
Vol.:(0123456789)

SN Computer Science (2023) 4:265
https://doi.org/10.1007/s42979-022-01629-5

SN Computer Science

ORIGINAL RESEARCH

Weighted Burrows–Wheeler Compression

Aharon Fruchtman1 · Yoav Gross1 · Shmuel T. Klein2 · Dana Shapira1

Received: 12 September 2022 / Accepted: 20 December 2022 / Published online: 17 March 2023
© The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2023

Abstract
A weight-based dynamic compression method has recently been proposed, which is especially suitable for the encoding of
files with locally skewed distributions. Its main idea is to assign larger weights to closer to be encoded symbols by means
of an increasing weight function, rather than considering each position in the text evenly. A well known transformation that
tends to convert input files into files with a more skewed distribution is the Burrows–Wheeler Transform (BWT). This paper
proposes to apply the weighted approach on Burrows–Wheeler transformed files. While it is shown that the compression
performance is not altered for static and adaptive arithmetic coding by any permutation of the symbols, hence in particular
for BWT, empirical evidence of the efficiency of the combination of BWT with the weighted approach is provided.

Keywords Adaptive compression · Huffman code · Arithmetic code · Burrows-Wheeler Transform

Introduction

The Burrows–Wheeler Transform (BWT) [1] is the basis of
the popular compression method bzip2, yielding, on many
types of possible input files, better compression than gzip
and other competitors. As a matter of fact, BWT itself is
not a compression method: its output is a permutation of its
input, which has obviously the same size. The usefulness of
the transformation is that it has a tendency to reorganize the
data into what seems to be a more coherent form, group-
ing many, though not all, identical characters together. The
output is therefore usually more compressible, by applying
as simple methods as run-length coding and move-to-front.

The combination of different methods to be applied one after
the other, an action known as cascading, is not new to data
compression. It can, for example, be found in gzip, which first
parses the input using LZ77 [2], and then applies Huffman cod-
ing [3] to the parsed elements. It therefore seems natural to try
to apply BWT in a pre-processing stage, and then compress the
transformed string by means of more sophisticated compression
schemes, as done, e.g., in bzip2. This strategy fails, however,
for static or dynamic arithmetic coding as shown in the fol-
lowing sections. An additional contribution of this paper is to
give empirical evidence that cascading BWT with the recently
developed weighted compression schemes implies significant
savings. A first version of this work has appeared in [4].

Given a text T of length n, occupying O(n∕ log n) machine
words, the construction of the BWT algorithm proposed
by Hon et al. [5] runs in linear time and O(n∕ log n) space.
Recently, a sub-linear running time for sufficiently small
alphabets has been proposed by Kempa and Kociumaka [6],
in which the BWT is constructed in O(n∕

√
log n) time and

O(n∕ log n) space.
There are a number of other reversible transformations

that are suitable to be used after BWT instead of Move To
Front (MTF) of Bentley et al. [7, 8], like the Inversion Fre-
quencies technique, introduced by Arnavut and Magliveras
[9], or Distance Coding proposed by Edgar Binder [10].
Gagie and Mansini [11] analyze the efficiency of MTF,
Distance Coding and Inversion Frequencies after BWT and
provide simple variants of these techniques that achieve the

This article is part of the topical collection “String Processing and
Combinatorial Algorithms guest edited by Simone Faro.

 * Dana Shapira
 shapird@g.ariel.ac.il

 Aharon Fruchtman
 aralef@gmail.com

 Yoav Gross
 yodgimmel@gmail.com

 Shmuel T. Klein
 tomi@cs.biu.ac.il

1 Department of Computer Science, Ariel University, Ramat
HaGolan st. 65, 40700 Ariel, Israel

2 Department of Computer Science, Bar Ilan University,
52900 Ramat-Gan, Israel

http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-022-01629-5&domain=pdf
http://orcid.org/0000-0002-2320-9064

 SN Computer Science (2023) 4:265265 Page 2 of 12

SN Computer Science

entropy bound. Their analysis strongly relies on the fact that
the output of all the involved techniques is composed of
integers, which is not necessarily the case for the output of
the weighted technique, to be shown below.

A family of dynamic compression algorithms, named
weighted coding, has recently been proposed [12], which
is especially suitable for the encoding of files with locally
skewed distributions. The main idea of the weighted approach
is to assign larger weights to closer to be encoded symbols by
means of an increasing weight function, rather than consider-
ing each position in the text evenly, similarly to the weights
assigned in the structured arithmetic coding of Fenwick [13].

Traditional dynamic algorithms use the distribution of the
symbols in the already processed portion of the input file as
an estimate for the distribution of the elements still to come
later in the text. However, the assumption that the past is a
good approximation for the future, is not necessarily true.
A Forward-looking dynamic algorithm, using the true dis-
tribution of the remaining portion of the file, was suggested
in [14]. In this method the frequencies of the symbols in
the entire file are prepended to the compressed file. In the
encoding process, these frequencies are gradually updated
to reflect the number of occurrences in the remaining part of
the file by decrementing the frequency of the character that is
currently being processed. A hybrid method, combining both
traditional and forward-looking approaches, is proposed in
[15]: in this method the frequencies for all characters are not
transmitted at the beginning of the file but rather progres-
sively, each time a new character is encountered.

Pushing this approach even further, a family of Forward
weighted coding schemes is proposed in [16], in which the
encoding is based on the distribution derived from index-
dependent weights. That is, this weighted method assigns
higher priorities to positions that are closer to the currently
processed one in the encoding process, rather than treating
all positions in the input file equally. The weights assigned
to the positions are generated by a non increasing function
f, and the weight for each symbol � is the sum of the values
of f over all the positions where � occurs in the portion of
the input file that is still to be encoded.

