
Vol.:(0123456789)

SN Computer Science           (2023) 4:665  
https://doi.org/10.1007/s42979-023-02101-8

SN Computer Science

ORIGINAL RESEARCH

Dynamic Resource Management for Machine Learning Pipeline 
Workloads

Min‑Chi Chiang1 · Lu‑Wen Zhang1 · Yu‑Min Chou1 · Jerry Chou1 

Received: 18 October 2021 / Accepted: 28 June 2023 
© The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2023

Abstract
The recent success of deep learning applications is driven by the computing power of GPUs. However, as the workflow of 
deep learning becomes increasingly complicated and resource-intensive, how to manage the expensive GPU resources for 
Machine Learning (ML) workload becomes a critical problem. Existing resource managers mostly only focus on a single 
specific type of workload, like batch processing or web services, and lacks runtime optimization and application perfor-
mance awareness. Therefore, we aim to develop a set of runtime dynamic management techniques (including auto-scaling, 
job preemption, workload-aware scheduling, and elastic GPU sharing) to handle a mixture of ML workloads consisting of 
modeling, training, and inference jobs. In our previous work, we have implemented these techniques as a set of extended 
operators on Kubernetes. In this paper, we further extend our approach by introducing a topology-aware scheduling algorithm 
based on the hypergraph partition problem to minimize the communication cost of distributed training for maximizing the 
system throughput and minimizing the job completion time. Our evaluations on AWS GPU clusters prove our approach can 
out-perform the native Kubernetes by 60% system throughput improvement, 70% training time reduction without causing 
any SLA violations on inference services. Compared to the start-of-the-art topology-aware scheduling algorithm, we shorten 
the average job completion time by 24–44%.

Keywords Deep learning · GPU resource management · Job scheduling · Performance optimization

Introduction

Deep Learning (DL) is popular in data-center as an impor-
tant workload for artificial intelligence, because it powers 
a variety of applications, including image classification [1, 
2], object detection [3, 4], language processing [5–9] to self-
driving cars [10] and autonomous robotics [11]. However, 
deep learning is also known to be computing intensive. As 
reported in a recent survey [12], the amount of computa-
tions used in the largest AI training runs has been increas-
ing exponentially with a 3.4-month doubling time, which 
is at a pace even faster than Moore’s Law. The increasingly 
popular trend of AutoML techniques, such as automatic 
hyper-parameter tuning and network architecture search, 
further pushes the need for computing power as models 
must be repeatedly trained with different settings to refine 
DL models. Today’s deep learning production systems are 
mostly built on shared multi-tenant GPU clusters, where 
abundant computing resources can be utilized and shared 
among users to enable large-scale model training and highly 
efficient model inference serving. Therefore, it has drawn 
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increasing attention from industry and research communities 
to improve the efficiency and performance of the expensive 
resources for DL workloads.

Resource management (such as resource allocation and 
job scheduling) is one of the main approaches for improv-
ing job performance, system throughput, and hardware 
utilization. But managing the resources of DL workload 
can be challenging, because DL production needs several 
processing stages, from data pre-processing to model train-
ing, validation, and finally, model deployment for serving 
inferences. The workflow is also known as the ML pipeline. 
For simplicity, we refer to the computation before model 
training as the modeling jobs, the computations for mod-
eling and hyper-parameter tuning as the training jobs, and 
the computations for serving model inference requests as the 
inference jobs. The workload characteristics of each of these 
jobs can be widely different. For instance, modeling jobs 
can be non-GPU bound jobs, because some of the data pre-
processing tasks involve interactive data analysis, and others 
may hardly be paralleled using GPU, such as feature extrac-
tion in advertisement [13] and data augmentation in com-
puter vision [14]. Training jobs behave like traditional par-
allel batch processing with huge and stable usage patterns. 
However, they can suffer from significant communication 
overhead if the tasks of a job are placed across computing 
nodes. In contrast, inference jobs behave like web services 
with short and bursty GPU usage patterns. However, they 
have strict SLA requirements on the request response time. 
The mixture and diverse computing jobs in DL workload 
creates many difficulties as well as opportunities from the 
resource management perspective.

Existing cluster schedulers (e.g., Borg [15], YARN [16]) 
are designed for general-purpose workload. Their scheduling 
algorithms (e.g., DRF [17], TetriSched [18], corral [19], HT-
Condor [20]) are mostly designed to ensure resource fairness 
and utilization by allocating a fixed amount of resources for 
each job according to the resource requirements specified by 
the job owner upon job submission. As a result, the existing 
approach may lead to sub-optimal application performance 
and system throughput due to the following reasons. 

1. Application-oblivious scheduling: Existing schedulers 
only concern about the amount of resources allocated 
to each job without being aware of the application per-
formance and resource characteristics. For training jobs, 
the location of allocated GPUs can significantly affect 
training time due to communication overhead. For infer-
ence jobs, their performance is measured by SLA guar-
antee, which depends not only on the resource alloca-
tions but also on the time-varied service workload (i.e., 
inference requests from clients). For modeling jobs, they 
are consisted of non-GPU and interactive workloads, so 
their performance can be much less sensitive to GPU 

resources. Hence, without adequantly considering the 
performance impact from resource allocations can eas-
ily lead to under-utilization or under-provisioning prob-
lems.

2. Static resource management: Due to the workload diver-
sity and time-varied resource demands of DL workload, 
dynamic resource management like job preemption, 
auto-scaling, is essential to guarantee application per-
formance and resource utilization. However, existing 
cluster managers often require job owners to manually 
operate or re-submit their jobs to adjust the resources 
of jobs. The lack of resource management experience 
and information further discourages users from adjusting 
their job resources when necessary.

3. Coarse-grained GPU allocation: Due to the lack of 
multi-tasking management of GPU devices, the mini-
mum granularity of GPU allocation today is a single 
GPU device. That means an application can have multi-
ple GPUs, but each GPU can only be allocated to exactly 
one application. While DL jobs can be accelerated using 
GPUs, a single DL job may not always utilize the whole 
GPU card due to reasons like memory-bound training 
jobs with large batch sizes or large network models, non-
GPU-bound modeling jobs with human interactions, and 
inference jobs with time-varied workloads. Hence, exist-
ing GPU clusters without supporting GPU sharing can 
result in low resource utilization and system throughput.

4. Homogeneous workload consideration: Not until 
recently, DL domain-specific management systems 
[21–23] have been proposed to tackle the issues above. 
However, all of them focus on DL training jobs only. 
With the emerging trend of MLOps and AutoML that 
requires to unify ML system development (Dev) and ML 
system operation (Ops) together, end-to-end ML pipe-
lines with mixture workloads are likely to be run and 
managed in a shared resource pool provided by a single 
production system. Therefore, resource managers should 
be designed with the consideration of jobs with differ-
ent performance metrics, workload characteristics, and 
execution priorities.

To address the aforementioned problems, we aim to design 
and implement a series of dynamic resource management 
solutions to optimize the performance and resource utiliza-
tion for DL pipeline workloads. This paper is an extension 
of our published work [24] for summarizing our approach. 
Our approach first designs and implements DynamoML, 
which is a resource management platform on Kubernetes. 
Then, we propose HYPREL, which is a hypergraph topol-
ogy-aware scheduling algorithm for parallel computing 
jobs. DynamoML provides the management techniques 
and capabilities that can effectively optimize the resource 
usage of ML workloads with basic or user-specified resource 
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management policies. However, unlike the performance of 
modeling and inference jobs is only affected by the amount 
of resources, the execution time of a distributed training 
job is highly dependent on its task locations. Therefore, 
HYPREL is designed to further optimize the performance of 
distributed training jobs for minimizing the communication 
overhead and maximizing the computing efficiency.

