
Vol.:(0123456789)

SN Computer Science (2023) 4:665
https://doi.org/10.1007/s42979-023-02101-8

SN Computer Science

ORIGINAL RESEARCH

Dynamic Resource Management for Machine Learning Pipeline
Workloads

Min‑Chi Chiang1 · Lu‑Wen Zhang1 · Yu‑Min Chou1 · Jerry Chou1

Received: 18 October 2021 / Accepted: 28 June 2023
© The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2023

Abstract
The recent success of deep learning applications is driven by the computing power of GPUs. However, as the workflow of
deep learning becomes increasingly complicated and resource-intensive, how to manage the expensive GPU resources for
Machine Learning (ML) workload becomes a critical problem. Existing resource managers mostly only focus on a single
specific type of workload, like batch processing or web services, and lacks runtime optimization and application perfor-
mance awareness. Therefore, we aim to develop a set of runtime dynamic management techniques (including auto-scaling,
job preemption, workload-aware scheduling, and elastic GPU sharing) to handle a mixture of ML workloads consisting of
modeling, training, and inference jobs. In our previous work, we have implemented these techniques as a set of extended
operators on Kubernetes. In this paper, we further extend our approach by introducing a topology-aware scheduling algorithm
based on the hypergraph partition problem to minimize the communication cost of distributed training for maximizing the
system throughput and minimizing the job completion time. Our evaluations on AWS GPU clusters prove our approach can
out-perform the native Kubernetes by 60% system throughput improvement, 70% training time reduction without causing
any SLA violations on inference services. Compared to the start-of-the-art topology-aware scheduling algorithm, we shorten
the average job completion time by 24–44%.

Keywords Deep learning · GPU resource management · Job scheduling · Performance optimization

Introduction

Deep Learning (DL) is popular in data-center as an impor-
tant workload for artificial intelligence, because it powers
a variety of applications, including image classification [1,
2], object detection [3, 4], language processing [5–9] to self-
driving cars [10] and autonomous robotics [11]. However,
deep learning is also known to be computing intensive. As
reported in a recent survey [12], the amount of computa-
tions used in the largest AI training runs has been increas-
ing exponentially with a 3.4-month doubling time, which
is at a pace even faster than Moore’s Law. The increasingly
popular trend of AutoML techniques, such as automatic
hyper-parameter tuning and network architecture search,
further pushes the need for computing power as models
must be repeatedly trained with different settings to refine
DL models. Today’s deep learning production systems are
mostly built on shared multi-tenant GPU clusters, where
abundant computing resources can be utilized and shared
among users to enable large-scale model training and highly
efficient model inference serving. Therefore, it has drawn

This article is part of the topical collection “Cloud Computing and
Services Science” guest edited by Donald Ferguson, Markus Helfert
and Claus Pahl.

Additional Information: This paper is an extended work of our
previous paper published in the 11th International Conference on
Cloud Computing and Services Science, CLOSER 2021.We extend
the work by introducing and solve the topologyaware scheduling
problem of distributed training jobs. The algorithm design and
analysis complement the implementation of a resource management
platform introduced in our previous work. 12 of 28 (43%) pages are
newly added in this extended journal version.

 * Jerry Chou
 jchou@lsalab.cs.nthu.edu.tw

 Min-Chi Chiang
 mcchiang@lsalab.cs.nthu.edu.tw

 Lu-Wen Zhang
 luwen@lsalab.cs.nthu.edu.tw

 Yu-Min Chou
 ymchou@lsalab.cs.nthu.edu.tw

1 Computer Science Department, National Tsing Hua
University, 101 Kung-Fu Road Sec. 2, Hsinchu 300, Taiwan

http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-023-02101-8&domain=pdf
http://orcid.org/0000-0001-7851-1140

 SN Computer Science (2023) 4:665 665 Page 2 of 19

SN Computer Science

increasing attention from industry and research communities
to improve the efficiency and performance of the expensive
resources for DL workloads.

Resource management (such as resource allocation and
job scheduling) is one of the main approaches for improv-
ing job performance, system throughput, and hardware
utilization. But managing the resources of DL workload
can be challenging, because DL production needs several
processing stages, from data pre-processing to model train-
ing, validation, and finally, model deployment for serving
inferences. The workflow is also known as the ML pipeline.
For simplicity, we refer to the computation before model
training as the modeling jobs, the computations for mod-
eling and hyper-parameter tuning as the training jobs, and
the computations for serving model inference requests as the
inference jobs. The workload characteristics of each of these
jobs can be widely different. For instance, modeling jobs
can be non-GPU bound jobs, because some of the data pre-
processing tasks involve interactive data analysis, and others
may hardly be paralleled using GPU, such as feature extrac-
tion in advertisement [13] and data augmentation in com-
puter vision [14]. Training jobs behave like traditional par-
allel batch processing with huge and stable usage patterns.
However, they can suffer from significant communication
overhead if the tasks of a job are placed across computing
nodes. In contrast, inference jobs behave like web services
with short and bursty GPU usage patterns. However, they
have strict SLA requirements on the request response time.
The mixture and diverse computing jobs in DL workload
creates many difficulties as well as opportunities from the
resource management perspective.

Existing cluster schedulers (e.g., Borg [15], YARN [16])
are designed for general-purpose workload. Their scheduling
algorithms (e.g., DRF [17], TetriSched [18], corral [19], HT-
Condor [20]) are mostly designed to ensure resource fairness
and utilization by allocating a fixed amount of resources for
each job according to the resource requirements specified by
the job owner upon job submission. As a result, the existing
approach may lead to sub-optimal application performance
and system throughput due to the following reasons.

1. Application-oblivious scheduling: Existing schedulers
only concern about the amount of resources allocated
to each job without being aware of the application per-
formance and resource characteristics. For training jobs,
the location of allocated GPUs can significantly affect
training time due to communication overhead. For infer-
ence jobs, their performance is measured by SLA guar-
antee, which depends not only on the resource alloca-
tions but also on the time-varied service workload (i.e.,
inference requests from clients). For modeling jobs, they
are consisted of non-GPU and interactive workloads, so
their performance can be much less sensitive to GPU

resources. Hence, without adequantly considering the
performance impact from resource allocations can eas-
ily lead to under-utilization or under-provisioning prob-
lems.

2. Static resource management: Due to the workload diver-
sity and time-varied resource demands of DL workload,
dynamic resource management like job preemption,
auto-scaling, is essential to guarantee application per-
formance and resource utilization. However, existing
cluster managers often require job owners to manually
operate or re-submit their jobs to adjust the resources
of jobs. The lack of resource management experience
and information further discourages users from adjusting
their job resources when necessary.

3. Coarse-grained GPU allocation: Due to the lack of
multi-tasking management of GPU devices, the mini-
mum granularity of GPU allocation today is a single
GPU device. That means an application can have multi-
ple GPUs, but each GPU can only be allocated to exactly
one application. While DL jobs can be accelerated using
GPUs, a single DL job may not always utilize the whole
GPU card due to reasons like memory-bound training
jobs with large batch sizes or large network models, non-
GPU-bound modeling jobs with human interactions, and
inference jobs with time-varied workloads. Hence, exist-
ing GPU clusters without supporting GPU sharing can
result in low resource utilization and system throughput.

4. Homogeneous workload consideration: Not until
recently, DL domain-specific management systems
[21–23] have been proposed to tackle the issues above.
However, all of them focus on DL training jobs only.
With the emerging trend of MLOps and AutoML that
requires to unify ML system development (Dev) and ML
system operation (Ops) together, end-to-end ML pipe-
lines with mixture workloads are likely to be run and
managed in a shared resource pool provided by a single
production system. Therefore, resource managers should
be designed with the consideration of jobs with differ-
ent performance metrics, workload characteristics, and
execution priorities.

To address the aforementioned problems, we aim to design
and implement a series of dynamic resource management
solutions to optimize the performance and resource utiliza-
tion for DL pipeline workloads. This paper is an extension
of our published work [24] for summarizing our approach.
Our approach first designs and implements DynamoML,
which is a resource management platform on Kubernetes.
Then, we propose HYPREL, which is a hypergraph topol-
ogy-aware scheduling algorithm for parallel computing
jobs. DynamoML provides the management techniques
and capabilities that can effectively optimize the resource
usage of ML workloads with basic or user-specified resource

SN Computer Science (2023) 4:665 Page 3 of 19 665

SN Computer Science

management policies. However, unlike the performance of
modeling and inference jobs is only affected by the amount
of resources, the execution time of a distributed training
job is highly dependent on its task locations. Therefore,
HYPREL is designed to further optimize the performance of
distributed training jobs for minimizing the communication
overhead and maximizing the computing efficiency.

Our experiments running a mixture of ML pipeline work-
load on a 16-GPUs cluster show that DynamoML improves
the native Kubernetes by increasing the system throughput
by more than 60%, reducing the average training time by
70%, and eliminating all the SLA violations. Our in-depth
analysis also shows that without proper coordination and
collaboration between different management techniques to
balance the resource between training jobs and inference
jobs, several issues could occur, including SLA violation on
inference service, wasted idle GPUs, and prolonged model
training time. Our HYPREL scheduling algorithm is evalu-
ated by the real workload trace collected from a parallel
system, and the results show that HYPREL can achieve up to
47% performance improvement than the topology oblivious
method. Even compared to the other state-of-the-art topol-
ogy-aware algorithms [25, 26], we still observed 44–24%
improvement in the job completion time(JCT).

