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Abstract
The recent evolutionary trend of modern applications is towards a development paradigm that involves the composition of 
multiple interconnected micro-services devoted to perform specific functions. Such applications usually rely on data col-
lected by geographically distributed sensors or by mobile users and are often characterized by strict requirements in terms 
of latency and response time. These requirements may be not compatible with the traditional cloud computing approach, 
where the computation occurring on far-away data centers cannot always guarantee the satisfaction of latency constraints. 
The fog computing approach has recently received a lot of attention as a promising solution in supporting time-critical appli-
cations. Due to an intermediate layer of fog nodes located close to sensors or final users and able to process the application 
data, indeed, the fog systems may significantly reduce the experienced response time. In a scenario where applications are 
composed by a chain of multiple micro-services, however, the service placement over the nodes of the fog infrastructure 
represents a nontrivial issue with respect to the cloud computing context. The highly distributed and heterogeneous nature 
of the fog nodes requires novel solutions taking into account the different performance of the fog nodes and the network 
delays caused by inter-nodes connectivity. This paper proposes a performance model for the placement of application micro-
services over the fog infrastructure. To face the computational complexity of the optimization model, an heuristic based on 
a genetic algorithm is proposed. Furthermore, the analytical model is validated by means of simulation. The performance 
of the proposed solution is evaluated under a wide set of scenario and parameters ranges, including a case study based on 
realistic micro-services characterized through a prototype implementation.
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Introduction

The definition of fog computing given by the OpenFog 
Consortium [1] is based on the concept of a geographically 
distributed system able to offer functions and resources in 
locations that are closer to the final users than the cloud 
computing infrastructures. The Fog computing paradigm 
aims to move cloud services like computation, communica-
tion and storage close to edge devices and end-users, with 
clear benefits in terms of enablement of low-latency appli-
cations, better support of user mobility, save on network 
bandwidth, enhancement of security and privacy. On the 
other hand, however, the nature of a fog infrastructure is 
profoundly different from that of a cloud data center for what 
concerns, e.g., the heterogeneity of available resources and 
computing capacity [2, 3], thus opening up to novel and 
complex issues in terms of infrastructure management.
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Compared with the cloud, an infrastructure of fog nodes 
relies on a relatively small pool of resources which makes 
the fog unfit to deal with huge workloads that, instead, 
the cloud can easily handle by virtue of an almost unlim-
ited availability of computing power. Furthermore, the 
computing nodes of a fog may exhibit heterogeneous 
features (in terms of, e.g., CPU, memory) which exacer-
bates the problem of scheduling resources in an effective 
and efficient way. Consequently, novel and more complex 
resource management and service allocation algorithms 
are required to meet the demand of quality of service in the 
fog. One more issue to face in this scenario is the highly 
distributed nature of the fog nodes, which may cause non 
negligible and sometimes unpredictable network delays. 
These delays have a certain impact on both fog-to-cloud 
and fog-to-fog communications, and need to be taken into 
great consideration when composite and distributed appli-
cations demand fog resources.

In this paper, the focus is on the realistic case of smart 
IoT applications based on a micro-service architecture, 
i.e., applications natively designed as a chain of multiple 
interconnected micro-services. As reported in these recent 
surveys [4, 5], the micro-service architectural paradigm 
has become very popular in business contexts for the clear 
advantages it brings in terms of modularity, maintainability, 
flexibility and scalability. It is worth to note that the prob-
lem of transforming a monolithic application into a chain of 
micro-services is out of the scope of the paper and is assume 
to be already carried out before considering the deployment 
schemes of the micro-services chain. In such a composite 
scenario, assuming that each micro-service can be deployed 
in any of the available fog nodes, a critical issue to guaran-
tee the QoS fulfillment to the final application consumers is 
represented by the correct placement of the micro-services 
over the nodes of the fog infrastructure. The heterogeneity of 
the available resources and the presence of network-related 
delays makes the micro-service placement a very complex 
task.

This paper presents some innovative contributions that 
are summarized as follows:

•	 An analytical model for the placement of micro-service 
chains over the nodes of a geographically-distributed fog 
infrastructure;

•	 A heuristic based on Genetic Algorithms (GA) to solve 
in finite time the non-linear problem of minimizing the 
service chains’ response time;

•	 Validation of the proposal by means of a simulation 
approach, which considers the cases of both simple 
applications and more complex ones with long chains of 
multiple interconnected micro-services;

•	 Assessment of the viability and evaluation of the per-
formance of the proposed strategy in some case studies 

envisioning typical real micro-services of a smart city 
scenario.

The rest of the paper is organized in the following way. 
Section “Related Work” presents some related work. Sec-
tion “Motivating Scenario” describes the motivating sce-
nario for the micro-service placement over the nodes of a fog 
infrastructure. Section “Performance Model” introduces the 
theoretical performance model, describes the optimization 
problem, illustrates the heuristic based on genetic algorithms 
and presents the characterization of two micro-services 
implemented on a real prototype. Section “Model valida-
tion” presents the validation of the model through simula-
tion. Section “Experimental Results” describes the results of 
the experimental evaluation. Finally, Section“ Conclusions” 
concludes the paper with some final remarks.