Recently, a specific variant named the Backward Weighted
coding has been studied [12], which suggests a heuristic
based on a weighted distribution, calculated only over posi-
tions that have already been processed. The core advantage
of such a heuristic approach is a negligible header, relatively
to a costly header used in Forward Looking and all Forward
Weighted variants. Empirical tests have shown that backward
weighted techniques can improve beyond the lower bound
given by the entropy for static encoding. In [17], forward
weighted coding has been adapted to work with Cleary and
Witten’s Prediction by partial matching (PPM) [18].

The paper is constructed as follows. The section “Notation
and Discussion” reviews the notation and formulation needed

for the weighted encodings using a running example and dis-
cusses the cascading with BWT. The section “Properties”
proves some properties involving the combination of general
dynamic coding techniques and BWT. The section “Experi-
mental Results” presents empirical outcomes supporting the
compression efficiency of the proposed method even in practice.

Notation and Discussion

Weighted Coding

For the completeness of the paper, we include the definitions
given in [16], which formalize entropy based compression
methods.

Let T = T[1, n] be an input file of size n over an alphabet
Σ of size m. A weight W is defined based on the following
parameters,

• A non-negative function g, g ∶ [1, n] ⟶ IR+ , which
assigns a positive real number to integers, seen as an
assignment of a weight to each position i ∈ [1, n] within T;

• A symbol of the alphabet, � ∈ Σ;
• An interval [�, u] , 1 ≤ � ≤ u ≤ n for restricting the domain

of the function g.

The value of W(g, �,�, u) is defined for each symbol � , as the
sum of the values of the function g for all positions j in the
range [�, u] at which � occurs. Formally,

As a special case of weighted coding, Backward Weighted
considers all the positions that have already been processed,
that is, the interval is of the form [�, u] = [1, i − 1] , and

Traditional encoding methods, such as static and dynamic
Huffman or arithmetic coding [19], can be reformulated as
special instances of W for which g = 1 ≡ g(i) = 1 for all i.
For example, static compression refers to weights for which
W(g, �,�, u) = W(1, �, 1, n) is constant for all indices.

As a short illustration for the weighted approach, Table 1
brings a comparative chart for the encoding of a small example
of 50 characters:

shown in the second row of the table for several representa-
tive portions of T, just underneath the indices. The static
compression for T considers the probabilities 14

50
 for a and

W(g, �,�, u) =
∑

{�≤j≤u ∣ T[j]=�}

g(j).

W(g, �, 1, i − 1) =
∑

{1≤j≤i−1 ∣ T[j]=�}

g(j).

T = x1 ⋯ x50 = (��)7(��)11(��)7,

SN Computer Science (2023) 4:265 Page 3 of 12 265

SN Computer Science

Ta
bl

e
1

 C
od

in
g

ex
am

pl
e

fo
r T

=
(�
�
)�
(�
�
)�

�
(�
�
)�

i
1

2
3

4
⋯

13
14

15
16

⋯
35

36
37

38
⋯

49
50

av
g

T
a

t
a

t
⋯

a
t

c
g

⋯
c

g
a

t
⋯

a
t

st
at

ic
W

14
14

14
14

.
14

14
11

11
⋯

11
11

14
14

⋯
14

14
To

tIn
dx

50
50

50
50

.
50

50
50

50
⋯

50
50

50
50

⋯
50

50
1.

99
0

IC
1.

84
1.

84
1.

84
1.

84
⋯

1.
84

1.
84

2.
18

2.
18

⋯
2.

18
2.

18
1.

84
1.

84
⋯

1.
84

1.
84

(+
0.

29
1)

b-
ad

p
In

dx
W

1
1

1
1

⋯
1

1
1

1
⋯

1
1

1
1

⋯
1

1
W

1
1

2
2

⋯
7

7
1

1
⋯

11
11

8
8

⋯
14

14
To

tIn
dx

4
5

6
7

⋯
16

17
18

19
⋯

38
39

40
41

⋯
52

53
2.

11
1

IC
2.

00
2.

32
1.

58
1.

81
⋯

1.
19

1.
28

4.
17

4.
25

⋯
1.

79
1.

83
2.

32
2.

36
⋯

1.
89

1.
92

f-
ad

p
In

dx
W

1
1

1
1

⋯
1

1
1

1
⋯

1
1

1
1

⋯
1

1
W

14
14

13
13

⋯
8

8
11

11
⋯

1
1

7
7

⋯
1

1
To

tIn
dx

50
49

48
47

⋯
38

37
36

35
⋯

16
15

14
13

⋯
2

1
1.

82
0

IC
1.

84
1.

81
1.

88
1.

85
⋯

2.
25

2.
21

1.
71

1.
67

⋯
4.

00
3.

91
1.

00
0.

89
⋯

1.
00

0.
00

(+
0.

29
1)

b-
2

In
dx

W
1

1
1

1
⋯

4
4

4
8

⋯
64

12
8

12
8

12
8

⋯
51

2
51

2
W

1
1

2
2

⋯
12

13
1

1
⋯

26
1

28
1

16
17

⋯
15

52
18

09
1.

98
1

To
tIn

dx
4

5
6

7
⋯

27
31

35
39

⋯
57

5
63

9
76

7
89

5
⋯

40
95

46
07

IC
2.

00
2.

32
1.

58
1.

81
⋯

1.
17

1.
25

5.
13

5.
29

⋯
1.

