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Abstract
Plant diseases prevent a plant from reaching its full potential. They are directly responsible for reducing the quality of crops 
and increasing the quantity of agricultural yield losses. The management, containment, and prevention of diseases depend on 
their precise and timely detection and severity evaluation. This paper aims to automatically detect and localize plant disease 
in real time. In this research, two state-of-the-art object detector-based models have been developed for disease detection and 
localization. Additionally, the best-performing model has been selected as the computing model of the solution, “aGROdet 
2.0”, for automatic and real-time detection of plant diseases. Several publicly available datasets have been used to evaluate 
the solution and to avoid any bias from the datasets. A mean average precision of 91.2% has been obtained. A mobile interface 
has also been created to access the solution. This solution helps farmers easily detect plant diseases.

Keywords  Smart agriculture · Smart villages · Internet of agro things (IoAT) · Plant health · Plant disease · YOLOv5 · 
YOLOv8 · Automatic and real-time · Disease detection · Localization

Introduction

Agriculture plays a significant role in the global food sup-
ply chain and economy [1]. However, various conditions 
like climate change, rapidly increasing population, over 
exploitation of natural resources, natural calamities, and 
plant diseases adversely affect the crop yield. Plant disease 
affects the crops qualitatively and quantitatively, resulting 

in billions of dollars in financial losses [2]. An on-time and 
accurate detection of the disease can prevent its spread and 
help farmers take control measures, which has economical 
and environmental benefits and thereby avoids significant 
economic losses.

Plant diseases are conditional on the time of the year and 
kind of vegetation and can be prompted by either environ-
mental factors or live organisms. Plants can contract biotic 
diseases from fungal, bacterial, viral, and algal pathogens, 
as shown in Fig. 1, as well as abiotic diseases from factors 
such as lack of nutrition, extreme temperatures, excessive 
moisture, and sudden temperature changes. Diseases can 
appear in different parts of the plant, from stems to fruits, 
and can occur at any stage during a plant’s development [3]. 
Discoloration, shape shifts, wilting, galls, spots, mildew, and 
cankers are all possible symptoms [4].

Traditionally, domain experts or plant pathologists used 
to identify the disease by visually examining the infected 
leaves [5]. This method, however, is very time-consuming 
and labor-intensive [6]. The accuracy of this process also 
depends on the experience and proficiency of the experts. 
This type of expert service is either not always available 
to the smallholder farmers in remote villages or they are 
expensive. Thus, it creates a burden to the smallholder 
farmers’ finances. An automatic detection system that can 
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identify plant diseases is a suitable alternative to such 
labor-intensive and expensive work.

Various computer vision and image processing tech-
niques [7–10] have been explored and developed over the 
years to detect and identify plant diseases. Deep Learning, 
a sub-field of machine learning, has grown in prominence. 
Deep learning techniques automatically extract high-level 
data features during training and provide high accuracy in 
various computer vision and natural language processing 
tasks. They are now extensively [11–18] employed in plant 
disease identification.

Challenges in Detecting Plant Disease

Automated plant disease detection faces several 
challenges: 

1.	 The similarity of symptoms between diseases [19, 20] 
makes the detection process difficult.

2.	 At various stages of disease, symptoms may vary. For 
example, leaf spot disease appears as little purple dots, 
but the small dots change into circular spots of quarter 
inch diameter and with a black center spot [21]. Large 
scale data collection which covers every stage of a dis-
ease is needed.

3.	 Variation of humidity, soil water content, temperature, 
rainfall, CO2 , C and N content in soil vary and cause abi-
otic stress induced symptoms [22] along with diseases 
caused by biotic stress.

4.	 Plant images, captured in uncontrolled settings like field, 
orchard/vine, difference of illumination [23], shadow 
[24, 25], angle of capture [26], presence of pests, or dis-
ease residues make the detection process complex.

Problem Addressed in the Current Paper

This article aims to identify plant diseases automatically and 
in real time so that even smallholder farmers in remote vil-
lages can perform accurate disease identification on their 
own.

Proposed Solution

In this research, we propose a novel method to automatically, 
and in real-time detect plant diseases without any expert ser-
vice. The solution is capable of detecting the disease from 
image and video of the infected leaves. Two state-of-the-art 
object detectors that can detect an object from a real time 
video, have been evaluated to select the object detector for 
“aGROdet 2.0”. However, leaf images have been used for the 
experiment. The current solution assists farmers with the auto-
mated detection of plant disease so that the necessary actions 
can be taken on time. The solution can be accessed through a 
mobile interface.

Major Contribution of the Current Paper

The main contributions of the current work are as follows:

–	 The proposed object detection-based approach precisely 
localizes the infected leaves along with disease detection. It 
is easily accessed through the mobile interface “aGROdet”.

–	 It is capable of detecting all the infected leaves of an image.
–	 The method is fully automated as disease detection is done 

using images of the leaves. Therefore, no expert guidance 
is required for disease detection.

–	 Faster evaluation of the disease without paying an expert 
guidance service fee is also possible as there is no delay 
involved in securing an expert’s time.

–	 It provides a real time solution which helps farmers to 
promptly take control measures.

–	 Extensive performance analysis has been performed using 
three publicly available datasets which consist of images 
taken at uncontrolled environments. It proves the robust-
ness of the approach.

The rest of the paper is organized in the following order: sec-
tion “Prior Research Work” presents recent work on plant 
disease detection. In section “Model and Methodology”, the 
proposed method for plant disease detection is described. 
Section “Experimental Validation” presents the experiments 
and the mobile interface. Section “Performance Evaluation” 
demonstrates the results and evaluates the performance of the 
method. A comparative analysis with existing research is also 
presented. Finally, the current paper is concluded with sugges-
tions for future work in section “Conclusion and Future Work”.