The rest of the paper is structured as follows. “Prob-
lem Description and Objectives” discusses the DL work-
load characteristics and overall system architecture.
“DynamoML: Resource Management Platform” describes
the design and implementation of DynamoML. “HYPREL:
Topology-aware Scheduling Algorithm” presents the
HYPREL scheduling algorithm. “Evaluations of DynamoML
and Evaluation of HYPREL” are the evaluations for
DynamoML and HYPREL, respectively. Finally, the related
work discussion is in “Related Work”, and the paper is con-
cluded in "Conclusions".

Problem Description and Objectives

ML Pipeline Workload

In this work, we consider a GPU cluster running a set of
computing jobs produced from the ML pipeline workflow. In
general, the jobs can be classified into three types: modeling,
training, and inference. The workload characteristics of these
three types of jobs are summarized in Table 1, and briefly
discussed as follows.

• Modeling: We use modeling jobs to represent all the
computing jobs before model training. In general, mod-
eling jobs involve neural network model building and
interactive data pre-processing, including data cleaning,
labeling, validations, and feature extraction. In practice,
users normally perform these tasks through web note-
books, such as Juypter Notebook. Since the computations
in this pipeline stage commonly involve data processing
and human interaction, the GPU usage is low, some exe-
cution delay can be tolerated, and the workload pattern
can be bursty.

• Training: Model training can be extremely time-consum-
ing. In order to reduce training time, distributed model
training across multiple GPU-nodes has been supported
by mainstream deep learning frameworks, such as Ten-
sorflow, PyTorch, and Keras. Most of them adopt the
BSP (Bulk Synchronous Parallel) computing method to
implement the data parallel model training, where a train-
ing job is consisted of a set of worker processes, and all
the workers must synchronously aggregate their gradients
at the end of each training iteration to update the model

Table 1 Description of ML pipeline workloads and management solutions

(a) Worload characteristics

 Job type Type Pattern Usage Urgency

Modeling (e.g., Notebook) Interactive data analysis Bursty Low Med
Training (e.g., TFJob) BSP (Bulk Synchronous Parallel) Persistent High Low
Inference (e.g., TFServer) Web service Periodic Med High

(b) Resource management problems and solutions

 Job type Problems Solutions Results

Modeling (e.g., Notebook) 1. Low utilization Fractional & elastic GPU
allocation

Increase utilization

Training (e.g., TFJob) 1. Resource monopoly
2. Communication
3. Synchronization

1. Gang & locality aware
scheduling

2. Task preemption

1. Avoid idle resources
2. Reduce training time

Inference (e.g., TFServer) 1. SLA requirement
2. Elastic workload

Auto-scaling Avoid SLA violation

 SN Computer Science (2023) 4:665 665 Page 4 of 19

SN Computer Science

weights. Since training time can be long, modern deep
learning libraries also support checkpoint mechanisms
to tolerate faults and to restart training with different
resource configurations. Therefore, comparing to the
other two types of jobs, training has the highest resource
usage and the lowest urgency.

• Inference: To serve the model’s inference requests from
clients, an inference job often packages the model and
deploys it as a web service (e.g., TFServer). Similar
to web services, the workload of a web service can be
time-varied according to the number of client requests,
and the SLA requirement of a service can be guaranteed.
Therefore, inference jobs should have the highest urgency
with periodic workload patterns and medium GPU usage
demand.

System Components

Our resource management platform, DynamoML, is imple-
mented as an extended framework on Kubernetes, because
Kubernetes has become the most popular resource orches-
trator for hosting containerized computing workload. How-
ever, Kubernetes, like our cluster schedulers (e.g., Borg [15],
YARN [16], HT-Condor [20]), lacks proper resource man-
agement for DL workloads. The implementation details are
given in “DynamoML: Resource Management Platform”,
and the scheduling algorithm is discussed in “HYPREL:
Topology-aware Scheduling Algorithm”. The main com-
ponents of our resource management platform include the
following modularized operators:

• Shared GPU allocator: it enables fine-grained shared
GPU allocation in Kubernetes. Hence, the GPU utili-
zation can be increased by allowing multiple non-GPU
bound modeling jobs to share a single GPU. In compari-
son, the native device plug-in framework of Kubernetes
does not allow fractional allocation.

• Distributed training job scheduler: It is a runtime sched-
uler that addresses several resource allocation prob-
lems of distributed model training jobs. (1) It reduces
the communication overhead of distributed training by
packing the workers of a training job on a single node.
(2) It avoids the idle resource problem of synchronous
computations by proving gang scheduling, so that all
the workers of a training job will be scheduled together
as a group. (3) It uses checkpoint mechanism to force
resource preemption on training jobs, so the resources
will not be monopolized by the long running training
jobs. In comparison, the native Kubernetes scheduler
cannot achieve these goals, because it lacks the aware-
ness of application performance.

• Inference service auto-scaling controller: It aims to
dynamicly add or remove the server instances of a ser-

vice job according to the response time of inference
requests, so that an application-level SLA requirement
can be guaranteed under workload variations. In com-
parison, the existing scaling mechanism in Kubernetes
is based on resource usage, not application performance.
Furthermore, when the system lacks resources for infer-
ence jobs, auto-scaling controller can ask job scheduler
to release the resources of training jobs. Therefore, infer-
ence jobs always have the highest scheduling priority in
our framework.

Design Requirements and Strengths

Besides the goal of resource management, we also have the
following strengths from its design requirements.

• Transparency: All the resource control mechanisms are
implemented as the extended components of Kubernetes
using the technique like custom controllers, sidecar con-
tainers, and library hooks. Therefore, no code modifica-
tion to the deep learning computing frameworks or user
programs. Because of transparency, our system can work
seamlessly with Kubernetes, and our resource manage-
ment strategy can also be applied to any application with
the same targeted workload characteristics.

• Modularization: Each resource management component
provides a standalone management service, such as GPU
sharing, scheduling, and auto-scaling. These services are
triggered by their service-defined API and event. Hence,
system administrators can independently deploy indi-
vidual components according to their needs.

• Agility: To overcome the workload variation and diver-
sity of ML pipeline jobs, we focus on runtime resource
sharing and management. From the resource allocation
aspect, our GPU sharing supports elastic allocation,
which allows the actual resource usage to be bounded
between a user-specified range specified by a pair of val-
ues (request, limit), so that the resource within the range
can be elastically shared among users. From resource
usage aspect, we support auto-scaling and preemption
on training and inference jobs, so that resource demands
can be adjusted and adapted to the runtime application
behavior and performance. Finally, our HYPREL job
scheduling algorithm can further improve the computing
efficiency and resource utilization with the consideration
of network topology and resource availability.

DynamoML: Resource Management
Platform

This section presents the detailed design and implementation
of DynamoML.

SN Computer Science (2023) 4:665 Page 5 of 19 665

SN Computer Science

Shared GPU Allocator

GPU sharing is necessary to improve resource utilization,
especially for modeling and inference jobs. Our GPU shar-
ing solution consists of two parts. The first is to enable
fractional GPU allocation in Kubernetes. The second is
to ensure the GPU resource can be shared fairly among
containers.

The device plug-in framework of Kubernetes treats
GPU devices as a single non-divisible resource object, so
fractional GPU allocation is not allowed. To overcome
this limitation, our system first launches a set of pods to
allocate the GPU resources from Kubernetes, and obtain
GPU devices’ UUID. Then, the same GPU can be attached
to multiple containers installed with nvidia docker package
by setting the GPU’s UUID in the environment variable
“NVIDIA_VISIBLE_DEVICES”. To support fractional
allocation, our shared GPU allocator will track the residual
resource amount on each GPU, and ensure GPUs are not
over-allocated.

After a GPU is attached and accessible by a container,
we still have to ensure the actual resource usage does
not exceed the allocation amount. As shown in Fig. 1,
to throttle the GPU usage of a container, we insert an
LD_PRELOAD hook library in the container to intercept
its GPU API. The intercepted GPU APIs will be blocked
until the hook library receives an execution token from
the scheduler of our GPU allocator. A time-sharing sched-
uler is implemented to pass the token around containers
according to their resource allocation demand. Therefore,
the resource usage of a container cannot exceed its allo-
cated demand. To maximize GPU utilization, we further
support elastic allocation, which allows users to specify
their minimum and maximum demand as (request, limit),
so that the requested resource can be reserved and guar-
anteed, while the residual capacity can still be utilized by
the container without exceeding its limit. More details of

the design and implementation can be found in our previ-
ous work [27].

Training Job Scheduler

The native Kubernetes scheduler schedules the con-
tainer (i.e., pod) of each worker task independently on ran-
dom nodes with sufficient resources. However, distributed
training jobs are communication-bound with task depend-
ency among each other. Therefore, the naive FCFS random
scheduling algorithm of the native Kubernetes scheduler
can cause significant communication and synchronization
overhead.

To address the above issues, we developed our own job-
level scheduler on top of the task-level native scheduler to
schedule and manage all the tasks of a training job as a unit.
Through our scheduler, a job is only launched when the sys-
tem has enough residual capacity to run all its tasks simulta-
neously. Thus, resources will not be occupied by tasks wait-
ing for synchronization. To minimize the communication
overhead of a job, our scheduler tends to pack all the tasks
of a job on as fewer number of compute nodes as possible.
The location of the task is controlled by specifying the “node
selector” label in the pod spec of the workers, so the native
scheduler can only create the pods on the designated nodes
of our scheduler.

Finally, our scheduler monitors the system resource usage
status to dynamically adjust the number of workers of train-
ing jobs. Additional workers are added to training jobs when
the system loading is low, so that jobs can take advantage of
the residual capacity to reduce their execution time. On the
other hand, workers can also be taken from jobs when the
system loading is high, so the resources can be reclaimed
from the running jobs to launch the waiting jobs as soon as
possible. More details of the design and implementation can
be found in our previous work [28].

