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Abstract
The present study used time-series Landsat-8 and 9 satellite datasets of June to February 2016–2017 and 2021–2022 to clas-
sify and detect the changes in vegetation covers. The studied Akole region of Ahmednagar district of Maharashtra, India, is 
vulnerable to drought conditions in a diverse environment. The spectral features based on the Normalized Difference Vegeta-
tion Index (NDVI) were calculated. Machine learning algorithms such as k-means clustering and Iterative Self-Organizing 
Data Analysis (ISODATA) clustering have also been applied to time-series NDVI images to classify the vegetation cover 
and detect the changes in vegetation. Furthermore, to identify different drought clusters. The results of the NDVI values 
ranged from 0 0.25 to 0.99 and 0.31 to 0.75 for 2016–2017 and 2021–2022, respectively. The classification results show that 
most of the areas were occupied by healthy vegetation in 2021–2022. In 2016–2017, the vegetations were less due to low 
rainfall. Regional planners and decision makers can use the present study to identify vegetation, assess and monitor drought 
severity, and predict future scenarios.

Keywords Landsat-9 data · NDVI · Vegetation cover classification · K-means clustering · ISODATA clustering

Introduction

Agricultural drought is becoming a natural hazard due to the 
unavailability of regular rainfall. Drought produces changes 
in the external appearance of vegetation. Therefore, it is nec-
essary to monitor the agricultural drought. However, satel-
lite sensors and vegetation indices can detect and monitor 

agricultural drought conditions in near real-time. Recently, 
remote sensing datasets have played an essential role in iden-
tifying and tracking drought episodes. The remote sensing 
data provides real-time vegetation status information over 
the sizeable spatial coverage [1, 2].

Consequently, the NDVI-based spectral feature extraction 
method has been recommended by the World Meteorologi-
cal Organization (WMO) to identify and monitor vegeta-
tion health [3]. Therefore, vegetation classification is gaining 
global relevance and has a considerable role in the global 
frame of change.

Several methodologies have been applied for vegetation 
cover classification and are utilized all over the globe. For 
instance, the vegetation cover classifications have been done 
by [4] to detect the changes at the ecosystem level based on 
a temporal scale (seasonal, gradual, and abrupt changes). 
The factors used for change detection were seasonal eco-
logical constraints, inter-annual environment inconsistency, 
land management, and disturbances (deforestation, fires, and 
floods). The study [5] used Landsat satellite images and the 
NDVI index to detect vegetation changes. The simulation 
findings disclose that the NDVI is exceptionally effective in 
recognizing surface features of the viewable area, which is 
tremendously valuable in decision-making.

This article is part of the topical collection “Advances in Applied 
Image Processing and Pattern Recognition” guest edited by K C 
Santosh.
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Similarly, the NDVI and K-means clustering has been 
used in the study [6, 7] for vegetation cover classifica-
tion and agricultural change detection. Conversely, the 
web-GIS-based system was developed for vegetation sta-
tus monitoring using Landsat-8 and NDVI methods [8]. 
However, supervised-based approaches like support vec-
tor machine [9], K-Nearest Neighbor [10], and random 
forests [2] have also been used for the classification. The 
deep learning-based convolutional neural network (CNN) 
method has recently been popular due to its high accuracy. 
Since CNN are not interpretable enough to describe image 
semantics [11]. Therefore, we employ unsupervised meth-
ods for detecting vegetation classes in this paper.