Related Work

The issue of process allocations and load balancing in dis-
tributed systems and cloud computing infrastructures has 
received a lot of attention over the past years, as testified by 
several existing surveys on the topic [6–9]. In the context of 
Cloud computing, the issues more investigated by research-
ers and practitioners have been related to optimal placement 
of virtual machines (VMs) over the physical servers of a 
cloud datacenter [10–12] and to efficient task scheduling to 
avoid overloading/underloading cloud virtual machines [13, 
14]. In these studies, intelligent and nature inspired meta-
heuristics emerged as viable and promising solutions to 
address performance issues related to resource distributions 
in cloud distributed systems. In Singh et al. [13] most of the 
literature concentrates on Genetic Algorithms (GAs), Par-
ticle Swarm Optimization (PSO), Ant Colony Optimization 
(ACO) based scheduling techniques for task and work-flow 
scheduling in cloud systems. In particular, Genetic Algo-
rithms represent the base of the principally investigated 
heuristic in  [15], that aims to optimize task scheduling 
based on multiple cloud properties and resources, such as 
speed, capacity, task size, number of tasks, number of virtual 
machines, and throughput. Similarly, in [16] the authors pro-
pose a modified genetic algorithm combined with a greedy 
strategy for cloud task scheduling optimization, showing the 
feasibility of applying this kind of heuristic to cloud comput-
ing distributed environments.

In the context of fog computing systems, many studies 
focus on the service placement issue, but they mainly rely 
on a simplifying assumption based on the fact that an appli-
cation (typically IoT or smart city application) consists of 
a single service requested by clients. Among these studies, 
Yu et al. [17] present a model to jointly optimize the place-
ment of the IoT applications and the routing of related data. 
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In [18], a placement strategy based on the characteristics of 
IoT services, including their requirements in terms of Qual-
ity of Service (QoS) is proposed: they model the system 
in terms of fog colonies and propose a solution based on 
Integer Linear Programming. Finally, in [19] the authors 
present a first proposal of service placement for fog comput-
ing architectures exploiting an heuristic based on genetic 
algorithms, showing the suitability and good performance 
of the solution in fog systems through experimental results. 
However, all these studies do not take into account that, in 
real scenarios, the applications requiring a fog infrastructure 
to be supported typically involve a chain of multiple micro-
services that may have dependencies and constraints, thus 
generating a placement problem much more complex to be 
addressed.

Far less attention in literature has been devoted to the 
problem of allocating micro-services over the geographi-
cally distributed nodes of a fog computing system. Indeed, 
few studies start from the assumption of modeling com-
plex applications as chains of micro-services and address 
the issue of placing them over the geographically distrib-
uted nodes of the fog layer. In this context, solutions can 
be divided in completely distributed [20, 21] and central-
ized [22, 23] solutions. The study in [20] presents an approx-
imation method based on game-theory aiming at optimizing 
the energy consumption and the costs related to communi-
cations among the nodes of the infrastructure. The solution 
proposed in [21] is based on the cooperation between the 
fog nodes to define the workload that has to be assigned to 
other nodes with the final aim to reduce the final response 
time for the end users. Among the centralized solutions, it 
is worth to mention the studies in [22], where the micro-
service placement is defined by a centralized controller, and 
in [23], proposing a mixed-integer linear programming for-
mulation for the orchestration of Virtual Reality services in 
fog infrastructures.

In this paper, an heuristic based on Genetic Algorithms 
is presented to address the non linear nature of the optimi-
zation problem considered for modeling the micro-service 
placement and minimize the global response time of the 
requesting applications. The heuristic was originally pro-
posed by the same authors in [24]. This paper significantly 
extends the previous work by adding a validation of the pro-
posed model based on simulation and covering both cases of 
simple applications and more complex scenarios with long 
chains of multiple micro-services. Moreover, the present 
study proposes a characterization of the execution times of 
micro-services typically involved in smart cities applications 
and the analysis of a realistic case study.

Finally, some studies consider the service placement prob-
lem in the context of fog-to-cloud infrastructures [25–27]. 
For example, in [25] authors present a novel mechanism 
able to determine, based on the requirements of the services 

and on the characteristics of the system resources, the opti-
mal execution offloading. The studies in [26, 27] propose 
to assign to fog nodes the services characterized by low 
latency, while sending the other services to the cloud. On 
the other hand, in this paper a solution for the placement of 
all the micro-services belonging to an application chain over 
the nodes of the fog layer is proposed, under the assumption 
that the fog infrastructure can process every kind of request, 
with a consequent improvement of the user experience.

Motivating Scenario

Due to the large availability of computing capacity world-
wide, the amount of resources that one single application 
can obtain from the Cloud is pretty much unbounded. Unfor-
tunately, the distance between data sources and the Cloud 
providers’ premises (often covered by geographic network 
links) makes the Cloud paradigm unfit to serve delay-sensi-
tive applications in typical IoT scenarios. The fog comput-
ing promises to shorten the distance by bringing computing 
resources close to data. Unfortunately, the benefit that the 
fog computing provides in terms of decreased network delay 
is counterbalanced by the reduced availability of process-
ing power, as in that regard the fog computing facilities are 
not even comparable to the cloud ones. A further drawback 
of the fog is the heterogeneity of the provided resources, 
since fog nodes typically exhibit non-uniform capacities and 
sometimes even imbalanced interlinks. Such an imbalance 
represents a problem in scenarios where fog resources must 
be efficiently allocated to multiple requesting applications. 
Also, considering that most business applications are com-
posed of multiple micro-services [4, 5], each deployable in 
the fog infrastructure independently of one other, the prob-
lem to face is even more complex. If, on the one hand, the 
modularity of applications increases the chance of maximiz-
ing the utility of available resources, on the other one it calls 
for smarter resource scheduling strategies.

This paper addresses the depicted scenario and tackles the 
problem of smartly and efficiently allocating fog resources 
(nodes, from now on) to requesting microservice-based 
applications. In the literature, this is known as a service 
placement problem. In the considered scenario, the fog 
infrastructure comprises a set of nodes of known and vari-
able capacity. Nodes are networked via high-speed links. 
The network topology modeling was intentionally left out of 
the scope of the study, though this will be part of the future 
work. The node-to-node network delay is a parameter of the 
fog infrastructure that may impact on the quality of the pro-
vided service; therefore, it is taken into consideration when 
formulating the service placement problem.