14
1.

19
5.

58
5.

72
⋯

1.
40

1.
35

b-
w

ei
gh

t
In

dx
W

1.
00

1.
15

1.
32

1.
52

⋯
5.

28
6.

06
6.

96
8.

00
⋯

11
1.

43
12

8.
00

14
7.

03
16

8.
90

⋯
77

6.
05

89
1.

44
W

1.
00

1.
00

2.
00

2.
15

⋯
14

.3
9

16
.3

8
1.

00
1.

00
⋯

32
7.

96
37

6.
58

19
.6

7
22

.4
4

⋯
19

88
.3

6
22

83
.8

8
1.

98
9

To
tIn

dx
4.

00
5.

00
6.

15
7.

47
⋯

32
.7

7
38

.0
5

44
.1

1
51

.0
8

⋯
74

6.
65

85
8.

08
98

6.
08

11
13

.1
1

⋯
52

16
.2

1
59

92
.2

6
IC

2.
00

2.
32

1.
62

1.
80

⋯
1.

19
1.

22
5.

46
5.

67
⋯

1.
19

1.
19

5.
65

5.
66

⋯
1.

39
1.

39

 SN Computer Science (2023) 4:265265 Page 4 of 12

SN Computer Science

t and 11
50

 for c and g. These probabilities can be calculated
from the two first rows corresponding to the static method
in Table 1, the first entitled W representing the weight of the
specific character, and the second entitled TotIndx represent-
ing the cumulative weights of all the characters. The ratio of
these weights can be considered as a probability pi , and the
corresponding Information content in bits, − log pi for each
position i, is shown in the line entitled by its abbreviation
IC. For static, the IC values are 1.84 for a and t and 2.18
for c and g. The last column of the table, headed avg, gives
the average of these IC values, which is in fact the entropy.
In a practical application, the entropy can be reached by
arithmetic coding and can be approached by Huffman cod-
ing. We concentrate in this paper only on arithmetic coding.

The classic adaptive coding, b-adp [20], is a specific
backward weight method in which g(i) = 1 for all i, and the
backward weights refer to all positions i with 1 ≤ i < n by:

which is simply the number of occurrences of the current
character � up to that point, i.e., in T[1, i − 1] . The details
appear in the second part of Table 1, headed b-adp. The line
entitled W refers now, at position i, to the specific weight of
the character � = T[i] up to the given column i of the table,
that is, the sum of the index weights IndxW for those indices
j < i at which the character � occurs, including the default
values that are set to 1 at initialization. For b-adp, as well as
for the following method f-adp, the values of IndxW are just
1 for every i. The cumulative W values for all the characters
� ∈ Σ are given in the row entitled TotIndx.

The symmetric counterpart of b-adp is the forward look-
ing method, f-adp, which, at each location i, considers the
positions yet to come [i, n] rather than those already pro-
cessed [1, i − 1] as the backward looking b-adp. That is,

For our running example, f-adp initializes the weights of
the characters a, t to 14 and c, g to 11. The counts are
then gradually decremented reflecting the remaining number
of occurrences for each � from position i to the end of T.
The header for f-adp describes the exact frequencies of the
involved characters, and its size is 0.291 for our example,
as for static.

A simple adaptive weighted coding, denoted by b-2, has
been proposed in [12]. It is inspired by Nelson and Gailly [21],
who rescale the frequencies in order to cope with hardware
constraints like the representation of the number of occur-
rences as 16-bit integers. b-2 divides all the frequencies at
the end of every block of k characters, for a given parameter

W(1, �, 1, i − 1) =
∑

{1≤j≤i−1 ∣ T[j]=�}

1,

W(1, �, i, n) =
∑

{i≤j≤n ∣ T[j]=�}

1.

k, regardless of computer hardware restrictions. That is, the
occurrences of characters at the beginning of the input file
contribute to W less than those closer to the current position.
Furthermore, all positions within the same block contribute
equally to W, and their contribution weight is twice as large
as the weight assigned to the indices in the preceding block.
Formally, the function g for b-2, denoted by g�-� , is defined as

so that for each pair of indices i and i + k , it maintains the
equation

The first line of the block headed b-2 shows the index
weight, IndxW, chosen here with parameter k = 5 . Starting
with 1, the value doubles after each block of 5 positions. The
other lines, entitled W, TotIndx and IC, are then defined as
above.

A refinement of b-2, named b-weight, is another special
weighted coding [12] inspired by the division by 2, but based
on the function

for a given parameter k. The function g�-������ still maintains
a fixed ratio of 2 between blocks but with a smooth hierarchy
between all indices, rather than sharp differences at block
boundaries. The ratio of 2 for indices that are k apart can
be seen by:

The index weight IndxW for the b-weight method consists of
real numbers rather than integers as above. The shown values
correspond to k = 5 , so that g�-������(i) = (

5
√
2)

i−1

= 1.149i−1 .
This yields an average codeword length of 1.989 bits per
symbol.

The weighted approach should be applied only on a text that
has skewed probability distributions in different portions of the
file: there is a price for adjusting the model in the transition
between regions of different distributions, and this overhead
gets negligible only when the text becomes long enough, or if
the difference between the distributions is sufficiently sharp as
in this short example.

g�-�(i) = 2
⌊ i−1

k
⌋
,

g�-�(i + k) = 2 g�-�(i).

g�-������(i) = (
k
√
2)

i−1

for i ≥ 1,

g�-������(i + k) = (
k
√
2)

i+k−1

= (
k
√
2)

k

⋅ (
k
√
2)

i−1

= 2 ⋅ g�-������(i).