On the other hand, many researchers have demonstrated 
vegetation analysis using various datasets and methods. 
The previous studies either use Landsat-8 or earlier ver-
sions with NDVI and k-means clustering or other methods. 
However, the governments use the recent Landsat-9 satel-
lite data for multiple applications like agriculture, plan-
ning, natural resource data collection, homeland security, 
and other purposes [12]. The data driven from the Landsat 
supports government applications and civilian services, 
military operations, and a few industries are also using 
the data recently to collect multiple resources and plan-
ning details. It has a wide application in the education 
field throughout the world. As per the current evaluation, 
Landsat can gather up to 750 scenes daily, and Landsat 
can collect 1500 HQ images of the earth in a day, which 
repeats every 8 days on average [13]. The resolution of 
Landsat-9 is the same as Landsat-8. It has been designed 
using four visible spectral bands. The spatial resolution of 
visual, near-infrared, shortwave and cirrus spectral bands 
are 30 m, the panchromatic band is 15 m, and the thermal 
bands are 100 m [14].

However, the use of Landsat-9 time-series datasets was 
less in earlier studies. Therefore, the present study proposes 
vegetation cover classification and seasonal change detection 
using Landsat-9 and Landsat-8 data. The primary objectives 
were (1) to use Landsat-8 and 9 time-series datasets, (2) 
to extract the spectral vegetation feature using the NDVI 
method, (3) to implement machine learning algorithms 
such as k-means clustering and ISODATA on NDVI result-
ing from images, (4) to identify and group vegetation cover 
classes, and (5) to detect the vegetation health and seasonal 
change in vegetation cover.

The details of the present study are presented in four sec-
tions. “Introduction” offers the related studies and current 
improvements of the study. “Introduction” also gives the pre-
vious studies’ limitations and the recent research objectives. 
The studied region used datasets, and implemented meth-
odology is provided in “Materials and Methods”. Results 
are discussed in “Results and Discussions”. The last section 
concludes the present study.

Materials and Methods

Study Area

The present study has been conducted in the Akole Tehsil 
of Ahmednagar district of Maharashtra, India. It is located 
at 19° 32′ 32.06″ North Latitude and 74° 0′ 19.88″ East 
Longitude [15]. The Ahmednagar district is surrounded by 
Beed district to the East, Thane district to the North-West, 
Osmanabad, Solapur to the South, Pune district to the West, 
and Aurangabad district to the North-East and Nashik dis-
trict to the North. The district covers an area of 17,412  km2. 
This region is generally drought-prone due to an annual 
rainfall of 568.7 mm, less than an average of 750 mm. Agri-
cultural operations mainly depend on the South-West mon-
soon, but this region has less rainfall. Over recent years, the 
intensity and frequency have increased. There has been a 
big drying trend over many parts of the region [15]. Figure 1 
depicts the considered study area for the present study.

The Used Datasets

The present study used time-series Landsat-8 and Landsat-9 
OLI/TIRS satellite temporal datasets corresponding to June 
2016 to February 2017 (total 9 month-images) and June 
2021 to February 2022 (total 9 month-images) to classify 
and detect the changes in agricultural regions. The complete 
satellite images were eighteen for the Kharif and Rabi sea-
sons for 2016 and 2021 (Table 1). The Landsat datasets were 
acquired from the USGS official website [16]. Landsat data-
sets are equipped with two science instruments: the OLI-2 
(Operational Land Imager 2) and the TIRS-2 (Thermal Infra-
red Sensor 2), which have a moderate spatial resolution of 
15 m, 30 m, or 100 m, depending on the spectral band. The 
OLI-2 will give information for nine spectral bands with 
a higher ground sampling distance (GSD), both in-track 
and cross-track, of 30 m for all bands, excluding the pan-
chromatic band, which has a 15 m GSD. The TIRS-2 offers 
two spectral bands with 100 m for each band [17]. Table 1 
depicts the year-wise information of Landsat 8 and 9 satellite 
datasets used in the present study.