On the service providers side, a set of micro-service-
based applications demand computing resources from the 
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fog infrastructure to execute. Customers generate service 
requests towards the deployed applications according to 
a-priori known workloads. The aim is to develop a service 
placement strategy that, leveraging the mentioned boundary 
conditions, devises an optimal resource allocation scheme 
that minimizes applications’ response time. Also, recalling 
the assumption made earlier, concerning the fact that all con-
sidered applications are natively decomposed into smaller 
micro-services, when seeking for optimal micro-service-
to-node placement, metrics such as the average number of 
nodes spanned by applications, the network delay experi-
enced by requests and the overall load balance are taken 
into consideration.

Figure 1, depicts a simple service placement scenario 
where four applications must be deployed on a fog infra-
structure composed of four nodes. The application is mod-
eled as a micro-service chain, i.e., a set of micro-services 
(two, at least) that cooperate to fulfill clients requests. In 
the practice, micro-services of an application can cooperate 
with one another to form different topologies. Without loss 
of generality, it is possible to assume that a micro-service 
chain ci is actually implemented by wiring (i.e., putting one 
after one) a sequence of micro-services mij, j ∈ 1, 2, ...n . The 
micro-service occupying the first position in the chain ( mi1 ) 
will take ci input, make its elaboration and invoke the next 
micro-service in the chain. The cascade of invocations goes 
on until the last micro-service is reached ( min ), which will 
return back the result of its elaboration through the chain. 
Eventually, mi1 will respond to the client’s request. The 
"length" of a micro-service chain refers to the number of 
micro-services composing the chain.

The goal of the service placement scenario is to place 
micro-services of each chain into one or multiple nodes. An 

obvious constraint is that the number of nodes hosting one 
chain may not exceed the chain length. In its turn, a fog node 
may host micro-services belonging to different micro-service 
chains. The figure depicts one exemplary placement scheme. 
According to the scheme, the three micro-services composing 
the chain c3 are hosted by three distinct nodes ( f2 , f3 and f4 
respectively), while the entire micro-service chain c4 is placed 
in one fog node ( f3 ). A generic node fk is the recipient of all 
client requests addressed to the micro-service chain(s) hav-
ing their first micro-service hosted by fk . By way of exam-
ple, fog node f1 will receive all requests addressed to chain c1 
and c2 (represented in the figure by request loads cl1 and cl2 , 
respectively), since f1 is hosting m11 and m21 which are the first 
micro-services in the chains c1 and c2 , respectively. It is worth 
to remind that fog nodes have different computing capacity and 
are interconnected with each other via heterogeneous high-
speed links.

The goal is to devise and implement a micro-service place-
ment strategy that strives to minimize the average service 
response time, i.e., the time taken by the application (the 
chain, in the considered case) to reply to a client request. The 
strategy will account for the following boundary conditions: 
applications request loads, (ii) average service time of micro-
services composing the chains, and (iii) computing capacity of 
fog nodes that will host the micro-services. In a scenario where 
multiple applications must be served, the strategy will pursue 
the minimization of all applications response time.

Fig. 1   Service placement 
scenario
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Performance Model

This section introduces the model that is the basis for the 
micro-services placement problem. Next, an heuristic, 
based on Genetic algorithms that can solve the problem is 
presented. The model and the algorithm refer to the sce-
nario described in Sect. “Motivating Scenario”, where ser-
vice chains consisting of several micro-services must be 
deployed over a set of fog nodes. Chains are activated by 
data sources that can be either sensing devices of mobile 
users, that are called simply clients.

Performance Metrics

Throughout the analysis the response time is consid-
ered as the main performance metric. Response time is 
defined as the time between the data is sent by a client 
and the moment the service chain completes the process-
ing of such data (that is when the last micro-service of the 
chain ends). For the sake of clarity it is worth to point out, 
that response time is different from the service time: the 
response time contains also the contribution of network 
delays and queuing for accessing resources on fog nodes, 
while service time is just the time required to execute the 
micro-service, without any data transfer or queuing. Opti-
mizing response time implies the optimization of several 
other more specialized metrics. For example, an unbal-
anced load on the infrastructure, with some fog nodes 
that are close to overload would automatically cause an 
unacceptably high response time. To reduce response time 
load should be evenly distributed over the infrastructure. 
Similarly, if the placement of a service chain spreads the 
micro-services over many fog nodes, the network-related 
contribution of the response time would explode. Hence a 
poor performance for a locality-based performance metric 
implies a high response time, while a good score for a 
locality-based metric wold automatically have a positive 
impact on response time.

Furthermore, the analysis takes into account the notion 
of Service Level Agreement (SLA) in the form of a maxi-
mum acceptable response time for every service chain, 
being response time one of the most common and chal-
lenging requirements for cloud continuum contexts [28].

Table 1 contains a summary for the notation used in 
the model. The symbols are basically he same used in 
Sect. “Motivating Scenario”, with the main difference that 
a micro-service is identified with the symbol m, dropping 
the reference of the service chain, for the sake of brevity.

The initial focus is on the performance of a single 
micro-service m. The service time of such micro-service 
is described by a generic probability distribution with an 

average value of Sm and with a standard deviation �m . Ser-
vice time is measured at server-side (hence it does not 
include network-related delays) and considers just the 
time spent executing the micro-service (hence it does not 
include waiting time related to the processing of other, 
concurrent, micro-services).

