
Vol.:(0123456789)

SN Computer Science (2023) 4:129
https://doi.org/10.1007/s42979-022-01546-7

SN Computer Science

ORIGINAL RESEARCH

Sorter Design with Structured Low Power Techniques

P. Preethi1  · K. G. Mohan2 · Sudeendra Kumar K.3 · K. K. Mahapatra4

Received: 19 April 2022 / Accepted: 3 December 2022 / Published online: 27 December 2022
© The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2022

Abstract
Sorting is a very important function which is widely used in several applications like signal processing and other data center
acceleration. Sorting is generally implemented on CPU or GPU, which takes several cycles to finish the sorting process.
Further improvement in performance in sorting is possible through hardware acceleration either in FPGA or ASIC. The
performance improvement and reducing the power consumption are the primary goals for researchers to improve the hard-
ware acceleration of sorting algorithms. The sorting techniques like Bubble sort, Bitonic sort and Odd–even sort are found
suitable for hardware implementation and widely discussed in the research literature. It is evident from the literature survey
endeavors from researchers to make these sorting techniques more modular and low power, which is required to design large-
scale sorting for data center-based applications. In this paper, we investigate application of generic and structured low-power
technique like clock gating and Multi-Vth in designing the low-power sorters. The bubble sort, bitonic sort and odd–even
sorting techniques are redesigned to make them low power using clock gating and multi-Vth technique. The implementation
results show that the clock gating reduces the dynamic power consumption on sorters by 47.5% without much impact on the
performance. Further performance improvement is achieved through adopting multi-Vth libraries without compromising the
dynamic power reduction achieved through clock gating. The power reduction results obtained are comparable with state-
of-the-art low-power sorters which are complex in design. The proposed sorters are implemented and results are presented
for Saed90nm standard cell libraries.

Keywords  Low power design · Clock gating · Multi-Vth · Sorting architecture

Introduction

Most of the algorithms used in computing today needs sort-
ing. Advancements in communications, cloud storage and
high- performance computing are driving the innovation in
the gig economy. Success in modern businesses depends
upon reliable and fast services from the Cloud-based data
centers. The major technological advancements like Bigdata,
artificial intelligence (AI) and Blockchain are computation-
ally intensive and it is necessary to have high-performance
computing infrastructure for data acceleration. Sorting is an
important operation which is frequently used in most of the
applications like graph theory, AI and in crunching the data
getting generated in applications of Internet of Things (IoT)
like smart city and smart transportation etc. Sorting opera-
tions can be implemented in both software and hardware
or in hybrid way. Better speed of operation for sorting can
be achieved in hardware implementation than in software,
as it consumes excessive number of CPU cycles. The well-
structured and deterministic parallelism can be achieved in

This article is part of the topical collection “Smart and Connected
Electronic Systems” guest edited by Amlan Ganguly, Selcuk Kose,
Amit M. Joshi, and Vineet Sahula.

 *	 P. Preethi
	 preethisrivathsa@gmail.com

	 K. G. Mohan
	 mkabadi@gitam.edu

	 Sudeendra Kumar K.
	 kumar.sudeendra@gmail.com

	 K. K. Mahapatra
	 kmaha2@gmail.com

1	 Presidency University, Bangalore, India
2	 GITAM University, Bangalore, India
3	 PES University, Bangalore, India
4	 NIT, Rourkela, India

http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-022-01546-7&domain=pdf
http://orcid.org/0000-0002-0032-481X