SN Computer Science (2023) 4:265 Page 5 of 12 265

SN Computer Science

Cascading with BWT

One of the features of the BWT is that it has a tendency to
reorganize the text T, such that BWT(T) contains several runs
of repeated characters. In particular, for our running example

after applying the BWT, the transformed text is

even though in the original T, there is not a single pair of
identical adjacent characters. This tendency implies that the
local distributions seem more skewed, which is advanta-
geous to the weighted approach.

We applied the same 5 methods on ���(T) . A small
amendment is necessary because the transformed string
BWT(T) on its own is not reversible—it needs in addition
a pointer to a starting point, actually the index of the last
character of T within BWT(T), which requires log n bits, or
log n

n
 per symbol. We thus included this additional overhead

of log 50
50

= 0.113 bits in the header. Note that this overhead
is constant for all methods. On the other hand, the static
and the forward compression methods require information
about the distribution probabilities, which should be pre-
pended to the compressed file independently from applying
BWT or not. We use the lower bound approximation given
by the IC to express this information in this example. Yet,
for our experiments, we encoded the meta data information
by means of the universal Elias [22] �-code.

The comparison of the final compression results, before
and after applying the BWT, is presented in Table 2 and
includes the parameter k that achieves the best performance
of b-2 and b-weight, the header size and the corresponding
total storage costs including the header in bits per symbol
(bps). The first three columns refer to the encoding vari-
ants on the original file T, and the last three columns are
the results on BWT(T). As can be seen, while the improve-
ment of the weighted methods with BWT is about 21%,
the net encoding, excluding the header size, is the same for

T = ��

= (��)
7
(��)

11
(��)

7
,

���(T) = ��

= �7��6�14�10��11,

static, b-adp and f-adp, regardless whether BWT has been
applied or not. The total bps results, including the header
size, are identical for b-adp and f-adp, because the gain in
the net compression by f-adp is exactly the same as the loss
incurred by the additional overhead due to the exact frequen-
cies. In fact, these are not coincidences, and in the following
section we show that the compression performance is pre-
served for static, b-adp and f-adp under any permutations
of the symbols of T, hence in particular for BWT. Moreover,
we show that the size of the compressed file including the
header for b-adp and f-adp is the same.

Figures 1 and 2 are visualizations of the differences
between the methods, plotting for each method the infor-
mation content as a function of the position i for our running
example. The net encoding results before (Fig. 1) and after
(Fig. 2) applying BWT are depicted in matching colors. We
see that the fluctuations are much more accentuated after
applying BWT. Figure 3 displays the cumulative values of
the same data. As can be seen from both figures, the back-
ward weighted methods are more sensitive to fluctuations in
the distribution, but adjust faster to changes. The final points
of the accumulated values for the traditional methods differ
only by the size of the header, and the advantage of BWT
for b-2 and b-weight can be seen by the fact that the cor-
responding plots are below their counterparts without BWT.
The differences between b-2 and b-weight, with and without
BWT, are so small that their plots seem to be overlapping.

Properties

We show in this section that for the three first mentioned
methods, static, b-adp and f-adp, applying BWT, or any
other permutation, does not have any influence of the com-
pression by arithmetic coding. The next section then brings
empirical evidence that on the other hand, for the weighted
methods, a pre-processing stage by BWT does significantly
improve the compression performance.

Arithmetic coding starts with an interval [0,1), and
repeatedly narrows it as the text T is being processed. The
narrowing procedure is a proportional refinement of the pre-
sent interval into sub-portions according to the probability

Table 2 Storage requirements
of the encoding methods on
���(T) = �7��6�14�10��11

T ���(T)

k Header bps k Header bps

Static – 0.291 2.281 – 0.404 2.394
b-adp – – 2.111 – 0.113 2.224
f-adp – 0.291 2.111 – 0.404 2.224
b-weight 5 – 1.989 3 0.113 1.567
b-2 5 – 1.981 3 0.113 1.562

 SN Computer Science (2023) 4:265265 Page 6 of 12

SN Computer Science

distribution of the symbols of Σ . The encoding is a real num-
ber that can be selected randomly within the final interval.
Static arithmetic coding uses a fixed probability distribution
throughout the process for the interval partition, while the
(backward) adaptive method updates the proportions for the
corresponding partitions according to what has already been
seen. It is well known that the static variant achieves the
entropy of order 0. A straightforward corollary of this fact
is that permuting T does not change the size of the output,
though the output file itself will of course be altered. This is
stated in the following lemma.

Lemma 1 The size of the compressed file, after having
applied static arithmetic coding, is invariant under permu-
tations of the original input.

Proof Suppose we are encoding the text T[1, n] using the
static arithmetic method. The notation of the weight intro-
duced above for � = T[i] , W(1,T[i], 1, n) , refers to the num-
ber of occurrences of T[i] within T[1, n]. For simplicity, we
shall use ���(�) to denote W(1, �, 1, n).