To model the performance of the fog infrastructure, 
the following assumptions are made: (1) the system is 
in a steady-state condition, avoiding transient times; (2) 
no jobs (that are requests to process incoming data for 
a micro-service) are dropped between two consecutive 
micro-services. This means that, once a chain is invoked 
it is executed completely without external interruptions. 
This assumption is consistent with the goal of the study 
that is to provide a mechanism for efficient deployment of 
fog applications, without overload or errors. From a model 
point of view this assumption implies that, for each micro-
service in a chain, the incoming rate equals the outgoing 
rate (that is the incoming rate for the subsequent micro-
service). This assumption can be formalized as ∀c ∈ C , 
and ∀m1,m2 ∈ c , �m1

= �m2
.

For the sake of clarity, it is worth to anticipate that the 
decision variable for the optimization problem is a matrix 
of Boolean variables X = {xm,f ,m ∈ M, f ∈ F} such that 
xm,f = 1 ⟺ micro-service m runs on fog node f.

Table 1   Notation and parameters for the proposed model

Model parameters

M Set of micro-services
F Set of fog nodes
C Set of service chains
�m Incoming request rate to micro-service m
�f Incoming request rate to fog node f
�c Incoming request rate to service chain c
Λ Incoming global request rate
Sm Average service time for micro-service m
�m Standard deviation of Sm
Pf Computational power of fog node f
Wf Average waiting time on fog node f
Sf Average service time on fog node f
�f Standard deviation of Sf
Rc Average response time for service chain c
TSLA
c

SLA of service chain c
om1,m2

order of execution of micro-services in a chain
�f1,f2 network delay between nodes f1 and f2
Model indices
f A fog node
c A service chain
m A micro-service
Decision variables
xm,f Allocation of micro-service m to fog f
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For the nature of the decision variable, a micro-service 
cannot be split over multiple fog nodes. Furthermore, 
every micro-service must run on one and only one fog 
node.

A fog node is modeled according to queuing theory 
where jobs can wait in a queue before being processed by 
the fog node. As multiple micro-services can be present 
on the same fog node, each node behaves as a multi-class 
server.

Let node f be a generic fog node. Its multi-class work-
load will present a class for every micro-service m hosted 
on f. The resulting multi-class system will be described 
with a service time that is a mixture of distributions where 
each component is the distribution of the service time for 
a micro-service.

In the proposed model, fog nodes can be heterogeneous, 
meaning that the computational power of each node can be 
different. As a result, there can be a speedup (or a slow-
down) with respect to the expected service time depending 
on the computational power Pf  of fog node f.

The formulation for the service time Sf  and of its stand-
ard deviation �f  for a fog node f can be summarized as 
follows:

where �f =
∑

m∈M xm,f�m is the total incoming load on node 
f.

The expected waiting time Wf  for the fog node can be 
derived using the Pollaczek Khinchin equation:

It is worth to note that Eq. (3) assumes that the whole queu-
ing system describing the fog infrastructure can be expressed 
in a product form. Unfortunately, this is not always true. 
When the service time of each micro-service does not fol-
lows an exponential distribution, the arrival process in 
subsequent fog nodes cannot be considered as a exponen-
tial distribution. Hence the M/G/1 model used in Eq. (3) 
should become a G/G/1 model. However, no closed-form 
solution is available to describe the inter-arrival time of a 
queuing server that is placed next to a G/G/1 server. The 
approximation of a M/G/1 model can be used when many 
micro-services are located on a fog node or when the stand-
ard deviation of the service time of the micro-services is 
close to the mean value. As the actual system characteristics 

(1)Sf =
1

Pf

⋅

∑

m∈M

xm,f
�m

�f
Sm

(2)�2
f
=

(
1

P2
f

⋅

∑

m∈M

xm,f
�m

�f

(
S2
m
+ �2

m

)
)

− S2
f
,

(3)Wf =
S2
f
+ �2

f

2
⋅

�f

1 − �f Sf
.

drift away from these assumptions the performance model 
become inaccurate. Section “Model Validation” provides a 
validation that the used approximation holds for the sce-
narios considered in the experiments.

Under the above limitation, Eq. (3) can be used to define 
the response time for a service chain c as the sum of waiting 
time on the fog nodes, plus the sum of service times plus the 
network delay due to transferring data between two subse-
quent micro-services in the service chain.

where om1,m2
 is the order of execution of micro-services in c. 

In particular om1,m2
= 1 ⟺ m1 ≺ m2 , meaning that service 

m1 s invoked just before m2 in the service chain.

Optimization Problem

The focus of this subsection is the optimization problem 
for allocating micro-services over the infrastructure of fog 
nodes. To this aim, the definitions of Sect. “Performance 
Metrics” and the notation in Table 1 is used.

Objective function in Eq.  (5) is a weighted sum of the 
response time for very considered service chain, based 
on Eq. (4). The weights wc,∀c ∈ C are chosen such that ∑

c wc = 1 . A possible approach, used in this paper, is to 
consider the weight of every service chain proportional to its 
activation frequency �c (that is wc = �c∕Λ , with Λ =

∑
c �c ), 

although other solutions can be adopted without altering the 
general framework of the model.

In the optimization problem three constraints are 
imposed. Equation (6) means that every micro-service is 
allocated on one and just one fog node. Equation (7) forces 
every fog node not to be in an overload condition ( �f Sf  is 
the load on fog node f). The last model constraint, Eq. (8), 

(4)

Rc =
∑

m∈c

∑

f∈F

xm,f ⋅Wf +
∑

m∈c

Sm

+
∑

m1,m2∈c

∑

f1,f2∈F

om1,m2
⋅ xm1,f1

⋅ xm2,f2
⋅ �f1,f2

(5)min obj(X) =
∑

c∈C

wcRc

(6)
subject to:

∑

f∈F

xm,f = 1 ∀m ∈ M,

(7)𝜆f Sf < 1 ∀f ∈ F,

(8)Rc < TSLA
c

∀c ∈ C,

(9)xm,f = {0, 1}, ∀m ∈ M, f ∈ F,
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forces the respect of the SLA of each service chain. This 
study considers TSLA = K ⋅

∑
m∈c Sm , with K = 10 , that is a 

common approach on cloud and fog-based systems [29]. The 
last constraint, Eq. (9), captures the Boolean nature of the 
decision variable xm,f .