Prior Research Work

Machine learning and deep learning technologies supported 
by various embedded systems [27], graphical processing 
units (GPU), tensor processing units (TPU), AI-accelerators, 
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Fig. 1   Biotic disease infection
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edge processors, and IoT sensors have all changed the tradi-
tional, arduous, and time-consuming plant disease detection 
to more accurate, fast, and easy detection. In recent years, 
machine learning and deep learning techniques are pre-
dominantly being used in plant disease detection. Computer 
vision is being largely employed for this. Various image-
based datasets have been proposed for different plants, crops, 
and fruits. Some are in laboratory settings [28] and some are 
in normal field settings [29]. In this section, works related 
to plant disease identification, localization, and tracking are 
presented.

Machine Learning‑Based Approaches

Among various approaches of plant disease detection, machine 
learning-based approaches have gained popularity among the 
research community for a long time, even before the monu-
mental growth in deep learning technologies. Table 1 describes 
several of the works which are machine learning based. Sup-
port vector machines (SVMs) and K-means clustering are the 
two most commonly used classifiers in detecting various plant 
diseases. These classifiers have been used separately [30–33] 
or in combination with other methods [34–36].

Table 1   Prior research works on plant disease detection

The current paper details are shown in bold
DCNN Deep convolutional neural network, DIR-BiRN disease image recognition-bilinear residual networks, DCCAM-MRNet dilated convolution 
and coordinate attention mechanism mixed residual connection network, CACPNET channel attention and channel pruning network

Papers Year Crop Methods Remarks

Kaur et al. [38] 2018 Soybean K-means clustering + SVM Not fully automatic
Ma et al. [13] 2018 Cucumber DCNN Field Data has been used
Picon et al. [40] 2019 Wheat Deep Residual Neural Network Three types of wheat diseases have been detected. Tested 

the method in different mobile devices
Liu et al. [41] 2020 Tomato Improved YOLOv3 Twelve types of tomato diseases/pests have been identified
Jiang et al. [42] 2020 Rice CNN + SVM Four types of rice diseases have been detected along with 

healthy leaf
Ng et al. [17] 2021 Grape Faster R-CNN with InceptionV2 

backbone
Grape leaves infected with three types diseases along with 

healthy leaves have been detected
Chen et al. [43] 2022 Plants CACPNET Peanut field data has also been used with PlantVillage 

dataset
He et al. [44] 2022 Plants DIR-BiRN Use of PlantVillage dataset makes the methods far from 

real life scenarios
Liu et al. [45] 2022 Tomato DCCAM-MRNet Six types of tomato diseases have been identified. Field 

data has been used
Borhani et al. [46] 2022 Plant Vision Transformer The method has been evaluated with three different 

datasets
Khan et al. [47] 2022 Cucumber CNN + Entropy-ELM Feature Selec-

tion
Six diseases have been detected

Mitra et al. [48] 2022 Plants Custom CNN + Pixel-based method Automatic detection and localization of plant diseases
Javidan et al. [37] 2023 Grape SVM + K-means clustering + PCA Use of PlantVillage dataset makes the methods far from 

real life scenarios
aGROdet 2.0 (Current 

Paper)
2023 Plants YOLOv8 Real time and automatic detection of plant diseases

Table 2   Inference time 
comparison between one-stage 
and two-stage object detectors 
[68]

Stage Architecture Feature extractor Image resolution Inference 
time (ms)

Two Faster RCNN FPN ResNet50 High 105.09
Low 48.00

One Fully convolutional one-
Stage object detection

FPN ResNet50 High 95.00
Low 42.25

One RetinaNet FPNLite + MobileNetV2 High 63.20
Low 26.12

One YOLOv3 DarkNet-53 High 70.81
Low 40.19
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A multi-class SVM has been used to classify grape leaf 
diseases like black measles, black rot, and leaf blight in [37]. 
Leaf areas affected by the disease have been extracted with 
K-means clustering. Feature dimension reduction by prin-
cipal component analysis (PCA) resulted in better accuracy 
than gray-level co-occurrence matrix (GLCM) features. 
However, the use of the PlantVillage dataset renders the 
methods not really applicable to real life scenarios.

K-means clustering with a rule-based system has been 
used in [38] to classify between healthy leaf and infected 
soybean leaf. Downy Mildew, Frog Eye, and Septoria Leaf 
Blight have been classified with an SVM classifier. However, 
the paper is unable to provide an automatic method for plant 
disease detection.

Another effort was made in [39] to automatically diag-
nose plant diseases using leaf images. Local binary pat-
terns (LBPs) and one-class classification retrieved leaf fea-
tures. The algorithm improved with each new image. This 
approach recognized new diseases and interpreted them as 
a new reference section. However, deep learning-based sys-
tems provide better accuracy than ML classifiers and the 
feature extraction process is automatic.

Deep Learning‑Based Approaches

In the last few years, more works on plant disease detec-
tion using deep learning technologies are being published. 
This is due to the high accuracy achievable through these 
networks. The majority of the works are computer vision 
based and use convolutional neural networks (CNNs). Three 
types of solutions are provided: classification-based, object 
detection-based, and image segmentation-based.

Classification‑Based Approaches

Deep neural networks, especially CNNs, are predominantly 
used in classification-based methods. CNNs vary from 

custom CNNs to well known CNNs. This section describes 
some recent plant disease classification research. Corn Rust 
and Northern Leaf Blight along with healthy corn leaves 
have been classified in [49] using custom CNNs. Some field 
corn leaves images have been used with corn leaves of the 
PlantVillage [28] dataset. In [50], a global pooling dilated 
CNN has been used for six cucumber leaf diseases identifi-
cation, whereas the authors in [47] used well known CNNs 
and Entropy-ELM-based feature selection methods to clas-
sify the disease.