Our experiments running a mixture of ML pipeline work-
load on a 16-GPUs cluster show that DynamoML improves 
the native Kubernetes by increasing the system throughput 
by more than 60%, reducing the average training time by 
70%, and eliminating all the SLA violations. Our in-depth 
analysis also shows that without proper coordination and 
collaboration between different management techniques to 
balance the resource between training jobs and inference 
jobs, several issues could occur, including SLA violation on 
inference service, wasted idle GPUs, and prolonged model 
training time. Our HYPREL scheduling algorithm is evalu-
ated by the real workload trace collected from a parallel 
system, and the results show that HYPREL can achieve up to 
47% performance improvement than the topology oblivious 
method. Even compared to the other state-of-the-art topol-
ogy-aware algorithms [25, 26], we still observed 44–24% 
improvement in the job completion time(JCT).

The rest of the paper is structured as follows. “Prob-
lem Description and Objectives” discusses the DL work-
load characteristics and overall system architecture. 
“DynamoML: Resource Management Platform” describes 
the design and implementation of DynamoML. “HYPREL: 
Topology-aware Scheduling Algorithm” presents the 
HYPREL scheduling algorithm. “Evaluations of DynamoML 
and   Evaluation of HYPREL” are the evaluations for 
DynamoML and HYPREL, respectively. Finally, the related 
work discussion is in “Related Work”, and the paper is con-
cluded in "Conclusions".

Problem Description and Objectives

ML Pipeline Workload

In this work, we consider a GPU cluster running a set of 
computing jobs produced from the ML pipeline workflow. In 
general, the jobs can be classified into three types: modeling, 
training, and inference. The workload characteristics of these 
three types of jobs are summarized in Table 1, and briefly 
discussed as follows.

• Modeling: We use modeling jobs to represent all the 
computing jobs before model training. In general, mod-
eling jobs involve neural network model building and 
interactive data pre-processing, including data cleaning, 
labeling, validations, and feature extraction. In practice, 
users normally perform these tasks through web note-
books, such as Juypter Notebook. Since the computations 
in this pipeline stage commonly involve data processing 
and human interaction, the GPU usage is low, some exe-
cution delay can be tolerated, and the workload pattern 
can be bursty.

• Training: Model training can be extremely time-consum-
ing. In order to reduce training time, distributed model 
training across multiple GPU-nodes has been supported 
by mainstream deep learning frameworks, such as Ten-
sorflow, PyTorch, and Keras. Most of them adopt the 
BSP (Bulk Synchronous Parallel) computing method to 
implement the data parallel model training, where a train-
ing job is consisted of a set of worker processes, and all 
the workers must synchronously aggregate their gradients 
at the end of each training iteration to update the model 

Table 1  Description of ML pipeline workloads and management solutions

(a) Worload characteristics

 Job type Type Pattern Usage Urgency

Modeling (e.g., Notebook) Interactive data analysis Bursty Low Med
Training (e.g., TFJob) BSP (Bulk Synchronous Parallel) Persistent High Low
Inference (e.g., TFServer) Web service Periodic Med High

(b) Resource management problems and solutions

 Job type Problems Solutions Results

Modeling (e.g., Notebook) 1. Low utilization Fractional & elastic GPU 
allocation

Increase utilization

Training (e.g., TFJob) 1. Resource monopoly 
2. Communication 
3. Synchronization

1. Gang & locality aware 
scheduling 

2. Task preemption

1. Avoid idle resources 
2. Reduce training time

Inference (e.g., TFServer) 1. SLA requirement 
2. Elastic workload

Auto-scaling Avoid SLA violation
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weights. Since training time can be long, modern deep 
learning libraries also support checkpoint mechanisms 
to tolerate faults and to restart training with different 
resource configurations. Therefore, comparing to the 
other two types of jobs, training has the highest resource 
usage and the lowest urgency.

• Inference: To serve the model’s inference requests from 
clients, an inference job often packages the model and 
deploys it as a web service (e.g., TFServer). Similar 
to web services, the workload of a web service can be 
time-varied according to the number of client requests, 
and the SLA requirement of a service can be guaranteed. 
Therefore, inference jobs should have the highest urgency 
with periodic workload patterns and medium GPU usage 
demand.

System Components

Our resource management platform, DynamoML, is imple-
mented as an extended framework on Kubernetes, because 
Kubernetes has become the most popular resource orches-
trator for hosting containerized computing workload. How-
ever, Kubernetes, like our cluster schedulers (e.g., Borg [15], 
YARN [16], HT-Condor [20]), lacks proper resource man-
agement for DL workloads. The implementation details are 
given in “DynamoML: Resource Management Platform”, 
and the scheduling algorithm is discussed in “HYPREL: 
Topology-aware Scheduling Algorithm”. The main com-
ponents of our resource management platform include the 
following modularized operators:

• Shared GPU allocator: it enables fine-grained shared 
GPU allocation in Kubernetes. Hence, the GPU utili-
zation can be increased by allowing multiple non-GPU 
bound modeling jobs to share a single GPU. In compari-
son, the native device plug-in framework of Kubernetes 
does not allow fractional allocation.

• Distributed training job scheduler: It is a runtime sched-
uler that addresses several resource allocation prob-
lems of distributed model training jobs. (1) It reduces 
the communication overhead of distributed training by 
packing the workers of a training job on a single node. 
(2) It avoids the idle resource problem of synchronous 
computations by proving gang scheduling, so that all 
the workers of a training job will be scheduled together 
as a group. (3) It uses checkpoint mechanism to force 
resource preemption on training jobs, so the resources 
will not be monopolized by the long running training 
jobs. In comparison, the native Kubernetes scheduler 
cannot achieve these goals, because it lacks the aware-
ness of application performance.

• Inference service auto-scaling controller: It aims to 
dynamicly add or remove the server instances of a ser-

vice job according to the response time of inference 
requests, so that an application-level SLA requirement 
can be guaranteed under workload variations. In com-
parison, the existing scaling mechanism in Kubernetes 
is based on resource usage, not application performance. 
Furthermore, when the system lacks resources for infer-
ence jobs, auto-scaling controller can ask job scheduler 
to release the resources of training jobs. Therefore, infer-
ence jobs always have the highest scheduling priority in 
our framework.

Design Requirements and Strengths

Besides the goal of resource management, we also have the 
following strengths from its design requirements.

• Transparency: All the resource control mechanisms are 
implemented as the extended components of Kubernetes 
using the technique like custom controllers, sidecar con-
tainers, and library hooks. Therefore, no code modifica-
tion to the deep learning computing frameworks or user 
programs. Because of transparency, our system can work 
seamlessly with Kubernetes, and our resource manage-
ment strategy can also be applied to any application with 
the same targeted workload characteristics.

• Modularization: Each resource management component 
provides a standalone management service, such as GPU 
sharing, scheduling, and auto-scaling. These services are 
triggered by their service-defined API and event. Hence, 
system administrators can independently deploy indi-
vidual components according to their needs.

• Agility: To overcome the workload variation and diver-
sity of ML pipeline jobs, we focus on runtime resource 
sharing and management. From the resource allocation 
aspect, our GPU sharing supports elastic allocation, 
which allows the actual resource usage to be bounded 
between a user-specified range specified by a pair of val-
ues (request, limit), so that the resource within the range 
can be elastically shared among users. From resource 
usage aspect, we support auto-scaling and preemption 
on training and inference jobs, so that resource demands 
can be adjusted and adapted to the runtime application 
behavior and performance. Finally, our HYPREL job 
scheduling algorithm can further improve the computing 
efficiency and resource utilization with the consideration 
of network topology and resource availability.

DynamoML: Resource Management 
Platform

This section presents the detailed design and implementation 
of DynamoML.
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Shared GPU Allocator

GPU sharing is necessary to improve resource utilization, 
especially for modeling and inference jobs. Our GPU shar-
ing solution consists of two parts. The first is to enable 
fractional GPU allocation in Kubernetes. The second is 
to ensure the GPU resource can be shared fairly among 
containers.