Genetic Algorithm

Having formulated a problem for the placement of applica-
tions that are designed as a chain of micro-services, there is 
now the need to find away to solve this problem. The objec-
tive function determines the non-linear nature of the optimi-
zation problem. For this reason, finding a simple heuristic 
or solving the problem is not a trivial task. To overcome 
this problem, evolutionary meta-heuristics that have been 
used in literature to solve similar problems [30, 31] can be 
used. This study considers Genetic Algorithms (GAs) as a 
promising approach to tackle the problem. However, this is 
just a way to solve the problem, that retains a general valid-
ity. Other heuristics can still be designed an applied to solve 
the formalization proposed in Sect. “Optimization Problem”.

In a genetic algorithm, the solution is encoded as a 
sequence of symbols called chromosome, with each sym-
bol, namely a gene, representing a parameter of the problem 
solution. A population is initialized using (randomly gener-
ated) individuals, with each individual being a candidate 
solutions, and the population evolves through a finite num-
ber of generations.

Considering the micro-service allocation problem 
described in Sect. “Optimization Problem”, a chromosome 
is set of M = ‖M‖ genes, where M is the number of consid-
ered micro-services. The value of each gene is an an integer 
number ∈ [1,F] , with F = ‖F‖ , being the number of fog 
nodes. To map the decision variable xm,f  on the genes the 
mth gene can be defined as as gm = {f ∶ xm,f = 1} . Due to 
constraint (6) the microservice m will be allocated on just 
one fog node. Hence, the proposed chromosome definition 
automatically satisfies Eqs. (6) and (9).

To guide the evolution process, each individual has a fit-
ness score based on the objective function defined in Eq. (5). 
It is worth to note that not every solution encoded as a chro-
mosome is acceptable as the constraints  (7) and (8) on the 
fog node overload and on SLA respect are not guaranteed 
to be met. However, the population evolves including also 
non-acceptable solution to fully exploit the ability of GAs to 
explore large space of configurations. Violated constraints 
are still taken into account adding two penalty factor to the 
objective function that is re-defined as:

(10)obj∗(X) =
∑

c∈C

wcRc + Pol + PSLA,

where Pol = S∗
f
(1 + �f − 1 ∗ Sf ) if overload occurs, with S∗

f
 

being an arbitrary high value of the service time for a fog 
node. In a similar way, a penalty for SLA violations as 
PSLA = S∗

c
(Sc∕TSLA) is defined, with S∗

c
 being an arbitrary 

high value of the service time of a service chain. Both penal-
ties are proportional to the level of constraint violation, aim-
ing to prune from the genetic pool individual that violates 
(hardly) the two constraints. The proportionality is useful 
when the whole genetic pool contains a significant fraction 
of unacceptable individuals. In this case the most unaccep-
table individuals will be removed first, preserving a benefi-
cial level of genetic diversity.

As the population evolves through the generations a set of 
genetic operators such as mutation, crossover and, selection 
are used to increase the fitness score of the individuals. In 
the experiments a random mutation operator alters a single 
random gene in the chromosome. This operator enables the 
exploration of new areas in the solution space. The proposed 
algorithm also uses a uniform crossover that takes two par-
ent individuals and merges them in two offspring individu-
als aiming to spread successful genes over the population. 
Finally, a tournament selection selects the best individuals 
that should be passed from the current to the next generation.

The algorithm is implemented using the DEAP1 library. 
The parameters of the genetic algorithm are tunes using pre-
liminary tests. In particular the mutation probability is set 
to Pmut = 0.8% and the crossover probability to Pcx = 0.8% . 
Furthermore the population is composed of 600 individuals 
and the number of generations is 600. The parameters are 
consistent with results carried out on similar problems [19].

Micro‑service Characterization

This subsection, introduces some examples of typical and 
realistic micro-services that could be used as building blocks 
to compose service chains in a Fog environment. It also 
provides a characterization of such micro-services in terms 
of features that are useful for the proposed model. To this 
end, the features of interests are the average service execu-
tion time and its standard deviation. In particular, the aver-
age service execution time is defined as the average time 
between when the request is issued by the user and when the 
server has provided a response.

In this work, the considered micro-services fits a typical 
Smart City scenario. Two categories of micro-services are 
taken into account, of which one is computationally inten-
sive while the other is very low demanding. As examples of 
computing-intensive service category, a video recognition 
micro-service and an image recognition micro-service are 

1  DEAP: Distributed Evolutionary Algorithms in Python— https://​
deap.​readt​hedocs.​io/​en/​master/.

https://deap.readthedocs.io/en/master/
https://deap.readthedocs.io/en/master/
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analyzed and profiled. For the other category, a very simple 
service discovery application is taken into account.

Video recognition This micro-service emulates a video 
object detection and tracking service from an input video. 
In particular, it produces a matrix with the positions of the 
tracked objects in the video. Moreover, two different ver-
sions of the same micro-service are considered by chang-
ing the quality and resolution of the video (high-res and 
low-res, respectively). More in detail, the application is 
written in Python and leverages the ffmpeg Linux library 
to transform the video into a numerical matrix.

Image recognition This micro-service offers objects clas-
sification functionalities from input images. The service lev-
erages a pre-trained ML model for image classification. The 
application is written in Python and uses Flask as a Python 
Web engine. When the micro-service receives an image as 
an input, the latter is translated into a numeric array for fur-
ther processing. On that array the ML model will perform 
the recognition.