	 SN Computer Science (2023) 4:129129  Page 2 of 11

SN Computer Science

hardware implementation than in software-based parallel
implementation in multi-core CPUs. Hardware acceleration
of sorting are implemented using either as a dedicated ASIC
or FPGAs to meet the required performance [1, 2]. Hardware
sorter architectures depend upon the target applications and
number of inputs, width of the inputs and ordering of the
data. The well-known categorization of the sorters is merge
sorters and non-merge sorters. Merge sorters need the mem-
ory element along with sorting logic. Non-merge sorters like
bitonic, bubble and odd–even sorters do not require memory
element and general pre-processing and post-processing
modules are enough [3]. Sorting in hardware is efficient than
software implementation for short sequences whose length
and width of the data are known a priori. A good amount of
literature on sorting implementation in FPGA is available,
because it does not require control flow instructions and it
is not tedious to parallelize the sorting on FPGA devices.
Modern data centers are built upon multi-core processors,
GPUs and hardware accelerators for specific applications to
serve the different application verticals, in which hardware
sorters make place in most of the applications. Multi-core
processors and GPUs are ASICs and hardware accelerators
for custom applications like sorting are generally imple-
mented in FPGAs currently. The existing data centers face a
problem of huge thermal heating and high-power consump-
tion and current computing configuration with FPGA-based
hardware accelerators for custom applications like sorting
does not solve the problem of high-power consumption
and thermal heating. The problem of thermal heating and
high-power consumption will further escalate with the full-
fledged deployment of high-speed 5G networks, advanced
searching and machine learning techniques. The implemen-
tation of data intensive operations like sorting which are cur-
rently implemented in FPGA must be implemented in ASIC
to address the problem of power consumption. The FPGA
-based accelerators in data centers must be replaced with
dedicated low-power ASICs to achieve required low-power
consumption and reduce overall thermal heating of the data
centers. FPGA-based computing systems for sorting have got
several advantages like reconfigurability, efficient parallel-
ism for sorting, etc., and they have following disadvantages:

•	 Designing and developing low-power sorters without
compromising the performance are limited in FPGA’s
as already device is fabricated.

•	 In ASIC designs, we can use standard low-power tech-
niques like clock gating, Multi VDD, Multi-Vth, power
gating and dynamic voltage frequency scaling (DVFS) to
reduce power consumption which may not supported in
all available FPGA devices.

Gradually, FPGA-based hardware accelerators in cur-
rent servers will be replaced by programmable ASIC-based

hardware accelerators, which is required to balance the
power without compromising the performance requirements
[4, 5].

In this work, we focus on designing the low-power sorting
architectures and comparison of low-power implementation
of widely used sorting techniques. The standard and struc-
tured low-power digital design techniques like clock gating,
multi-VDD, multi-Vth, power gating and Dynamic Voltage
Frequency Scaling (DVFS) can be applied on widely used
sorting engines like bitonic sorting, odd–even sorting and
bubble sorting and analyses of power and performance is
an unexplored area of research. In this paper, we primarily
focus on clock gating and multi-Vth (Threshold Voltage)
based techniques to achieve low power on different sort-
ing engines and we present the power performance trade-off
results for three widely used sorting engines.

This paper is organized as follows: the section "Back-
ground" presents the literature survey on existing ASIC and
FPGA implementation of different sorting engines and brief
literature review on standard sorting techniques used in the
recent past. The section "Structured low-power techniques"
discusses structured low-power techniques widely used in
low-power design and their importance like clock gating,
etc. The section "Implementation and Results" presents
the implementation of low-power sorting and the section
"Result analysis" discusses the results, comparison and
analysis. Finally, in the section "Conclusion", conclusion
of the paper is presented. This paper is an extension to our
work presented in [6]. The improvements to the work done
to the work presented in [6] are as follows:

•	 Modification of the Compare and Swap (CAS) to add the
direction signal to the sorter to perform ascending and
descending order. To accommodate the asynchronous
direction signal, the complete CAS unit is redesigned to
make direction signal synchronous.

•	 Standard sorting benchmarks are used to perform power
analysis and to compare the different sorters.

•	 Power vs performance analysis of different sorters is
performed for different multi-Vth libraries for modified
CAS.

Background

Hardware implementation of sorting has attracted the
researchers all along from last 4 decades [7]. Computa-
tional complexity of well-known sorting techniques is
presented in Table 1. It is evident from the literature sur-
vey that merge sorting needs memory element along with
sorting logic and other sorting techniques does not need
memory element. Fastest sorting methods are odd–even
and bitonic sorters for streaming data [2, 3, 8]. Sorters

SN Computer Science (2023) 4:129	 Page 3 of 11  129

SN Computer Science

can be implemented either using combinational circuits
or can be sequential circuits with sorter datapath. Sequen-
tial Sorters are good candidates for pipelining and parallel
processing.

Generic Compare and Swap Circuit (CAS) for Sorters

Hardware implementation of sorters primarily composed of
series of compare and swap units. The circuit diagram of
compare and swap unit is shown in Fig. 1. The two values
are compared using a comparator and the result is applied
to the two multiplexers that select the values to generate the
output in an ascending or descending order. The two sym-
bols + and − used to represent the ascending and descending
units, respectively.