Though infrared images are also used in many applica-
tions like pedestrian detection [18], night vision, and sur-
veillance. On the other hand, the meteorological data for 
the academic years 2016–2017 and 2021–2022 were also 
used for validating our results. The monthly rainfall sta-
tistics (figure) for the similar period of satellite overpass 
for the year 2026–2017 and 2021–2022 were downloaded 
from the “Rainfall Recording and Analysis, Department of 
Agriculture Maharashtra State” department (https:// mahar 
ain. mahar ashtra. gov. in/).

https://maharain.maharashtra.gov.in/
https://maharain.maharashtra.gov.in/
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The Methodology

The implemented methodology is demonstrated in Fig. 2, 
consisting of Landsat data acquisition, pre-processing, 
NDVI-based spectral feature extraction, and unsuper-
vised classification. Additionally, we used rainfall statis-
tics (Fig. 8) to input the NDVI calculation and validate 

the results. The detailed methodology is explained in this 
section. The acquired datasets were input into the Arc-
Map to create a standard false-color composite image for 
better visual interpretation. Figure 3 depicts the standard 
color composite image of the study region generated from 
Landsat images.

Fig. 1  The geolocation of the study area
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The Pre‑processing

The geometric, radiometric, and atmospheric corrections 
[19] are required for pre-processing Landsat images. Radi-
ometric corrections consist of correcting sensor anomalies 
and unwanted or atmospheric noise and converting the 
data to correctly represent the reflected or emitted radia-
tion detected by the sensor. In contrast, converting images 
into geographic coordinates is known as geometric correc-
tion [20]. However, the first seven spectral bands of Land-
sat 8–9 data are corrected images (Level 2) by the USGS 
Earth Explorer. Thus, no further pre-processing is required. 
It should be noted that the specific processing levels of the 
images are currently provided as “ready products,” which 
means that these datasets can be directly retrieved from earth 
data engines like the USGS Earth Explorer platform with-
out any pre-processing [21]. Nevertheless, the ATCOR-3 
method has been used by several researchers [20] for 

atmospheric correction. The present study uses corrected 
images; thus, no further pre-processing is required for the 
acquired satellite imagery.

NDVI‑Based Spectral Feature Extraction

The NDVI is used globally to assist in fire zone forecast-
ing, monitoring the drought regions, agriculture production 
forecasting, and many more applications related to the agri-
culture sector [6, 22, 23]. It is widely used in vegetation 
monitoring as it compensates for lighting, exposures, and 
other factors. Equation 1 [22, 24] has been used to calculate 
and examine the vegetation change:

where NIR is the reflection in the near-infrared spectrum 
and RED is the reflection in the red range of the spectrum.

NDVI computations produce a number ranging from neg-
ative one (− 1) to plus one (+ 1) for any given pixel. Several 
zero implies that vegetation is unavailable, whereas a value 
of about one, i.e., 0.8–0.9, indicates that green foliage is 
primarily present. Empty sand, rocks, and snow areas have 
values less than or equal to 0.1. Meadows and shrubs often 
have moderate values, such as 0.2 to 0.3. Tropical woods 
and temperature are represented by values 0.6 to 0.8. NDVI 
is susceptible to factors such as soil backdrop, especially in 
sparse vegetation [25].

We have used ArcGIS software to compute the NDVI 
using bands 4 and 5 as input, as they resemble red and near-
infrared images. The NDVI algorithm has created 7 clusters 
used in classification to observe the change detection for the 

(1)NDVI =
NIR − RED

NIR + RED

Table 1  Year-wise satellite data information

Sr. no. Months The year 2016–2017 The year 2021–2022

1 June Landsat-8-13/06/2016 Landsat-8-11/06/2021
2 July Landsat-8-31/07/2016 Landsat-8-13/07/2021
3 August Landsat-8-31/08/2016 Landsat-8-14/08/2021
4 September Landsat-8-01/09/2016 Landsat-8-15/09/2021
5 October Landsat-8-31/10/2016 Landsat-8-17/10/2021
6 November Landsat-8-30/11/2016 Landsat-8-02/11/2021
7 December Landsat-8-31/12/2016 Landsat-9-20/12/2021
8 January Landsat-8-31/01/2017 Landsat-9-29/01/2022
9 February Landsat-8-28/02/2017 Landsat-9-22/02/2022

Fig. 2  The adopted method-
ology for vegetation change 
detection
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time-series profile of the studied region. Pixels with high 
NDVI values suggest high vegetation or chlorophyll in the 
area. Whereas low NDVI levels usually indicate a lack of 
vegetation. Furthermore, negative NDVI readings suggest 
that the substance is categorized as water.