CNNs extract the features from an image automatically 
and those features are classified using various classifiers. 
Compared to traditional machine learning methods, which 
rely heavily on image processing, these new methods are 
significantly more effective [51]. Apple leaf diseases have 
been identified with a combined EfficientNetB4 and atten-
tion network [52], DenseNet and XceptionNet as a feature 
extractor, and finally classification through SVM [53], an 
ensemble of pre-trained DenseNet121, EfficientNetB7, and 
NoisyStudent networks [54]. These processes have achieved 
high accuracy. SSD with Inception and Rainbow concatena-
tion [55] structure has also been used to detect five types 
of apple diseases. The proposed model has achieved 78.8% 
mean average precision (mAP).

A modified Inception structure identified grape leaf 
diseases in [56]. Dense connectivity with the Inception 

Fig. 2   Overview of aGROdet 
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structure improved the features. Data augmentation has also 
increased the dataset size. The accuracy of the method is 
moderate compared to the existing works.

Well known and well performing CNNs are predomi-
nant in disease detection [11, 12]. The use of custom CNNs 
[13–16] is also a very popular preference among researchers. 
In both cases, the CNN is mostly used for automatic feature 
extraction and SVM [42, 57], MLP [45], Softmax [44], etc. 
are used as the classifier.

Despite being able to correctly identify the diseases with 
high accuracy, CNN-based classification does not localize 
the disease. However, the extent of the disease, can be deter-
mined from the percentage of damage. Image segmentation-
based approaches are suitable for that.

Image Segmentation‑Based Approaches

The second type of approach is image segmentation based. It 
is basically a regions-of-interest (ROI) deep CNN. This type 
of detection has two stages. In the first stage, object regions 
are proposed and in the second stage classification is done 
from those features and localized with bounding boxes.

Using several ROI based structures, nine distinct pests 
and diseases of tomato plants were identified in [58]. In cer-
tain circumstances, data augmentation has increased mAP 
by as much as 30% . A faster R-CNN has been used with an 
InceptionV2 backbone to detect grape leaf diseases [17]. The 
model runs on a smartphone with 97.9% accuracy. Faster 
R-CNNs have also been used to identify rice false smut dis-
ease [59], tomato diseases [60], and diseases of five different 
plants [61].

Mask-RCNN has been used to detect wheat mosaic virus 
[62], strawberry diseases [63, 64], and apple leaf diseases 
[18]. Articles also employ multiple ROI-based formats. 
Faster R-CNN and Mask R-CNN were applied to identify 
and detect diseased segments in [65]. Mask R-CNN and 
ensemble subspace discriminant analysis classifiers were 
employed to detect infected apple leaves in [66]. However, 
as these image segmentation-based approaches have two 
stages, they are slower than one-stage detectors [67]. Table 2 
[68] indicates how the inference time differs for one-stage 
and two-stage detectors. The lowest inference times for both 
high and low resolution images are for one-stage detectors.

Object Detection‑Based Approaches

The third type of disease detection is object detector based. 
These approaches can localize the disease along with precise 
identification using single stage object detectors. As in these 
types of object detectors, any number of objects are found 
and classified using a bounding box in a single stage, it takes 
less time to detect objects. Hence, this type of object detec-
tor is used for various real time object detection applications.

Anthracnose lesion on apples has been detected using the 
YOLOv3 network [69]. To improve the result, DenseNet has 
been used as the backbone feature extractor in YOLOv3. 
The image dataset has been expanded using traditional data 
augmentation techniques and CycleGAN [70]. The DF-Tiny-
YOLO structure was introduced in [71] to identify diseases in 
apple leaves. The use of smaller CNN kernels accomplishes 
these goals by decreasing the number of dimensions in the 
features being used and by increasing the depth of the network 
without increasing its complexity. Various versions of YOLO 
[41, 72] have been used in detecting various plant diseases.

Gaps in the Existing Solutions

The above discussion presents several research studies in 
the plant disease domain. They have their own strengths and 
weaknesses.

–	 Classification-based approaches only identify the disease; 
they do not localize it. Therefore, these methods cannot 
provide any information on disease severity.

–	 Object detection and image segmentation-based 
approaches, on the other hand, localize the disease as well 

Table 3   Comparison between 
YOLOv5m and YOLOv8m

Model No. of layers No. of parameters Size (MB) No. of GFLPOS

YOLOv8m 295 25,858,057 52.0 78.7
YOLOv5m 291 20,879,400 42.1 47.9
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Fig. 4   aGROdet 2.0 developmental workflow
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as identify it. Image segmentation-based approaches can 
provide more precise information on disease severity than 
object detector-based methods. However, image segmenta-
tion-based approaches demand more computational power.

–	 The majority of the papers do not use field datasets, which 
makes them perform poorly with field data.

–	 Due to the rapid growth of deep learning technologies and 
AI-assisted embedded systems, solutions with state-of-the-
art networks, capable of keeping pace with technological 
progress, are required.

–	 To take any control measures, rapid and on-time disease 
detection is necessary. More research on methods which 
are efficient, smaller in size, and can infer faster is needed. 
Hence the disease can be detected in real time while taking 
the photo/video of the infected plants/trees.

In summary, more research focusing on real time disease 
detection is necessary, which will eventually help in early 
detection and automatic tracking of the disease.

Model and Methodology

Overview

As mentioned in Section “Prior Research Work”, among 
the various plant disease detection approaches, the object 
detection-based approach has the advantage of localizing 
the disease, along with identification. Object detection 
is a computer vision technique that is used for counting 
objects, tracking object location, and accurately identify-
ing objects in an image or video frame.