The device plug-in framework of Kubernetes treats 
GPU devices as a single non-divisible resource object, so 
fractional GPU allocation is not allowed. To overcome 
this limitation, our system first launches a set of pods to 
allocate the GPU resources from Kubernetes, and obtain 
GPU devices’ UUID. Then, the same GPU can be attached 
to multiple containers installed with nvidia docker package 
by setting the GPU’s UUID in the environment variable 
“NVIDIA_VISIBLE_DEVICES”. To support fractional 
allocation, our shared GPU allocator will track the residual 
resource amount on each GPU, and ensure GPUs are not 
over-allocated.

After a GPU is attached and accessible by a container, 
we still have to ensure the actual resource usage does 
not exceed the allocation amount. As shown in Fig. 1, 
to throttle the GPU usage of a container, we insert an 
LD_PRELOAD hook library in the container to intercept 
its GPU API. The intercepted GPU APIs will be blocked 
until the hook library receives an execution token from 
the scheduler of our GPU allocator. A time-sharing sched-
uler is implemented to pass the token around containers 
according to their resource allocation demand. Therefore, 
the resource usage of a container cannot exceed its allo-
cated demand. To maximize GPU utilization, we further 
support elastic allocation, which allows users to specify 
their minimum and maximum demand as (request, limit), 
so that the requested resource can be reserved and guar-
anteed, while the residual capacity can still be utilized by 
the container without exceeding its limit. More details of 

the design and implementation can be found in our previ-
ous work [27].

Training Job Scheduler

The native Kubernetes scheduler schedules the con-
tainer (i.e., pod) of each worker task independently on ran-
dom nodes with sufficient resources. However, distributed 
training jobs are communication-bound with task depend-
ency among each other. Therefore, the naive FCFS random 
scheduling algorithm of the native Kubernetes scheduler 
can cause significant communication and synchronization 
overhead.

To address the above issues, we developed our own job-
level scheduler on top of the task-level native scheduler to 
schedule and manage all the tasks of a training job as a unit. 
Through our scheduler, a job is only launched when the sys-
tem has enough residual capacity to run all its tasks simulta-
neously. Thus, resources will not be occupied by tasks wait-
ing for synchronization. To minimize the communication 
overhead of a job, our scheduler tends to pack all the tasks 
of a job on as fewer number of compute nodes as possible. 
The location of the task is controlled by specifying the “node 
selector” label in the pod spec of the workers, so the native 
scheduler can only create the pods on the designated nodes 
of our scheduler.

Finally, our scheduler monitors the system resource usage 
status to dynamically adjust the number of workers of train-
ing jobs. Additional workers are added to training jobs when 
the system loading is low, so that jobs can take advantage of 
the residual capacity to reduce their execution time. On the 
other hand, workers can also be taken from jobs when the 
system loading is high, so the resources can be reclaimed 
from the running jobs to launch the waiting jobs as soon as 
possible. More details of the design and implementation can 
be found in our previous work [28].

Inference Auto‑scaling Controller

To dynamically scale up and down in response to a varied 
number of users’ requests, we integrated Kubernetes Hori-
zontal Pod Autoscaler (HPA). However, the naïve Kuber-
netes Horizontal Pod Autoscaler (HPA) is limited to scale 
pods according to the current state of CPU or memory con-
sumption. The most direct way to scale pods should depend 
on the current number of users’ requests, which requires 
us to integrate third-party solutions to fulfill this goal. We 
further integrate Istio, a popular tool to build service mesh 
in our implementation, to gather the requests’ information 
within the cluster.

The term service mesh is used to describe the network 
of microservices that make up such applications and their 
interactions. Its requirements can include service discovery, Fig. 1  GPU usage control framework
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load balancing, metrics, and monitoring. Istio’s solution cre-
ates a network of deployed services with traffic management, 
security, observability, and extensibility. It directly attaches 
a sidecar, a proxy to help pod exchange information, to every 
pod. Whenever there exists a need to pass data between 
pods, the sidecar intercepts all network communication. By 
intercepting the communications, Istio generates metrics for 
all service traffic in, out, and within an Istio service mesh. 
These metrics provide information on behaviors, such as the 
overall traffic volume, the error rates within the traffic, and 
the response times for requests. As a result, we use Istio as 
our primary tool to gather communications metrics.

As shown in Fig. 2, when we successfully fetch the met-
rics from Istio, we need to store the information for Kuber-
netes Custom Metrics API to query. Although we can for-
ward data from Istio to Kubernetes Custom Metrics API 
directly, we could further store, query, and monitor the 
metrics if we store them in Prometheus. By employing Pro-
metheus, a popular Time-Series Database, to periodically 
forward information to Prometheus, we gather the metrics, 
including the request number per second and response time. 
Then, since Kubernetes HPA is only able to fetch metrics 
from Kubernetes Custom Metrics API, we install the Pro-
metheus Adapter and register it to Kubernetes Custom Met-
rics API. Finally, Kubernetes HPA is capable of scaling up 
and down pods according to the current number of users’ 
requests.

In prioritize the inference jobs and preempt the train-
ing jobs as needed, whenever it is necessary to increase the 
inference pods in response to flooded users’ requests, our 
auto-scaling controller would check whether current residual 

resources are available for inference jobs to scale up. If 
not, we would sequentially evict the workers of training 
jobs (TFJobs), release sufficient GPU resources for inference 
pods. We leave at least one worker (chief worker) for every 
TFJobs in our implementation, so that TFJobs can proceed 
training process continuously without requiring checkpoint. 
Finally, the Kubernetes API scheduler would allocate GPU 
resources for the new inference pods, which makes platform 
reach inference jobs’ Service Level Agreement (SLA).

In our implementation, we label the inference pods first, 
making Kubernetes Operator capable of identifying infer-
ence jobs. Then, by Kubernetes native event-driven mecha-
nism, we registered OnAdd, OnUpdate events of inference 
pods. Whenever Kubernetes HPA decides to scale up infer-
ence pods, the training job scheduler would be notified by 
the Kubernetes control manager, check whether the current 
residual resource is available for the new pod, and decide 
whether to release the resources for inference jobs by scaling 
down training workloads. In addition, training job sched-
uler would periodically check the residual resources. After 
Kubernetes HPA scaled down inference pods and released 
the GPU resources, the training job scheduler would scale 
up training jobs once it detected residual resources.

HYPREL: Topology‑Aware Scheduling 
Algorithm

Unlike inference jobs and modeling  (i.e., notebook) 
instances, the execution time of distributed model training 
jobs can be significantly affected by the communication 

Fig. 2  System design diagram 
of the inference auto-scaling 
controller
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overhead. Therefore, the scheduling and task placement 
decision of training tasks is critical to the training time and 
resource usage efficiency. The scheduling and scaling mech-
anisms of DynamoML can mitigate the problem with some 
dynamic resource management strategies driven by perfor-
mance and resource utilization. However, the initial place-
ment of the tasks is still important, because a bad initial task 
placement decision can lead to many disadvantages at runt-
ime, such as sub-optimal job performance and higher task 
reconfiguration overhead. Therefore, we propose HYPREL, 
a topology-aware scheduling algorithm for optimizing the 
performance of training jobs. HYPREL achieves better per-
formance than other state-of-the-art topology-aware schedul-
ing algorithms [25, 26] for two main reasons. First, it uses 
the hyper-graph data structure as an efficient and effective 
approach to address the task locality problem and minimize 
communication overhead. Second, it allows job re-ordering 
to maximize the benefits of task placement.

In the rest of the section, we first give an overview of our 
scheduling problem. Then, we introduce our task placement 
strategy based on k-way hypergraph partition algorithm and 
our job selection strategy for re-ordering the scheduling 
jobs. Finally, we detail and analyze the complexity of our 
algorithms.

