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Abstract
A weight-based dynamic compression method has recently been proposed, which is especially suitable for the encoding of 
files with locally skewed distributions. Its main idea is to assign larger weights to closer to be encoded symbols by means 
of an increasing weight function, rather than considering each position in the text evenly. A well known transformation that 
tends to convert input files into files with a more skewed distribution is the Burrows–Wheeler Transform (BWT). This paper 
proposes to apply the weighted approach on Burrows–Wheeler transformed files. While it is shown that the compression 
performance is not altered for static and adaptive arithmetic coding by any permutation of the symbols, hence in particular 
for BWT, empirical evidence of the efficiency of the combination of BWT with the weighted approach is provided.

Keywords Adaptive compression · Huffman code · Arithmetic code · Burrows-Wheeler Transform

Introduction

The Burrows–Wheeler Transform (BWT) [1] is the basis of 
the popular compression method bzip2, yielding, on many 
types of possible input files, better compression than gzip 
and other competitors. As a matter of fact, BWT itself is 
not a compression method: its output is a permutation of its 
input, which has obviously the same size. The usefulness of 
the transformation is that it has a tendency to reorganize the 
data into what seems to be a more coherent form, group-
ing many, though not all, identical characters together. The 
output is therefore usually more compressible, by applying 
as simple methods as run-length coding and move-to-front.

The combination of different methods to be applied one after 
the other, an action known as cascading, is not new to data 
compression. It can, for example, be found in gzip, which first 
parses the input using LZ77 [2], and then applies Huffman cod-
ing [3] to the parsed elements. It therefore seems natural to try 
to apply BWT in a pre-processing stage, and then compress the 
transformed string by means of more sophisticated compression 
schemes, as done, e.g., in bzip2. This strategy fails, however, 
for static or dynamic arithmetic coding as shown in the fol-
lowing sections. An additional contribution of this paper is to 
give empirical evidence that cascading BWT with the recently 
developed weighted compression schemes implies significant 
savings. A first version of this work has appeared in [4].

Given a text T of length n, occupying O(n∕ log n) machine 
words, the construction of the BWT algorithm proposed 
by Hon et al. [5] runs in linear time and O(n∕ log n) space. 
Recently, a sub-linear running time for sufficiently small 
alphabets has been proposed by Kempa and Kociumaka [6], 
in which the BWT is constructed in O(n∕

√
log n) time and 

O(n∕ log n) space.
There are a number of other reversible transformations 

that are suitable to be used after BWT instead of Move To 
Front (MTF) of Bentley et al. [7, 8], like the Inversion Fre-
quencies technique, introduced by Arnavut and Magliveras 
[9], or Distance Coding proposed by Edgar Binder [10]. 
Gagie and Mansini [11] analyze the efficiency of MTF, 
Distance Coding and Inversion Frequencies after BWT and 
provide simple variants of these techniques that achieve the 
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entropy bound. Their analysis strongly relies on the fact that 
the output of all the involved techniques is composed of 
integers, which is not necessarily the case for the output of 
the weighted technique, to be shown below.

A family of dynamic compression algorithms, named 
weighted coding, has recently been proposed [12], which 
is especially suitable for the encoding of files with locally 
skewed distributions. The main idea of the weighted approach 
is to assign larger weights to closer to be encoded symbols by 
means of an increasing weight function, rather than consider-
ing each position in the text evenly, similarly to the weights 
assigned in the structured arithmetic coding of Fenwick [13].

Traditional dynamic algorithms use the distribution of the 
symbols in the already processed portion of the input file as 
an estimate for the distribution of the elements still to come 
later in the text. However, the assumption that the past is a 
good approximation for the future, is not necessarily true. 
A Forward-looking dynamic algorithm, using the true dis-
tribution of the remaining portion of the file, was suggested 
in [14]. In this method the frequencies of the symbols in 
the entire file are prepended to the compressed file. In the 
encoding process, these frequencies are gradually updated 
to reflect the number of occurrences in the remaining part of 
the file by decrementing the frequency of the character that is 
currently being processed. A hybrid method, combining both 
traditional and forward-looking approaches, is proposed in 
[15]: in this method the frequencies for all characters are not 
transmitted at the beginning of the file but rather progres-
sively, each time a new character is encountered.