Table 4   Dataset details

Dataset name Publication year Dataset details

DiaMOS plant [29] 2021 3 pear diseases: spot, curl, and slug + healthy pear leaves. Total 3006 leaf images 
and 499 fruit images at various stages of growth

Wheat leaf [78] 2021 2 wheat diseases: septoria and stripe rust + healthy wheat leaves. Total 407 images
Rice leaf disease [79] 2017 3 rice leaf diseases: bacterial leaf blight, brown spot, leaf smut. Total 120 images

Fig. 5   Sample images from DiaMOS plant dataset

Fig. 6   Sample images from wheat leaf dataset

Fig. 7   Sample images from rice leaf disease dataset
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In this research, to identify the plant disease in real 
time, we used an efficient, fast, small-sized deep learning 
model. Initially, we chose two different members of the 
“You Only Look Once” (YOLO) [73] family to experiment 
with. Two state-of-the-art object detectors, YOLOv8 [74] 
and YOLOv5 [75] have been used to detect and localize 
the plant diseases, and their performance has been com-
pared to select the final model. Instead of a controlled 
environment using datasets [18, 48], field data and data 
collected under the sun, have been used. These scenarios 
match real-world environments. The selected model is 
the core computing component of the solution, “aGROdet 
2.0.”

Figure  2 shows an overview of “aGROdet 2.0”. If 
any plants are infected with diseases, farmers capture 
images of the infected leaves using the mobile interface 
of “aGROdet 2.0”. It then predicts the disease. The details 
of the mobile interface are discussed in Section “aGROdet 
2.0 Mobile Interface”.

The proposed YOLO object detector-based detection 
method detects the disease from the full image in only one 
evaluation and with only one forward pass. The network 
breaks the image into regions/grids and predicts bound-
ing boxes and probabilities for each region. The predicted 
probabilities are used to give these boxes weights. This 
process is very fast and it does not need a complex opera-
tional pipeline. Hence, it is suitable for real time disease 
detection of large crop fields. The small size and high 
efficiency of the YOLO models make them suitable for 

implementation in edge computing hardware. The different 
versions of each member of YOLO, namely nano, small, 
medium, larger, and extra large allow them to scale for any 
type of crop field. However, the scaling part has not been 
addressed in this article.

Model Architecture for Disease Detection 
and Localization

YOLOv5

It is the fifth member of the YOLO family. There are a total 
of five variants of it: nano, small, medium, large, and extra 
large. Accuracy increases with the size of the models. The 

Table 5   Details of the diseases

Crop name Disease common name Disease 
full name 
if other-
wise

Caused by Pathogen Symptoms

Pear Curl _ Variety of reasons _ Leaf curling
Pear Slug _ Sawfly Caliora cerasi Inner tissues of the leaf gets exposed. 

Finally, the leaf dries and changes to 
brown color

Pear Spot _ Fungus Fabraea maculata Brown spots on the leaf
Wheat Septoria Septoria 

tritici 
blotch 
(STB)

Fungus Mycosphaerella graminicola Necrotic lesions on leaves and stems [81]

Wheat Stripe Rust (Yellow Rust) _ Fungus Puccinia striiformis Small, round, tightly packed on seedling 
leaves and yellow stripes on mature 
plants [82]

Rice Bacterial Leaf Blight _ Bacteria Xanthomonas oryzae Initial symptoms water-soaked lesions at 
leaf edges and tips. Finally, grayish-
white leaf lesions and leaf drying [83]

Rice Brown Spot _ Fungus Cochliobolus miyabeanus Initial small, circular yellow IR brown 
lesions change to large circular or oval 
lesions with reddish brown margin [84]

Rice Leaf Smut _ Fungus Entyloma oryzae Slightly elevated angular, black spots

Fig. 8   Disease detection through the aGROdet 2.0 mobile interface
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smaller the model size, the shorter is the training time. In 
our work, the medium version (YOLOv5m) has been used.

The idea of the YOLO models is to connect class labels 
with bounding boxes in an end-to-end differentiable network. 
Here, a single CNN predicts bounding boxes with class 
probabilities [73]. YOLO has three primary components:

–	 Backbone: CSP-Darknet53 serves as the backbone for 
YOLOv5. CSP stand for Cross Stage Partial. It extracts 
the features from the image.

–	 Neck: It uses a variant of Spatial Pyramid Pooling (SPP) 
as the neck. It helps the network to perform accurately 
on unseen data. The Path Aggregation Network (PANet) 
has been modified by including the BottleNeckCSP in its 
architecture.

–	 Head: Uses neck features for box and class predic-
tion. The same head as YOLOv3 and YOLOv4 is used 
by YOLOv5. It is made up of three convolution layers 
that predict where the bounding boxes (x, y, height, and 
width), objectness scores, and object classes will be.

The following equations [75] are used to calculate the target 
bounding boxes in YOLOv5:

Figure 3 shows the terms appearing in these equations. bx , 
by , bw , bh are the center, width, and height of the predicted 
bounding box, tx , ty , tw , and th are the outputs of the neural 
networks, cx and cy are the cell’s top left corner of the anchor 
box, and pw and ph are the anchor’s width and height.

Binary Cross Entropy loss is used to calculate class loss 
and objectness loss whereas Complete Intersection over 
Union loss is used to calculate location loss. YOLOv5 uses 
logistic regression to predict the confidence score of each 
box. Hence, each box predicts the class type associated with 
the bounding box using multilevel classification.

(1)bx = (2 ⋅ �(tx) − 0.5) + cx

(2)by = (2 ⋅ �(ty) − 0.5) + cy

(3)bw = pw ⋅ (2 ⋅ �(tw))
2v

(4)bh = ph ⋅ (2 ⋅ �(th))
2

When the network sees a leaf for the disease detection, 
the image is divided into S × S grids. The grid cell con-
tributes in detecting when the center of the object falls on 
that grid. For each grid cell, bounding boxes and confidence 
scores are predicted. No object means zero confidence score. 
The intersection over union of the predicted bounding box 
and the ground truth bounding box calculates the confidence 
scores [73].