Inference Auto‑scaling Controller

To dynamically scale up and down in response to a varied
number of users’ requests, we integrated Kubernetes Hori-
zontal Pod Autoscaler (HPA). However, the naïve Kuber-
netes Horizontal Pod Autoscaler (HPA) is limited to scale
pods according to the current state of CPU or memory con-
sumption. The most direct way to scale pods should depend
on the current number of users’ requests, which requires
us to integrate third-party solutions to fulfill this goal. We
further integrate Istio, a popular tool to build service mesh
in our implementation, to gather the requests’ information
within the cluster.

The term service mesh is used to describe the network
of microservices that make up such applications and their
interactions. Its requirements can include service discovery, Fig. 1 GPU usage control framework

 SN Computer Science (2023) 4:665 665 Page 6 of 19

SN Computer Science

load balancing, metrics, and monitoring. Istio’s solution cre-
ates a network of deployed services with traffic management,
security, observability, and extensibility. It directly attaches
a sidecar, a proxy to help pod exchange information, to every
pod. Whenever there exists a need to pass data between
pods, the sidecar intercepts all network communication. By
intercepting the communications, Istio generates metrics for
all service traffic in, out, and within an Istio service mesh.
These metrics provide information on behaviors, such as the
overall traffic volume, the error rates within the traffic, and
the response times for requests. As a result, we use Istio as
our primary tool to gather communications metrics.

As shown in Fig. 2, when we successfully fetch the met-
rics from Istio, we need to store the information for Kuber-
netes Custom Metrics API to query. Although we can for-
ward data from Istio to Kubernetes Custom Metrics API
directly, we could further store, query, and monitor the
metrics if we store them in Prometheus. By employing Pro-
metheus, a popular Time-Series Database, to periodically
forward information to Prometheus, we gather the metrics,
including the request number per second and response time.
Then, since Kubernetes HPA is only able to fetch metrics
from Kubernetes Custom Metrics API, we install the Pro-
metheus Adapter and register it to Kubernetes Custom Met-
rics API. Finally, Kubernetes HPA is capable of scaling up
and down pods according to the current number of users’
requests.

In prioritize the inference jobs and preempt the train-
ing jobs as needed, whenever it is necessary to increase the
inference pods in response to flooded users’ requests, our
auto-scaling controller would check whether current residual

resources are available for inference jobs to scale up. If
not, we would sequentially evict the workers of training
jobs (TFJobs), release sufficient GPU resources for inference
pods. We leave at least one worker (chief worker) for every
TFJobs in our implementation, so that TFJobs can proceed
training process continuously without requiring checkpoint.
Finally, the Kubernetes API scheduler would allocate GPU
resources for the new inference pods, which makes platform
reach inference jobs’ Service Level Agreement (SLA).

In our implementation, we label the inference pods first,
making Kubernetes Operator capable of identifying infer-
ence jobs. Then, by Kubernetes native event-driven mecha-
nism, we registered OnAdd, OnUpdate events of inference
pods. Whenever Kubernetes HPA decides to scale up infer-
ence pods, the training job scheduler would be notified by
the Kubernetes control manager, check whether the current
residual resource is available for the new pod, and decide
whether to release the resources for inference jobs by scaling
down training workloads. In addition, training job sched-
uler would periodically check the residual resources. After
Kubernetes HPA scaled down inference pods and released
the GPU resources, the training job scheduler would scale
up training jobs once it detected residual resources.

HYPREL: Topology‑Aware Scheduling
Algorithm

Unlike inference jobs and modeling (i.e., notebook)
instances, the execution time of distributed model training
jobs can be significantly affected by the communication

Fig. 2 System design diagram
of the inference auto-scaling
controller

SN Computer Science (2023) 4:665 Page 7 of 19 665

SN Computer Science

overhead. Therefore, the scheduling and task placement
decision of training tasks is critical to the training time and
resource usage efficiency. The scheduling and scaling mech-
anisms of DynamoML can mitigate the problem with some
dynamic resource management strategies driven by perfor-
mance and resource utilization. However, the initial place-
ment of the tasks is still important, because a bad initial task
placement decision can lead to many disadvantages at runt-
ime, such as sub-optimal job performance and higher task
reconfiguration overhead. Therefore, we propose HYPREL,
a topology-aware scheduling algorithm for optimizing the
performance of training jobs. HYPREL achieves better per-
formance than other state-of-the-art topology-aware schedul-
ing algorithms [25, 26] for two main reasons. First, it uses
the hyper-graph data structure as an efficient and effective
approach to address the task locality problem and minimize
communication overhead. Second, it allows job re-ordering
to maximize the benefits of task placement.

In the rest of the section, we first give an overview of our
scheduling problem. Then, we introduce our task placement
strategy based on k-way hypergraph partition algorithm and
our job selection strategy for re-ordering the scheduling
jobs. Finally, we detail and analyze the complexity of our
algorithms.

Approach Overview

The scheduling problem we consider is to schedule a set of
jobs waiting in the scheduling queue onto a set of computing
devices (i.e., slots). The computing devices are connected
by a network topology, and each job is consisted of a set of
parallel tasks. The goal of the scheduling algorithm is to
minimize the average job completion time. Noted, we are
considering an online scheduling problem. Thus, the sched-
uler is triggered whenever a job arrives or departs from the
system, and the scheduler does not aware of the future jobs
that are not inserted in the waiting queue. To ensure our
approach can be used in a practical system environment,
we assume the scheduler has no prior knowledge of the job
information, except the number of tasks requested by a job.

The scheduling problem is challenging, because it needs
to address three problems at the same time. The first problem
is the communication overhead. As known, the execution
time of a parallel job can be affected by the task location
because of the communication overhead. Therefore, the
tasks of a job should be packed within a close distance on
the network topology to minimize communication time.
However, if we only allow a job to be scheduled on its
closest locations, such as packing into a single node, we
may encounter the resource fragmentation problem, where
fragmented scattered across nodes cannot be fully utilized.
Finally, the job scheduling order can affect the scheduling
results as well. We consider the jobs in the waiting can be

executed out of order for optimization, but starvation and
long queuing delay problem should be avoided.

Our proposed topology-aware scheduling algorithm
is called HYPREL. The overall design of the scheduling
algorithm is shown in Fig. 3. The approach consists of two
main steps: (1) job candidate set selection and (2) hyper-
graph min-cut partition. When the number of available slots
is fewer than the total requested slots from the jobs in the
queue, the job candidate set selection strategy is applied to
select a subset of jobs from the queue and ensure they can
be run on the available slots immediately. The hypergraph
min-cut partition strategy is then applied to the selected job
candidate set to decide the slot location for each task of the
jobs.

To address the three aforementioned problems (naming
communication, fragmentation, and starvation), we have the
following four design principles in our approach. The details
of our task placement and job selection algorithms are given
in “Hypergraph Task Placement Strategy” and “Prioritized
Job Selection Strategy”, respectively.

1. We give higher scheduling priority to the job with a
larger size (i.e., the number of requested slots). Larger
jobs are more likely to suffer longer queuing delays and
starvation, because their requested resources are more.
Hence, higher scheduling priority gives them a better
chance to be run without being blocked by a group of
smaller jobs.

2. We formulate the task placement problem as a hyper-
graph partition problem, so the network topology infor-
mation can be taken into account to minimize the com-
munication cost of jobs.

3. To exploit the benefit of scheduling re-ordering, we gen-
erate not one candidate but a set of candidates from the
job selection step, so we have the opportunity to choose

Fig. 3 Workflow of our proposed HYPREL scheduling algorithm. The
network topology is characterized as a hypergraph. Our scheduling
algorithm first selects a subset of jobs from the waiting queue without
exceeding the residual capacity, and then applies a hypergraph min-
cut partition algorithm to decide the task placement of these jobs to
minimize the communication overhead

 SN Computer Science (2023) 4:665 665 Page 8 of 19

SN Computer Science

the job set with the lowest communication cost in the
final scheduling decision.

4. To ensure resources are fully utilized, we aim to maxi-
mize the allocated slots of a candidate job set without
exceeding the residual resource capacity.

Hypergraph Task Placement Strategy

This subsection explains how our task placement problem
of a set of k jobs can be mapped onto a k-way hypergraph
partition problem and proves why the result of the min-cut
partition optimization problem can lead to better job locality
and lower communication cost.

A hypergraph is a graph data structure that can have mul-
tiple nodes connected by an edge. Hence, different from the
normal graph structure, an edge in hypergraph is represented
as a set of nodes. This kind of modeling can simplify the
complexity of the physical network topology and describe
the physical network topology more concisely.

In our scheduling problem, our goal is to decide the com-
puting slot (i.e., either a GPU device or a CPU core) for run-
ning a computing task. In addition, we assume the system
is connected by a hierarchical network topology. Therefore,
consider each of the computing slots as a leaf node in a
hypergraph. The rest of the interconnect system components
(including CPU sockets, computer nodes, network switches,
and routers, etc) as the intermediate nodes, and the inter-
connect links (including network links, PCI bus, etc) as the
edges in a hypergraph.

Figure 4 shows an illustration of hypergraph mapping
for a cluster with 8 computing devices connected by a two-
level tree network topology. As shown, the eight vertices

in the hypergraph are the eight computing slots, while each
block in the figure is a hypergraph edge representing a
router in network topology. From the example, we can also
observe that a hypergraph is capable of characterizing the
hierarchical topology structure. The two inner blocks in
green and red represent the two 2nd level routers, and the
outer block in blue represents the 1st level router.