Unsupervised Classification

The present study uses an unsupervised-based machine 
learning classification approach that does not require previ-
ous knowledge. It obtains the values from pixels and assigns 
spectral classes to them. Clusters with comparable spectral 
qualities are grouped. The unsupervised approach is based 
on clustering algorithms and discrimination space selection. 
In this study, we have used the K-means clustering and ISO-
DATA method for the classification. The k-means clustering 
method creates a cluster of images with comparable spectral 
values. It uses iterations to generate sets and begins intra-
groups by determining the slightest squared distance among 
data values and the cluster’s centroid [26–28].

Alternatively, the ISODATA approach uses the minimal 
distance center method based on item meta-clustering. This 
technique chooses the preliminary class grouping center 

based on particular criteria and then calculates the standard 
deviation of each cluster with their distances [29, 30].

In the present study, the K-means clustering was imple-
mented using QGIS software, and the ISODATA method 
was implemented using ArcGIS software. The ISODATA 
and k-means clustering algorithms have automatically iden-
tified clusters in images and produced a classified image by 
considering the NDVI image as an input.

Results and Discussions

Spectral Feature Extraction

Satellite imagery acquired from the Kharif and Rabi 
seasons from year June 2016 to February 2017 and June 
2021 to February 2022 (Table 1) is considered for veg-
etation classification for the studied region. The provider 
has already pre-processed the satellite images. The pre-
processed images were used in the NDVI calculation. The 
NDVI has been frequently utilized to investigate the rela-
tionship between spectral inconsistency and variations in 

Fig. 3  Standard false-color 
composite data of the study area
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the pace of vegetation growth [22]. It can also figure out 
how much green vegetation is produced and spot vegeta-
tion changes.

This study calculates the NDVI from time-series data for 
June 2016 to February 2017 and June 2021 to February 2022 
using 4 and 5 bands of Landsat images. The spatial distri-
bution of the NDVI is divided into seven classes shown in 
Figs. 6 and 7 for 2016–2017 and 2021–2022, respectively. 
The results are well related to the land cover types spread 
over the studied region. The NDVI-derived classes and the 
NDVI scales are given in Tables 2 and 3 for 2016–2017 and 
2021–2022, respectively. The water body class has ranged 
from − 0.07 to 0.09 and − 0.07 to 0.09 for 2016–2017 and 
2021–2022, respectively. However, all vegetation classes 
ranged from 0.26 to 0.99. The shrubs and grasslands were 
detected in rowan, heathland, alder, wetland, and other simi-
lar types of grasses. Dense vegetation was located in the 
forest resigns. 

It was seen from Tables 2 and 3 and Figs. 4 and 5 that 
satellite images had produced results for dense vegetation 
between 0.25 to 0.99 and 0.31 to 0.75 for 2016–2017 and 
2021–2022, respectively. The peak of NDVI for dense veg-
etation was highest in July, October, November, December 
and January 2016–2017. However, the values for sparse and 
low vegetation ranged between 0.18 to 0.47 for 2016–2017. 
On the other hand, the NDVI values were good for sparse 
and low vegetation in 2021–2022 (Tables 2 and 3 and Figs. 4 
and 5). The lowest values are seen on more minor vegetated 
soils, likely because soil reflection is significant, producing 
common NIR band values and high red band values, result-
ing in common NDVI values.