YOLOv8

The newest member of the YOLO family is YOLOv8 [74]. 
This state-of-the-art model is used for instance segmentation 
along with classification and object detection. The biggest 
difference between YOLOv8 and the other YOLO models 
is its anchor-free nature. It directly predicts the center of an 
object rather than the offset from a known prior or anchor 
box. As a result, the number of box predictions have been 
reduced and the overall system becomes faster by speeding 
up the Non-Maximum Suppression [77]. Architecture-wise 
there are certain modifications: the earlier C2f module is 
replaced by the C3 module, the first 3 × 3 conv in the bot-
tleneck is changed to 6 × 6 , and the first 1 × 1 conv in the 
bottleneck is replaced by 3 × 3 . Without mandating channel 
dimensions, neck features are fused directly. The YOLOv8m 
variant has been used in our work. Table 3 describes the 
structures of the YOLOv5m and YOLOv8m models.

Data augmentation plays a significant role in YOLOv5 
and YOLOv8 training. One of these is mosaic augmenta-
tion. This is done by putting together four images, which 
forces the model to learn how to recognize objects in new 
places, with partial occlusion, and against different pixels 
around them.

Experimental Validation

In this section, our proposed plant leaf detection method 
has been evaluated with two state-of-the-art object detec-
tors, YOLOv8 and YOLOv5, and three publicly available 
datasets. In both cases, the medium variants of the model 
have been used. In our initial work [18], the PlantVillage 
dataset [28] had been used. However, images in the Plant-
Village dataset are taken in laboratory settings. So, they are 
far from the real world data and the model does not perform 
well with real life field data when it is trained on it [28]. To 
avoid this issue, different settings datasets, e.g., field data, 
samples extracted from the field but photo was captured in 
the sunlight with a more structured environment, and the 
laboratory settings images, have been utilized in this work. 
Figure 4 describes the total experimental process.

Fig. 9   Performance metrics plots of YOLOv5 for different datasets. 
a–c Precision and confidence plot. d–f Recall and Confidence Plot. 
g–i Precision and recall plot. j–l F1-Score and confidence plot. The 
first column is for the DiaMOS Plant dataset, the second column is 
for the wheat leaf dataset, and the third column is for the rice leaf 
disease dataset

◂
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Dataset

Three different datasets have been used to select the perfect 
object detector model for the aGROdet 2.0 framework. The 
datasets are described in Table 4.

DiaMOS Plant Dataset

This dataset [29] contains a total of 3505 images of pear 
leaves and fruits. It was published in 2021. Among the 3505 
images there are 3006 leaf images and 499 fruit images at 
various stages of growth. Images of three pear diseases: 

Spot, Curl, and Slug and healthy pear leaves are included in 
the leaves section of the dataset. The fruit section consists 
of four phases: fruit set, nut fruit, fruit growth and ripening 
[29]. The photos were captured using a Honor 6× smart-
phone and a Canon EOS 60D camera. Images are of two 
resolutions: 2976 × 3968 and 3456 × 5184 . Figure 5 shows 
sample images of each class.

Wheat Leaf Dataset

The second dataset is the Wheat leaf dataset [78]. The 
dataset has a total of 407 images. It has three categories: 
healthy wheat leaf, Septoria disease infected wheat leaf, 
and Stripe rust disease infected wheat leaf. There are 102 

Table 6   Influence of image size 
on YOLOv5 model

Dataset No. of images Image size GFLPOS Training time mAP 50

Wheat Leaf 407 640 47.9 0.384 0.819
Wheat Leaf 407 416 47.9 0.233 0.813
Rice Leaf Disease 120 640 47.9 0.171 0.872
Rice Leaf Disease 120 416 47.9 0.117 0.925
DiaMOS Plant 3007 640 47.9 2.754 0.894
DiaMOS Plant 3007 416 47.9 1.408 0.882

Fig. 10   Disease Detection by YOLOv5. Samples are from the DiaMOS Plant dataset

Fig. 11   Discrepancy from the ground truths for YOLOv5. Samples 
are from the DiaMOS Plant dataset. The top row shows the ground 
truths and the bottom row shows the predictions

Fig. 12   Discrepancy in annotation in the DiaMOS Plant dataset. Yel-
low circles and ovals show the missing annotation
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healthy leaves, 97 Septoria affected leaves, and 208 Stripe 
rust affected leaves in the dataset. A Canon EOS 5D Mark 
III was used to capture those images at the Holeta wheat 
farm, Ethiopia. These images are real field data captured 
in an uncontrolled environment. Figure 6 shows sample 
images of the three classes.

Rice Leaf Disease

This dataset [79] contains 120 images of three rice leaf dis-
eases: Bacterial Leaf Blight, Brown Spot, and Leaf Smut. 
These diseases usually affect leaves. When a plant is infected 
with Bacterial Leaf Blight, several inches of yellow and 
white elongated lesions are visible on the leaf tip. Brown 

Spots are circular or oval in shape and vary in color from 
dark brown to reddish brown. Leaf Smut are spread all over 
the leaf and are usually smaller in size than Brown Spots. 
They are also reddish brown in color [80]. The images were 
taken with a white background under the sun with a Nikon 
D90 digital SLR camera with 12.3 megapixels from a village 

Fig. 13   Disease detection by YOLOv5. samples are from the wheat leaf dataset

Fig. 14   Discrepancy from the ground truths for YOLOv5. Sam-
ples are from the wheat leaf dataset. Odd images (from left) are the 
ground truths and the even images are the predictions

Fig. 15   Disease detection by YOLOv5. Samples are from the rice leaf 
disease dataset
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named Shertha in the Western part of India. Sample images 
of each class from the dataset [79] are shown in Fig. 7.