Approach Overview

The scheduling problem we consider is to schedule a set of 
jobs waiting in the scheduling queue onto a set of computing 
devices (i.e., slots). The computing devices are connected 
by a network topology, and each job is consisted of a set of 
parallel tasks. The goal of the scheduling algorithm is to 
minimize the average job completion time. Noted, we are 
considering an online scheduling problem. Thus, the sched-
uler is triggered whenever a job arrives or departs from the 
system, and the scheduler does not aware of the future jobs 
that are not inserted in the waiting queue. To ensure our 
approach can be used in a practical system environment, 
we assume the scheduler has no prior knowledge of the job 
information, except the number of tasks requested by a job.

The scheduling problem is challenging, because it needs 
to address three problems at the same time. The first problem 
is the communication overhead. As known, the execution 
time of a parallel job can be affected by the task location 
because of the communication overhead. Therefore, the 
tasks of a job should be packed within a close distance on 
the network topology to minimize communication time. 
However, if we only allow a job to be scheduled on its 
closest locations, such as packing into a single node, we 
may encounter the resource fragmentation problem, where 
fragmented scattered across nodes cannot be fully utilized. 
Finally, the job scheduling order can affect the scheduling 
results as well. We consider the jobs in the waiting can be 

executed out of order for optimization, but starvation and 
long queuing delay problem should be avoided.

Our proposed topology-aware scheduling algorithm 
is called HYPREL. The overall design of the scheduling 
algorithm is shown in Fig. 3. The approach consists of two 
main steps: (1) job candidate set selection and (2) hyper-
graph min-cut partition. When the number of available slots 
is fewer than the total requested slots from the jobs in the 
queue, the job candidate set selection strategy is applied to 
select a subset of jobs from the queue and ensure they can 
be run on the available slots immediately. The hypergraph 
min-cut partition strategy is then applied to the selected job 
candidate set to decide the slot location for each task of the 
jobs.

To address the three aforementioned problems (naming 
communication, fragmentation, and starvation), we have the 
following four design principles in our approach. The details 
of our task placement and job selection algorithms are given 
in “Hypergraph Task Placement Strategy” and  “Prioritized 
Job Selection Strategy”, respectively. 

1. We give higher scheduling priority to the job with a 
larger size (i.e., the number of requested slots). Larger 
jobs are more likely to suffer longer queuing delays and 
starvation, because their requested resources are more. 
Hence, higher scheduling priority gives them a better 
chance to be run without being blocked by a group of 
smaller jobs.

2. We formulate the task placement problem as a hyper-
graph partition problem, so the network topology infor-
mation can be taken into account to minimize the com-
munication cost of jobs.

3. To exploit the benefit of scheduling re-ordering, we gen-
erate not one candidate but a set of candidates from the 
job selection step, so we have the opportunity to choose 

Fig. 3  Workflow of our proposed HYPREL scheduling algorithm. The 
network topology is characterized as a hypergraph. Our scheduling 
algorithm first selects a subset of jobs from the waiting queue without 
exceeding the residual capacity, and then applies a hypergraph min-
cut partition algorithm to decide the task placement of these jobs to 
minimize the communication overhead
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the job set with the lowest communication cost in the 
final scheduling decision.

4. To ensure resources are fully utilized, we aim to maxi-
mize the allocated slots of a candidate job set without 
exceeding the residual resource capacity.

Hypergraph Task Placement Strategy

This subsection explains how our task placement problem 
of a set of k jobs can be mapped onto a k-way hypergraph 
partition problem and proves why the result of the min-cut 
partition optimization problem can lead to better job locality 
and lower communication cost.

A hypergraph is a graph data structure that can have mul-
tiple nodes connected by an edge. Hence, different from the 
normal graph structure, an edge in hypergraph is represented 
as a set of nodes. This kind of modeling can simplify the 
complexity of the physical network topology and describe 
the physical network topology more concisely.

In our scheduling problem, our goal is to decide the com-
puting slot (i.e., either a GPU device or a CPU core) for run-
ning a computing task. In addition, we assume the system 
is connected by a hierarchical network topology. Therefore, 
consider each of the computing slots as a leaf node in a 
hypergraph. The rest of the interconnect system components 
(including CPU sockets, computer nodes, network switches, 
and routers, etc) as the intermediate nodes, and the inter-
connect links (including network links, PCI bus, etc) as the 
edges in a hypergraph.

Figure 4 shows an illustration of hypergraph mapping 
for a cluster with 8 computing devices connected by a two-
level tree network topology. As shown, the eight vertices 

in the hypergraph are the eight computing slots, while each 
block in the figure is a hypergraph edge representing a 
router in network topology. From the example, we can also 
observe that a hypergraph is capable of characterizing the 
hierarchical topology structure. The two inner blocks in 
green and red represent the two 2nd level routers, and the 
outer block in blue represents the 1st level router.

The k-way hypergraph partition problem has been well-
studied. It is NP-hard problem [29], but exists linear time 
heuristic algorithms [30, 31]. The problem is formally 
defined as follows. Given a hypergraph with a set of ver-
tices V and edges E, the k-way hypergraph partitioning 
problem definition is to find a way to divide the vertex set, 
so that the divided k blocks satisfy:

The min-cut algorithm for k-way hypergraph partitioning 
problem aims to find the partition solution with the mini-
mum edge cutting cost. The edge cutting cost can be for-
mally defined as follows. For each edge e, the connectivity 
set of the edge e can be defined as

The cardinality of each connectivity set can be denoted as 
λ(e) ∶= |Λ(e)| , which also means the number of blocks con-
nected to the edge e. If the edge e satisfies λ(e) > 1 , then this 
edge is called a cut edge. Otherwise, if λ(e) = 1 , it is called 
an internal edge. Let E′ be the set of all cut edges from a 
partition solution, the cost function of the min-cut algorithm 
is defined as

where ω(e) is the weight of the edge e.
Take the partition in Fig. 4 as an example. If we let 

all the edge weights equal to 1, the total cutting cost is 3, 
because the cutting costs of the three edges in blue, green 
and red are 2, 1 and 0, respectively.

To map our task placement problem to a k-way hyper-
graph partitioning problem, we let k be the number of jobs 
and add the constraint for ensuring the size (i.e., number 
of vertices) of a block Vi must be the same as the number 
of tasks of a job i. The edge weight is assigned to be the 
reciprocal of the farthest distance between all slots under 
its corresponding node in network topology, so that the 
nodes closer to the root have lower edge weight. Table 2 

(1)

Π = {V1,… ,Vk}

such that

k⋃

i=1

Vi = V

Vi ≠ �, 1 ≤ i ≤ k

Vi ∩ Vj = �, i ≠ j

(2)λ(e) ∶= {Vi|Vi ∩ e ≠ �}

(3)fλ(Π) ∶=
∑

e∈E�

(λ(e) − 1)ω(e),

Fig. 4  Example of hypergraph partitioning result that maps to a 
scheduling decision on a network topology. The left subfigure is a 
three-level network topology connected with 8 computing devices. 
The right subfigure is a hypergraph, where each vertex represents a 
computing device, and each edge  (i.e., colored block) represent an 
intermediate node in network topology. Giving a task placement of 
three jobs indicated by the dashed bounding box on the left side, its 
corresponding hypergraph partition result is shown on the right side. 
Each partition in the hypergraph represents the task placement of 
a job. A cutting edge between partitions denotes a parent node that 
is the common ancestor of the two jobs, but is not used by either of 
the jobs. The connectivity cardinality of the three edges are 3, 2, 1, 
respectively. Hence, if the weights of all edges are 1, the total edge 
cutting cost from the partition is fλ(Π) = 2 + 1 + 0 = 3
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summarizes the notations and their corresponding map-
ping relationship between the hypergraph partitioning 
problem and our scheduling problem.

Finally, we provide Lemma 1 and Theorem 1 to prove the 
min-cut hypergraph partition algorithm can also minimize 
the communication cost of our task placement solution.