Pushing this approach even further, a family of Forward 
weighted coding schemes is proposed in [16], in which the 
encoding is based on the distribution derived from index-
dependent weights. That is, this weighted method assigns 
higher priorities to positions that are closer to the currently 
processed one in the encoding process, rather than treating 
all positions in the input file equally. The weights assigned 
to the positions are generated by a non increasing function 
f, and the weight for each symbol � is the sum of the values 
of f over all the positions where � occurs in the portion of 
the input file that is still to be encoded.

Recently, a specific variant named the Backward Weighted 
coding has been studied [12], which suggests a heuristic 
based on a weighted distribution, calculated only over posi-
tions that have already been processed. The core advantage 
of such a heuristic approach is a negligible header, relatively 
to a costly header used in Forward Looking and all Forward 
Weighted variants. Empirical tests have shown that backward 
weighted techniques can improve beyond the lower bound 
given by the entropy for static encoding. In [17], forward 
weighted coding has been adapted to work with Cleary and 
Witten’s Prediction by partial matching (PPM) [18].

The paper is constructed as follows. The section “Notation 
and Discussion” reviews the notation and formulation needed 

for the weighted encodings using a running example and dis-
cusses the cascading with BWT. The section “Properties” 
proves some properties involving the combination of general 
dynamic coding techniques and BWT. The section “Experi-
mental Results” presents empirical outcomes supporting the 
compression efficiency of the proposed method even in practice.

Notation and Discussion

Weighted Coding

For the completeness of the paper, we include the definitions 
given in [16], which formalize entropy based compression 
methods.

Let T = T[1, n] be an input file of size n over an alphabet 
Σ of size m. A weight W is defined based on the following 
parameters,

• A non-negative function g, g ∶ [1, n] ⟶ IR+ , which 
assigns a positive real number to integers, seen as an 
assignment of a weight to each position i ∈ [1, n] within T;

• A symbol of the alphabet, � ∈ Σ;
• An interval [�, u] , 1 ≤ � ≤ u ≤ n for restricting the domain 

of the function g.

The value of W(g, �,�, u) is defined for each symbol � , as the 
sum of the values of the function g for all positions j in the 
range [�, u] at which � occurs. Formally,

As a special case of weighted coding, Backward Weighted 
considers all the positions that have already been processed, 
that is, the interval is of the form [�, u] = [1, i − 1] , and

Traditional encoding methods, such as static and dynamic 
Huffman or arithmetic coding [19], can be reformulated as 
special instances of W for which g = 1 ≡ g(i) = 1 for all i. 
For example, static compression refers to weights for which 
W(g, �,�, u) = W(1, �, 1, n) is constant for all indices.

As a short illustration for the weighted approach, Table 1 
brings a comparative chart for the encoding of a small example 
of 50 characters:

shown in the second row of the table for several representa-
tive portions of T, just underneath the indices. The static 
compression for T considers the probabilities 14

50
 for a and 

W(g, �,�, u) =
∑

{�≤j≤u ∣ T[j]=�}

g(j).

W(g, �, 1, i − 1) =
∑

{1≤j≤i−1 ∣ T[j]=�}

g(j).

T = x1 ⋯ x50 = (��)7(��)11(��)7,
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t and 11
50

 for c and g. These probabilities can be calculated 
from the two first rows corresponding to the static method 
in Table 1, the first entitled W representing the weight of the 
specific character, and the second entitled TotIndx represent-
ing the cumulative weights of all the characters. The ratio of 
these weights can be considered as a probability pi , and the 
corresponding Information content in bits, − log pi for each 
position i, is shown in the line entitled by its abbreviation 
IC. For static, the IC values are 1.84 for a and t and 2.18 
for c and g. The last column of the table, headed avg, gives 
the average of these IC values, which is in fact the entropy. 
In a practical application, the entropy can be reached by 
arithmetic coding and can be approached by Huffman cod-
ing. We concentrate in this paper only on arithmetic coding.