The k-way hypergraph partition problem has been well-
studied. It is NP-hard problem [29], but exists linear time
heuristic algorithms [30, 31]. The problem is formally
defined as follows. Given a hypergraph with a set of ver-
tices V and edges E, the k-way hypergraph partitioning
problem definition is to find a way to divide the vertex set,
so that the divided k blocks satisfy:

The min-cut algorithm for k-way hypergraph partitioning
problem aims to find the partition solution with the mini-
mum edge cutting cost. The edge cutting cost can be for-
mally defined as follows. For each edge e, the connectivity
set of the edge e can be defined as

The cardinality of each connectivity set can be denoted as
λ(e) ∶= |Λ(e)| , which also means the number of blocks con-
nected to the edge e. If the edge e satisfies λ(e) > 1 , then this
edge is called a cut edge. Otherwise, if λ(e) = 1 , it is called
an internal edge. Let E′ be the set of all cut edges from a
partition solution, the cost function of the min-cut algorithm
is defined as

where ω(e) is the weight of the edge e.
Take the partition in Fig. 4 as an example. If we let

all the edge weights equal to 1, the total cutting cost is 3,
because the cutting costs of the three edges in blue, green
and red are 2, 1 and 0, respectively.

To map our task placement problem to a k-way hyper-
graph partitioning problem, we let k be the number of jobs
and add the constraint for ensuring the size (i.e., number
of vertices) of a block Vi must be the same as the number
of tasks of a job i. The edge weight is assigned to be the
reciprocal of the farthest distance between all slots under
its corresponding node in network topology, so that the
nodes closer to the root have lower edge weight. Table 2

(1)

Π = {V1,… ,Vk}

such that

k⋃

i=1

Vi = V

Vi ≠ �, 1 ≤ i ≤ k

Vi ∩ Vj = �, i ≠ j

(2)λ(e) ∶= {Vi|Vi ∩ e ≠ �}

(3)fλ(Π) ∶=
∑

e∈E�

(λ(e) − 1)ω(e),

Fig. 4 Example of hypergraph partitioning result that maps to a
scheduling decision on a network topology. The left subfigure is a
three-level network topology connected with 8 computing devices.
The right subfigure is a hypergraph, where each vertex represents a
computing device, and each edge (i.e., colored block) represent an
intermediate node in network topology. Giving a task placement of
three jobs indicated by the dashed bounding box on the left side, its
corresponding hypergraph partition result is shown on the right side.
Each partition in the hypergraph represents the task placement of
a job. A cutting edge between partitions denotes a parent node that
is the common ancestor of the two jobs, but is not used by either of
the jobs. The connectivity cardinality of the three edges are 3, 2, 1,
respectively. Hence, if the weights of all edges are 1, the total edge
cutting cost from the partition is fλ(Π) = 2 + 1 + 0 = 3

SN Computer Science (2023) 4:665 Page 9 of 19 665

SN Computer Science

summarizes the notations and their corresponding map-
ping relationship between the hypergraph partitioning
problem and our scheduling problem.

Finally, we provide Lemma 1 and Theorem 1 to prove the
min-cut hypergraph partition algorithm can also minimize
the communication cost of our task placement solution.

Lemma 1 An edge in hypergraph must be cut if and only if
there exist tasks from different jobs are under the node cor-
responding to the edge in the scheduling problem.

Proof Based on our problem mapping, a node has tasks
from different jobs, ti ∈ rj and ti� ∈ rj� . It implies the edge
corresponding to the node in the hypergraph must also con-
tain vertices from different partitions, vi ∈ ej for vi ∈ Vk ,
and vi� ∈ ej� for vi� ∈ Vk� , k ≠ k′ . By definition, an edge in
hypergraph must be cut if it contains the vertices from two
different partitions. Therefore, the edge corresponding to a
node with tasks from different jobs must be cut.

Similarly, if an edge is cut, it must contain the vertices
from two different partitions. Hence, the node corresponding
to the edge must also contain the tasks from different jobs.
 ◻

Theorem 1 A min-cut partition solution in hypergraph tends
to improve the job locality and thus reduce the execution
time of jobs.

Proof In a min-cut partition problem, we know a partition-
ing algorithm must aim to reduce the number of cutting
edges and avoid the edges with larger weight to be cut. We
prove that these two optimization objectives can both lead to
better job locality and thus short job execution time.

To reduce the number of cutting edges in a hypergraph,
we must reduce the number of nodes shared among jobs,
according to Lemma 1. The number of shared nodes can
only be reduced if we can limit the number of nodes that
contain the tasks of a job. As known, only when the jobs
are packed in the minimum number of nodes in the closest
distance, the number of nodes of a job can be minimized.
Therefore, a min-cut partition algorithm for hypergraph will

try to pack the tasks of a job in the minimum distance which
also leads to better job locality and execution time.

If we want to avoid the edges with larger weights to be cut
in a hypergraph, we must ensure these edges only contain
the vertices from a single partition. Therefore, a min-cut
algorithm should prefer to pack the edge with larger weights
with the vertices from the same partition with higher prior-
ity. Based on our edge weight assignment rule, an edge with
higher weight also implies a node with a smaller distance
among its computing slots. Therefore, a min-cut algorithm
will pack the computing slots with smaller distances by a
single job with higher priority, which also leads to better job
locality and execution time. ◻

Prioritized Job Selection Strategy

This subsection details how we select the job set from the
waiting queue for the task placement algorithm. The only
constraint from job selection is the total requested slots from
the selected jobs cannot exceed the current available slot
count. The traditional FIFO job selection strategy will sort
the jobs by their arrival time and pick the first k jobs without
exceeding the available slot count.

The FIFO strategy is simple and avoids the starvation
problem, but it misses the opportunity to select a better job
set for the task placement algorithm to achieve lower com-
munication costs and higher resource utilization.

Let us consider the scheduling example shown in Fig. 5.
Under FIFO scheduling order, we can only run the 3 of the 4
jobs in the waiting queue, and three slots cannot be utilized
by the other jobs in the waiting queue. Furthermore, the job
ordering decision can also affect the task placement deci-
sion and communication. For instance, the commonly-used
packing strategy which aims to pack jobs in a single node
may get a higher communication cost if the job with only
2 tasks is put on the node with 4 slots first. The job selec-
tion strategy can also have a great impact on our hypergraph
partition algorithm. As shown in the example, each of the
three different job selection decisions for HYPREL results
in different utilization and communication. Therefore, it is

Table 2 Description and
mapping of mathematical
symbols between the
hypergraph partitioning and job
scheduling problems

Hypergraph Scheduling Problem

 Term Definition Term Definition

vi vi is a vertex ti ti is a task
ej ej is an edge that contains a set of elements rj rj is an interconnect component
Vk A partition that contains a set of elements jk jk is a job
vi ∈ ej Vertex vi is included in edge ej ti ∈ rj Task ri contains task ti when ti is

UNDER node rj in the network
topology

vi ∈ Vk A vertex vi is included in partition Vk ti ∈ jk Task ti belongs to job jk

 SN Computer Science (2023) 4:665 665 Page 10 of 19

SN Computer Science

important to exploit job selection decisions for optimizing
the overall system performance.

However, there can be a total of O(2n) job selection
options from n jobs. To exploit out-of-order job selection
with lower computing complexity, we propose an effective
heuristic algorithm with the following steps.

Step1: The jobs in waiting queue are sorted by their job
size (i.e., number of requested slots) in descending
order. This allows larger jobs to be selected first, so that
can avoid starvation or long delay problems.

Step2: We scan through the sorted job list to generate the
candidate job set by selecting the jobs can fit into the
residual resource capacity with the first-fit policy. This
step stops when no more jobs can fit into the residual
capacity, so the resource utilization can be maximized.

Step3: We try to explore more job selection options by
repeating Step2 to generate n job selection candidates,
where n is the number of jobs in waiting queue. For the
ith candidate job set generation, we add a job filtering
condition to remove the top (i − 1)th largest jobs from
waiting queue. Our intention is to ensure that the larg-
est job first will not always dominate the selected job
set. We are also capable to generate candidate sets that
consists of smaller jobs.

Step4: To ensure the resource utilization is maximized, we
introduce an utilization threshold � to filter the candi-
dates from Step4 whose utilization is less than � . If none
of the candidates can satisfy this threshold, we keep the
candidate with the highest utilization.

Step5: Finally, we apply the hypergraph partition algo-
rithm introduced in Hypergraph Task Placement Strat-
egy to evaluate the communication cost from each of the

job set selections from the candidates and choose the job
set that results in the lowest communication cost.

Algorithm and Complexity Analysis

According to the description of our approach mentioned
above, we summarize the pseudo code of our complete
algorithm in 1–3. Algorithm 1 is the overall scheduling
algorithm of HYPREL, which call hyperAlloc() and
findCandidateSet() to identify the best job selection
and task placement result. The hyperAlloc() function
can be any existing hypergraph partition library implemen-
tation or algorithm, such as KaHyPar [30]. Algorithm 2
is findCandidateSet(), which is the implementation
of our job selection strategy described above. Finally,
Algorithm 3 is the search function for selecting the jobs
from the waiting queue described by Step2. Finally, we
provide the overall complexity of our algorithm is O(n2)
in Theorem 2.

Fig. 5 Comparison of the scheduling results from different task
placement and job selection algorithms. The number of the jobs
indicates their requested number of slots (or tasks). The communi-
cation cost is computed by Eq. 3 under the setting of ω(e) = 1,∀e .
As observed, the job order can affect the task placement decision and

communication cost. For instance, FIFO with packing strategy can
lead to a sub-optimal solution when it is unaware of the other waiting
jobs and schedules the jobs with 2 tasks to the node with 4 available
slots. HYPREL evaluates all three candidates and picks the first one
which has the highest utilization and lowest communication cost

SN Computer Science (2023) 4:665 Page 11 of 19 665

SN Computer Science

Theorem 2 The overall time complexity of HYPREL (i.e.,
Algorithm 1) is approximated to O(n2) , where n is the num-
ber of jobs in waiting queue.