To handle the large data sets, bubble, bitonic and
odd–even sorts are employed [8, 9]. As the width of the data
increase, the number of comparators required is enormous. It
is practically not possible to implement such a large vertical
array of comparators. There is a need to design the sorter in
modular way, so that the design can be expanded easily to
increasing data widths.

Taxonomy of Sorters

Sorting is a one of the primitive Data Base Management
System (DBMS) operation and researchers have proposed
several sorting algorithms which are generally implemented
on general-purpose CPU for several decades. Software sort-
ing algorithms can be classified into two categories: simple
sorting algorithms, which work on limited amount of data
where the unsorted data are completely fit in the available
memory. Another category is Merge-sort algorithms, which
work on large amount of data, in which data are split into
several chunks and sorted. Finally, sorted data are merged
to get the intended final sorting result. The common sorting
algorithms which work on limited amount of known size
of data are bubble sort, insertion sort, etc. The well-known
merge sorters, which work on large chunks of data, are
merge sorters and tag sorters.

In hardware implementation, sorters can be categorized
in different ways. One such categorization is: Comparator
based sorters and Comparator-less sorters. The well-known
comparator-based sorters are insertion sort, bubble sort and
quick sort. The comparator-less sorters are bucket sort and
radix sort.

Further, sorters can be categorized as modular and non-
modular sorters. The Compare and Swap (CAS) is used in
both modular and non-modular sorters. Bubble sort, Odd
even sort and bitonic sort are the examples of modular sort-
ers, which are scalable. By adding and arranging the CAS
structures, we can scale these sorters for different bit-widths.

There are few types of sorters in which scaling is difficult
and such sorters can be categorized as non-modular sort-
ers. Example of such sorters are panning sorter and weaving
sorters [10]. The modular sorters like Bubble sort, Odd–even
sort and Bitonic sorters are briefly explained.

Bubble Sort

For a small set of inputs, it is feasible to implement the
bubble sort in hardware. The smallest or largest number is
selected in each round through a series of comparisons. The
bubble sort algorithm requires M comparisons and switching
events in the first stage with an input size of M. Similarly, in
the second stage, it requires M−1 comparisons and switching
events and so on until the completion of the sorting process.
The run time complexity is O(M2), in which ‘M’ is the input
size. Figure 2 shows the parallel bubble sorting network in
which compare operations can be executed sequentially by
applying pipelining.

Odd–Even Sort

Batcher proposed the odd–even merging sort by merging
the two sorted sequences into a complete sorted result. An

Table 1   Algorithms and complexity

Sorting techniques Best case/average case Worst case

Bubble sort O(n) O(n2)
Heap sort O(nlogn) O(nlogn)
Insertion sort O(n)/O(n2/4) O(n2)
Merge sort O(nlogn)/O(nlogn) O(nlogn)
Quick sort O(n)/O(nlogn) O(n2)
Selection sort O(n2)/O(n2) O(n2)

Fig. 1   Representation of compare and swap units used in sorters

	 SN Computer Science (2023) 4:129129  Page 4 of 11

SN Computer Science

M-input odd–even merging unit is represented by OE−M,
where ‘M’ should be the power of two. Sorted output can be
generated by constructing the series of parallel merging units
from OE-2 s, OE-4 s…to OE-M. When the input dataset
consists of 2P samples, there will be 2P-1 OE-2 s in the first
stage, 2P-2 OE-4 s in the second stage and so on. Figure 3
illustrates the eight-input odd–even merge sorting network.

Bitonic Sort

Bitonic sorting is also proposed by Batcher in [8]. Bitonic
sorter is constructed using the one sequence in increasing
order and another one in decreasing order. The bitonic merg-
ing unit merge the two sequences with equal length into
sorted output. The input size of the bitonic merging unit
must be in a power of two. The ‘M’ sorter unit receives an
ascending and descending sequence, and both the sequences
contain ‘M/2’ samples. It is called BM-M, where M is repre-
sented as 2P. To build the complete 2P input bitonic sorting
circuit, a series of bitonic merging units is applied recur-
sively to generate the sub-sequence.