The classic adaptive coding, b-adp [20], is a specific 
backward weight method in which g(i) = 1 for all i, and the 
backward weights refer to all positions i with 1 ≤ i < n by:

which is simply the number of occurrences of the current 
character � up to that point, i.e., in T[1, i − 1] . The details 
appear in the second part of Table 1, headed b-adp. The line 
entitled W refers now, at position i, to the specific weight of 
the character � = T[i] up to the given column i of the table, 
that is, the sum of the index weights IndxW for those indices 
j < i at which the character � occurs, including the default 
values that are set to 1 at initialization. For b-adp, as well as 
for the following method f-adp, the values of IndxW are just 
1 for every i. The cumulative W values for all the characters 
� ∈ Σ are given in the row entitled TotIndx.

The symmetric counterpart of b-adp is the forward look-
ing method, f-adp, which, at each location i, considers the 
positions yet to come [i, n] rather than those already pro-
cessed [1, i − 1] as the backward looking b-adp. That is,

For our running example, f-adp initializes the weights of 
the characters a, t to 14 and c, g to 11. The counts are 
then gradually decremented reflecting the remaining number 
of occurrences for each � from position i to the end of T. 
The header for f-adp describes the exact frequencies of the 
involved characters, and its size is 0.291 for our example, 
as for static. 

A simple adaptive weighted coding, denoted by b-2, has 
been proposed in [12]. It is inspired by Nelson and Gailly [21], 
who rescale the frequencies in order to cope with hardware 
constraints like the representation of the number of occur-
rences as 16-bit integers. b-2 divides all the frequencies at 
the end of every block of k characters, for a given parameter 

W(1, �, 1, i − 1) =
∑

{1≤j≤i−1 ∣ T[j]=�}

1,

W(1, �, i, n) =
∑

{i≤j≤n ∣ T[j]=�}

1.

k, regardless of computer hardware restrictions. That is, the 
occurrences of characters at the beginning of the input file 
contribute to W less than those closer to the current position. 
Furthermore, all positions within the same block contribute 
equally to W, and their contribution weight is twice as large 
as the weight assigned to the indices in the preceding block. 
Formally, the function g for b-2, denoted by g�-� , is defined as

so that for each pair of indices i and i + k , it maintains the 
equation

The first line of the block headed b-2 shows the index 
weight, IndxW, chosen here with parameter k = 5 . Starting 
with 1, the value doubles after each block of 5 positions. The 
other lines, entitled W, TotIndx and IC, are then defined as 
above.

A refinement of b-2, named b-weight, is another special 
weighted coding [12] inspired by the division by 2, but based 
on the function

for a given parameter k. The function g�-������ still maintains 
a fixed ratio of 2 between blocks but with a smooth hierarchy 
between all indices, rather than sharp differences at block 
boundaries. The ratio of 2 for indices that are k apart can 
be seen by:

The index weight IndxW for the b-weight method consists of 
real numbers rather than integers as above. The shown values 
correspond to k = 5 , so that g�-������(i) = (

5
√
2)

i−1

= 1.149i−1 . 
This yields an average codeword length of 1.989 bits per 
symbol.

The weighted approach should be applied only on a text that 
has skewed probability distributions in different portions of the 
file: there is a price for adjusting the model in the transition 
between regions of different distributions, and this overhead 
gets negligible only when the text becomes long enough, or if 
the difference between the distributions is sufficiently sharp as 
in this short example.

g�-�(i) = 2
⌊ i−1

k
⌋
,

g�-�(i + k) = 2 g�-�(i).

g�-������(i) = (
k
√
2)

i−1

for i ≥ 1,

g�-������(i + k) = (
k
√
2)

i+k−1

= (
k
√
2)

k

⋅ (
k
√
2)

i−1

= 2 ⋅ g�-������(i).



SN Computer Science (2023) 4:265 Page 5 of 12 265

SN Computer Science

Cascading with BWT

One of the features of the BWT is that it has a tendency to 
reorganize the text T, such that BWT(T) contains several runs 
of repeated characters. In particular, for our running example

after applying the BWT, the transformed text is

even though in the original T, there is not a single pair of 
identical adjacent characters. This tendency implies that the 
local distributions seem more skewed, which is advanta-
geous to the weighted approach.

