.441 59
SP2Bench_n_4 1.00 0.353 85
SP2Bench_n_5 1.00 0.362 47
SP2Bench_n_6 1.00 0.500 50
Wikidata_a_0 1.00 0.382 34
Wikidata_a_1 1.00 0.178 73
Wikidata_n_4 1.00 0.193 150
Wikidata_n_5 1.00 0.258 97
Wikidata_n_6 1.00 0.419 43

Table 4   Execution time of the proposed and baseline algorithms (s)

Proposed algorithm Baseline

SP2Bench_a_0 0.000468 0.130
SP2Bench_a_1 0.000874 0.124
SP2Bench_n_2 0.000661 3.48
SP2Bench_n_3 0.000716 3.50
SP2Bench_n_4 0.000691 3.75
Wikidata_a_0 0.000366 0.147
Wikidata_a_1 0.000378 0.128
Wikidata_n_2 0.000965 3.75
Wikidata_n_3 0.000502 3.53
Wikidata_n_4 0.000577 3.83

Table 5   Breakdown of execution time for SP2Bench schema (s)

q1∖q2 3 4 5 6 7

3 0.000354 0.000362 0.000391 0.000438 0.000536
4 0.000424 0.000476 0.000524 0.000638 0.000795
5 0.000398 0.000484 0.000614 0.000701 0.000943
6 0.000469 0.000681 0.000813 0.000793 0.001146
7 0.000691 0.000799 0.001091 0.001230 0.001291

Table 6   Breakdown of execution time for Wikidata schema (s)

q1∖q2 3 4 5 6 7

3 0.000286 0.000317 0.000342 0.000359 0.000384
4 0.000340 0.000416 0.000427 0.000446 0.000536
5 0.000415 0.000426 0.000466 0.000507 0.000621
6 0.000415 0.000477 0.000572 0.000588 0.000759
7 0.000591 0.000980 0.001057 0.001135 0.001086
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that our approach gives a novel different perspective on solv-
ing the problem.

A problem related to query containment is query satisfi-
ability, which is to decide, for given query q and a schema 
S, whether there is a datum valid for S, such that the answer 
of q is nonempty. For the problem, a number of studies have 
been made so far. For example, Benedikt et al. considered 
the XPath satisfiability problem under DTDs [23], and Gen-
eves and Layaida proposed a system for checking satisfiabil-
ity of XPath queries [24]. Ishihara et al. proposed a subclass 
of DTDs under which XPath satisfiability problem can be 
solved efficiently [25]. Zhang et al. considered satisfiabil-
ity of SPARQL patterns without schema [26]. Matsuoka 
proposed an algorithm for checking satisfiability of pattern 
queries under ShEx [9].

Conclusion

In this paper, we proposed an algorithm for checking con-
tainment of pattern queries under ShEx schema. Our algo-
rithm uses ShEx schema to reduce the search space of find-
ing a correspondence between nodes of queries. Then, the 
algorithm extends q1 by adding edges that are not answer-
reducing, and check if q2 is contained in q1 as a subgraph. 
Moreover, our algorithm is shown to be sound.

In our experiments, we verified that the results of our 
algorithm are correct for all query pairs generated in the 
experiments. The results of another experiment suggest that 
types of nodes obtained from ShEx schema can reduce the 
search space for finding corresponding nodes between que-
ries. In addition, we showed that the weakly biconnected 
component and the size of the queries are the main factors 
in the efficiency of the algorithm.

However, our algorithm has several limitations that need 
to be addressed. First, the model of the schema used in this 
study is based on the core part of ShEx and does not sup-
port full of the constraints, e.g., Inverse Triple Constraints 
and Negative Triple Constraints. It would be interesting to 
consider how such constraints can be handled by extend-
ing our model and algorithm. In addition, our algorithm is 
shown to be sound in Theorem 1, but the converse is only 
verified by experiments. Therefore, giving a proof of this is 
a highly interesting challenge. In particular, it is interesting 
to consider whether the converse holds without any restric-
tions on ShEx, and if not, what restrictions should be placed. 
Finally, ShEx has two typing semantics: single-type seman-
tics and multi-type semantics [2]. While this paper assumes 
the former semantics, adapting our algorithm to the latter 
semantics is an interesting challenge.

Acknowledgements  The authors express sincere thanks to anonymous 
reviewers for their invaluable and insightful comments that greatly 

help us to improve this paper. This work was partly supported by JSPS 
KAKENHI under Grant No. 21K11900.

Declarations 

Conflict of Interest  The authors declare that they have no conflict of 
interest.

References

	 1.	 Fujimoto H, Suzuki N. A simple algorithm for checking pattern 
query containment under shape expression schema. In: Proceed-
ings of the 18th international conference on web and information 
systems and technologies (WEBIST 2022). 2022;278–85.

	 2.	 Staworko S, Boneva I, Gayo JEL, Hym S, Prud’hommeaux EG, 
Solbrig HR. Complexity and expressiveness of ShEx for RDF. In: 
Proceedings of 18th international conference on database theory 
(ICDT 2015). 2015;195–211.

	 3.	 Thornton K, Solbrig H, Stupp GS, Labra Gayo JE, Mietchen D, 
Prud’hommeaux E, Waagmeester A. Using shape expressions 
(ShEx) to share RDF data models and to guide curation with rig-
orous validation. In: Proceedings of the European semantic web 
conference (ESWC 2019). 2019;606–20.