The 2P input bitonic sorting network comprises 2P-1 par-
allel BM-2 s in first stage and 2P-2 BM-4 s in the second
level and so on. Figure 4 shows the Bitonic sorting network
for eight inputs.

It is well known from the literature and it is established
in research that bitonic and odd–even sorter is suitable to
design large-scale high-speed pipelined sorting networks.

ASIC Implementation of Modular Sorting
Techniques

Large-scale sorting networks are designed using modular
design techniques that hierarchically design large sorting
units from smaller building blocks. The sorting units are
composed of small and regular design blocks connected with
modular fashion which simplifies the designing of large-
scale sorting circuits. The modular approach of designing
sorting networks will make adopting pipelining and low-
power schemes easy [3]. The modular approach proposed in
[8] is extended in [9]. The paper [9] propose the low-power
sorting network, which uses the modular sorter design pro-
posed in [8].

Dynamic power consumption is the major part of power
consumption in CMOS designs. Reducing the switch-
ing activity will reduce the dynamic power consumption.
Switching activity increases when the input dataset increases
or bit width of the input is large. With the increase in bit
width, the compare and swap action in sorting network,
which increases the switching activity enormously, which
increases the dynamic power consumption. To reduce the
dynamic power, an immobile comparing unit which move
the indexes of samples instead of moving the actual input
data is proposed. This technique [9] reduces the power sig-
nificantly. Different kind of modular approach is presented in
[11], which sorts the data on the fly without any comparison
operation and number of clock cycles consumed is linearly
proportional to the number of inputs, with a speed complex-
ity of order of O(N). Unary processing-based bitonic sorting
network is proposed in [12]. The authors of [12] present the
results that unary processing-based bitonic sorting network
reduces the hardware cost and power consumption in com-
parison with conventional bitonic sorting network.

Fig. 2   Bubble sorter

Fig. 3   Odd–even sorter

Fig. 4   Bitonic sorter

SN Computer Science (2023) 4:129	 Page 5 of 11  129

SN Computer Science

Ta
bl

e 
2  

C
om

pa
ris

on
 o

f l
ow

-p
ow

er
 so

rti
ng

 te
ch

ni
qu

es

Pa
pe

r
Te

ch
ni

qu
e

Te
ch

no
lo

gy
N

od
e

an
d

im
pl

em
en

ta
tio

n
m

et
ho

do
lo

gy
Re

m
ar

ks

[8
] 2

01
3

Th
e

so
rti

ng
 u

ni
ts

 a
re

 d
es

ig
ne

d
fo

r
in

st
an

ce
s w

he
n

on
ly

 th
e

M
 la

rg
es

t
nu

m
be

rs
 fr

om
 a

 se
t o

f N
 in

pu
ts

 n
ee

d
to

 b
e

so
rte

d.
 T

o
m

ee
t t

he
 re

qu
ire

m
en

t,
bi

to
ni

c
an

d
od

d
ev

en
 so

rti
ng

 te
ch

ni
qu

es

ar
e

m
od

ifi
ed

/c
ha

ng
ed

65
 n

m
 st

an
da

rd
 c

el
l l

ib
ra

ry
 u

se
d

fo
r

sy
nt

he
si

s
Fo

r v
ar

io
us

 in
pu

t c
on

fig
ur

at
io

n,
 a

n
ar

ea

an
d

tim
in

g
an

al
ys

is
 re

po
rt

is
 b

ei
ng

pr

es
en

te
d

(s
em

i-c
us

to
m

 d
es

ig
n)

Th
e

su
gg

es
te

d
so

rti
ng

 n
et

w
or

k
do

es
 n

ot

ha
ve

 a
 p

ow
er

 a
na

ly
si

s

[9
] 2

01
7

(L
P)