We applied the same 5 methods on ���(T) . A small 
amendment is necessary because the transformed string 
BWT(T) on its own is not reversible—it needs in addition 
a pointer to a starting point, actually the index of the last 
character of T within BWT(T), which requires log n bits, or 
log n

n
 per symbol. We thus included this additional overhead 

of log 50
50

= 0.113 bits in the header. Note that this overhead 
is constant for all methods. On the other hand, the static 
and the forward compression methods require information 
about the distribution probabilities, which should be pre-
pended to the compressed file independently from applying 
BWT or not. We use the lower bound approximation given 
by the IC to express this information in this example. Yet, 
for our experiments, we encoded the meta data information 
by means of the universal Elias [22] �-code.

The comparison of the final compression results, before 
and after applying the BWT, is presented in Table 2 and 
includes the parameter k that achieves the best performance 
of b-2 and b-weight, the header size and the corresponding 
total storage costs including the header in bits per symbol 
(bps). The first three columns refer to the encoding vari-
ants on the original file T, and the last three columns are 
the results on BWT(T). As can be seen, while the improve-
ment of the weighted methods with BWT is about 21%, 
the net encoding, excluding the header size, is the same for 

T = ��������������������������������������������������

= (��)
7
(��)

11
(��)

7
,

���(T) = ��������������������������������������������������

= �7��6�14�10��11,

static, b-adp and f-adp, regardless whether BWT has been 
applied or not. The total bps results, including the header 
size, are identical for b-adp and f-adp, because the gain in 
the net compression by f-adp is exactly the same as the loss 
incurred by the additional overhead due to the exact frequen-
cies. In fact, these are not coincidences, and in the following 
section we show that the compression performance is pre-
served for static, b-adp and f-adp under any permutations 
of the symbols of T, hence in particular for BWT. Moreover, 
we show that the size of the compressed file including the 
header for b-adp and f-adp is the same.

Figures 1 and 2 are visualizations of the differences 
between the methods, plotting for each method the infor-
mation content as a function of the position i for our running 
example. The net encoding results before (Fig. 1) and after 
(Fig. 2) applying BWT are depicted in matching colors. We 
see that the fluctuations are much more accentuated after 
applying BWT. Figure 3 displays the cumulative values of 
the same data. As can be seen from both figures, the back-
ward weighted methods are more sensitive to fluctuations in 
the distribution, but adjust faster to changes. The final points 
of the accumulated values for the traditional methods differ 
only by the size of the header, and the advantage of BWT 
for b-2 and b-weight can be seen by the fact that the cor-
responding plots are below their counterparts without BWT. 
The differences between b-2 and b-weight, with and without 
BWT, are so small that their plots seem to be overlapping.

Properties

We show in this section that for the three first mentioned 
methods, static, b-adp and f-adp, applying BWT, or any 
other permutation, does not have any influence of the com-
pression by arithmetic coding. The next section then brings 
empirical evidence that on the other hand, for the weighted 
methods, a pre-processing stage by BWT does significantly 
improve the compression performance.

Arithmetic coding starts with an interval [0,1), and 
repeatedly narrows it as the text T is being processed. The 
narrowing procedure is a proportional refinement of the pre-
sent interval into sub-portions according to the probability 

Table 2  Storage requirements 
of the encoding methods on 
���(T) = �7��6�14�10��11

T ���(T)

k Header bps k Header bps

Static – 0.291 2.281 – 0.404 2.394
b-adp – – 2.111 – 0.113 2.224
f-adp – 0.291 2.111 – 0.404 2.224
b-weight 5 – 1.989 3 0.113 1.567
b-2 5 – 1.981 3 0.113 1.562
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distribution of the symbols of Σ . The encoding is a real num-
ber that can be selected randomly within the final interval. 
Static arithmetic coding uses a fixed probability distribution 
throughout the process for the interval partition, while the 
(backward) adaptive method updates the proportions for the 
corresponding partitions according to what has already been 
seen. It is well known that the static variant achieves the 
entropy of order 0. A straightforward corollary of this fact 
is that permuting T does not change the size of the output, 
though the output file itself will of course be altered. This is 
stated in the following lemma.

Lemma 1  The size of the compressed file, after having 
applied static arithmetic coding, is invariant under permu-
tations of the original input.