Lemma 1 An edge in hypergraph must be cut if and only if 
there exist tasks from different jobs are under the node cor-
responding to the edge in the scheduling problem.

Proof Based on our problem mapping, a node has tasks 
from different jobs, ti ∈ rj and ti� ∈ rj� . It implies the edge 
corresponding to the node in the hypergraph must also con-
tain vertices from different partitions, vi ∈ ej for vi ∈ Vk , 
and vi� ∈ ej� for vi� ∈ Vk� , k ≠ k′ . By definition, an edge in 
hypergraph must be cut if it contains the vertices from two 
different partitions. Therefore, the edge corresponding to a 
node with tasks from different jobs must be cut.

Similarly, if an edge is cut, it must contain the vertices 
from two different partitions. Hence, the node corresponding 
to the edge must also contain the tasks from different jobs.  
 ◻

Theorem 1 A min-cut partition solution in hypergraph tends 
to improve the job locality and thus reduce the execution 
time of jobs.

Proof In a min-cut partition problem, we know a partition-
ing algorithm must aim to reduce the number of cutting 
edges and avoid the edges with larger weight to be cut. We 
prove that these two optimization objectives can both lead to 
better job locality and thus short job execution time.

To reduce the number of cutting edges in a hypergraph, 
we must reduce the number of nodes shared among jobs, 
according to Lemma 1. The number of shared nodes can 
only be reduced if we can limit the number of nodes that 
contain the tasks of a job. As known, only when the jobs 
are packed in the minimum number of nodes in the closest 
distance, the number of nodes of a job can be minimized. 
Therefore, a min-cut partition algorithm for hypergraph will 

try to pack the tasks of a job in the minimum distance which 
also leads to better job locality and execution time.

If we want to avoid the edges with larger weights to be cut 
in a hypergraph, we must ensure these edges only contain 
the vertices from a single partition. Therefore, a min-cut 
algorithm should prefer to pack the edge with larger weights 
with the vertices from the same partition with higher prior-
ity. Based on our edge weight assignment rule, an edge with 
higher weight also implies a node with a smaller distance 
among its computing slots. Therefore, a min-cut algorithm 
will pack the computing slots with smaller distances by a 
single job with higher priority, which also leads to better job 
locality and execution time.   ◻

Prioritized Job Selection Strategy

This subsection details how we select the job set from the 
waiting queue for the task placement algorithm. The only 
constraint from job selection is the total requested slots from 
the selected jobs cannot exceed the current available slot 
count. The traditional FIFO job selection strategy will sort 
the jobs by their arrival time and pick the first k jobs without 
exceeding the available slot count.

The FIFO strategy is simple and avoids the starvation 
problem, but it misses the opportunity to select a better job 
set for the task placement algorithm to achieve lower com-
munication costs and higher resource utilization.

Let us consider the scheduling example shown in Fig. 5. 
Under FIFO scheduling order, we can only run the 3 of the 4 
jobs in the waiting queue, and three slots cannot be utilized 
by the other jobs in the waiting queue. Furthermore, the job 
ordering decision can also affect the task placement deci-
sion and communication. For instance, the commonly-used 
packing strategy which aims to pack jobs in a single node 
may get a higher communication cost if the job with only 
2 tasks is put on the node with 4 slots first. The job selec-
tion strategy can also have a great impact on our hypergraph 
partition algorithm. As shown in the example, each of the 
three different job selection decisions for HYPREL results 
in different utilization and communication. Therefore, it is 

Table 2  Description and 
mapping of mathematical 
symbols between the 
hypergraph partitioning and job 
scheduling problems

Hypergraph Scheduling Problem

 Term Definition Term Definition

vi vi is a vertex ti ti is a task
ej ej is an edge that contains a set of elements rj rj is an interconnect component
Vk A partition that contains a set of elements jk jk is a job
vi ∈ ej Vertex vi is included in edge ej ti ∈ rj Task ri contains task ti when ti is 

UNDER node rj in the network 
topology

vi ∈ Vk A vertex vi is included in partition Vk ti ∈ jk Task ti belongs to job jk
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important to exploit job selection decisions for optimizing 
the overall system performance.

However, there can be a total of O(2n) job selection 
options from n jobs. To exploit out-of-order job selection 
with lower computing complexity, we propose an effective 
heuristic algorithm with the following steps. 

Step1: The jobs in waiting queue are sorted by their job 
size  (i.e., number of requested slots) in descending 
order. This allows larger jobs to be selected first, so that 
can avoid starvation or long delay problems.

Step2: We scan through the sorted job list to generate the 
candidate job set by selecting the jobs can fit into the 
residual resource capacity with the first-fit policy. This 
step stops when no more jobs can fit into the residual 
capacity, so the resource utilization can be maximized.

Step3: We try to explore more job selection options by 
repeating Step2 to generate n job selection candidates, 
where n is the number of jobs in waiting queue. For the 
ith candidate job set generation, we add a job filtering 
condition to remove the top (i − 1)th largest jobs from 
waiting queue. Our intention is to ensure that the larg-
est job first will not always dominate the selected job 
set. We are also capable to generate candidate sets that 
consists of smaller jobs.

Step4: To ensure the resource utilization is maximized, we 
introduce an utilization threshold � to filter the candi-
dates from Step4 whose utilization is less than � . If none 
of the candidates can satisfy this threshold, we keep the 
candidate with the highest utilization.

Step5: Finally, we apply the hypergraph partition algo-
rithm introduced in Hypergraph Task Placement Strat-
egy to evaluate the communication cost from each of the 

job set selections from the candidates and choose the job 
set that results in the lowest communication cost.

Algorithm and Complexity Analysis

According to the description of our approach mentioned 
above, we summarize the pseudo code of our complete 
algorithm in  1–3. Algorithm 1 is the overall scheduling 
algorithm of HYPREL, which call hyperAlloc() and 
findCandidateSet() to identify the best job selection 
and task placement result. The hyperAlloc() function 
can be any existing hypergraph partition library implemen-
tation or algorithm, such as KaHyPar [30]. Algorithm 2 
is findCandidateSet(), which is the implementation 
of our job selection strategy described above. Finally, 
Algorithm 3 is the search function for selecting the jobs 
from the waiting queue described by Step2. Finally, we 
provide the overall complexity of our algorithm is O(n2) 
in Theorem 2.

Fig. 5  Comparison of the scheduling results from different task 
placement and job selection algorithms. The number of the jobs 
indicates their requested number of slots  (or tasks). The communi-
cation cost is computed by Eq.  3 under the setting of ω(e) = 1,∀e . 
As observed, the job order can affect the task placement decision and 

communication cost. For instance, FIFO with packing strategy can 
lead to a sub-optimal solution when it is unaware of the other waiting 
jobs and schedules the jobs with 2 tasks to the node with 4 available 
slots. HYPREL evaluates all three candidates and picks the first one 
which has the highest utilization and lowest communication cost



SN Computer Science           (2023) 4:665  Page 11 of 19   665 

SN Computer Science

Theorem 2 The overall time complexity of HYPREL (i.e., 
Algorithm 1) is approximated to O(n2) , where n is the num-
ber of jobs in waiting queue.

Proof The algorithm is consisted of two parts: job selec-
tion and task placement. According to Algorithm 2, the job 
selection complexity is O(n2) , because the complexity of 
generating a candidate job set is O(n), and we need to gener-
ate n candidates. On the other hand, the complexity of task 
placement is depending on the hypergraph partition algo-
rithm adapted by HYPREL. Since we have to apply the par-
tition algorithm on each of the job set candidates. The total 
complexity of task placement is O(n × C) , where C is the 
complexity of the hypergraph partition algorithm adapted by 
HYPREL. Since several linear heuristic partition algorithms 
exist based on well-known greedy optimization methods, 
such Louvan [30] and Fiduccia-Mattheyses (FM) [31], we 
can approximate our complexity to O(n2) .   ◻

Evaluations of DynamoML

Experiment Setup

We evaluate our implementation by conducting the experi-
ments on AWS cloud platform using a Kubernetes cluster 
consisting of 2 nodes (p3.16xlarge instance type). Each 
node is equipped with a 64-cores CPU (Intel Xeon E5–2686 
v4), 488GB of RAM, and 8 Nvidia Tesla V100 GPUs with 
128GB of device memory. To conduct a comprehensive 
evaluation of our implementation, we design workloads 
that include the computing jobs for modeling, training, and 
inference. The training and inference jobs are based on the 
popular DL framework—Tensorflow. The modeling jobs are 
based on the Jupyter Notebook, which is a primary tool for 
developers to build and test their models.