Th
e

ex
te

ns
io

n
w

or
k

of
 th

is
 [9

] r
ed

uc
es

th

e
po

w
er

 c
on

su
m

pt
io

n.
 D

yn
am

ic

po
w

er
 re

du
ct

io
n

is
 p

os
si

bl
e

in
 m

od
ul

ar

so
rti

ng
 n

et
w

or
k

by
 a

do
pt

in
g

a
po

in
te

r-
lik

e
de

si
gn

 in
 w

hi
ch

 sa
m

pl
e

in
de

xe
s a

re

m
ov

ed
 in

ste
ad

 o
f i

np
ut

 d
at

a

90
 n

m
 st

an
da

rd
 c

el
l l

ib
ra

ry
 u

se
d

fo
r

sy
nt

he
si

s
Fo

r d
iff

er
en

t i
np

ut
 c

on
fig

ur
at

io
ns

,
dy

na
m

ic
 p

ow
er

 a
na

ly
si

s r
ep

or
ts

 a
re

m

ad
e

an
d

co
m

pa
re

d
w

ith
 e

xi
sti

ng

te
ch

ni
qu

e
[8

]
Fo

r v
ar

io
us

 in
pu

t c
on

fig
ur

at
io

n,
 a

n
ar

ea

an
d

tim
in

g
an

al
ys

is
 re

po
rt

is
 b

ei
ng

pr

es
en

te
d

(s
em

i-c
us

to
m

 d
es

ig
n)

Po
w

er
 a

na
ly

si
s r

ep
or

te
d

th
at

, w
ith

 in
cr

ea
se

in

 b
it-

si
ze

 o
f t

he
 in

pu
t,

th
e

po
w

er

an
al

ys
is

 im
pr

ov
ed

 m
in

im
al

ly
 a

nd
 th

er
e

is
 a

n
im

pr
ov

em
en

t i
n

po
w

er
 re

du
ct

io
n

re
po

rte
d

fo
r l

ow
er

 fr
eq

ue
nc

ie
s a

t h
ig

he
r

bi
t s

iz
es

[1
1]

 2
01

7
A

 n
ov

el
 so

rti
ng

 a
lg

or
ith

m
 p

ro
po

se
d

w
hi

ch
 c

an
 so

rt
th

e
in

pu
t d

at
a

in
te

ge
r

el
em

en
ts

 o
n

th
e

fly
 w

ith
ou

t a
ny

 c
om

-
pa

ris
on

Th
e

pr
op

os
ed

 te
ch

ni
qu

e
re

su
lts

 in
 O

(N
)

co
m

pu
ta

tio
na

l c
om

pl
ex

ity
 a

nd
 it

’s
 a

si

gn
ifi

ca
nt

 c
on

tri
bu

tio
n

90
-n

m
 te

ch
no

lo
gy

 u
se

d
fo

r s
yn

th
es

is
Th

e
re

su
lts

 o
f t

ra
ns

ist
or

 c
ou

nt
, t

im
in

g
an

d
po

w
er

 a
re

 p
re

se
nt

ed
 (f

ul
l c

us
to

m

de
si

gn
)

Th
e

de
si

gn
 is

 m
ad

e
up

 o
f d

ig
ita

l c
om

po
-

ne
nt

s a
nd

 si
m

pl
y

tra
ns

fe
rr

ed
 to

 F
PG

A

an
d

se
m

i-c
us

to
m

 A
SI

C
. S

ca
la

bi
lit

y
ca

n-
no

t b
e

ac
hi

ev
ed

 fo
r l

ar
ge

r i
np

ut
 b

it
si

ze
s

du
e

to
 tr

an
si

sto
r l

ev
el

 im
pl

em
en

ta
tio

n
Th

e
dy

na
m

ic
 p

ow
er

 a
nd

 la
te

nc
ie

s m
ay

be

 h
ig

h
fo

r l
ar

ge
 in

pu
t b

it
si

ze
s i

n
th

e
pr

op
os

ed
 c

irc
ui

t
H

en
ce

 a
n

op
tim

iz
ed

 c
irc

ui
t r

eq
ui

re
d

[1
2]

 2
01

8
(u

na
ry

)
[1

2]
 p

ro
po

se
s a

 lo
w

-c
os

t,
lo

w
-p

ow
er

so

rti
ng

 a
lg

or
ith

m
 b

as
ed

 o
n

un
ar

y
pr

oc
es

si
ng

Th
is

 p
ro

ce
ss

in
g

re
du

ce
s t

he
 w

iri
ng

be
tw

ee
n

co
m

pa
re

 a
nd

 sw
ap

 u
ni

ts
 in

 th
e

la
rg

e
so

rti
ng

 n
et

w
or

ks

45
-n

m
 st

an
da

rd
 c

el
l l

ib
ra

ry
 u

se
d

fo
r

sy
nt

he
si

s
A

re
a,

 p
ow

er
 a

nd
 ti

m
in

g
re

su
lts

 a
re

re

po
rte

d
fo

r 8
-,

16
- a

nd
 3

2-
bi

t d
at

a
le

ng
th

 (s
em

i-c
us

to
m

 d
es

ig
n)