Proof Suppose we are encoding the text T[1, n] using the 
static arithmetic method. The notation of the weight intro-
duced above for � = T[i] , W(1,T[i], 1, n) , refers to the num-
ber of occurrences of T[i] within T[1, n]. For simplicity, we 
shall use ���(�) to denote W(1, �, 1, n).

Each processed letter T[i] narrows the current sub-inter-
val of [0, 1) by a factor equal to the probability of T[i] in T, 
that is, by 1

n
W(1,T[i], 1, n) . The size of the range, rs , of the 
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final interval after processing T = T[1, n] by static, is the 
product of the sizes of these intervals:

where the middle equality is obtained by reordering the mul-
tiplication factors by character. The size of the compressed 
file is the information content of arbitrarily choosing a num-
ber within an interval of size rs , which is − log2 rs , and it is 
independent of the order in which the letters appear.   ◻

A similar property can be proven for traditional adaptive 
arithmetic coding, as follows.

Lemma 2  The size of the compressed file, after having 
applied adaptive arithmetic coding, is invariant under per-
mutations of the original input.

Proof     To avoid the zero-frequency problem for encoding 
the first occurrence of a letter � in T, the number of occur-
rences for each � is initialized by 1. For adaptive arithmetic 
coding, b-adp, each processed symbol T[i], 1 < i ≤ n , nar-
rows the current sub-interval of [0, 1), representing the pro-
cessed prefix T[1, i − 1] of T of size i − 1 , by a factor equal 

(1)

rs =

n∏

i=1

1

n
W(1,T[i], 1, n) =

1

nn

∏

�∈Σ

���(�)∏

i=1

���(�) =
1

nn

∏

�∈Σ

���(�)���(�),

to the probability of T[i] in T[1, i − 1] . This probability is 
equal to

where m = |Σ| taking the initial 1-values of all the characters 
into account. Multiplying the sizes of these intervals for all 
elements 1 ≤ i ≤ n , yields the size of the final range rb , cor-
responding to b-adp:

The size of the compressed file is accordingly − log2 rb , so 
that permuting the input text will not change the size of the 
output.   ◻

A similar proposition can be proven for f-adp, stated as 
follows.

W(1,T[i], 1, i − 1) + 1

m + i − 1
,

rb =

n∏

i=1

W(1,T[i], 1, i − 1) + 1

m + i − 1
=
( n∏

i=1

1

m + i − 1

)∏

�∈Σ

���(�)∏

i=1

i

=
(m − 1)!

(m + n − 1)!

∏

�∈Σ

���(�)!
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Lemma 3 The size of the compressed file, after having 
applied forward arithmetic coding, f-adp, is invariant under 
permutations of the original input. 

Proof  By a similar argument to that of Lemma 2, each pro-
cessed letter T[i], 1 < i ≤ n , narrows the current sub-interval, 
representing the processed suffix T[i, n] of T of size n − i + 1 , 
by a factor equal to the probability of T[i] in T[i, n], which 
is equal to

Multiplying the sizes of these intervals contributed by the 
occurrences of T[i], 1 ≤ i ≤ n yields the size of the final 
range corresponding to f-adp,

As before, the size of the compressed file is − log2 rf  , which 
is not affected by permutation of the input file.   ◻

Besides proving that the order of the characters does not 
matter, only their quantity, we also get an exact evaluation 
of the difference in size between the encoded files:

Corollary 4  The forward looking encoding, f-adp, is better 
than the backward looking encoding, b-adp by log

(
m+n−1

n

)
 

bits, where n is the size of the input file T, and m is the size 
of its alphabet.

Proof  The difference between the sizes of the compressed 
files of b-adp and f-adp is as follows.

  ◻

Interestingly, the difference between b-adp and f-adp 
only depends on the size of the alphabet and the size of the 
file and is blind to the content itself. In fact, on our datasets 
with n about 4 million and m = 257 , including the EOF sign, 
the difference between the compressed files, discarding the 
prelude was the constant 494 bytes, as expected. However, as 
mentioned above, the prelude for f-adp is more costly than 

W(1,T[i], i, n)

n − i + 1
.

(2)
rf =

n
∏

i=1

W(1,T[i], i, n)
n − i + 1

=
(

n
∏

i=1

1
n − i + 1

)

∏

�∈Σ

���(�)
∏

i=1
i

= 1
n!