Proof The algorithm is consisted of two parts: job selec-
tion and task placement. According to Algorithm 2, the job
selection complexity is O(n2) , because the complexity of
generating a candidate job set is O(n), and we need to gener-
ate n candidates. On the other hand, the complexity of task
placement is depending on the hypergraph partition algo-
rithm adapted by HYPREL. Since we have to apply the par-
tition algorithm on each of the job set candidates. The total
complexity of task placement is O(n × C) , where C is the
complexity of the hypergraph partition algorithm adapted by
HYPREL. Since several linear heuristic partition algorithms
exist based on well-known greedy optimization methods,
such Louvan [30] and Fiduccia-Mattheyses (FM) [31], we
can approximate our complexity to O(n2) . ◻

Evaluations of DynamoML

Experiment Setup

We evaluate our implementation by conducting the experi-
ments on AWS cloud platform using a Kubernetes cluster
consisting of 2 nodes (p3.16xlarge instance type). Each
node is equipped with a 64-cores CPU (Intel Xeon E5–2686
v4), 488GB of RAM, and 8 Nvidia Tesla V100 GPUs with
128GB of device memory. To conduct a comprehensive
evaluation of our implementation, we design workloads
that include the computing jobs for modeling, training, and
inference. The training and inference jobs are based on the
popular DL framework—Tensorflow. The modeling jobs are
based on the Jupyter Notebook, which is a primary tool for
developers to build and test their models.

For the training jobs, we employ two common-seen image
classification model training tasks: The three-layer CNN
model training task for the Mnist data set (i.e., the task is
referred as Mnist in the rest of the paper), and the ResNet-50
model training task of the ImageNet data set (i.e., the task
is referred as ResNet-50 in the rest of the paper). Every
TFJob would consist of one Parameter Server (PS) and sev-
eral workers, where workers can be added or removed in
response to the state of the residual resource in our imple-
mentation. Each worker requests one GPU, and a TFJob runs
for fixed training iterations. As shown in Fig. 6, both mod-
els can have higher training throughput and shorter training
times when using more GPUs. The speedup of ResNet-50
is close to linear. The speedup of Mnist does not increase
much with more than 3 GPUs, because its model is too small
to have enough computations for parallel processing. In the
experiments, we set the maximum number of workers to 4
for both models.

For the inference jobs, we use a Resnet-50 model as our
inference service for all requests. Inference job runs on TF-
Serving applications, which computes the forward propaga-
tion upon each arrival client request. Hence, its GPU usage

Fig. 6 Speedup of model training throughput of using multi-GPUs

 SN Computer Science (2023) 4:665 665 Page 12 of 19

SN Computer Science

is also approximately proportional to the number of client
requests. In our experiment, One TF-Serving inference pod
is configured to consume only one GPU. As a result, the
number of inference pods would dynamically increase or
decrease in response to the number of active clients. For the
purpose of evaluating the response time of inference jobs
under different workloads, a web client would keep sending
requests with a varied inter-arrival time.

Finally, for the modeling jobs, we sporadically issue
model evaluation requests to the Jupyter Notebook instances,
and the average GPU usage of a modeling job never exceeds
25%.

To evaluate the benefits of our resource management
techniques in a runtime system. We construct a testing work,
as shown in Fig. 7. It contains a total of 4 modeling (note-
book) jobs, 1 inference job, and 16 training jobs. The infer-
ence jobs and modeling jobs are persistently running in the
system, but their user workload changes over time. As men-
tioned above, the modeling has a sporadic random generated
workload with less than 25% GPU usage. The workload of
the inference job controlled by adjusting the number of con-
current active web clients in each time interval (per minute)
which can be seen from the bars at each minute in Fig. 7.
Finally, the 16 training jobs are submitted to the system
every 10 min in 4 groups with 4 jobs per group. The first
group arrives at 0th minute with 4 Mnist training jobs. The
second group arrives at 10th minute with 4 Resnet-50 training
jobs. The last group arrives at 20th minute with 2 training
jobs for each of the two models.

The goal of our evaluation is to compare the system and
application performance running the above test work under
different resource management configuration settings. The
names and resource management techniques of each setting
are summarized in Table 3. The initial number of workers for
a training job is 2, and the initial number of server instance
for a inference job is 1. Both training and inference jobs can
be scaled upto to 12 instances (training workers or inference

servers) when auto-scaling techniques are applied (i.e., the
total number of GPUs in our testbed is 16.). By default, all
types of jobs request one GPU per container instances (i.e.,
pods). Only when GPU sharing technique is applied, a mod-
eling job can allocate 0.25 GPU.

System Performance Comparison

Figure 8 plots the GPU resource allocation results over each
time interval under different system settings. Due to space
limits, we show the results of DynamoML and K8S+Scaling
to illustrate the key benefit of our approach. As mentioned,
DynamoML supports all three proposed techniques: infer-
ence scaling, training scheduling, and GPU sharing.
K8S+Scaling only supports inference scaling. K8S+Scaling
also represents the common use case when people are only
able to use the native Kubernetes installation with the HPA
auto-scaling package to run ML workloads.

According to the workload variation of inference job, the
allocation result can be discussed in the following three time
frames from the DynamoML timeline.

0min∼7min: The inference workload keeps increasing
during this time frame. Our auto-scaling operator detected
the increased request response time, and started to launch
more inference servers. Hence, the number of GPUs allo-
cated to inference increases from 1 to 12. Noted, the infer-
ence job can occupy as many as 12 GPUs, because the train-
ing jobs are preempted and forced to release their GPUs
for inference jobs. Therefore, some the training job only
allocated 1 GPU at times. On the other hand, when there is
residual capacity or un-used GPUs, they can also be dynami-
cally allocated to the training jobs for reducing training time.
Therefore, the GPU allocation during this time frame is
almost always fully utilized.

8min∼20min: As the inference workload decreases, we
can observe DynamoML quickly allocate the available GPUs
free from the inference job to the training jobs. As a result, a
training job can use up to 4 GPUs at a time, and the training
time is greatly reduced. Because the training job finishes too
early, only 4GPUs needs to be used for handling the infer-
ence requests between time 18min∼20min which can lead

Fig. 7 Testing workload for system evaluations. The workload of
interface jobs are time-varied by adjusting the number of active users.
The workload of training jobs are submitted in 4 groups and 4 jobs
per group at time 0, 10, 20. The modeling jobs are consisted of 4
notebook instances persistently running throughout the experiments

Table 3 Compared system configurations

The setting with a resource management technique is marked by “V”

Training Inference GPU
Scheduling Auto-scaling Sharing

DynamoML V V V
K8S+Sharing V
K8S+Scaling V
Native K8S

SN Computer Science (2023) 4:665 Page 13 of 19 665

SN Computer Science

to an additional benefit of energy and cost saving for system
administrators or service providers.

21min∼28min: The last group of the training job arrives
at 20min, and the inference workload also starts to increase
at 21min. So similar to the first time frame, both training
jobs and inference jobs can get more resources at runtime,
but the inference jobs have higher priority than the training
jobs. In addition, because of the lower inference workload
in this time frame comparing to the first time frame, training
jobs received more GPUs and complete all the training jobs
before 27min.

In comparison, we can observe several problems from the
K8S+Scaling setting. (1) It fixes the allocation of training
job to 2 GPUs, and each modeling job (Notebook instance)
occupies 1 GPU. Hence, even though the inference job can
be scaled to obtain more GPUs, it can only use the resid-
ual capacity from training and modeling jobs. Therefore,
between 0min to 7min, the inference job only receives 4
GPUs, while it would receive 11 GPUs by DynamoML.
(2) The Kubernetes scheduler did not pack the workers of
a training on the same node which results in much longer
training time. In particularly, the communication overhead
has a greater impact on the small size models, like MNIST,
because their communication time often takes higher ratio
of the overall execution time. Therefore, compared to the
results of DynamoML, TFJob4, TFJob7 and TFJob11 all
took much longer time to finish under the K8S+Scaling set-
ting. (3) Because the resource of training jobs is fixed, they
can take advantage of the residual capacity in the system
when system workload is light. For instance, there are GPUs
available between 37min to 46min, and 59min to 67min, but
they cannot be allocated to training jobs and cause unwanted
resource waste.

In sum, we can observe the important of dynamic
resource management when running complex and diverse
workloads on a shared resource pool. With our techniques,
the overall workload execution time is significantly reduced
from 67mins to 27mins, an improvement of almost 60%, and

there are still rooms for us to free-up some idle resources for
energy or cost saving. More importantly, DynamoML can
improve resource utilization and training performance while
guaranteeing the SLA requirement of inference jobs. In the
next two subsections, we further analyze the performance
of training jobs and the SLA violations of inference jobs to
analyze the reasons of our improvement.