Pr
op

os
ed

 te
ch

ni
qu

e
re

du
ce

s t
he

 p
ow

er

no
ta

bl
y

fo
r t

he
 h

ig
he

r b
it-

 w
id

th
 a

t t
he

co

st
of

 in
cr

ea
se

d
la

te
nc

y.
 T

he
 p

ro
ce

ss
in

g
of

 d
ig

ita
l

un
ar

y
str

ea
m

s t
ak

es
 a

 le
ng

th
y

tim
e

[1
6]

 R
TH

S
[1

6]
 p

ro
po

se
 a

nd
 im

pl
em

en
t t

he
 m

ul
ti-

di
m

en
si

on
al

 so
rti

ng
 a

lg
or

ith
m

 (M
D

SA
)

an
d

its
 a

rc
hi

te
ct

ur
e

fo
r h

ar
dw

ar
e

im
pl

em
en

ta
tio

n
ca

lle
d

RT
H

S
(r

ea
l-t

im
e

ha
rd

w
ar

e
so

rte
r)

Im
pl

em
en

te
d

on
 F

PG
A

Pe
rfo

rm
an

ce
 o

f t
he

 p
ro

po
se

d
al

go
rit

hm

is
 v

al
id

at
ed

 b
y

m
od

ify
in

g
th

e
B

ito
ni

c
so

rte
r

H
ig

h-
pe

rfo
rm

an
ce

 so
rte

r,
bu

t i
nc

re
as

es
 th

e
dy

na
m

ic
 p

ow
er

 c
on

su
m

pt
io

n

	 SN Computer Science (2023) 4:129129  Page 6 of 11

SN Computer Science

The detailed comparison of the above-mentioned tech-
niques is presented in Table 2.

Challenges in Designing Large‑Scale Modular
Sorting Networks

It is evident from the literature survey that the major chal-
lenges in designing large sorting networks are as follows:

•	 The most important challenge is the long critical paths
and increase with the input bit width. The long critical
paths impact the operating frequency decrease the overall
performance. Pipelined implementation of sorters will
reduce the critical paths to the larger extent [8].

•	 The pipelined implementation increases the switching
activity significantly and makes the design power hungry.
There is a need to decrease the power consumption by
adopting the suitable low-power techniques.

The pipelining/parallel processing increases the dynamic
power which has become the one of the primary concerns in
modern data centers.

In this work, we primarily focus on three important sort-
ing algorithms: odd–even sorting bubble sorting and bitonic

sorting. We will apply structured low-power technique
like clock gating on pipelined sequential implementations
of odd– even sorting and bitonic sorting and analyze the
dynamic power for ASIC design. To the best of our knowl-
edge, a generic well-established clock gating and multi-Vth
(threshold) technique is employed on sorting networks to
reduce the power consumption and optimize the critical
paths. We will present the comparative results for different
sorters for power, performance and area.

Modified Compare and Swap Circuit

The modified Compare and Swap (CAS) circuit diagram is
shown in Fig. 5.

The basic CAS circuit presented in Fig. 1 is improved by
adding an XOR gate. 2-Input XOR gate is fed with direction
signal which is an external input and other input to the XOR
gate is the output of the comparator. The direction signal is
added to change the direction of sorter to perform ascending
or descending order sorting [13]. Most of the times, the CAS
circuits used in sorters are combinational circuits as shown
in Fig. 5, which will have the following issues:

•	 The output of CAS circuits is not synchronized and mis-
matches in the output of multiplexer during gate-level
simulation and post-layout simulation. To ensure the
mismatches between the outputs of the multiplexers, the
outputs must be clocked.

•	 In the combinational CAS circuit, direction signal is fed
into XOR gate is fully asynchronous and it needs to be
synchronous to avoid mismatches and proper functioning
of the overall circuit.

The proposed modified CAS circuit is fully synchronous
and both asynchronous inputs and outputs are clocked. This
improves the working of CAS significantly. The un-clocked
CAS is large combinational circuit and converting the large
combinational CAS into sequential CAS reduces the synthe-
sis and simulation mismatches. The combinational CAS is
replaced by a sequential CAS shown in Fig. 5. In this work,
we have used modified sequential CAS in the implementa-
tion of Bubble, Bitonic and Odd–even sorter.