∏

�∈Σ
���(�)!

− log rb + log rf = log
( 1
n!

∏

�∈Σ
���(�)!

)

− log
( (m − 1)!
(m + n − 1)!

∏

�∈Σ
���(�)!

)

= log
( (m + n − 1)!
n! ⋅ (m − 1)!

)

= log
(

m + n − 1
n

)

.

that for b-adp , as it must include the exact frequencies of 
the characters.

The number of sequences 
(
occ(�1), occ(�2),… , occ(�m)

)
 

such that
∑m

i=1
occ(�i) = n is equal to the number of ways to 

select n numbers out of n + m − 1 , i.e., 
(
n+m−1

n

)
 . The informa-

tion content of selecting one of these choices, log
(
n+m−1

n

)
 , 

coincides therefore with the difference in encoding size 
between f-adp  and b-adp , which shows that the gain in 
compression efficiency is in fact canceled out by the 
increased size of the prelude. We can therefore conclude 
that, even though the net encoding by f-adp is always better 
than that by b-adp :

Corollary 5  The total size of the encoding (including the 
header) by forward looking, f-adp, is the same as that of the 
backward looking encoding, b-adp.

Another immediate consequence of the above is that f-adp 
is better than static , a fact that was already proven for Huff-
man coding in [14], and here for arithmetic coding.

Proof  The difference between the forward looking and 
static algorithms may be emphasized by considering both 
techniques as different variants of the following experiment. 
Imagine a pool P of characters of Σ , which initially con-
tains occ(�) copies of the character � ∈ Σ ; we then apply n 
iterations in each of which one element is randomly chosen 
from the pool P . The question is whether or not the already 
drawn elements are returned to P . If yes, the experiment 
corresponds to static and the probability of reaching a spe-
cific sequence is rs as shown by Eq. (1); if the elements are 
not returned to P , the experiment corresponds to forward 
and the probability of reaching a specific sequence is rf  as 
given by Eq. (2). Considering the sequences of characters 
obtained by this experiment as its outcomes, the set of pos-
sible sequences in the latter (forward) case is a proper subset 
of the set of possible sequences in the former (static) case; 
thus rs < rf  and therefore − log rs > − log rf .  ◻

Experimental Results

In order to study the performance of the weighted methods 
on BWT transformed texts on real-life, rather than artificial 
data, we considered the datasets from the Pizza & Chili cor-
pus,1 a collection of files of different nature and alphabets. 
All algorithms were implemented in C++, and the code can 
be found at https://www.ariel.ac.il/wp/dana-shapira/code/

1 http:// pizza chili. dcc. uchile. cl/.

http://pizzachili.dcc.uchile.cl/
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weightedBWT/ password: Yoav. We compared all methods 
before and after BWT has been applied. For comparison, 
we included the compression results of applying simple 
run-length encoding, RLE, on the BWT transformed file. 
RLE considers the text as an alternating sequence of runs 
of characters and encodes it as (character, length) pairs. We 
used the minimal binary code of [23] (an almost fixed length 
code with codewords of lengths ⌈log2 m⌉ or ⌈log2 m⌉ − 1 ) to 
encode the alphabet symbols. Because the encoding of sin-
gle character occurrences was too expensive by Elias codes 
[22], we used the following variant that yielded a significant 
improvement. A single bit indicated whether the length � of 
the current run is longer than 1 or not. Only in the former 
case, � − 1 was encoded by Elias’ �-code.

Compression Performance

For our experiments we used a 4MB prefix of each of our 
dataset files. Table 3 shows the compression performance on 
the original and transformed files, defined as the size of the 
compressed file divided by the size of the original file, in per-
cent. The column headed adp refers to both b-adp and f-adp, 
which give identical results, as expected by Corollary 5. As 
static and adp are not affected by BWT by Lemma 1 and 
Lemma 3, their results are reported only once, in the second 
and third column, respectively. Our RLE implementation is 
reported in the fourth column. The following four columns 
refer to b-2 and the last four columns to b-weight. The values 
of k used to achieve the best results of b-2 and b-weight are 
displayed in parentheses. The optimal values of k were derived 
empirically for each test file, using a logarithmic search in an 
initially unbounded range.