Table 5 summarizes various aspects of pear, wheat, and 
rice leaf diseases: crop name, disease name, full name of 
the disease if different from the common name, type of the 
pathogen, name of the pathogen, and the symptoms of the 
disease.

Image Annotation

An important stage in object detector training is the annota-
tion of images with ground truth. In the training datasets, 
bounding boxes are drawn across the objects. MakeSense.
AI [85], an open source image annotation tool, was used to 
annotate the data, and the Rect tool was utilized to annotate 
images. Annotation files are saved in “.xml” format and pro-
vide the coordinates of the bounding box’s two diagonally 
placed corners. Different colors are used for different classes 
when labeling. The DiaMOS Plant dataset already contains 
annotation for YOLO models. However, the Wheat Leaf and 
Rice Leaf Disease datasets have been annotated by us.

Image Augmentation

Default image augmentation techniques: HSV adjustment, 
translation, scaling, left to right flip, and mosaic augmenta-
tion have been used. For better performance, mosaic aug-
mentation is turned off for the last ten epochs for YOLOv8. 
The data augmentation parameters are kept as default: Blur 
parameter p is set to 0.01 and blur_limit to (3, 7), Median-
Blur parameter p to 0.01 and blur_limit to (3, 7), ToGray to 
0.01, CLAHE parameter p to 0.01 and clip_limit to (1, 4.0), 
tile_grid_size to (8, 8). 8 data loader workers have been 
employed for YOLOv8 and 2 for YOLOv5.

Training

The networks have been trained on a system with an 
NVIDIA Tesla T4 GPU, 25.5 GB system RAM, and 15 GB 
GPU RAM. PyTorch has been used as the deep learning 
framework. We followed the procedure in [74, 75]. The mod-
els were trained for 100 epochs (YOLOv8) and 150 epochs 
(YOLOv5). A Stochastic Gradient Decent optimizer with a 
default learning rate of 0.01 has been used. Batch sizes were 
kept at 32 for YOLOv8 and at 16 for YOLOv5.

aGROdet 2.0 Mobile Interface

The development of the “aGROdet 2.0” mobile interface has 
been done in Android Studio IDE using JAVA. The Nexus 5 
API 30 emulator has been used to emulate the application.

Figure 8 shows the application interface. The leftmost 
figure in Fig. 8 shows the first screen. Using the “PHOTO” 
button, the user can take a picture of the plant leaf. Once the 
photo is captured, the “DETECT” button allows the user to 
show the result.

For our experiment, images stored in Google Drive have 
been used. When the “PHOTO’ button was pressed, the image 
from the drive was selected instead of actual field photo cap-
ture. However, this interface will be updated in future work, 
when a video option will also be available.

Performance Evaluation

Performance Metrics

To evaluate the performance of the framework, several perfor-
mance metrics have been calculated for the two object detec-
tors using the aforementioned datasets. The metrics calculated 
are: precision, recall, f1-score, IoU, and mAP [86].

Precision describes how many of the confirmed identifica-
tions turned out to be accurate. It is defined as:

Recall states the percentage of true positives that were cor-
rectly classified as being positive. Recall is defined as:

F1-score measures the model’s accuracy on the dataset. It 
is defined as:

Intersection over Union (IoU) measures the overlap between 
predicted boundary and ground truth boundary as in Eq. 8.

In the above expressions, TP, FP, TN, and FN are true 
positive, false positive, true negative, and false negative, 
respectively. The average precision changes based on the 
IoU threshold value. IoU varies from 0.5 to 0.95.

The area under the precision and recall curve defines the 
average precision of the object detector. mAP is calculated 
from the average precision APi using Eq. 9:

(5)Precision =
TP

TP + FP

(6)Recall =
TP

TP + FN

(7)F1-Score = 2 ×
Precision × Recall

Precision + Recall

(8)IoU =
Area of Intersection

Area ofUnion
=

TP

TP + FP + FN

Fig. 16   Performance metrics plots of YOLOv8 for different datasets. 
a–c Precision and confidence plot. d–f Recall and confidence plot. 
g–i Precision and recall plot. j–l F1-Score and confidence plot. The 
first column is for the DiaMOS plant dataset, the second column is 
for the wheat leaf dataset, and the third column is for the rice leaf 
disease dataset

◂
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where N is the total number of classes. mAP takes into con-
sideration both false positives (FP) and false negatives (FN) 
and considers the trade-off between precision and recall [18]. 
Because of this, mAP is an excellent metric for detection 

(9)mAP =
1

N

N
∑

i=1

APi,

Fig. 17   Disease detection by YOLOv8. Samples are from the DiaMOS plant dataset

Fig. 18   Discrepancy from the ground truths for YOLOv8. Samples 
are from the DiaMOS Plant dataset. The top row shows the ground 
truths and the bottom row shows the predictions

Fig. 19   Disease detection by YOLOv8. samples are from the wheat leaf dataset
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tasks. The validation dataset has been used to evaluate the 
model.

Results

In this section, the performance of “aGROdet 2.0” is 
described and analyzed with regard to both the object detec-
tor models and all the datasets.

YOLOv5

Performance Metrics of YOLOv5 have been plotted in 
Fig. 9a–l for different datasets. The first column shows the 
metrics plot for the DiaMOS Plant dataset, the second col-
umn is for the Wheat Leaf dataset, and the third column 
is for the Rice Leaf Disease dataset. The Precision vs. 

Confidence plot has been shown in Fig. 9a –c. Figure 9d– f 
show the Recall vs. Confidence plot. Figure 9g– i are the 
Precision and Recall plots. Figure 9j– l show the F1-Score 
vs. Confidence plots.