For the training jobs, we employ two common-seen image 
classification model training tasks: The three-layer CNN 
model training task for the Mnist data set (i.e., the task is 
referred as Mnist in the rest of the paper), and the ResNet-50 
model training task of the ImageNet data set (i.e., the task 
is referred as ResNet-50 in the rest of the paper). Every 
TFJob would consist of one Parameter Server (PS) and sev-
eral workers, where workers can be added or removed in 
response to the state of the residual resource in our imple-
mentation. Each worker requests one GPU, and a TFJob runs 
for fixed training iterations. As shown in Fig. 6, both mod-
els can have higher training throughput and shorter training 
times when using more GPUs. The speedup of ResNet-50 
is close to linear. The speedup of Mnist does not increase 
much with more than 3 GPUs, because its model is too small 
to have enough computations for parallel processing. In the 
experiments, we set the maximum number of workers to 4 
for both models.

For the inference jobs, we use a Resnet-50 model as our 
inference service for all requests. Inference job runs on TF-
Serving applications, which computes the forward propaga-
tion upon each arrival client request. Hence, its GPU usage 

Fig. 6  Speedup of model training throughput of using multi-GPUs
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is also approximately proportional to the number of client 
requests. In our experiment, One TF-Serving inference pod 
is configured to consume only one GPU. As a result, the 
number of inference pods would dynamically increase or 
decrease in response to the number of active clients. For the 
purpose of evaluating the response time of inference jobs 
under different workloads, a web client would keep sending 
requests with a varied inter-arrival time.

Finally, for the modeling jobs, we sporadically issue 
model evaluation requests to the Jupyter Notebook instances, 
and the average GPU usage of a modeling job never exceeds 
25%.

To evaluate the benefits of our resource management 
techniques in a runtime system. We construct a testing work, 
as shown in Fig. 7. It contains a total of 4 modeling (note-
book) jobs, 1 inference job, and 16 training jobs. The infer-
ence jobs and modeling jobs are persistently running in the 
system, but their user workload changes over time. As men-
tioned above, the modeling has a sporadic random generated 
workload with less than 25% GPU usage. The workload of 
the inference job controlled by adjusting the number of con-
current active web clients in each time interval (per minute) 
which can be seen from the bars at each minute in Fig. 7. 
Finally, the 16 training jobs are submitted to the system 
every 10 min in 4 groups with 4 jobs per group. The first 
group arrives at 0th minute with 4 Mnist training jobs. The 
second group arrives at 10th minute with 4 Resnet-50 training 
jobs. The last group arrives at 20th minute with 2 training 
jobs for each of the two models.

The goal of our evaluation is to compare the system and 
application performance running the above test work under 
different resource management configuration settings. The 
names and resource management techniques of each setting 
are summarized in Table 3. The initial number of workers for 
a training job is 2, and the initial number of server instance 
for a inference job is 1. Both training and inference jobs can 
be scaled upto to 12 instances (training workers or inference 

servers) when auto-scaling techniques are applied (i.e., the 
total number of GPUs in our testbed is 16.). By default, all 
types of jobs request one GPU per container instances (i.e., 
pods). Only when GPU sharing technique is applied, a mod-
eling job can allocate 0.25 GPU.

System Performance Comparison

Figure 8 plots the GPU resource allocation results over each 
time interval under different system settings. Due to space 
limits, we show the results of DynamoML and K8S+Scaling 
to illustrate the key benefit of our approach. As mentioned, 
DynamoML supports all three proposed techniques: infer-
ence scaling, training scheduling, and GPU sharing. 
K8S+Scaling only supports inference scaling. K8S+Scaling 
also represents the common use case when people are only 
able to use the native Kubernetes installation with the HPA 
auto-scaling package to run ML workloads.

According to the workload variation of inference job, the 
allocation result can be discussed in the following three time 
frames from the DynamoML timeline.

0min∼7min: The inference workload keeps increasing 
during this time frame. Our auto-scaling operator detected 
the increased request response time, and started to launch 
more inference servers. Hence, the number of GPUs allo-
cated to inference increases from 1 to 12. Noted, the infer-
ence job can occupy as many as 12 GPUs, because the train-
ing jobs are preempted and forced to release their GPUs 
for inference jobs. Therefore, some the training job only 
allocated 1 GPU at times. On the other hand, when there is 
residual capacity or un-used GPUs, they can also be dynami-
cally allocated to the training jobs for reducing training time. 
Therefore, the GPU allocation during this time frame is 
almost always fully utilized.

8min∼20min: As the inference workload decreases, we 
can observe DynamoML quickly allocate the available GPUs 
free from the inference job to the training jobs. As a result, a 
training job can use up to 4 GPUs at a time, and the training 
time is greatly reduced. Because the training job finishes too 
early, only 4GPUs needs to be used for handling the infer-
ence requests between time 18min∼20min which can lead 

Fig. 7  Testing workload for system evaluations. The workload of 
interface jobs are time-varied by adjusting the number of active users. 
The workload of training jobs are submitted in 4 groups and 4 jobs 
per group at time 0, 10, 20. The modeling jobs are consisted of 4 
notebook instances persistently running throughout the experiments

Table 3  Compared system configurations

The setting with a resource management technique is marked by “V”

Training Inference GPU
Scheduling Auto-scaling Sharing

DynamoML V V V
K8S+Sharing V
K8S+Scaling V
Native K8S
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to an additional benefit of energy and cost saving for system 
administrators or service providers.

21min∼28min: The last group of the training job arrives 
at 20min, and the inference workload also starts to increase 
at 21min. So similar to the first time frame, both training 
jobs and inference jobs can get more resources at runtime, 
but the inference jobs have higher priority than the training 
jobs. In addition, because of the lower inference workload 
in this time frame comparing to the first time frame, training 
jobs received more GPUs and complete all the training jobs 
before 27min.

In comparison, we can observe several problems from the 
K8S+Scaling setting. (1) It fixes the allocation of training 
job to 2 GPUs, and each modeling job (Notebook instance) 
occupies 1 GPU. Hence, even though the inference job can 
be scaled to obtain more GPUs, it can only use the resid-
ual capacity from training and modeling jobs. Therefore, 
between 0min to 7min, the inference job only receives 4 
GPUs, while it would receive 11 GPUs by DynamoML. 
(2) The Kubernetes scheduler did not pack the workers of 
a training on the same node which results in much longer 
training time. In particularly, the communication overhead 
has a greater impact on the small size models, like MNIST, 
because their communication time often takes higher ratio 
of the overall execution time. Therefore, compared to the 
results of DynamoML, TFJob4, TFJob7 and TFJob11 all 
took much longer time to finish under the K8S+Scaling set-
ting. (3) Because the resource of training jobs is fixed, they 
can take advantage of the residual capacity in the system 
when system workload is light. For instance, there are GPUs 
available between 37min to 46min, and 59min to 67min, but 
they cannot be allocated to training jobs and cause unwanted 
resource waste.