Each processed letter T[i] narrows the current sub-inter-
val of [0, 1) by a factor equal to the probability of T[i] in T,
that is, by 1

n
W(1,T[i], 1, n) . The size of the range, rs , of the

0 10 20 30 40 50

0

2

4

6

8

iIn
fo
rm

at
io
n
C
on

te
nt

static
f-adp
b-adp
b-2

b-weight

atatatatatatatcgcgcgcgcgcgcgcgcgcgcgatatatatatatat

Fig. 1 Information content per index on the original text T = (��)
�
(��)

��
(��)

�

0 10 20 30 40 50

0

2

4

6

8

10

12

14

i

In
fo
rm

at
io
n
C
on

te
nt

BWT static
BWT f-adp
BWT b-adp
BWT b-2

BWT-b-weight

tttttttgttttttaaaaaaaaaaaaaaggggggggggtccccccccccc

Fig. 2 Information content per index on ���(T) = �7��6�14�10��11

SN Computer Science (2023) 4:265 Page 7 of 12 265

SN Computer Science

final interval after processing T = T[1, n] by static, is the
product of the sizes of these intervals:

where the middle equality is obtained by reordering the mul-
tiplication factors by character. The size of the compressed
file is the information content of arbitrarily choosing a num-
ber within an interval of size rs , which is − log2 rs , and it is
independent of the order in which the letters appear. ◻

A similar property can be proven for traditional adaptive
arithmetic coding, as follows.

Lemma 2 The size of the compressed file, after having
applied adaptive arithmetic coding, is invariant under per-
mutations of the original input.

Proof To avoid the zero-frequency problem for encoding
the first occurrence of a letter � in T, the number of occur-
rences for each � is initialized by 1. For adaptive arithmetic
coding, b-adp, each processed symbol T[i], 1 < i ≤ n , nar-
rows the current sub-interval of [0, 1), representing the pro-
cessed prefix T[1, i − 1] of T of size i − 1 , by a factor equal

(1)

rs =

n∏

i=1

1

n
W(1,T[i], 1, n) =

1

nn

∏

�∈Σ

���(�)∏

i=1

���(�) =
1

nn

∏

�∈Σ

���(�)���(�),

to the probability of T[i] in T[1, i − 1] . This probability is
equal to

where m = |Σ| taking the initial 1-values of all the characters
into account. Multiplying the sizes of these intervals for all
elements 1 ≤ i ≤ n , yields the size of the final range rb , cor-
responding to b-adp:

The size of the compressed file is accordingly − log2 rb , so
that permuting the input text will not change the size of the
output. ◻

A similar proposition can be proven for f-adp, stated as
follows.

W(1,T[i], 1, i − 1) + 1

m + i − 1
,

rb =

n∏

i=1

W(1,T[i], 1, i − 1) + 1

m + i − 1
=
(n∏

i=1

1

m + i − 1

)∏

�∈Σ

���(�)∏

i=1

i

=
(m − 1)!

(m + n − 1)!

∏

�∈Σ

���(�)!

0 10 20 30 40 50
0

20

40

60

80

100

120

i

In
fo
rm

at
io
n
C
on

te
nt

static BWT static
f-adp BWT f-adp
b-adp BWT b-adp
b-2 BWT b-2

b-weight BWT-b-weight

Fig. 3 Accumulated information content as a function of the size of the processed prefix, before and after applying BWT on
T = (��)

�
(��)

��
(��)

�

 SN Computer Science (2023) 4:265265 Page 8 of 12

SN Computer Science

Lemma 3 The size of the compressed file, after having
applied forward arithmetic coding, f-adp, is invariant under
permutations of the original input.

Proof By a similar argument to that of Lemma 2, each pro-
cessed letter T[i], 1 < i ≤ n , narrows the current sub-interval,
representing the processed suffix T[i, n] of T of size n − i + 1 ,
by a factor equal to the probability of T[i] in T[i, n], which
is equal to

Multiplying the sizes of these intervals contributed by the
occurrences of T[i], 1 ≤ i ≤ n yields the size of the final
range corresponding to f-adp,

As before, the size of the compressed file is − log2 rf , which
is not affected by permutation of the input file. ◻

Besides proving that the order of the characters does not
matter, only their quantity, we also get an exact evaluation
of the difference in size between the encoded files:

Corollary 4 The forward looking encoding, f-adp, is better
than the backward looking encoding, b-adp by log

(
m+n−1

n

)

bits, where n is the size of the input file T, and m is the size
of its alphabet.

Proof The difference between the sizes of the compressed
files of b-adp and f-adp is as follows.

 ◻

Interestingly, the difference between b-adp and f-adp
only depends on the size of the alphabet and the size of the
file and is blind to the content itself. In fact, on our datasets
with n about 4 million and m = 257 , including the EOF sign,
the difference between the compressed files, discarding the
prelude was the constant 494 bytes, as expected. However, as
mentioned above, the prelude for f-adp is more costly than

W(1,T[i], i, n)

n − i + 1
.

(2)
rf =

n
∏

i=1

W(1,T[i], i, n)
n − i + 1

=
(

n
∏

i=1

1
n − i + 1

)

∏

�∈Σ

���(�)
∏

i=1
i

= 1
n!

∏

�∈Σ
���(�)!

− log rb + log rf = log
(1
n!

∏

�∈Σ
���(�)!

)

− log
((m − 1)!
(m + n − 1)!

∏

�∈Σ
���(�)!

)

= log
((m + n − 1)!
n! ⋅ (m − 1)!

)

= log
(

m + n − 1
n

)

.

that for b-adp , as it must include the exact frequencies of
the characters.

The number of sequences
(
occ(�1), occ(�2),… , occ(�m)

)

such that
∑m

i=1
occ(�i) = n is equal to the number of ways to

select n numbers out of n + m − 1 , i.e.,
(
n+m−1

n

)
 . The informa-

tion content of selecting one of these choices, log
(
n+m−1

n

)
 ,

coincides therefore with the difference in encoding size
between f-adp and b-adp , which shows that the gain in
compression efficiency is in fact canceled out by the
increased size of the prelude. We can therefore conclude
that, even though the net encoding by f-adp is always better
than that by b-adp :

Corollary 5 The total size of the encoding (including the
header) by forward looking, f-adp, is the same as that of the
backward looking encoding, b-adp.