Training Time Analysis

This subsection analyzes the impact of our resource man-
agement techniques on the training jobs from running test
workloads shown in “Experiment Setup”. Because a train-
ing job has lower execution priority and can be queued
in the submission queue when not enough resources are
available, the total execution time of training can be
divided into two parts: the training time and the wait-
ing time. The training time is the actual running time for
training, and the waiting time is the time of a job wait-
ing in the scheduling queue. Therefore, we compare the
improvements of these two time measurements, and the
total execution time in Fig. 9. Interestingly, we found
that K8S+Scaling produces the worst results across all

Fig. 8 Overall resource alloca-
tion for DynamoML (top) and
K8S+Scaling (bottom)

Fig. 9 Training time comparison

 SN Computer Science (2023) 4:665 665 Page 14 of 19

SN Computer Science

the measurements, even worse than the native K8S. This
is because K8S+Scaling only optimizes for the inference
jobs not for the training jobs. Hence, to satisfy the SLA
requirements, it allow inference jobs to allocate more
resources, and sacrifices training jobs. As a result, train-
ing jobs have a higher probability to be blocked or run-
ning with few GPUs. K8S+Sharing is better than native
Kubernetes, because it reduces the amount of GPUs used
by the modeling jobs, so training jobs can gain better per-
formance. However, the improvement of GPU sharing
for training job is limited, because the communication
overhead is the main performance bottleneck for training
jobs as we saw from the cases like TFjob4 in Fig. 8. In
comparison, DynamoML combines all our techniques to
significantly reduce the waiting time by 55%, the train-
ing time by 70%, and the total execution time by 70%.
Finally, to prove our training job scheduler did dynami-
cally add or remove workers to training jobs according to
the system loading, Fig. 10 shows the time distribution of
a training job with a given number of workers when using
DynamoML. As seen, in average, about 22% of the job
execution time uses only 1 GPU, 63% of the time uses 2
or less GPUs. Only the reminding 37% of time using 3 or
4 GPUs. However, according to the execution time dis-
tribution shown in Fig. 11, DynamoML still significantly
reduces the overall training time. With DynamoML, more
than 60% of the training jobs finish within 5mins, and the

longest execution time is 8mins. In contrast, the average
execution time for native K8S is 13mins.

Inference Performance Analysis

Finally, we analyze the SLA violation of inference job
from the running test workload shown in "Experiment
Setup". Figure 12 shows the overall client response time
distribution of the TF-serving inference job under different
system settings. K8S+Sharing has the worst results, where
some of the requests have response time over 1024ms.
This is because it does not supports auto-scaling on the
inference service. DynamoML performs the best with
no requests with a response time over 128 ms, because it
can preempt training jobs when necessary. One the other
hand, although K8S+Scaling also supports auto-scaling
on inference inference, but it cannot preempt training
jobs. As a result, the amount of resources for inference
jobs can be bounded by the training jobs. Therefore, the
response time of K8S+Scaling is mostly between 128ms∼
512ms. Figure 13 further breaks down the SLA violation
probability under different inference workloads which is
controlled by the number of active clients. As expected,
the violation probability increases under highly workload.
Only DynamoML can be resilient to the workload, because
its ability to obtain enough resources to satisfy the SLA
requirements.

Fig. 10 Distribution of the number of worker per TFJob under
DynamoML

Fig. 11 Distribution of the training job execution time under
DynamoML

Fig. 12 Comparison of the distribution of the response time from
inference jobs

Fig. 13 SLA violation of inference jobs under different number of
active users

SN Computer Science (2023) 4:665 Page 15 of 19 665

SN Computer Science

Evaluation of HYPREL

This section evaluates our HYPREL topology-aware sched-
uling algorithm. We developed an event-based simulator to
evaluate HYPREL, because it is easier for us to implement
all the compared scheduling algorithms and to have more
consistent job execution time under different task placement
and workload intensity. Comparing to other state-of-the-art
topology-aware schedulers [25, 26], our assessment revealed
the following highlights:

• HYPREL is superior to other solutions in terms of job
completion time (JCT).

• HYPREL can make a trade-off between cluster resource
utilization and job placement sensitivity.

• HYPREL consistently outperforms other topology-aware
scheduling algorithms under a wide range of resource
contentions.

Experimental Setup

The network topology considered in our evaluation is a
typical hierarchical tree structure shown in Fig. 14. The
32-GPUs cluster is consisted of 2 nodes, where each node
has 4 CPUs and each CPU has 4 sockets to control 4 GPUs.

The evaluation is based on the trace of the online arrival
parallel computing job collected from the Ohio Supercom-
puting Center (OSC) [32]. The trace contains the submis-
sion time and the number of workers (i.e., tasks) of a set of
submitted jobs. The maximum number of workers per job
in the trace is less than 32. Therefore, we treat each worker
as a GPU request for a job.

A total of 1540 jobs from the trace were used for the
experiment. Each job is considered as distributed training
job for a ResNet-50 or Mnist model in our simulation. Given
a job with n workers, there could be n! placement decisions
which will be too time-consuming to collect their real execu-
tion time. Therefore, we relay on a parallel job performance
model proposed in [33] to derive the job execution time in
our simulation.

In the performance model, the total running time is
divided into two parts: computing time and communication
time. The computing time of a job is considered as con-
stant. The communication time is modeled by a cost function

�(CCjob) , where CCjob is the average pairwise L1 distance
(Manhattan distance) across all the communicating nodes
of a job under a placement decision.

The cost function �(CCjob) is derived from a set of real
experiment random samples. Each sample is the relation-
ship between the communication time (�) and average hop
distance (CCjob) of a job running on a randomly selected
placement decision. We apply linear regression to fit the
experimental data to get the cost function of �(CCjob).

The responsibility of a scheduler is to periodically sched-
ule the jobs waiting in the scheduling queue onto available
GPU slots. As in practice, we assume the scheduler has no
prior information about the job execution time or the future
arrival jobs. Only the number of workers required by an
arrival job is known by the scheduler. We compare HYPREL
with the following representative job scheduling strategies
for deep learning workloads:

Random: This is a scheduling algorithm without the
awareness of network topology and task communication.
Every time a job arrives. When a job arrives or departs, the
scheduler simply selects the next job from the waiting queue
and randomly assigns its tasks to available GPU slots. Its
performance is considered as the baseline comparison result
in our evaluation.

HiveD [25]: This is one of the recently proposed topol-
ogy-aware scheduling algorithm for scheduling deep learn-
ing jobs. It is designed based on the well-known buddy
memory allocation, which is an efficient heuristic alloca-
tion of best-fit allocation for minimizing resource fragmen-
tation. However, memory allocation is a one-dimensional
space allocation problem. Hence, HiveD annotates the
resource (GPU slots) with network topology information to
ensure the allocated resource slots of a job can be within
close proximity. However, it does not consider the job order-
ing problem, so it could be applied to other job scheduling
algorithm as well. In our evaluation, we assume HiveD is
used with FIFO scheduling algorithm.

Topology-aware [26]: This is another recently proposed
topology-aware scheduling algorithm for scheduling deep
learning jobs. It formulates the task placement problem of
a parallel job as a recursive graph partition problem. When-
ever the tasks of job are scheduled across a network link, it
is considered as a partition of the job. The main objective
is to minimize the partition cost of a job while mapping its
communication graph to the network topology. The cost of

Fig. 14 Network used by the
simulation

 SN Computer Science (2023) 4:665 665 Page 16 of 19

SN Computer Science

the partition is modelled by a cost function consisted of the
cost of resource fragmentation, network communication and
performance interference. It also delays jobs in the waiting
queue when its partition cost is too high. The main drawback
of the approach is that its result could be highly dependent
on the setting of the cost function parameters and threshold
of job delay. In our evaluation, we could only roughly tune
the parameters according to our testing workloads.

Job Completion Time Comparison

Figure 15 shows the average job completion time (JCT) of
the four compared scheduling algorithms. It is clear that
HYPREL achieves the best result with 47%, 44% and 24%
improvement on average JCT over Random, HiveD, and
Topology-aware, respectively. As expected, Random has
the worst result and the highest average JCT, because it has
no awareness of the network topology and communication
overhead. HYPREL is able to outperform the other two algo-
rithms for the following reasons. For HiveD, it is aware of
the network topology structure, but not consider the com-
munication traffic of tasks or the scheduling order of jobs.
As a result, it can greedily reduce communication overhead,
but may not obtain better optimization result comparing to
Topology-aware and HYPREL. For Topology-aware, it uses
a sophisticated cost function to model communication cost,
but the parameters in the cost function is hard to be tuned. In
addition, Topology-aware does not reschedule job execution
according to the job characteristics and only postpones jobs
according to a delay threshold. In contrast, HYPREL uses
hypergraph as an effective heuristic solution to capture net-
work topology characteristics and schedules jobs with higher
communication loading first. As a result, HYPREL is able
to achieve lower communication overhead and lower JCT.

Figure 16 further plots our improvement on average
JCT under varied workload contention. We increase the
level of workload contention by increasing the job arrival
rate of our workload trace. The y-axis value in Fig. 16 is
the average JCT of a scheduling algorithm normalized to

the result of our approach. Hence, a higher value implies
greater performance improvement. As observed, HYPREL
achieves the lowest average JCT across all the workload
contention levels. The improvement over Random grows
greater as the workload contention increases, because
communication overhead and resource usage efficiency
becomes more critical under higher workload conten-
tions. On the other hand, the improvement of HYPREL
over HiveD and Topology-aware roughly remains consist-
ent across all contention levels. But noted, when the work-
load contention is too high, the JCT may be dominated by
the queuing wait time. Hence, we can also observe that
the differences between three topology-aware scheduling
algorithms may become less under higher contention level.

Finally, we plot the accumulative distribution of indi-
vidual job JCT in Fig. 17. The result shows that HYPREL
not only reduces the average JCT of all the jobs, but also
ensures shorter JCT for majority of the jobs. In addition,
the longest JCT of the jobs is also significantly reduced.
Therefore, HYPREL improves job execution performance
from both overall system and individual jobs perspectives.