Figure 4 shows that the dense and sparse vegetation was 
more (NDVI = 0.99 and 0.47) in 2016–2017. However, the 
highest dense vegetation was also observed in July, August, 
and February 2021–2022. Furthermore, the chosen location 
is covered with multiple hills layered with dense trees, indi-
cating dense vegetation. For December and February, the 
accessible land and a fraction of land parcels with vegeta-
tive cover are replaced by evolved concrete structures more 
concentrated in the city zone. Hence, there was a noteworthy 
reduction in the vegetation. The green vegetation cover was 
increased in both the years for the Kharif season compared 
to Rabi due to a change in significant environment.

We classified the vegetation or crop covers based on 
NDVI values and identified the vegetation changes with the 
NDVI profile. The NDVI has depicted the amount of veg-
etation [31]. Many researchers have reported using NDVI 
for crop cover evaluation, monitoring various droughts [2], 
and assessing agricultural drought at the national and inter-
national levels. The NDVI is a straightforward and efficient 
measuring parameter used to show vegetation growth and 
plant cover on the earth’s surface [5]. The ability to compare 
images from multiple dates for different plots on different Ta
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scenes is a crucial step in applying satellite data to monitor 
change [32].

The NDVI maps of 2016–2017 and 2021–2022 (Figs. 6 
and 7, respectively) are computed to classify and analyze 
the studied region’s seasonal and spatial vegetation changes. 
Healthy vegetation was observed in July, December and Feb-
ruary 2016–2017 (Fig. 6). However, healthy vegetation was 
observed in the Rabi season (Fig. 7) of the average year 
2021–2022 due to sufficient rainfall in Kharif and Rabi 
seasons (Fig. 8). Areas which are colored blue are water 
surfaces, and they correspond to negative values. All the 
green shades in the NDVI maps are vegetations and cor-
respond to positive values between 0.2 and 1. The healthy, 
dense vegetation canopy is above 0.5 because good rainfall 
is necessary for Kharif crops. In 2016–2017 and 2021–2022, 
the crops’ yield was influenced by the timing and volume 
of rain. The suitable time to plant Rabi crops is in the mid-
dle of November, ideally after the monsoon season. Either 
irrigation is used, or rainfall that has seeped into the ground 
is used to grow the crops. Changes in vegetation classes 
have occurred in July, October, November, December and 
January of 2016–2017 and in July, August and February 
2021–2022. However, the vegetation remains green (high 
NDVI values) due to water availability in the soil after rain-
fall. While seeded in the winter, Rabi crops are harvested in 
the spring. The green vegetation tends to vanish for the rest 
of the months, and the NDVI values drop when soil water 
availability falls for any environmental reason (stress from 
water shortage). The relationship between spectral variabil-
ity and changes in vegetation growth rate has been exten-
sively studied using the NDVI.

Image Classification

The seven classes NDVI map (Figs. 6 and 7) was given as an 
input to the classification step. The visual interpretation of 
seven NDVI classes has been made to reconstruct the pos-
sible deficits. Because the single peak of NDVI could not be 
detected, thus, visual performance has been constructed of 
seven classes of NDVI. On the other hand, the NDVI-gen-
erated maps (Figs. 6 and 7) consist of different land patterns 
due to the region's complexity and the low spatial resolution 
of data [33].

Figures 9, 10, 11, and 12 show that the spectral reflec-
tance qualities of various objects on the earth's surface are 
reflected in the high degree of distinguishability in classes 
of land cover types employed in a landscape setting. The 
resulting NDVI images for Kharif and Rabi seasons were 
input to the ISODATA and k-means clustering methods. The 
computation of the ISODATA method has been done in Arc-
GIS software. The sample interval set to 10 indicates that 
one cell is used in the cluster calculations instead of a block 
of cells. Conversely, the k-means clustering method has been Ta
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implemented in QGIS software. The Hill climbing method 
has been used to group the classes. The land cover types 
were clustered into seven categories, as indicated in Figs. 9, 
10, 11, and 12. It is observed in Figs. 9, 10, 11, and 12 
that the methods used delimited different extensions of the 
coverage area for vegetation and non-vegetations. The spa-
tial variations in vegetation classes were observed for July, 
September, December, and February 2016–2017 (Figs. 9 
and 11). The vegetation cover has changed during the study 
tenure. The obtained results were more precise, objective, 
and independent in analyzing vegetation cover types than 
supervised classification methods. The complex and het-
erogeneous landscapes were classified accurately using 

k-means clustering and the ISODATA method implemented 
in advanced ArcGIS and QGIS software versions.