Another immediate consequence of the above is that f-adp
is better than static , a fact that was already proven for Huff-
man coding in [14], and here for arithmetic coding.

Proof The difference between the forward looking and
static algorithms may be emphasized by considering both
techniques as different variants of the following experiment.
Imagine a pool P of characters of Σ , which initially con-
tains occ(�) copies of the character � ∈ Σ ; we then apply n
iterations in each of which one element is randomly chosen
from the pool P . The question is whether or not the already
drawn elements are returned to P . If yes, the experiment
corresponds to static and the probability of reaching a spe-
cific sequence is rs as shown by Eq. (1); if the elements are
not returned to P , the experiment corresponds to forward
and the probability of reaching a specific sequence is rf as
given by Eq. (2). Considering the sequences of characters
obtained by this experiment as its outcomes, the set of pos-
sible sequences in the latter (forward) case is a proper subset
of the set of possible sequences in the former (static) case;
thus rs < rf and therefore − log rs > − log rf . ◻

Experimental Results

In order to study the performance of the weighted methods
on BWT transformed texts on real-life, rather than artificial
data, we considered the datasets from the Pizza & Chili cor-
pus,1 a collection of files of different nature and alphabets.
All algorithms were implemented in C++, and the code can
be found at https://www.ariel.ac.il/wp/dana-shapira/code/

1 http:// pizza chili. dcc. uchile. cl/.

http://pizzachili.dcc.uchile.cl/

SN Computer Science (2023) 4:265 Page 9 of 12 265

SN Computer Science

weightedBWT/ password: Yoav. We compared all methods
before and after BWT has been applied. For comparison,
we included the compression results of applying simple
run-length encoding, RLE, on the BWT transformed file.
RLE considers the text as an alternating sequence of runs
of characters and encodes it as (character, length) pairs. We
used the minimal binary code of [23] (an almost fixed length
code with codewords of lengths ⌈log2 m⌉ or ⌈log2 m⌉ − 1) to
encode the alphabet symbols. Because the encoding of sin-
gle character occurrences was too expensive by Elias codes
[22], we used the following variant that yielded a significant
improvement. A single bit indicated whether the length � of
the current run is longer than 1 or not. Only in the former
case, � − 1 was encoded by Elias’ �-code.

Compression Performance

For our experiments we used a 4MB prefix of each of our
dataset files. Table 3 shows the compression performance on
the original and transformed files, defined as the size of the
compressed file divided by the size of the original file, in per-
cent. The column headed adp refers to both b-adp and f-adp,
which give identical results, as expected by Corollary 5. As
static and adp are not affected by BWT by Lemma 1 and
Lemma 3, their results are reported only once, in the second
and third column, respectively. Our RLE implementation is
reported in the fourth column. The following four columns
refer to b-2 and the last four columns to b-weight. The values
of k used to achieve the best results of b-2 and b-weight are
displayed in parentheses. The optimal values of k were derived
empirically for each test file, using a logarithmic search in an
initially unbounded range.

As can be seen, b-2 and b-weight outperform the static
and adaptive variants on all datasets even on the original file
T. While they are better by up to 5% when applied on the
original file, they become better by more than 40% in some of
the cases, and about 25% on the average, when applied on the
BWT transformed file. b-weight is better than b-2 by 0.1% on
average on all files. On our tests, b-2 and b-weight slightly
improve on RLE, except for Proteins. While the k values in

Table 3 for b-2 and b-weight are those yielding the optimal
performance for each of the methods, Figs. 4 and 5 compare b
and b-weight for identical k values, showing the file sizes as
a function of k, before and after applying BWT. For the given
test file, b-weight is smoother and consistently performs bet-
ter than b-2.

For our final experiment we have combined several meth-
ods: RLE, Move-to-front (MTF) and arithmetic coding on the
BWT transformed files, with and without our weighted tech-
nique. MTF encodes each input symbol � by its index, count-
ing from zero, in the dynamic list of “recently used symbols”.
The initial order of the list is given in advance, often using the
alphabetic order of the underlying alphabet. In this case, the
first symbol is encoded by its own index in the alphabet. After
the encoding of each symbol � , it is moved to the front of the
list before continuing to the next symbol. As example, in case
Σ = {�, �, �} , then MTF(cccccaa) = 2, 0, 0, 0, 0, 1, 0. MTF
+ RLE applies MTF followed by RLE, e.g., (MTF + RLE)

Table 3 Compression
performance on original and
BWT transformed files (%) of
the different methods

Datasets Static adp BWT + b-2 b-weight

RLE T (k) ��� (k) T (k) ��� (k)

sources 69.48 69.48 27.54 64.20 (444) 26.44 (24) 64.17 (438) 26.30 (22)
xml 65.54 65.54 16.77 65.27 (9355) 13.11 (24) 65.27 (8799) 13.05 (24)
dna 24.97 24.98 36.69 24.64 (62) 23.02 (34) 24.64 (60) 23.01 (34)
english 57.07 57.07 42.28 56.55 (4352) 29.41 (36) 56.54 (3230) 29.33 (36)
Pitches 69.32 69.32 59.68 56.17 (85) 53.34 (119) 56.09 (83) 53.26 (120)
Proteins 52.64 52.65 44.12 51.69 (329) 46.71 (39) 51.68 (317) 46.62 (38)