Service Discovery This micro-service supports users in 
finding the needed services. From the implementation 
viewpoint, the service makes use of a Redis database that 
stores data in a key-value fashion. When a user issues a 
query, this service will reply with the details of matching 
services.

The four mentioned micro-services are benchmarked 
on an off-the-shelf PC. To get robust statistics, each 
micro-service was tested with 50 requests. The follow-
ing Table 2 shows the characterization of the discussed 
micro-services.

Model Validation

The performance model previously proposed, is now vali-
dated by means of simulation.

Simulator Setup

For the simulations the Omnet++ framework2 is used, 
enriched with additional modules to capture the nature of the 
considered problem. Specifically, new models introduced for 
the analysis are a traffic generator that can describe a request 
comprising multiple invocations to small micro-services, 
delay centers to model network delays. Furthermore, the fog 
nodes are modeled in the simulator to extract the relevant 
information on the micro-service to be executed and imple-
ments a queue where the jobs are stored while the processor 
is busy (thus mimicking the behavior of the queuing network 
model). Additional simulations (not reported for space rea-
sons) confirm the validity of the proposed solution also in 
the case of processor-sharing setups, where job executions 
are interleaved. A set of routing modules sends the jobs from 
one fog node to the next based on the allocation of micro-
services over the fog infrastructure.

In the tests both the execution times of the micro-services 
and the network delays are modeled according to log-normal 
distributions, with different standard deviation and average 
values, depending on the specific scenario.

Fog Node Performance

The first scenario considered in the tests is a simple scenario 
with a single fog node and two co-located micro-services. 
This scenario aims to validate the model for the fog node 
service time described in Eqs. (1) and (2).

Considering two micro-services, namely m1 and m2 . The 
two micro-services are characterized by service times equal 
to S1 = 0.1 s and S2 = 0.05 s and by standard deviation equal 
to �1 = 0.02 s and �2 = 0.01 s, respectively. The two micro-
services have an incoming flow of requests that follows an 
exponential distribution for the inter-arrival times, with an 
average �1 and �2.

Throughout the experiment the arrival rate of the two 
micro-services changes in the range �1 ∈ [0.5, 4.5] req/s and 
�2 ∈ [1, 9] req/s.

Figure 2 presents a comparison between simulation and 
model results for the average service time and for a measure 
of the service time variance as a function of the two param-
eters �1 and �2.

Figure 2a shows the service time of the two combined 
micro-services. The simulation (grid of purple lines with 
square points) matches very closely the theoretical model 
(grid of cyan lines), thus validating Eq. (1). In a similar 
way, Fig. 2b shows the coefficient of variation (CoV) for 
the service time, that is the ration between the standard 
deviation and the average value. The comparison between 

Table 2   Micro-services characterization

Service name Service ID Avg. time (s) St. Dev (s)

Video recognition: high 
resolution

VREC_H 7.897 0.1649

Video recognition: low 
resolution

VREC_L 6.787 0.1021

Image recognition IMREC 1.649 0.557
Service discovery SDISC 0.009 0.0015

2  https://​omnet​pp.​org/.

https://omnetpp.org/
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the simulation results and the theoretical model provides a 
validation of Eq. (2).

After the validation of the execution of heterogeneous 
micro-services in a multi-class fog node, the focus shifts 
towards waiting and response times. Figure 2c shows the 
time spent waiting in a queue (modeled in Eq. (3)) while 
Fig. 2d shows the overall response time for the fog. For 
both figures it is possible to observe a very close matching 
between the model prediction and the simulator output, thus 
confirming the validity of the model.

Service Chain Performance

After a validation of the basic building blocks of the model, 
the validation of the whole model relies on a more complex 
scenario where multiple service chains, each composed by 
several micro-services, are distributed across an infrastruc-
ture with several fog nodes.

Figure 3 presents an example of a problem used for this 
validation along with its deployment scheme. The problem 
is composed by 3 service chains each composed by 8 micro-
services. The data flows in the logical organization of the 
micro-services are represented by solid lines. The data flows 
from client to micro-services are depicted in blue, the data 
exchanged by micro-services in a service chain in black. 
The mapping of logical elements over the infrastructure is 
represented in dashed lines: yellow for links from client to 
the fog nodes, red for the deployment of micro-services over 
the fog nodes.

The model considers multiple service chains of differ-
ent lengths (in the example ranging from 6 to 8 micro-ser-
vices) and with a different aggregated service time. Each 
micro-service service time has a standard deviation close 
to 1 and the mapping ensures that each fog node hosts mul-
tiple micro-services. Under these conditions, it is possible 
to compare the performance predicted by the performance 
model with the simulator output.

Fig. 2   Validation for two heterogeneous micro-services
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Figure 4 evaluates the expected utilization � of the fog 
nodes (Fig. 4a) as well as the service and waiting times 
(Fig. 4b). In both figures the first column (purple color) is 
related to the simulation, while the second column (azure 
color) refers to the theoretical model. For the times, the 
lower part of the columns (fine mesh) is the service time, 
while the upper part (coarse mesh) is the waiting time. The 

figure shows that the fog node utilization predicted by the 
model is accurate, as well as the service time. For the wait-
ing time, a small discrepancy (below 10%) can be observed 
due to the approximation caused by the use of a M/G/1 
model.

Evaluating the micro-service chains, the prediction of the 
service time and of the network delay times is quite accurate. 

Fig. 3   Service chains mapping

Fig. 4   Fog node parameters
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Again, it is possible to observe an approximation in the 
waiting time component of the service chain response time, 
with the model tending to over-estimate the response time. 
However, it is worth to note that the error introduced by the 
M/G/1 model remains below 10% (see Fig. 5). 

Experimental Results

Experimental Setup

This section aims to prove the suitability of the proposed 
GA-based approach to the micro-service placement problem. 
Specifically, experiments are aimed at assessing the quality 
of the solution suggested by the proposed heuristic for sev-
eral random problems.