Tables 4 and 5 and Figs. 13 and 14 highlight the spa-
tial distributions of the land cover types derived from ISO-
DATA and k-means clustering methods. Both the clustering 
methods have resulted from similar values for both years. 
Therefore, we calculated average values for 2016–2017 
and 2021–2022 for both the clustering methods and added 
Tables 4 and 5. It is seen from Tables 4 and 5 and Figs. 13 
and 14 that there is a minor change in water bodies degraded 
in January and February 2017 and 2022. The vegetation 
classes increased slightly in the Rabi season of 2021–2022. 
At the same time, water bodies increased in February 2022 

Fig. 4  The comparison of 
NDVI values for June 2016 to 
February 2017

Fig. 5  The comparison of 
NDVI values for June 2021 to 
February 2022
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Fig. 6  NDVI profiles of a June 2016, b July 2016, c August 2016, d September 2016, e October 2016, f November 2016, g December 2016, h 
January 2017, and i February 2017
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Fig. 7  NDVI profiles of a June 2021, b July 2021, c August 2021, d September 2021, e October 2021, f November 2021, g December 2021, h 
January 2022, and i February 2022
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compared to December 2021 and January 2022. The vegeta-
tion classes were raised in the Rabi season of 2021–2022 
due to sufficient rainfall in Kharif (Fig. 14). The studied 
area is generally drought-prone due to low annual rainfall 
in 2016–2017 (Fig. 13). However, wet drought conditions 
occurred in December 2021, January, and February 2022 
due to rain. Hence, vegetations were more. Nevertheless, 
assessing and monitoring the agriculture drought is critical 
for district administration and mitigation strategy. Therefore, 
in the current investigation, we have done vegetation cover 
classification and detected spatial variations in agricultural 
sectors, which can be used in assessing agrarian droughts.

The vegetation and other classes of 2016–2022 showed 
that there had been remarkable changes in vegetation during 
the study period. The area around the central water bodies 
and streams in the watershed has changed from other land 
covers to agricultural land cover due to this increasing trend 
in land cover/land use change. It is noted that the built-up or 
settled areas are primarily surrounded by agricultural land, 
particularly in the catchment area.

According to results from 2021–2022 (Fig. 14), water 
features, barren regions, shrubs, and grasslands were 
ranked highest. Built-up areas with sparse, low, and 
dense vegetation comprised the remainder of the land use 
for 2016–2017 (Fig. 13). However, the top three catego-
ries were water bodies, built-up areas, and arid lands in 
2016–2017 due to misclassification. Shrub and grassland, 

low, sparse, and dense vegetation, comprised the rest of 
the land uses.

It is noted that the ISODATA and k-means clustering 
methods provided similar results when observing the spa-
tial distribution values for all the classes. The results are 
satisfactory and confirmed via field observations, rainfall 
statistics, Google maps, and Google Earth.

Conclusions

The NDVI has provided satisfactory output to access 
vegetation changes with unsupervised-based classifica-
tion methods. The retrieved values of the NDVI maps 
were used to determine influential variables on vegetation 
cover classes. In this study, the Landsat-8 and 9 datasets 
have been used to analyze the changes in the vegetation 
cover for June to February 2016–2017 and 2021–2022. 
The study’s findings indicate that the vegetation areas 
increased in 2021–2022. In contrast, the vegetation was 
diminished in 2016–2017 due to low rainfall. It is con-
cluded that the time-series Landsat datasets could be 
effectively used in vegetation cover classification and 
change detection. The present study emphasizes the 
importance of maintaining harmony between permeable 
and impermeable zones in the planning and development 
of the studied region.