2,000 3,000 4,000 5,000
2,371,600

2,371,800

2,372,000

2,372,200

b-2
b-weight

k

Fig. 4 Comparing b-2 and b-weight for different k values on english

 SN Computer Science (2023) 4:265265 Page 10 of 12

SN Computer Science

(cccccaa) = (2,1)(0,4)(1,1)(0,1). There are generally long
sequences of zeros and ones in the output of MTF [1], which
is why in practical applications like bzip2, after having applied
BWT and MTF, a variant of RLE known as RLE-0 is used.
This variant has been suggested in Burrows and Wheeler’s
original paper [1] and uses two arithmetic or Huffman codes,
the first encoding integers and lengths of runs of zeros, the
second encoding the integers immediately following such zero-
runs (and thus not including 0 itself). To give an example of
RLE-0, suppose the output of MTF starts with the sequence

We use two different Huffman codes: the first
A = {a1, a2, a3,…} encodes the integers 1, 2, 3,… , respec-
tively, and the second B = {b1, b2, b3,… ,R1,R2,R3,…} , in
which bi encodes the integer i and Rj represents a run of
j ≥ 1 zeros. Any input can then be parsed into a sequence
of elements of A and B, in which a codeword of A is always

2, 1, 3, 0, 0, 0, 4 , 1, 0, 0, 0, 0, 1 , 2, 0, 5 , 0, 0, 0, 7 , 3,… .

preceded by a codeword Rj for a run of zeros. The above
example sequence, in which runs of zeros have been under-
lined and elements following such runs are boxed, will then
be encoded by

Instead of Huffman coding, one can obviously also use arith-
metic coding with the necessary adaptations, as we have
done in our experiments.

The compression results for each method are presented
in Table 4, using adaptive arithmetic coding alone (adp),
or in combination with b-2 and b-weight. Consistently,
b-weight slightly improves on b-2, which in turn improves
on adp. All the results outperform the RLE based minimal
binary code that has been presented in Table 3. The com-
bined (MTF + RLE-0) method gives the best values for all
our tests. The compression gain of using RLE-0 instead of
RLE was 10–20%.

Weighted BWT Block Variant

The Burrows–Wheeler transform is usually applied on
blocks, as the name of their technique indicates. Although
the division into blocks may improve the running time,
it can at the same time significantly damage the com-
pression efficiency. It is indeed possible to perform the
transformation on each block and still compress all blocks
together. Instead of chaining the transformed blocks in a
sequence, we suggest to concatenate original and reversed
blocks alternately. BWT approximately sorts the characters
in each block. If two consecutive blocks have similarly
distributions, applying BWT will produce similar strings.
Reversing then every second block will tend to blur the
transitions between the blocks.

There are several examples in the data compression lit-
erature for alternating original and reversed data in consecu-
tive blocks. As a first example, consider Gray codes [24]
for generating a cyclic sequence of codewords so that each
codeword differs from the previous one by a single bit. The
binary code with codewords of length n can be constructed
recursively from the code with codeword lengths n − 1 bits
by reversing the order of the codewords and prefixing the

b2, b1, b3,R3, a4, b1,R4, a1, b2,R1, a5,R3, a7, b3,… .

20 30 40 50

1,230,000

1,240,000

1,250,000

1,260,000

k

b-2
b-weight

Fig. 5 Comparing b-2 and b-weight for different k values after BWT
on english

Table 4 Compression
performance on BWT
transformed files (%) of the
different methods

Datasets RLE MTF MTF + RLE-0

adp b-2 b-weight adp b-2 b-weight adp b-2 b-weight

sources 24.75 19.99 19.97 21.64 20.12 20.11 18.937 18.519 18.516
xml 14.54 11.22 11.21 15.24 11.38 11.36 10.884 10.399 10.396
dna 28.65 28.30 28.29 24.37 23.84 28.83 23.680 23.540 23.539
english 32.64 26.59 26.57 28.30 26.20 26.19 26.310 25.374 25.367
Pitches 49.86 45.37 45.34 46.26 45.69 45.69 45.064 44.841 44.836
Proteins 40.11 39.96 39.96 41.70 41.31 41.29 38.570 38.542 38.542

SN Computer Science (2023) 4:265 Page 11 of 12 265

SN Computer Science

original and reversed codewords with a 0 and 1 bit, respec-
tively. A second example, in the area of image compression,
is the extension of a signal to a periodic wave, using the
cosine and sine transforms, see, e.g., Chapter 10.3 in [25].

As a simple example consider the outputs aacbbcacd-
cdd, aaabdbacccdd and aababbbccddd of three con-
secutive blocks. Instead of concatenating them directly and
compressing the result, the output of the second block is
reversed. For this example we get

and the transition between the blocks, emphasized here in
red, becomes smoother. Moreover, similar runs, indicated by
matching colors, tend to be moved closer together. Table 5
compares the following block methods with block size 8KB.

• DBC, Divide-BWT-Compress, divides the input file into
blocks and applies separately BWT followed by b-2 or
b-weight compressors on each block;

• DBMC, Divide-BWT-Merge-Compress, divides the input
file into blocks, applies BWT to each block, merges the
BWT outcomes into a single file and compresses the
resulting file;

• DBIMC, Divide-BWT-Inverse-Merge-Compress. The
same as DBMC, except for merging consecutive blocks
in which every second block is reversed.

As can be seen, there is mostly a slight improvement of
DBMC over DBC, and DBIMC gives consistently an addi-
tional small gain.