As can be seen, b-2 and b-weight outperform the static 
and adaptive variants on all datasets even on the original file 
T. While they are better by up to 5% when applied on the 
original file, they become better by more than 40% in some of 
the cases, and about 25% on the average, when applied on the 
BWT transformed file. b-weight is better than b-2 by 0.1% on 
average on all files. On our tests, b-2 and b-weight slightly 
improve on RLE, except for Proteins. While the k values in 

Table 3 for b-2 and b-weight are those yielding the optimal 
performance for each of the methods, Figs. 4 and 5 compare b 
and b-weight for identical k values, showing the file sizes as 
a function of k, before and after applying BWT. For the given 
test file, b-weight is smoother and consistently performs bet-
ter than b-2.

For our final experiment we have combined several meth-
ods: RLE, Move-to-front (MTF) and arithmetic coding on the 
BWT transformed files, with and without our weighted tech-
nique. MTF encodes each input symbol � by its index, count-
ing from zero, in the dynamic list of “recently used symbols”. 
The initial order of the list is given in advance, often using the 
alphabetic order of the underlying alphabet. In this case, the 
first symbol is encoded by its own index in the alphabet. After 
the encoding of each symbol � , it is moved to the front of the 
list before continuing to the next symbol. As example, in case 
Σ = {�, �, �} , then MTF(cccccaa) = 2, 0, 0, 0, 0, 1, 0. MTF 
+ RLE applies MTF followed by RLE, e.g., (MTF + RLE) 

Table 3  Compression 
performance on original and 
BWT transformed files (%) of 
the different methods

Datasets Static adp BWT + b-2 b-weight

RLE T (k) ��� (k) T (k) ��� (k)

sources 69.48 69.48 27.54 64.20 (444) 26.44 (24) 64.17 (438) 26.30 (22)
xml 65.54 65.54 16.77 65.27 (9355) 13.11 (24) 65.27 (8799) 13.05 (24)
dna 24.97 24.98 36.69 24.64 (62) 23.02 (34) 24.64 (60) 23.01 (34)
english 57.07 57.07 42.28 56.55 (4352) 29.41 (36) 56.54 (3230) 29.33 (36)
Pitches 69.32 69.32 59.68 56.17 (85) 53.34 (119) 56.09 (83) 53.26 (120)
Proteins 52.64 52.65 44.12 51.69 (329) 46.71 (39) 51.68 (317) 46.62 (38)

2,000 3,000 4,000 5,000
2,371,600

2,371,800

2,372,000

2,372,200

b-2
b-weight

k

Fig. 4  Comparing b-2 and b-weight for different k values on english 
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(cccccaa) = (2,1)(0,4)(1,1)(0,1). There are generally long 
sequences of zeros and ones in the output of MTF [1], which 
is why in practical applications like bzip2, after having applied 
BWT and MTF, a variant of RLE known as RLE-0 is used. 
This variant has been suggested in Burrows and Wheeler’s 
original paper [1] and uses two arithmetic or Huffman codes, 
the first encoding integers and lengths of runs of zeros, the 
second encoding the integers immediately following such zero-
runs (and thus not including 0 itself). To give an example of 
RLE-0, suppose the output of MTF starts with the sequence

We use two different Huffman codes: the first 
A = {a1, a2, a3,…} encodes the integers 1, 2, 3,… , respec-
tively, and the second B = {b1, b2, b3,… ,R1,R2,R3,…} , in 
which bi encodes the integer i and Rj represents a run of 
j ≥ 1 zeros. Any input can then be parsed into a sequence 
of elements of A and B, in which a codeword of A is always 

2, 1, 3, 0, 0, 0, 4 , 1, 0, 0, 0, 0, 1 , 2, 0, 5 , 0, 0, 0, 7 , 3,… .

preceded by a codeword Rj for a run of zeros. The above 
example sequence, in which runs of zeros have been under-
lined and elements following such runs are boxed, will then 
be encoded by

Instead of Huffman coding, one can obviously also use arith-
metic coding with the necessary adaptations, as we have 
done in our experiments.