A placement problem is defined in terms of:

•	 Service chain length Lc , i.e., the number of micro-ser-
vices composing a chain;

•	 Service time of a service chain Sc;
•	 Average network delay � between two fog nodes;
•	 Overall infrastructure load �;
•	 Problem size, i.e., the number of fog nodes and of service 

chains.

Firstly, the behavior of the solver is studied in the case of 
equally long chains, that is Lc = ‖{m ∈ c}‖ is constant 
∀c ∈ C . To that end, the considered chains are composed 
of 5 micro-services. The impact of the variability of Lc is 
discussed in Sect. “Sensitivity to Service Chain Length”.

For all the experiments, the setting for the service 
request load is such that the average utilization of fog 
nodes is in the order of 60%. The overall load is defined 

as � =
∑

c �cLc ⋅
∑

c Sc∕
∑

f Pf  , which means that � ∈ [0, 1] . 
The system’s sensitivity to this parameter is analyzed in 
Sect. “Sensitivity to System Load”, while for all other exper-
iments � = 0.6 , which corresponds to a medium utilization 
of the infrastructure.

For what concerns the problem size, the number of nodes 
is identified by ‖F‖ , while that of chains is ‖C‖ . As default 
values, a set of 10 fog nodes supporting 4 service chains is 
considered. The same values hold for all experiments except 
for the one aimed at testing the scalability of the proposed 
approach, which is discussed in Sect. “Scalability Analysis”.

Furthermore, for each service the SLA is 10× the ser-
vice time of the whole chain: such assumption is in line 
with typical SLA settings of cloud applications [29]. In the 
experiments, the SLA is automatically satisfied as long as no 
overload is incurred. This motivates the choice of not doing 
a specific analysis to study the impact of this parameter.

Significant KPIs in the analyses are the response time of 
service chains and the average number of hops in the chain 
deployments, normalized against the chain length (ranging 
in [0, 1]). Another critical yet useful performance metric 
adopted in the present study is the Jain index, a measure of 
fairness that quantifies the ability of the genetic algorithm to 
achieve load balancing over the fog infrastructure. The Jain 
index is defined as J = 1∕(1 + CoV(�f )

2) , where �f  is the 
utilization of each node f ∈ F  and CoV(⋅) is the coefficient 
of variation (i.e., the ratio between standard deviation and 
mean) computed over all fog nodes. An index of 1 means a 
perfect balance, whilst values of the Jain index closer to 0 
reveal that the load is unevenly distributed among the fog 
nodes.

Fig. 5   Micro-service chain response time Fig. 6   Load balancing and hops vs. chain length Lc
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Sensitivity to Service Chain Length

In this section the sensitivity of the optimization algorithm 
to the service chain length is assessed.

Figure 6, presents two curves representing the trend of the 
Jain index (purple line with empty squares) and the trend of 
the average number of hops (green line with filled squares) 
as a function of the service chain length Lc . It is worth to 
note that that, on a low number of micro-services in a chain, 
achieving the load balancing is trickier as there are a few, 
computing-intensive micro-services that alone could possi-
bly saturate the processing power of a fog node. On the other 
hand, in the case of multiple lighter micro-services (that is, 
when Lc is higher), the ability of the genetic algorithm to 
find a good load balancing is proved by the Jain index value 
being close to 1. At the same time, due to the finer-grain 
placement options, also the average number of hops for each 
service is reduced by roughly 35%, confirming the ability 
of the proposed algorithm to reduce the impact of network 
delays. Being the normalized number of hops close to 0.5, 
on average, there is one hop every two micro-services. 

Figure 7 shows the trend of the average response time 
when the service chains’ length increases. The poor load 
balancing observed for low values of Lc causes an increase 
of the average response time, as local near-overload condi-
tion may arise on some fog nodes. The purple aura pro-
vides a measure of the variance of response times within 
each problem (dark purple) and between different prob-
lems (light purple). Due to the coarse-grained placement 
when Lc < 5 , it is possible to observe a response time up 
to 30% higher than longer service chains and an increase 
of the variance of the samples by a factor of 4. It is worth 
to note that this behavior is due to problem becoming ill-
conditioned, due to the presence of micro-services that, 
alone, can bring a fog node to close to overload. Under 

these circumstances, the GA heuristic must cope with a set 
of viable solution that are limited and often quite sparse, 
thus hindering the ability to converge towards an optimal 
solution. 

Sensitivity to System Load

Figure 8 shows the trend of the load balancing and the net-
work delay as the overall infrastructure load � grows. For 
low values of load (e.g., � ≤ 0.2 ) the response time is mostly 
contributed by the network delays. For this reason, it is pos-
sible to observe a poor load balancing ( J ≤ 0.66 ), because 
the fog nodes, despite are unbalanced, are still far from an 
overload condition. At the same time, the average number 
of hops between two consecutive micro-services is low, 
meaning that the probability of incurring in a network delay 

Fig. 7   Response times vs. chain length Lc
Fig. 8   Load balancing and hops vs. load �

Fig. 9   Response times vs. load �
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is below 30%. As the load increases, the impact on load 
balancing becomes more evident, up to the case of � = 0.8 
when the load balancing is nearly perfect ( J > 0.99 ). Also, 
the probability of having two micro-services deployed in 
different nodes is close to 80%, which is 2.5× more than the 
low-load case. This result confirms that the GA algorithm 
can find solutions that cope correctly with the characteristics 
of the scenario considered in each experiment. 