In sum, we can observe the important of dynamic 
resource management when running complex and diverse 
workloads on a shared resource pool. With our techniques, 
the overall workload execution time is significantly reduced 
from 67mins to 27mins, an improvement of almost 60%, and 

there are still rooms for us to free-up some idle resources for 
energy or cost saving. More importantly, DynamoML can 
improve resource utilization and training performance while 
guaranteeing the SLA requirement of inference jobs. In the 
next two subsections, we further analyze the performance 
of training jobs and the SLA violations of inference jobs to 
analyze the reasons of our improvement.

Training Time Analysis

This subsection analyzes the impact of our resource man-
agement techniques on the training jobs from running test 
workloads shown in “Experiment Setup”. Because a train-
ing job has lower execution priority and can be queued 
in the submission queue when not enough resources are 
available, the total execution time of training can be 
divided into two parts: the training time and the wait-
ing time. The training time is the actual running time for 
training, and the waiting time is the time of a job wait-
ing in the scheduling queue. Therefore, we compare the 
improvements of these two time measurements, and the 
total execution time in Fig. 9. Interestingly, we found 
that K8S+Scaling produces the worst results across all 

Fig. 8  Overall resource alloca-
tion for DynamoML (top) and 
K8S+Scaling (bottom)

Fig. 9  Training time comparison
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the measurements, even worse than the native K8S. This 
is because K8S+Scaling only optimizes for the inference 
jobs not for the training jobs. Hence, to satisfy the SLA 
requirements, it allow inference jobs to allocate more 
resources, and sacrifices training jobs. As a result, train-
ing jobs have a higher probability to be blocked or run-
ning with few GPUs. K8S+Sharing is better than native 
Kubernetes, because it reduces the amount of GPUs used 
by the modeling jobs, so training jobs can gain better per-
formance. However, the improvement of GPU sharing 
for training job is limited, because the communication 
overhead is the main performance bottleneck for training 
jobs as we saw from the cases like TFjob4 in Fig. 8. In 
comparison, DynamoML combines all our techniques to 
significantly reduce the waiting time by 55%, the train-
ing time by 70%, and the total execution time by 70%. 
Finally, to prove our training job scheduler did dynami-
cally add or remove workers to training jobs according to 
the system loading, Fig. 10 shows the time distribution of 
a training job with a given number of workers when using 
DynamoML. As seen, in average, about 22% of the job 
execution time uses only 1 GPU, 63% of the time uses 2 
or less GPUs. Only the reminding 37% of time using 3 or 
4 GPUs. However, according to the execution time dis-
tribution shown in Fig. 11, DynamoML still significantly 
reduces the overall training time. With DynamoML, more 
than 60% of the training jobs finish within 5mins, and the 

longest execution time is 8mins. In contrast, the average 
execution time for native K8S is 13mins.

Inference Performance Analysis

Finally, we analyze the SLA violation of inference job 
from the running test workload shown in "Experiment 
Setup". Figure 12 shows the overall client response time 
distribution of the TF-serving inference job under different 
system settings. K8S+Sharing has the worst results, where 
some of the requests have response time over 1024ms. 
This is because it does not supports auto-scaling on the 
inference service. DynamoML performs the best with 
no requests with a response time over 128 ms, because it 
can preempt training jobs when necessary. One the other 
hand, although K8S+Scaling also supports auto-scaling 
on inference inference, but it cannot preempt training 
jobs. As a result, the amount of resources for inference 
jobs can be bounded by the training jobs. Therefore, the 
response time of K8S+Scaling is mostly between 128ms∼
512ms. Figure 13 further breaks down the SLA violation 
probability under different inference workloads which is 
controlled by the number of active clients. As expected, 
the violation probability increases under highly workload. 
Only DynamoML can be resilient to the workload, because 
its ability to obtain enough resources to satisfy the SLA 
requirements.

Fig. 10  Distribution of the number of worker per TFJob under 
DynamoML

Fig. 11  Distribution of the training job execution time under 
DynamoML

Fig. 12  Comparison of the distribution of the response time from 
inference jobs

Fig. 13  SLA violation of inference jobs under different number of 
active users
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Evaluation of HYPREL

This section evaluates our HYPREL topology-aware sched-
uling algorithm. We developed an event-based simulator to 
evaluate HYPREL, because it is easier for us to implement 
all the compared scheduling algorithms and to have more 
consistent job execution time under different task placement 
and workload intensity. Comparing to other state-of-the-art 
topology-aware schedulers [25, 26], our assessment revealed 
the following highlights:

• HYPREL is superior to other solutions in terms of job 
completion time (JCT).

• HYPREL can make a trade-off between cluster resource 
utilization and job placement sensitivity.

• HYPREL consistently outperforms other topology-aware 
scheduling algorithms under a wide range of resource 
contentions.

Experimental Setup

The network topology considered in our evaluation is a 
typical hierarchical tree structure shown in Fig. 14. The 
32-GPUs cluster is consisted of 2 nodes, where each node 
has 4 CPUs and each CPU has 4 sockets to control 4 GPUs.

The evaluation is based on the trace of the online arrival 
parallel computing job collected from the Ohio Supercom-
puting Center (OSC) [32]. The trace contains the submis-
sion time and the number of workers (i.e., tasks) of a set of 
submitted jobs. The maximum number of workers per job 
in the trace is less than 32. Therefore, we treat each worker 
as a GPU request for a job.

A total of 1540 jobs from the trace were used for the 
experiment. Each job is considered as distributed training 
job for a ResNet-50 or Mnist model in our simulation. Given 
a job with n workers, there could be n! placement decisions 
which will be too time-consuming to collect their real execu-
tion time. Therefore, we relay on a parallel job performance 
model proposed in [33] to derive the job execution time in 
our simulation.

In the performance model, the total running time is 
divided into two parts: computing time and communication 
time. The computing time of a job is considered as con-
stant. The communication time is modeled by a cost function 

�(CCjob) , where CCjob is the average pairwise L1 distance 
(Manhattan distance) across all the communicating nodes 
of a job under a placement decision.

The cost function �(CCjob) is derived from a set of real 
experiment random samples. Each sample is the relation-
ship between the communication time (� ) and average hop 
distance (CCjob ) of a job running on a randomly selected 
placement decision. We apply linear regression to fit the 
experimental data to get the cost function of �(CCjob).

The responsibility of a scheduler is to periodically sched-
ule the jobs waiting in the scheduling queue onto available 
GPU slots. As in practice, we assume the scheduler has no 
prior information about the job execution time or the future 
arrival jobs. Only the number of workers required by an 
arrival job is known by the scheduler. We compare HYPREL 
with the following representative job scheduling strategies 
for deep learning workloads:

Random: This is a scheduling algorithm without the 
awareness of network topology and task communication. 
Every time a job arrives. When a job arrives or departs, the 
scheduler simply selects the next job from the waiting queue 
and randomly assigns its tasks to available GPU slots. Its 
performance is considered as the baseline comparison result 
in our evaluation.

HiveD [25]: This is one of the recently proposed topol-
ogy-aware scheduling algorithm for scheduling deep learn-
ing jobs. It is designed based on the well-known buddy 
memory allocation, which is an efficient heuristic alloca-
tion of best-fit allocation for minimizing resource fragmen-
tation. However, memory allocation is a one-dimensional 
space allocation problem. Hence, HiveD annotates the 
resource (GPU slots) with network topology information to 
ensure the allocated resource slots of a job can be within 
close proximity. However, it does not consider the job order-
ing problem, so it could be applied to other job scheduling 
algorithm as well. In our evaluation, we assume HiveD is 
used with FIFO scheduling algorithm.

Topology-aware [26]: This is another recently proposed 
topology-aware scheduling algorithm for scheduling deep 
learning jobs. It formulates the task placement problem of 
a parallel job as a recursive graph partition problem. When-
ever the tasks of job are scheduled across a network link, it 
is considered as a partition of the job. The main objective 
is to minimize the partition cost of a job while mapping its 
communication graph to the network topology. The cost of 

Fig. 14  Network used by the 
simulation
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the partition is modelled by a cost function consisted of the 
cost of resource fragmentation, network communication and 
performance interference. It also delays jobs in the waiting 
queue when its partition cost is too high. The main drawback 
of the approach is that its result could be highly dependent 
on the setting of the cost function parameters and threshold 
of job delay. In our evaluation, we could only roughly tune 
the parameters according to our testing workloads.