Fig. 15 Average Job Completion Time (JCT) comparison among job
scheduling algorithms

Fig. 16 HYPREL’s improvement on the average JCT over the base-
lines under varying contention levels

Fig. 17 Cumulative distribution comparison of individual job com-
pletion time among job scheduling algorithms

SN Computer Science (2023) 4:665 Page 17 of 19 665

SN Computer Science

Related Work

In recent years, both research and industry have made
great efforts to improve the performance of deep learning
jobs in a GPU cluster by utilizing domain-specific knowl-
edge. However, all these works target distributed training
jobs alone. While our work addresses the ML pipeline
workload, including modeling and inference jobs as well.
Also, most of the proposed techniques require modifica-
tions to the deep learning frameworks, while our work can
be transparent and general to DL applications.

Gandiva [22] is a scheduling framework developed
by Microsoft. It supports many management techniques
together to maximize system throughput for training jobs.
It provides GPU sharing among jobs in both temporal
and spatial domains. In the temporal domain, jobs run
on GPU in an interleaved manner through the suspend-
resume mechanism. In the spatial domain, jobs simply run
simultaneously on a GPU at the same time, but jobs can
be migrated to another GPU if performance degradation
is detected. Gandiva also applies a scaling mechanism to
jobs that self-declare to have good scalability. To minimize
the overhead of their managing overhead like migration,
suspend-resume, and scaling, Gandiva has to modify the
deep learning frameworks, like Tensorflow and Pytorch.

Some of the work focuses on the scaling policy of
distributed training jobs. For instance, Optimus [21]
proposes a GPU resource scheduler to decide the proper
resource amount and resource allocation according to a
performance model of distributed training jobs. Similar
to Optimus, DL2 [34] is a DL driven scheduler that aims
to decide proper resource allocation to a distributed train-
ing job. However, the performance model proposed by
DL2 is based on deep reinforcement learning. Tiresias
[35] addresses the unpredictable job execution problem
of model training to efficiently schedule and place DL jobs
in GPU cluster for minimizing the job completion times
(JCTs).

Other works focus on job placement problems to mini-
mize the communication time of distributed training jobs.
Most of these jobs meet the communication requirements
of the job by imposing locality restrictions on the allocated
resources. Still, too strict locality restrictions will prolong
the waiting time of the job and cause fragmentation prob-
lem. For instance, [26] proposed a topology aware sched-
uling to decide the mapping between worker tasks and
GPU slots based on the Hierarchical Static Mapping Dual
Recursive Bi-partitioning algorithm. Tetris [36] is a multi-
resource scheduler that uses packed tasks to avoid frag-
mentation. Feitelson [37] proposed a peer-based algorithm
to reduce the fragmentation of gang scheduling jobs in
supercomputers. The issue of topology-aware scheduling

is not new, and it has been explored in diverse comput-
ing environments, where task dependency arises from
data access or transfer between tasks. Just to name a few,
for instance, serverless and streamming computing needs
to address the dataflow problem among computing tasks
[38–40], parallel computing needs to consider the commu-
nication patterns on interconnect networks [41–43]. Simi-
lar to our work, most of these approaches formulated their
problems as graph partitioning and graph mapping prob-
lems. We chose the hypergraph algorithm in our approach,
because the network topology considered in our problem
has a tree structure. However, different from the previous
hypergraph algorithms, we aim to minimize the resource
fragmentation in our partition algorithm as well.

Finally, there is growing interest to explore GPU shar-
ing technique for DL jobs. Spatial GPU sharing can suffer
from unpredictable performance interference and resource
contention. Therefore, temporal GPU sharing is more com-
monly adapted in practice. However, temporal sharing can
be limited by the GPU memory size, and context switch
overhead. Salus [44] takes advantage of the highly predict-
able and largely temporal usage memory pattern to provide
a fine-grained sharing mechanism by switching jobs at the
lowest memory usage point. Antman [23] further modifies
the execution and scheduling engine of deep learn frame-
works to support switching at the unit of operators (GPU
kernels).

Conclusions

Deep learning workflow has become one of the primary
workloads in data centers and GPU clusters. In this paper,
we aim to optimize the application performance and sys-
tem utilization through a set of runtime dynamic resource
management techniques. GPU sharing increases the resource
utilization of non-GPU bounded modeling jobs. Perfor-
mance-driven auto-scaling guarantees the SLA requirement
of inference jobs. Workload-aware scheduling and preemp-
tion utilizes the idle GPUs for reducing the execution time
of training jobs. Finally, topology-aware scheduling mini-
mize the communication overhead and maximize comput-
ing efficiency of distributed training jobs. While all these
techniques have been discussed and used for different kinds
of computing workload, we are one of the few work that
really integrate and apply them together specifically for the
ML pipeline workflow. Our system are built as extended
operators on Kubernetes, and transparent to applications.
Hence, our solution can be easily applied to general GPU
clusters and DL workload. In the future, we plan to evaluate
our system with more complex and real ML pipeline work-
load and implement the HYPREL scheduling algorithm in
DynamoML for real testbed evaluation.

 SN Computer Science (2023) 4:665 665 Page 18 of 19

SN Computer Science

Funding This research is partially supported by the “Elastic Distrib-
uted Deep Learning Training Implementations and Optimizations
Project” of National Tsing Hua University (NTHU), sponsored by the
Ministry of Science and Technology, Taiwan, R.O.C. under Grant no.
108–2221-E-007-036.

Declarations

Conflict of Interest On behalf of all authors, the corresponding author
states that there is no conflict of interest.

Ethical Approval This article does not contain any studies with human
participants performed by any of the authors.

References

 1. He K, Zhang X, Ren S, Sun J. Deep residual learning for image
recognition. In: 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2016;770–778. https:// doi. org/ 10.
1109/ CVPR. 2016. 90

 2. Krizhevsky A, Sutskever I, Hinton GE. Imagenet classifica-
tion with deep convolutional neural networks. Commun ACM.
2017;60(6):84.

 3. Redmon J, Divvala SK, Girshick RB, Farhadi A. You only look
once: Unified, real-time object detection. CoRR arXiv: abs/ 1506.
02640 2015.

 4. Xu D, Anguelov D, Jain A. Pointfusion: Deep sensor fusion for
3d bounding box estimation. CoRR 2017 arXiv: 1711. 10871.

 5. Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez
AN, Kaiser Lu, Polosukhin I. Attention is all you need. In: Guyon,
I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwa-
nathan, S., Garnett, R. (editors) Advances in Neural Information
Processing Systems, 2017;30, 5998–6008. https:// proce edings.
neuri ps. cc/ paper/ 2017/ file/ 3f5ee 24354 7dee9 1fbd0 53c1c 4a845
aa- Paper. pdf. Accessed 4 Dec 2017.

 6. Devlin J, Chang M, Lee K, Toutanova K. BERT: pre-training of
deep bidirectional transformers for language understanding. CoRR
arXiv: abs/ 1810. 04805 2018.

 7. Yang Z, Dai Z, Yang Y, Carbonell J, Salakhutdinov RR, Le QV.
Xlnet: Generalized autoregressive pretraining for language under-
standing. In: Wallach H, Larochelle H, Beygelzimer A, d’ Alché-
Buc F, Fox E, Garnett R. (eds.) Advances in Neural Information
Processing Systems, 2019;32, 5753–5763. https:// proce edings.
neuri ps. cc/ paper/ 2019/ file/ dc6a7 e655d 7e584 0e667 33e9e e67cc
69- Paper. pdf

 8. Liu Y, Ott M, Goyal N, Du J, Joshi M, Chen D, Levy O, Lewis M,
Zettlemoyer L, Stoyanov V. Roberta: A robustly optimized BERT
pretraining approach. CoRR 2019 arXiv: 1907. 11692.

 9. Lan Z, Chen M, Goodman S, Gimpel K, Sharma P, Soricut R.
ALBERT: A lite BERT for self-supervised learning of language
representations. CoRR 2019 arXiv: 1909. 11942.

 10. Tian Y, Pei K, Jana S, Ray B. Deeptest: Automated testing of
deep-neural-network-driven autonomous cars. CoRR 2017 arXiv:
1708. 08559.

 11. Levine S, Pastor P, Krizhevsky A, Quillen D. Learning hand-eye
coordination for robotic grasping with deep learning and large-
scale data collection. CoRR 2016 arXiv: 1603. 02199.

 12. Amodei D, Hernandez D. AI and Compute. https:// openai. com/
blog/ ai- and- compu te/ 2018.

 13. He X, Pan J, Jin O, Xu T, Liu B, Xu T, Shi Y, Atallah A, Her-
brich R, Bowers S, Candela JQn. Practical lessons from pre-
dicting clicks on ads at facebook. In: Proceedings of the Eighth

International Workshop on Data Mining for Online Advertising,
2014:1.

 14. Zoph B, Cubuk ED, Ghiasi G, Lin T, Shlens J, Le QV. Learning
data augmentation strategies for object detection. CoRR arXiv:
abs/ 1906. 11172 2019.

 15. Verma A, Pedrosa L, Korupolu M, Oppenheimer D, Tune E,
Wilkes J. Large-scale cluster management at google with borg.
In: EuroSys, 2015;1–17.

 16. Vavilapalli VK, Murthy AC, Douglas C, Agarwal S, Konar M,
Evans R, Graves T, Lowe J, Shah H, Seth S, Saha B, Curino
C, O’Malley O, Radia S, Reed B, Baldeschwieler E. Apache
hadoop yarn: Yet another resource negotiator. In: Proceedings
of Symposium on Cloud Computing 2013.

 17. Ghodsi A, Zaharia M, Hindman B, Konwinski A, Shenker S,
Stoica I. Dominant resource fairness: Fair allocation of multiple
resource types. In: NSDI, 2011:323–36.

 18. Tumanov A, Zhu T, Park JW, Kozuch MA, Harchol-Balter M,
Ganger GR. Tetrisched: Global rescheduling with adaptive
plan-ahead in dynamic heterogeneous clusters. In: EuroSys,
2016:1–16.