YOLOv5 has shown higher precision for the Wheat 
Leaf and DiaMOS Plant datasets than the Rice Leaf Dis-
ease dataset. Higher recall has been achieved for DiaMOS 
Plant and Rice Leaf Disease datasets. Higher number of FP 
has lowered the precision of YOLOv5 model in the case 
of Rice Leaf Disease datasets. In several cases of Bacte-
ria_leaf_blight and Brown_spot are wrongly predicted as 
Leaf_smut disease. Similarly, lower recall has been attained 
for the Wheat Leaf dataset because of higher number of FN. 
When the IoU threshold value is set to 0.5, the highest mAP 
of 0.894 has been achieved for DiaMOS Plant dataset. The 
F1-score of YOLOv5 is also highest for DiaMOS Plant data-
set. This is due to the higher number of training data in Dia-
MOS Plant dataset. In Rice Leaf Disease dataset, the leaves 
are placed on white paper and the image was taken under the 
sun. Each image contains a single leaf.

Table 6 describes how mAP 50 of YOLOv5 model varies 
with image size for different datasets. It shows that when 
the image size is 640 × 640 , YOLOv5 achieves better mAP 
in case of Wheat Leaf and DiaMOS Plant datasets. Hence, 
we chose an image size of 640 × 640 during performance 
comparison of YOLOv5 and YOLOv8.

Figure 10b shows the predicted results of the ground 
truths of Fig. 10a. These samples are from the DiaMOS 
Plant dataset.

There are certain cases in the DiaMOS Plant dataset when 
there are discrepancies in detecting the disease. YOLOv5 
misdiagnosed the diseases as in the first three columns of 
Fig. 11. The reason for this wrong prediction is mostly the 
position of the leaves, especially when the infected leaves 
are not on the front side, occluded by other leaves, placed 
at an angle, the resolution of the rear infected leaf is lower 
than the front infected leaf, there is uneven sunlight, or there 
is a presence of shadow. This happened due to the absence 
of such variations of data in the training dataset. If annota-
tion is incomplete or not all the occurrence of instances in 
an image are not annotated, the training becomes partial. It 
increases FN and reduces recall. Figure 12 shows some of 
the non-fully annotated data from DiaMOS Plant dataset. 
There were two cases when the model was able to detect all 
the instances, instead of incomplete annotation. The results 
are shown in the last two columns of Fig. 11. However, 
missing annotations represent poor data quality [29] which 
adversely affect the detection performance [87]. Hence, 
complete annotation will generate better performance of 
the model.

Figure 13a and b show the ground truths and the predicted 
values from the Wheat Leaf dataset. However, there are 
certain scenarios, as in Fig. 14, when there is discrepancy 

Fig. 20   Discrepancy from the ground truths for YOLOv8. Samples 
are from the wheat leaf dataset. The top row shows the ground truths 
and the bottom row shows the predictions

Fig. 21   Disease detection by YOLOv8. samples are from the rice leaf 
disease dataset

Fig. 22   Not correctly detected samples of the rice leaf disease dis-
eases dataset by YOLOv8. The top row shows the ground truths and 
the bottom row shows the predictions
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between the predicted value and the ground truths. Not all 
instances have been detected or missed. As a result, FN is 

increased. This happened when the image is crowded with 
wheat leaves and leaves on the background are not focused.

Table 7   Performance metrics 
comparison between YOLOv5 
and YOLOv8

The current paper details are shown in bold

Detection network Dataset Class Precision Recall F1-score mAP@50

YOLOv5 DiaMOS plant Healthy 1.000 0.964 0.870 0.995
Curl 0.706 0.765 0.734 0.748
Slug 0.949 0.905 0.926 0.976
Spot 0.801 0.876 0.837 0.857
Overall 0.864 0.877 0.870 0.894

YOLOv5 Wheat leaf Healthy 0.831 0.667 0.740 0.698
Septoria 0.887 0.900 0.893 0.947
Stripe_rust 0.809 0.679 0.770 0.812
Overall 0.869  0.749 0.796 0.819

YOLOv5 Rice leaf diseases Bacteria_leaf_blight 0.727 0.998 0.841 0.962
Brown_spot 0.869 0.834 0.851 0.869
Leaf_smut 0.640 0.778 0.700 0.783
Overall 0.745 0.870 0.805 0.872

YOLOv8 DiaMOS plant Healthy 0.974 1.000 0.987 0.995
Curl 0.851 0.706 0.772 0.767
Slug 0.937 0.91 0.923 0.972
Spot 0.752 0.843 0.795 0.839
Overall 0.879 0.865 0.872 0.893

YOLOv8 Wheat leaf Healthy 0.658 0.694 0.676 0.693
Septoria 0.949 0.933 0.941 0.983
Stripe_rust 0.807 0.698 0.749 0.772
Overall 0.805 0.775 0.790 0.816

YOLOv8 Rice leaf diseases Bacteria_leaf_blight 1.000 0.869 0.930 0.982
Brown_spot 0.795 0.875 0.833 0.894
Leaf_smut 0.721 0.889 0.800 0.861
Overall 0.838 0.878 0.858 0.912

Table 8   Comparative analysis with the existing works

The current paper details are shown in bold
ACC → Accuracy
mAP → Mean Average Precision

Papers Year Plant type Method Metric Remarks

Javidan et al. [37] 2023 Grape SVM + K-means clustering + PCA ACC = 98.97% Use of PlantVillage dataset makes the 
methods far from real life scenarios

Morbekar et al. [72] 2020 Plants YOLO – Use of PlantVillage dataset makes the 
methods far from real life scenarios

Tial et al. [69] 2019 Apple Improved YOLOv3 ACC = 95.57% Only one disease of a single plant has 
been detected