	 4.	 Chhabra S, Aiden MK, Sabharwal SM, Al-Asadi M. In: Ahad MA, 
Casalino G, Bhushan B, editors. 5G and 6G technologies for smart 
city. Cham: Springer; 2023. p. 335–65.

	 5.	 Yadav L, Mitra M, Kumar A, Bhushan B, Al-Asadi MA. In: 
Sharma DK, Sharma R, Jeon G, Polkowski Z, editors. Nullify-
ing the prevalent threats in IoT based applications and smart cit-
ies using blockchain technology. Singapore: Springer; 2023. p. 
241–61.

	 6.	 Nesi P, Bellini P. Assessing RDF graph databases for smart city 
services. In: Proceedings of the 23rd international DMS confer-
ence on visual languages and sentient systems. 2017.

	 7.	 Bellini P, Nesi P. Performance assessment of RDF graph databases 
for smart city services. J Vis Lang Comput. 2018;45:25.

	 8.	 Gayo JEL, Prud’hommeaux E, Boneva I, Kontokostas D. Validat-
ing RDF data. Cham: Springer; 2018.

	 9.	 Matsuoka S, Suzuki N. Detecting unsatisfiable pattern queries 
under shape expression schema. In: Proceedings of the 16th inter-
national conference on web and information systems and tech-
nologies. 2020;285–91.

	10.	 Hopcroft J, Tarjan R. Algorithm 447: efficient algorithms for 
graph manipulation. Commun ACM. 1973;16(6):372–8.

	11.	 Schmidt M, Hornung T, Lausen G, Pinkel C. SP2Bench: a 
SPARQL performance benchmark. In: Proceedings of the 25th 
international conference on data engineering (ICDE 2009). 
2009;371–93.

	12.	 Shmueli O. Decidability and expressiveness aspects of logic 
queries. In: Proceedings of the sixth ACM SIGACT-SIG-
MOD-SIGART symposium on principles of database systems 
(PODS’87). 1987;237–49.

	13.	 Calvanese,D, Giacomo GD, Lenzerini M. On the decidability 
of query containment under constraints. In: Proceedings of the 
seventeenth ACM SIGACT-SIGMOD-SIGART symposium on 
principles of database systems (PODS’98). 1998.

	14.	 Wood PT. Containment for XPath fragments under DTD con-
straints. In: Proceedings of the 9th international conference on 
database theory (ICDT’03). 2003;300–14.

	15.	 Schwentick T. XPath query containment. SIGMOD Rec. 
2004;33(1):101–9.

	16.	 Chen L, Rundensteiner EA. XQuery containment in pres-
ence of variable binding dependencies. In: Proceedings of the 



	 SN Computer Science           (2023) 4:775   775   Page 10 of 10

SN Computer Science

14th international conference on world wide web. WWW ’05. 
2005;288–97.

	17.	 Pichler R, Skritek S. Containment and equivalence of well-
designed SPARQL. In: Proceedings of the 33rd ACM SIGMOD-
SIGACT-SIGART symposium on principles of database systems. 
2014;39–50.

	18.	 Abbas A, Genevés P, Roisin C, Layaïda N. SPARQL query con-
tainment with ShEx constraints. In: Proceedings of advances in 
databases and information systems (ADBIS 2017). 2017;343–56.

	19.	 Saleem M, Stadler C, Mehmood Q, Lehmann J, Ngomo A-CN. 
SQC Framework: SPARQL query containment benchmark gen-
eration framework. In: Proceedings of the knowledge capture 
conference. K-CAP 2017. 2017.

	20.	 Chekol MW, Euzenat J, Genevès P, Layaïda N. SPARQL query 
containment under schema. J Data Semant. 2018;7(3):133–54.

	21.	 Mailis T, Kotidis Y, Nikolopoulos V, Kharlamov E, Horrocks I, 
Ioannidis Y. An efficient index for RDF query containment. In: 
Proceedings of the 2019 international conference on management 
of data. 2019;1499–16.

	22.	 Spasić M, Janičić MV. SpeCS-SPARQL query containment solver. 
In: Proceedings of the 2020 zooming innovation in consumer tech-
nologies conference (ZINC). 2020;31–5.

	23.	 Benedikt M, Fan W, Geerts F. XPath satisfiability in the presence 
of DTDs. J ACM. 2008;55:2.

	24.	 Genevès P, Layaïda N. A system for the static analysis of XPath. 
ACM Trans Inf Syst. 2006;24(4):475–502.

	25.	 Ishihara Y, Suzuki N, Hashimoto K, Shimizu S, Fujiwara T. XPath 
satisfiability with parent axes or qualifiers is tractable under many 
of real-world DTDs. In: Proceedings of the 14th international 
symposium on database programming languages (DBPL 2013). 
2013.

	26.	 Zhang X, den Bussche JV, Picalausa F. On the satisfiability prob-
lem for SPARQL patterns. J Artif Intell Res. 2016;55:403–28.

Publisher's Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds 
exclusive rights to this article under a publishing agreement with the 
author(s) or other rightsholder(s); author self-archiving of the accepted 
manuscript version of this article is solely governed by the terms of 
such publishing agreement and applicable law.


	Checking Pattern Query Containment Under Shape Expression
	Abstract
	Introduction
	Preliminaries
	Algorithm for Checking Query Containment
	Finding Node Correspondence
	Checking Containment

	Experiments
	Schemas and Queries
	Results
	Precision and Recall
	Execution Time


	Related Work
	Conclusion
	Acknowledgements 
	References