Fig. 8  Monthly average rainfall 
for the study area during 
2016–2017 and 2021–2022
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Fig. 9  Classified output based on the ISODATA method for a June 2016, b July 2016, c August 2016, d September 2016, e October 2016, f 
November 2016, g December 2016, h January 2017, and i February 2017
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Fig. 10  Classified output based on ISODATA method for a June 2021, b July 2021, c August 2021, d September 2021, e October 2021, f 
November 2021, g December 2021, h January 2022, and i February 2022
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Fig. 11  Classified output based on the k-means clustering method for a June 2016, b July 2016, c August 2016, d September 2016, e October 
2016, f November 2016, g December 2016, h January 2017, and i February 2017
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Fig. 12  Classified output based on the k-means clustering method for a June 2021, b July 2021, c August 2021, d September 2021, e October 
2021, f November 2021, g December 2021, h January 2022, and i February 2022
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Table 4  Spatial distributions of land cover classification for 2016–2017

Classes Jun-16 Jul-16 Aug-16 Sep-16 Oct-16 Nov-16 Dec-16 Jan-17 Feb-17

Water 399,574.44 460,288.62 209,107.62 926,320.23 457,050.06 2,034,955.1 519,178.41 102,442.14 101,736.36
Built-up area 561,697.38 203,734.44 1,942,281.72 902,224.26 317,213.37 1,253,575.7 232,995.51 296,332.92 256,570.02
Barren land 1,003,270.86 364,719.42 612,862.29 692,914.59 503,954.91 1,253,575.7 428,352.12 821,066.94 355,335.57
Shrub and grass-

land
781,541.1 618,222.6 354,662.55 478,880.28 728,017.11 127,506.42 601,238.61 1,105,556.9 390,646.35

Low vegetation 519,133.86 820,724.49 240,765.84 303,891.84 862,821.81 181,258.47 676,639.71 829,653.12 823,664.52
Sparse vegetation 275,056.56 734,152.95 238,348.71 222,550.02 579,496.86 54,222.57 681,783.03 392,152.23 1,092,617.64
Dense vegetation 104,395.59 460,849.86 48,149.55 118,078.47 204,482.43 54,222.57 503,347.68 104,375.52 634,515.84

Table 5  Spatial distributions of land cover classification for 2021–2022

Classes Jun-21 Jul-21 Aug-21 Sep-21 Oct-21 Nov-21 Dec-21 Jan-22 Feb-22

Water 1,236,348.81 734,185.8 1,104,726.87 991,453.77 157,327.38 92,737.8 88,568.01 88,394.31 81,233.1
Built-up area 649,399.95 771,877.44 805,681.8 775,621.98 422,243.19 473,783.58 580,189.68 681,159.9 692,020.9
Barren land 439,570.08 594,063.9 556,806.24 613,106.19 670,733.37 683,690.94 780,273.54 885,831.8 887,078.7
Shrub and grassland 437,818.86 562,119.57 376,887.06 446,185.08 691,056.99 736,409.43 847,883.79 838,058 812,483.1
Low vegetation 440,045.64 508,007.88 335,964.06 380,792.97 654,210.72 740,379.06 714,275.28 634,231.4 637,953.5
Sparse vegetation 287,555.4 326,469.78 300,270.6 278,061.48 637,568.28 605,853.36 471,629.25 372,657.6 366,896.2
Dense vegetation 154,471.32 147,489.57 165,000.06 160,333.47 411,686.82 311,289.57 162,348.48 157,275.5 166,599.8

Fig. 13  Class-wise area distri-
butions of vegetation classes for 
2016–2017
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