Figure 9 depicts the response time of the service chains 
as the load grows. When the load is close to 0 (e.g., � = 0.1 ), 
the response time close to 10 ms, that is the sum of the 
service times for the service chains. The response time is 
nearly doubled for � = 0.5 and is quadrupled for � = 0.8 . The 
increase in the response time is driven by both the growth 
of the requests’ waiting time in the servers queues and by 
the higher network delay caused by the increased number 
of hops. Along with the growth of the response time, an 
increase in the response time variance can be observed. This 
reason is that when the load on the fog nodes is high, even a 
small unbalancing can determine a significant impact on the 
response time, thus justifying the 6× increase in the standard 
deviation of the response time as � grows from 0.1 to 0.8. 
As for the service chain length, this is a characteristic of the 
problem, that becomes ill-conditioned for high loads. 

Scalability Analysis

This section presents the results of the experiments to test 
the scalability of the algorithm as the number of fog nodes 
‖F‖ grows by 5× from 5 to 25 nodes. The number of service 
chains ‖C‖ is increased proportionally from 2 to 10, with 
each chain hosting 5 micro-services.

Figure  10 shows that, as the configuration space to 
explore widens, the genetic algorithm presents a steady 
growth in the execution time (green line with filled squares). 

This result can be explained by considering that the chromo-
some length corresponds to the number of micro-services to 
place. As the chromosome grows, the cost of most genetic 
operators (from the computation of the objective function to 
mutation and crossover) increases, thus causing the growth 
in the execution time that is nearly doubled as the problem 
size increases by 5× . Also, the larger the search space the 
less effective the genetic algorithm is in identifying the best 
solutions. This explains the growth of the response time 
(54%) as well as its standard deviation (more than 4× ), sug-
gesting that for extremely large problems the algorithm may 
provide lower quality solutions. 

A Realistic Case Study

To conclude the analysis, a final experimental scenario that 
is based on the set of realistic micro-services described in 
Sect. “Micro-service Characterization”. The analysis has 
two goals. The first is to demonstrate that even in a realistic 
scenario the model prediction is accurate. The second is to 
demonstrate that the solution found by the proposed heu-
ristic outperforms more naïve placement solutions Fig. 11.

In the considered scenario, three different clients produce 
data. The clients are represented by a set of cameras: CAM_
HI can take high-resolution videos, CAM_LO can operate 
only in low resolution and CAM_FIX can take only snap-
shots and cannot produce videos.

An infrastructure composed of three fog nodes is con-
sidered, two powerful processing elements (with an 8x 
speedup), that are F1 and F2 and a more ordinary edge 
node with no speedup that is F3.

As shows in Fig. 11, the micro-services are organized in 
three chains, each suitable to process the input of a client. 
Specifically, the service discovery is used to assign each 
data sample to the correct micro-service. To this aim, the 
service discovery step appears three times, one for each 
service depending on the type of expected output. This 
means that the original service discovery SDISC described 
in Sect. “Micro-service Characterization” is replicated as 
DIS_IM if the input is an image, DIS_VH for high-quality 
videos and DIS_VL for low-quality videos.

Figure 12 provides a comparison of the performance 
expected for the three micro-service chains for the place-
ment based on the Genetic Algorithm in Fig. 11a. It is worth 
to note that the model can predict rather faithfully the output 
of the simulation. 

The comparison concerns the performance of the Genetic 
algorithm placement (in Fig. 11a) compared to a naive alter-
native (Fig. 11b). To achieve this result, a random place-
ment scheme is used. A purely random placement is not 
a viable option because it has no guarantee that the place-
ment is feasible (that is no overload occurs on the nodes). 
In the considered example, this means that the two most 

Fig. 10   Response and execution time vs. ‖F‖
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computationally-demanding services must be placed on the 
fog nodes with more computational capacity F1 and F2.

However, the comparison in Fig. 13 shows that the 
placement of the much faster discovery service on the 
same node performing heavy computations has a detri-
mental effect, due to the high waiting time of the jobs 
even for this lightweight service. furthermore, it is pos-
sible to observe how a random placement determines a 

significant increase in the variance of the response times 
of the different service chains, due to the lack of a cen-
tralized vision that aims to provide a global benefit for 
the whole system.

This simple example demonstrates how the proposed 
model and the resulting optimization problem can be applied 
to achieve a significant reduction of the response time expe-
rienced by the users of the system.

Fig. 11   Placement of realistic 
micro-service chain

Fig. 12   Service chain response times Fig. 13   Response times of GA and random service placement
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Conclusions

The infrastructures of fog computing have a great poten-
tial to support modern applications consisting of chains 
of micro-services. However, the heterogeneous and 
highly distributed nature of such infrastructures makes 
the resources allocation and management a challenging 
issue. This paper presents a novel optimization model for 
the placement of microservice-based applications over a 
heterogeneous infrastructure of geographically-distributed 
fog nodes. To support the model validation, real prototypi-
cal implementation of micro-services of a typical smart 
city scenario were benchmarked in the aim of building 
application profiles to be fed to the optimization model. 
Finally, to prove the viability of the ideas discussed in 
the paper, the GA-based placement algorithm is compared 
to a baseline approach enforcing a random assignment of 
resources to microservices. Specifically, the paper con-
tributes to the literature with an analytical framework to 
model the service placement problem, a simulation-driven 
validation of the model, an heuristic based on genetic algo-
rithms and its evaluation to assess the suitability of the 
solution under different scenarios, the use of real proto-
types of micro-services. Experiments proved the effective-
ness of the proposed solution, with the simulation results 
within 10% of the theoretical model and the optimization 
heuristic clearly outperforming naïve solutions. Moreo-
ver, a sensitivity analysis was conducted to assess the per-
formance with respect to a varying length of the service 
chains, systems load and size of the fog architecture. In 
the future, a small-scaled testbed will be developed in the 
aim of assessing the quality of the micro-service place-
ment schemes produced by the algorithm in a real fog-like 
execution environment.
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