 19. Jalaparti V, Bodik P, Menache I, Rao S, Makarychev K, Caesar
M. Network-aware scheduling for data-parallel jobs: Plan when
you can. In: Proceedings of the 2015 ACM Conference on Special
Interest Group on Data Communication, 2015;407–20.

 20. Tannenbaum T, Wright D, Miller K, Livny M. Condor - a distrib-
uted job scheduler. MIT Press; 2001.

 21. Peng Y, Bao Y, Chen Y, Wu C, Guo C. Optimus: An efficient
dynamic resource scheduler for deep learning clusters. In: Euro-
Sys, 2018;1–14.

 22. Xiao W, Bhardwaj R, Ramjee R, Sivathanu M, Kwatra N, Han
Z, Patel P, Peng X, Zhao H, Zhang Q, Yang F, Zhou L. Gandiva:
Introspective cluster scheduling for deep learning. In: OSDI,
2018;595–610.

 23. Xiao W, Ren S, Li Y, Zhang Y, Hou P, Li Z, Feng Y, Lin W, Jia
Y. Antman: Dynamic scaling on GPU clusters for deep learning.
In: OSDI, 2020;533–548.

 24. Chiang M, Chou J. DynamoML: Dynamic Resource Management
Operators for Machine Learning Workloads. In: Proceedings of
the 11th International Conference on Cloud Computing and Ser-
vices Science - CLOSER,, 2021;122–132.

 25. Zhao H, Han Z, Yang Z, Zhang Q, Yang F, Zhou L, Yang M,
Lau FCM, Wang Y, Xiong Y, Wang B. HiveD: Sharing a GPU
Cluster for Deep Learning with Guarantees. In: 14th USENIX
Symposium on Operating Systems Design and Implementation
(OSDI 20), 2020;515–532. https:// www. usenix. org/ confe rence/
osdi20/ prese ntati on/ zhao- hanyu. Accessed 4 Nov 2020.

 26. Amaral M, Polo J, Carrera D, Seelam S, Steinder M. Topology-
aware gpu scheduling for learning workloads in cloud environ-
ments. In: Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis,
2017;1–12.

 27. Yeh T-A, Chen H-H, Chou J. Kubeshare: A framework to man-
age gpus as first-class and shared resources in container cloud.
In: Proceedings of the 29th International Symposium on High-
Performance Parallel and Distributed Computing, 2020;173–84.

 28. Lin C-Y, Yeh T-A, Chou J. DRAGON: A dynamic scheduling and
scaling controller for managing distributed deep learning jobs in
kubernetes cluster. In: International Conference on Cloud Com-
puting and Services Science (CLOSER), 2019;569–577.

 29. Shmoys D, Hall L. Approximation schemes for constrained
scheduling problems. In: 2013 IEEE 54th Annual Symposium on
Foundations of Computer Science, pp. 134–139. IEEE Computer
Society, Los Alamitos, CA, USA (1989). https:// doi. org/ 10. 1109/
SFCS. 1989. 63468. https:// doi. ieeec omput ersoc iety. org/ 10. 1109/
SFCS. 1989. 63468.

https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
http://arxiv.org/1506.02640
http://arxiv.org/1506.02640
http://arxiv.org/abs/1711.10871
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
http://arxiv.org/abs/abs/1810.04805
https://proceedings.neurips.cc/paper/2019/file/dc6a7e655d7e5840e66733e9ee67cc69-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/dc6a7e655d7e5840e66733e9ee67cc69-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/dc6a7e655d7e5840e66733e9ee67cc69-Paper.pdf
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1909.11942
http://arxiv.org/abs/1708.08559
http://arxiv.org/abs/1708.08559
http://arxiv.org/abs/1603.02199
https://openai.com/blog/ai-and-compute/
https://openai.com/blog/ai-and-compute/
http://arxiv.org/1906.11172
http://arxiv.org/1906.11172
https://www.usenix.org/conference/osdi20/presentation/zhao-hanyu
https://www.usenix.org/conference/osdi20/presentation/zhao-hanyu
https://doi.org/10.1109/SFCS.1989.63468
https://doi.org/10.1109/SFCS.1989.63468
https://doi.ieeecomputersociety.org/10.1109/SFCS.1989.63468
https://doi.ieeecomputersociety.org/10.1109/SFCS.1989.63468

SN Computer Science (2023) 4:665 Page 19 of 19 665

SN Computer Science

 30. Schlag S. High-quality hypergraph partitioning. PhD thesis,
Karlsruher Institut für Technologie (KIT). https:// doi. org/ 10. 5445/
IR/ 10001 05953. 46.12.02; LK 01 2020.

 31. Akhremtsev Y, Heuer T, Sanders P, Schlag S. Engineering a direct
k-way hypergraph partitioning algorithm. In: ALENEX 2017.

 32. Center OS. Ohio Supercomputer Center 1987. http:// osc. edu/ ark:/
19495/ f5s1p h73.

 33. Meng J, McCauley S, Kaplan F, Leung VJ, Coskun AK. Simu-
lation and optimization of hpc job allocation for jointly reduc-
ing communication and cooling costs. Sustain Comput Inf Syst.
2015;6:48–57.

 34. Peng Y, Bao Y, Chen Y, Wu C, Meng C, Lin W. DL2: A deep
learning-driven scheduler for deep learning clusters. IEEE Trans-
act Parall Distribut Syst. 2021;32(08):1947–60.

 35. Gu J, Chowdhury M, Shin KG, Zhu Y, Jeon M, Qian J, Liu H, Guo
C. Tiresias: A GPU cluster manager for distributed deep learning.
In: NSDI, 2019;485–500.

 36. Grandl R, Ananthanarayanan G, Kandula S, Rao S, Akella A.
Multi-resource packing for cluster schedulers. SIGCOMM Com-
put Commun Rev. 2014;44(4):455–66. https:// doi. org/ 10. 1145/
27400 70. 26263 34.

 37. Feitelson DG. Packing schemes for gang scheduling. In: Feitelson
DG, Rudolph L, editors. Job Scheduling Strategies for Parallel
Processing. Berlin, Heidelberg: Springer; 1996. p. 89–110.

 38. Palma GD, Giallorenzo S, Mauro J, Trentin M, Zavattaro G.
Topology-aware Serverless Function-Execution Scheduling 2022

 39. Zheng S, Liu B, Lin W, Ye X, Li K. A package-aware scheduling
strategy for edge serverless functions based on multi-stage opti-
mization. Fut Generat Comput Syst. 2023;144:105–16. https:// doi.
org/ 10. 1016/j. future. 2023. 02. 013.

 40. Li B, Sun D, Chau VL, Buyya R. A topology-aware scheduling
strategy for distributed stream computing system. In: Xiang W,

Han F, Phan TK, editors. Broadband communications, networks,
and systems. Cham: Springer; 2022. p. 132–47.

 41. Wang Y-C, Chou J, Chung I-H. A deep reinforcement learning
method for solving task mapping problems with dynamic traffic
on parallel systems. In: The International Conference on High
Performance Computing in Asia-Pacific Region. HPC Asia 2021,
pp. 1–0. Association for Computing Machinery, New York, NY,
USA 2021. https:// doi. org/ 10. 1145/ 34322 61. 34322 62.

 42. Bhatele A, Jain N, Isaacs KE, Buch R, Gamblin T, Langer SH,
Kale LV. Optimizing the performance of parallel applications on a
5d torus via task mapping. In: 2014 21st International Conference
on High Performance Computing (HiPC), 2014;1–10. https:// doi.
org/ 10. 1109/ HiPC. 2014. 71167 06.

 43. Deveci M, Rajamanickam S, Leung VJ, Pedretti K, Olivier SL,
Bunde DP, Catalyurek UV, Devine K. Exploiting geometric par-
titioning in task mapping for parallel computers. In: 2014 IEEE
28th International Parallel and Distributed Processing Sympo-
sium, 2014;27–36. https:// doi. org/ 10. 1109/ IPDPS. 2014. 15.

 44. Yu P, Chowdhury M. Salus: Fine-grained GPU sharing primitives
for deep learning applications. CoRR arXiv: abs/ 1902. 04610 2019.

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of
such publishing agreement and applicable law.

https://doi.org/10.5445/IR/1000105953
https://doi.org/10.5445/IR/1000105953
http://osc.edu/ark:/19495/f5s1ph73
http://osc.edu/ark:/19495/f5s1ph73
https://doi.org/10.1145/2740070.2626334
https://doi.org/10.1145/2740070.2626334
https://doi.org/10.1016/j.future.2023.02.013
https://doi.org/10.1016/j.future.2023.02.013
https://doi.org/10.1145/3432261.3432262
https://doi.org/10.1109/HiPC.2014.7116706
https://doi.org/10.1109/HiPC.2014.7116706
https://doi.org/10.1109/IPDPS.2014.15
http://arxiv.org/1902.04610

	Dynamic Resource Management for Machine Learning Pipeline Workloads
	Abstract
	Introduction
	Problem Description and Objectives
	ML Pipeline Workload
	System Components
	Design Requirements and Strengths

	DynamoML: Resource Management Platform
	Shared GPU Allocator
	Training Job Scheduler
	Inference Auto-scaling Controller

	HYPREL: Topology-Aware Scheduling Algorithm
	Approach Overview
	Hypergraph Task Placement Strategy
	Prioritized Job Selection Strategy
	Algorithm and Complexity Analysis

	Evaluations of DynamoML
	Experiment Setup
	System Performance Comparison
	Training Time Analysis
	Inference Performance Analysis

	Evaluation of HYPREL
	Experimental Setup
	Job Completion Time Comparison

	Related Work
	Conclusions
	References