Liu et al. [41] 2020 Tomato Improved YOLOv3 ACC = 92.39% Tested with only one type of plant
Mitra et al. [18] 2022 Apple Mask R-CNN mAP = 83.8% PlantVillage dataset has been used. No 

real field data has been tested
aGROdet [48] 2022 Plants Custom CNN + Pixel-based method ACC = 98.58% PlantVillage dataset has been used. No 

real field data has been tested
aGROdet 2.0 (Current Paper) 2023 Plants YOLOv8 mAP = 91.2% Real time and automatic detection of 

plant disease. Field data has been 
used
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Figure 15a and b show the correctly and wrongly pre-
dicted results from the Rice Leaf Diseases dataset, respec-
tively. The model shows a high confidence score for Bacte-
ria_leaf_blight and Brown_spot. However, more data was 
necessary for Leaf_smut disease as the confidence score for 
the particular class is not so high. In some cases, Bacte-
ria_leaf_blight and Brown_spot are wrongly predicted as 
Leaf_smut disease is generating higher false positives for 
Leaf_smut class.

YOLOv8

Figure 16a–l depict the performance metrics for YOLOv8. 
Metrics plots for the DiaMOS Plant dataset, the Wheat Leaf 
dataset, and the Rice Leaf Disease dataset are presented 
in the first, second, and third columns, respectively. Fig-
ure 16a–c depict plots of precision versus confidence. The 
plots of recall against confidence are displayed in Fig. 16d–f. 
Precision and recall plots can be seen in Fig. 16g– i. The 
plots of f1-score versus confidence are displayed in 
Fig. 16j–l.

YOLOv8 achieved higher precision compared to 
YOLOv5 for DiaMOS Plant and Rice Leaf Disease data-
sets. Better recall than that of YOLOv5 has been achieved 
for Wheat Leaf and Rice Leaf Disease datasets too. How-
ever, we have achieved lower recall in YOLOv8 compared 
to YOLOv5 for DiaMOS Plant dataset. YOLOv8 excels in 
f1-score. In terms of mAP 50, YOLOv8 and YOLOv5 per-
form similar for the DiaMOS Plant and Wheat Leaf datasets 
but YOLOv8 outperforms YOLOv5 for Rice Leaf Disease 
dataset. Image size was kept at 640 × 640 for both.

Figure 17a and b show some sample predicted results 
by YOLOv8 and the corresponding ground truths from the 
DiaMOS Plant dataset.

There are some instances within the DiaMOS Plant data-
set in which YOLOv8 did not perform as well as YOLOv5. 
The diseases were incorrectly diagnosed, as shown in 
Fig. 18. The reasons are the same as YOLOv5 and the main 
cause is not having a right image or due to some incomplete 
annotation in the dataset.

The ground truths and the predicted values taken from 
the wheat leaf dataset are displayed in the figures referred 
to as Fig. 19a and b, respectively. Here, there are also some 
instances, such as the one shown in Fig. 20, in which there is 

a disparity between the predicted value and the ground truths 
which is expected for an image overcrowded with leaves.

Figure 21a and b demonstrate the ground truths and the 
predicted values from the rice leaf diseases with high confi-
dence scores. Here also there are some cases when misdiag-
nosis happened, as in Fig. 22. Here also, there are FP cases 
of Leaf_smut disease.

Table 7 compares the performance metrics calculated for 
the two models for the three datasets. YOLOv8 performs 
similar to YOLOv5 for DiaMOS Plant and Wheat Leaf data-
sets but excels for Rice Leaf Disease dataset. So, YOLOv8 
has finally been selected as the plant disease detector model. 
The performance metrics calculated for both networks show 
that the overall performance of YOLOv8 is better than 
YOLOv5. However, YOLOv8 took more time to train for 
the datasets used.

Table 8 compares the performance of “aGROdet 2.0,” 
the plant disease detector, with existing works. Accuracy 
(ACC) and mean average precision (mAP) have been used to 
evaluate the performance of the various methods. “aGROdet 
2.0” was able to achieve a high mAP even when field data 
was used, whereas the other works are totally based on the 
laboratory dataset.

Table 9 shows the inference times for the YOLOv8 model. 
It also states the pre- and post-processing times of the test 
image. When the symptom of a disease is not very clear or 
resembles other disease symptoms, the model takes longer 
time to detect. For simpler image or where the symptoms are 
clear, the model takes much a shorter time. As the inference 
time is in  ms, if a video is used as the input instead of an 
image, a real-time detection of disease can be possible due to 
such fast inference process. This will be validated in future.

Conclusion and Future Work

Similar to all forms of life, plants are vulnerable to a wide 
range of diseases. Disease can prevent a plant from reach-
ing its maximum growth potential [48, 88]. It is well known 
that plant diseases are a leading cause of economic loss [89] 
due to harvest loss. All trees and plants must be free of any 
and all diseases. This is only possible when the disease is 
detected early which demands automatic and real time dis-
ease detection. In this paper, we have enhanced the work in 
[18] for automatic and real-time detection of plant diseases.

There are many ways this work can be enhanced further.

–	 More robust solution is needed for different lighting con-
ditions, shadows, specular reflection, and the presence of 
insects.

–	 Some preliminary work on shadow removal has been 
done in [48] but more work is required in this area.

Table 9   Inference time for YOLOv8 model for each dataset

Datasets Time (ms)

Pre-process Inference Post-process

DiaMOS plant 1.4 8.6 1.9
Wheat leaf 0.2−1.7 11.1−14.2 0.8−1.2
Rice leaf disease 0.2 10.5−12.3 0.8−1.0
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–	 Disease manifestations are different at different growth 
stages of plants. Datasets with such division is necessary.

–	 Data collection through smart phone camera is required 
to reflect the real world scenario.

–	 We hope that our work will help researchers pre-anno-
tate new pear, rice, and wheat leaves infected with the 
addressed diseases and aid in the formation of a new 
dataset without much human effort.
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