Job Completion Time Comparison

Figure 15 shows the average job completion time (JCT) of 
the four compared scheduling algorithms. It is clear that 
HYPREL achieves the best result with 47%, 44% and 24% 
improvement on average JCT over Random, HiveD, and 
Topology-aware, respectively. As expected, Random has 
the worst result and the highest average JCT, because it has 
no awareness of the network topology and communication 
overhead. HYPREL is able to outperform the other two algo-
rithms for the following reasons. For HiveD, it is aware of 
the network topology structure, but not consider the com-
munication traffic of tasks or the scheduling order of jobs. 
As a result, it can greedily reduce communication overhead, 
but may not obtain better optimization result comparing to 
Topology-aware and HYPREL. For Topology-aware, it uses 
a sophisticated cost function to model communication cost, 
but the parameters in the cost function is hard to be tuned. In 
addition, Topology-aware does not reschedule job execution 
according to the job characteristics and only postpones jobs 
according to a delay threshold. In contrast, HYPREL uses 
hypergraph as an effective heuristic solution to capture net-
work topology characteristics and schedules jobs with higher 
communication loading first. As a result, HYPREL is able 
to achieve lower communication overhead and lower JCT.

Figure 16 further plots our improvement on average 
JCT under varied workload contention. We increase the 
level of workload contention by increasing the job arrival 
rate of our workload trace. The y-axis value in Fig. 16 is 
the average JCT of a scheduling algorithm normalized to 

the result of our approach. Hence, a higher value implies 
greater performance improvement. As observed, HYPREL 
achieves the lowest average JCT across all the workload 
contention levels. The improvement over Random grows 
greater as the workload contention increases, because 
communication overhead and resource usage efficiency 
becomes more critical under higher workload conten-
tions. On the other hand, the improvement of HYPREL 
over HiveD and Topology-aware roughly remains consist-
ent across all contention levels. But noted, when the work-
load contention is too high, the JCT may be dominated by 
the queuing wait time. Hence, we can also observe that 
the differences between three topology-aware scheduling 
algorithms may become less under higher contention level.

Finally, we plot the accumulative distribution of indi-
vidual job JCT in Fig. 17. The result shows that HYPREL 
not only reduces the average JCT of all the jobs, but also 
ensures shorter JCT for majority of the jobs. In addition, 
the longest JCT of the jobs is also significantly reduced. 
Therefore, HYPREL improves job execution performance 
from both overall system and individual jobs perspectives.

Fig. 15  Average Job Completion Time (JCT) comparison among job 
scheduling algorithms

Fig. 16  HYPREL’s improvement on the average JCT over the base-
lines under varying contention levels

Fig. 17  Cumulative distribution comparison of individual job com-
pletion time among job scheduling algorithms
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Related Work

In recent years, both research and industry have made 
great efforts to improve the performance of deep learning 
jobs in a GPU cluster by utilizing domain-specific knowl-
edge. However, all these works target distributed training 
jobs alone. While our work addresses the ML pipeline 
workload, including modeling and inference jobs as well. 
Also, most of the proposed techniques require modifica-
tions to the deep learning frameworks, while our work can 
be transparent and general to DL applications.

Gandiva [22] is a scheduling framework developed 
by Microsoft. It supports many management techniques 
together to maximize system throughput for training jobs. 
It provides GPU sharing among jobs in both temporal 
and spatial domains. In the temporal domain, jobs run 
on GPU in an interleaved manner through the suspend-
resume mechanism. In the spatial domain, jobs simply run 
simultaneously on a GPU at the same time, but jobs can 
be migrated to another GPU if performance degradation 
is detected. Gandiva also applies a scaling mechanism to 
jobs that self-declare to have good scalability. To minimize 
the overhead of their managing overhead like migration, 
suspend-resume, and scaling, Gandiva has to modify the 
deep learning frameworks, like Tensorflow and Pytorch.

Some of the work focuses on the scaling policy of 
distributed training jobs. For instance, Optimus [21] 
proposes a GPU resource scheduler to decide the proper 
resource amount and resource allocation according to a 
performance model of distributed training jobs. Similar 
to Optimus, DL2 [34] is a DL driven scheduler that aims 
to decide proper resource allocation to a distributed train-
ing job. However, the performance model proposed by 
DL2 is based on deep reinforcement learning. Tiresias 
[35] addresses the unpredictable job execution problem 
of model training to efficiently schedule and place DL jobs 
in GPU cluster for minimizing the job completion times 
(JCTs).

Other works focus on job placement problems to mini-
mize the communication time of distributed training jobs. 
Most of these jobs meet the communication requirements 
of the job by imposing locality restrictions on the allocated 
resources. Still, too strict locality restrictions will prolong 
the waiting time of the job and cause fragmentation prob-
lem. For instance, [26] proposed a topology aware sched-
uling to decide the mapping between worker tasks and 
GPU slots based on the Hierarchical Static Mapping Dual 
Recursive Bi-partitioning algorithm. Tetris [36] is a multi-
resource scheduler that uses packed tasks to avoid frag-
mentation. Feitelson [37] proposed a peer-based algorithm 
to reduce the fragmentation of gang scheduling jobs in 
supercomputers. The issue of topology-aware scheduling 

is not new, and it has been explored in diverse comput-
ing environments, where task dependency arises from 
data access or transfer between tasks. Just to name a few, 
for instance, serverless and streamming computing needs 
to address the dataflow problem among computing tasks 
[38–40], parallel computing needs to consider the commu-
nication patterns on interconnect networks [41–43]. Simi-
lar to our work, most of these approaches formulated their 
problems as graph partitioning and graph mapping prob-
lems. We chose the hypergraph algorithm in our approach, 
because the network topology considered in our problem 
has a tree structure. However, different from the previous 
hypergraph algorithms, we aim to minimize the resource 
fragmentation in our partition algorithm as well.

Finally, there is growing interest to explore GPU shar-
ing technique for DL jobs. Spatial GPU sharing can suffer 
from unpredictable performance interference and resource 
contention. Therefore, temporal GPU sharing is more com-
monly adapted in practice. However, temporal sharing can 
be limited by the GPU memory size, and context switch 
overhead. Salus [44] takes advantage of the highly predict-
able and largely temporal usage memory pattern to provide 
a fine-grained sharing mechanism by switching jobs at the 
lowest memory usage point. Antman [23] further modifies 
the execution and scheduling engine of deep learn frame-
works to support switching at the unit of operators (GPU 
kernels).

Conclusions

Deep learning workflow has become one of the primary 
workloads in data centers and GPU clusters. In this paper, 
we aim to optimize the application performance and sys-
tem utilization through a set of runtime dynamic resource 
management techniques. GPU sharing increases the resource 
utilization of non-GPU bounded modeling jobs. Perfor-
mance-driven auto-scaling guarantees the SLA requirement 
of inference jobs. Workload-aware scheduling and preemp-
tion utilizes the idle GPUs for reducing the execution time 
of training jobs. Finally, topology-aware scheduling mini-
mize the communication overhead and maximize comput-
ing efficiency of distributed training jobs. While all these 
techniques have been discussed and used for different kinds 
of computing workload, we are one of the few work that 
really integrate and apply them together specifically for the 
ML pipeline workflow. Our system are built as extended 
operators on Kubernetes, and transparent to applications. 
Hence, our solution can be easily applied to general GPU 
clusters and DL workload. In the future, we plan to evaluate 
our system with more complex and real ML pipeline work-
load and implement the HYPREL scheduling algorithm in 
DynamoML for real testbed evaluation.
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