Conclusion

This paper studies the compression performance of weighted
coding on Burrows–Wheeler transformed files. We have
shown that statistical methods which treat all positions in the
files evenly are indifferent to permutations in the input file,
and to BWT in particular. On the other hand, the weighted

approach, being more suitable to skewed files, has been
shown empirically to gain additional savings when applied
after having pre-processed the text by BWT.

Data availability All data generated or analysed during this study are
included in this published article.

Declarations

 Conflict of interest On behalf of all authors, the corresponding author
states that there is no conflict of interest.

References

 1. Burrows M, Wheeler D.J. A block-sorting lossless data compression
algorithm. Technical Report 124, Digital Equipment Corporation
(1994)

 2. Ziv J, Lempel A. A universal algorithm for sequential data compres-
sion. IEEE Trans Inf Theory. 1977;23(3):337–43.

 3. Moffat A. Huffman coding. ACM Comput Surv.
2019;52(4):85–18535.

 4. Fruchtman A, Gross Y, Klein ST, Shapira D. Weighted Burrows-
Wheeler compression. CoRR abs/2105.10327 (2021)

 5. Hon W, Sadakane K, Sung W. Breaking a time-and-space barrier in
constructing full-text indices. SIAM J Comput. 2009;38(6):2162–78.

 6. Kempa D, Kociumaka T. String synchronizing sets: sublinear-time
BWT construction and optimal LCE data structure. In: Charikar M,
Cohen E, editors. Proceedings of the 51st Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2019, Phoenix, AZ,
USA, June 23–26; 2019. p. 756–767.

 7. Bentley JL, Sleator DD, Tarjan RE, Wei VK. A locally adaptive data
compression scheme. Commun ACM. 1986;29(4):320–30.

 8. Ryabko BY, Horspool RN, Cormack GV. Comments to: a
locally adaptive data compression scheme. Commun ACM.
1987;30(9):792–4.

 9. Arnavut Z, Magliveras SS. Block sorting and compression. In: Storer
JA, Cohn M, editors. Proceedings of the 7th Data Compression Con-
ference (DCC ’97), Snowbird, Utah, USA, March 25–27; 1997. p.
181–190.

 10. Binder E. Distance coder. Usenet group: comp.compression. 2000.
http:// groups. google. com/ group/ comp. compr ession/ msg/ 27d46
abca0 799d12.

 11. Gagie T, Manzini G. Move-to-front, distance coding, and inversion
frequencies revisited. Theor Comput Sci. 2010;411(31–33):2925–44.

 12. Fruchtman A, Gross Y, Klein S.T, Shapira D. Backward weighted
coding. In: 31st Data Compression Conference, DCC 2021, Snow-
bird, UT, USA, March 23–26; 2021. p. 93–102.

Table 5 Block compression
methods with block size of 8KB

sources xml dna english Pitches Proteins

b-2

 DBC 48.54 43.56 24.26 49.94 53.80 50.93
 DBMC 47.84 43.15 24.12 49.57 53.86 50.15
 DBIMC 47.63 42.96 24.11 49.29 53.61 50.13

b-weight

 DBC 48.27 43.19 24.25 49.79 53.67 50.86
 DBMC 47.57 42.86 24.12 49.43 53.75 50.06
 DBIMC 47.37 42.66 24.10 49.15 53.51 50.05

http://groups.google.com/group/comp.compression/msg/27d46abca0799d12
http://groups.google.com/group/comp.compression/msg/27d46abca0799d12

 SN Computer Science (2023) 4:265265 Page 12 of 12

SN Computer Science

 13. Fenwick PM. The Burrows-Wheeler transform for block sort-
ing text compression: principles and improvements. Comput J.
1996;39(9):731–40.

 14. Klein ST, Saadia S, Shapira D. Forward looking Huffman coding.
Theory Comput Syst. 2020;65(3):593–612.

 15. Fruchtman A, Klein S.T, Shapira D. Bidirectional adaptive compres-
sion. In: Proceedings of the Prague Stringology Conference; 2019.
pp. 92–101.

 16. Fruchtman A, Gross Y, Klein ST, Shapira D. Weighted forward
looking adaptive coding. Theor Comput Sci. 2022;930:86–99.

 17. Avrunin RM, Klein ST, Shapira D. Combining forward compression
with PPM. SN Comput Sci. 2022;3(3):239.

 18. Cleary J, Witten I. Data compression using adaptive coding and
partial string matching. IEEE Trans Commun. 1984;32(4):396–402.

 19. Witten IH, Neal RM, Cleary JG. Arithmetic coding for data com-
pression. Commun ACM. 1987;30(6):520–40.

 20. Vitter JS. Design and analysis of dynamic Huffman codes. JACM.
1987;34(4):825–45.

 21. Nelson M, Gailly J-L. The data compression book. New York: M &
T Books; 1996. p. 550–1.

 22. Elias P. Universal codeword sets and representations of the integers.
IEEE Trans Inf Theory. 1975;21(2):194–203.

 23. Moffat A, Turpin A. Compression and Coding Algorithms. The
international series in engineering and computer science, vol. 669,
Kluwer (2002)

 24. Gray F. Pulse code communication. U.S. Patent 2,632,058A, Serial
No. 785697 (1953)

 25. Hankerson DC, Harris GA, Johnson J. Introduction to information
theory and data compression. Boca Raton, Florida: CRC; 1998.

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of
such publishing agreement and applicable law.

	Weighted Burrows–Wheeler Compression
	Abstract
	Introduction
	Notation and Discussion
	Weighted Coding
	Cascading with BWT

	Properties
	Experimental Results
	Compression Performance
	Weighted BWT Block Variant

	Conclusion
	References