Structured Low Power Techniques

The design for low power is a vast subject and low-power
requirements can be achieved at circuit level, gate level, RTL
level and system level. The circuit level changes are difficult
to adopt in semi-custom design. As semi-custom designs use
already available standard cell libraries from foundry, the

Fig. 5   Modified CAS

Table 3   Features of multi-Vth CELLS

Vth Leakage power Dynamic power Speed

LVth Highest Highest Highest
SVth Normal Normal Normal
HVth Lowest Lowest Lowest

SN Computer Science (2023) 4:129	 Page 7 of 11  129

SN Computer Science

improvements at logic gates level are also difficult. After
a several years of research, industry has adopted matured
low-power techniques which can be adopted in semi-custom
design flow easily and require no modification in design
or architecture. Such techniques are: Clock gating, Power
gating, using Multi VDD and Multi-Vth (Threshold Volt-
age) libraries. In this work, we apply only two structured
low-power techniques on sorters namely, clock gating and
multi-threshold.

Clock Gating

Generally, data are loaded into the registers infrequently in
most of the designs, and the clock signal is fed continuously.
Clock signal will continuously toggle at every pre-defined
cycle. Clock signal drives the large capacitive load mak-
ing clock as a major source of switching power dissipation.
Gating a group of flip-flops in the design, which are enabled
by same control signal, reduces the unnecessary toggles on
clock. Power is not dissipated during the idle period when
the register is switched off by gating function. Dynamic
power consumption is saved in the gated clock network. The
clock to the register files of an unused module is turned off
using an extra AND gate, which is controlled by an enable
signal. Extra AND gate and enable control signal can be
introduced either in RTL or in the gate-level netlist using
scripts. The conceptual diagram of clock gating is shown
in Fig. 5.

Multi‑Threshold Libraries

Standard cell libraries contain cells with different threshold
voltages for MOS devices in each standard cell.

Most of the standard cell libraries support different power
and speed characteristics. Along with other several param-
eters like sizing of the transistor, the Vth (threshold voltage)
of the logic gate determines the power and speed of the cell.
Generally, libraries support High Vth (HVt), Standard Vth
(SVt) and Low Vth (LVt) classes of cells. The features of the
three different multi-Vth cells are presented in the Table 3.
The HVth cells have lower leakage and dynamic power and
less speed. LVth cells will have highest leakage and dynamic
power and smaller delays. SVth cells will have normal power
consumption and normal speed (Table 3).

Implementation and Results

Clock Gating Implementation

To further speed up the operation, we implemented pipelin-
ing of sorting networks as described in [14]. Sorting circuits

will have large number of comparators between inputs and
outputs. Pipelining is implemented in sorting network by
ensuring that the clocked register/pipeline stage has only one
comparator between its input and output. Pipeline stages will
increase with size of the input and 8-element sorting net-
work needs a 6-stage pipelining, 16-element sorting network
needs 10 pipelining stages and 32-bit sorting network needs
15 stage pipelining and so on. In this work, we implemented
pipelined versions of bitonic sorting, odd–even sorting and
bubble sorting in Verilog and simulated in Xilinx Vivado
Simulator and Cadence NCSim. The designs are synthesized
in Cadence Genus Synthesis tools using saed90nm library
and synthesized gate-level netlist is verified in Cadence
NCSim. Clock gating is implemented using PERL script-
ing and clock gated netlist is verified for functionality in
Cadence NCSim.

Multi‑Vth Implementation

Multi-threshold voltage technique uses Standard Vth, Low
Vth and High Vth cells. In this technique, lower threshold
gates are used in critical path and high threshold are used in
the non-critical path. This methodology improves the speed
of operation without an increase in the power consumption.
The areas of low Vth and high Vth cells are same as that of
standard Vth cells. Therefore, in the critical paths or in any
other paths of the design, Standard Vth cells can be replaced
with either low Vth or High Vth cells as per the requirement.
This technique improves the performance without compro-
mising on area and increasing power consumption.

Multi-Vth implementation can be performed in various
ways. It can be done during RTL synthesis, and gate-level
netlist or during layout through engineering change order.
Logic synthesis is a process of converting the RTL Verilog
code into functionally equivalent gate-level netlist.