The compression results for each method are presented 
in Table 4, using adaptive arithmetic coding alone (adp), 
or in combination with b-2 and b-weight. Consistently, 
b-weight slightly improves on b-2, which in turn improves 
on adp. All the results outperform the RLE based minimal 
binary code that has been presented in Table 3. The com-
bined (MTF + RLE-0) method gives the best values for all 
our tests. The compression gain of using RLE-0 instead of 
RLE was 10–20%.

Weighted BWT Block Variant

The Burrows–Wheeler transform is usually applied on 
blocks, as the name of their technique indicates. Although 
the division into blocks may improve the running time, 
it can at the same time significantly damage the com-
pression efficiency. It is indeed possible to perform the 
transformation on each block and still compress all blocks 
together. Instead of chaining the transformed blocks in a 
sequence, we suggest to concatenate original and reversed 
blocks alternately. BWT approximately sorts the characters 
in each block. If two consecutive blocks have similarly 
distributions, applying BWT will produce similar strings. 
Reversing then every second block will tend to blur the 
transitions between the blocks.

There are several examples in the data compression lit-
erature for alternating original and reversed data in consecu-
tive blocks. As a first example, consider Gray codes [24] 
for generating a cyclic sequence of codewords so that each 
codeword differs from the previous one by a single bit. The 
binary code with codewords of length n can be constructed 
recursively from the code with codeword lengths n − 1 bits 
by reversing the order of the codewords and prefixing the 

b2, b1, b3,R3, a4, b1,R4, a1, b2,R1, a5,R3, a7, b3,… .

20 30 40 50

1,230,000

1,240,000

1,250,000

1,260,000

k

b-2
b-weight

Fig. 5  Comparing b-2 and b-weight for different k values after BWT 
on english 

Table 4  Compression 
performance on BWT 
transformed files (%) of the 
different methods

Datasets RLE MTF MTF + RLE-0

adp b-2 b-weight adp b-2 b-weight adp b-2 b-weight

sources 24.75 19.99 19.97 21.64 20.12 20.11 18.937 18.519 18.516
xml 14.54 11.22 11.21 15.24 11.38 11.36 10.884 10.399 10.396
dna 28.65 28.30 28.29 24.37 23.84 28.83 23.680 23.540 23.539
english 32.64 26.59 26.57 28.30 26.20 26.19 26.310 25.374 25.367
Pitches 49.86 45.37 45.34 46.26 45.69 45.69 45.064 44.841 44.836
Proteins 40.11 39.96 39.96 41.70 41.31 41.29 38.570 38.542 38.542
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original and reversed codewords with a 0 and 1 bit, respec-
tively. A second example, in the area of image compression, 
is the extension of a signal to a periodic wave, using the 
cosine and sine transforms, see, e.g., Chapter 10.3 in [25].

As a simple example consider the outputs aacbbcacd-
cdd, aaabdbacccdd and aababbbccddd of three con-
secutive blocks. Instead of concatenating them directly and 
compressing the result, the output of the second block is 
reversed. For this example we get

and the transition between the blocks, emphasized here in 
red, becomes smoother. Moreover, similar runs, indicated by 
matching colors, tend to be moved closer together. Table 5 
compares the following block methods with block size 8KB.

• DBC, Divide-BWT-Compress, divides the input file into 
blocks and applies separately BWT followed by b-2 or 
b-weight compressors on each block;

• DBMC, Divide-BWT-Merge-Compress, divides the input 
file into blocks, applies BWT to each block, merges the 
BWT outcomes into a single file and compresses the 
resulting file;

• DBIMC, Divide-BWT-Inverse-Merge-Compress. The 
same as DBMC, except for merging consecutive blocks 
in which every second block is reversed.

As can be seen, there is mostly a slight improvement of 
DBMC over DBC, and DBIMC gives consistently an addi-
tional small gain.

Conclusion

This paper studies the compression performance of weighted 
coding on Burrows–Wheeler transformed files. We have 
shown that statistical methods which treat all positions in the 
files evenly are indifferent to permutations in the input file, 
and to BWT in particular. On the other hand, the weighted 

approach, being more suitable to skewed files, has been 
shown empirically to gain additional savings when applied 
after having pre-processed the text by BWT.
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