The standard cell libraries with multiple Vth can used in
synthesis to achieve different Vth cells for different timing
paths in the design. Synthesis is an ideal place to perform
multi-Vth implementation. Synthesis is performed using the
Standard Vth (SVth) library.

In this work, three sorters are implemented using both
clock gating and multi-Vth. The process followed to incorpo-
rate clock gating is explained above. Multi-Vth implementa-
tion for sorters is performed as follows:

•	 Clock gating is performed after the RTL synthesis. The
clock gated gate-level circuit obtained from synthesis is
simulated for functional verification. Synthesis is per-
formed using Standard Vth (SVt) library with normal
design constraints.

•	 Static timing analysis (STA) is performed to find out the
critical path/group of critical paths in the design. With

	 SN Computer Science (2023) 4:129129  Page 8 of 11

SN Computer Science

the help of STA, we can analyze the delay of all the paths
in the design.

•	 Categorize the paths in the design as high slack, medium
slack and low slack paths. The categorization of paths
is performed based on the slack value of each path. The
path with lowest slack (which is also a critical path) is
grouped in low slack category, and similarly, all paths
are placed in either high slack or medium slack or low
slack group depending upon their slack value. Design is
synthesized using SVth library.

•	 Further, in the non-critical paths (paths with high slack),
the standard Vth cells are replaced with higher Vth (High
Vt) cells. In paths with lowest slack (critical paths), the
standard Vth cells are replaced with LVth cells.

•	 The standard cells which are common to two or three
timing paths are not replaced with either HVth or LVth
cells. The normal standard Vth cells are retained.

•	 PERL scripting is developed to replace the cells in syn-
thesized gate-level netlist.

•	 Cadence Genus and Tempus tools are used to perform
synthesis and static timing analysis, respectively. Syn-
opsys Saed90nm is used for synthesis.

Result Analysis

Benchmarks: Sorting accounts for more than 20% of com-
puting in most of the enterprise applications. And there
are several sorting algorithms which are intended to get
deployed on general-purpose processors, GPGPUs and
FPGAs. A sorting technique which will work efficiently
on multi-core processors may not work on the FPGAs or
dedicated ASICs. To measure and evaluate the performance
of the sorting techniques, sorting benchmark programs are
devised and explained in [15]. The existing benchmarks

[15] primarily target the general-purpose CPUs and GPG-
PUs and not developed to evaluate the sorting algorithms
implemented on FPGAs or dedicated ASICs. The authors
in [15] present the case for comprehensive framework for
sorting benchmarks, which suggests that sorting benchmarks
must be designed targeting the intended target like FPGA,
GPGPU or CPU and irrespective of hardware target, and
the programs/benchmarks used to evaluate the sorting algo-
rithms must have some statistical characteristics like Gauss-
ian distribution and collectible system statistics like I/O uti-
lization, etc. The existing benchmarks in [15] are designed
for CPUs and GPUs and those are not useful for FPGA or
ASIC evaluation.

The benchmarks presented in [15] like Gray sort, Ten-
cent sort, etc. are designed to verify the performance based
on fast memory access and SDRAM burst sizes. These
benchmarks are good for CPU and GPU and there is a
need for benchmarks for FPGA or ASIC implementations
for comparison of sorting architectures independent of
other parameters like memory access etc. In this work, to
evaluate the implementation of sorting techniques (Bub-
ble, Bitonic and Odd–even) for power consumption, we
define the microbenchmark with the following statistical
characteristics:

•	 The number of test vectors in microbenchmark is 512 and
width of each vector can be 8-bit, 16-bit or 32-bit. The
input vectors are fed into sorters sequentially and each
vector will have a randomness of 50%. It means that each
vector will have equal number of ones and zeros. The
uniformity in each vector is chosen as 50% to ensure the
maximum switching activity in the circuit, so that we can
measure maximum dynamic power more accurately.

Table 4   Comparison of area, power and timing of proposed and conventional sorters

Sorter Bit width Area in square microns (syn-
thesized @ 50 MHz)

Critical path @ 50 MHz fre-
quency (in nanoseconds)

Dynamic power consumption (mW) (@50 MHz)

Conventional
pipelined
sorter

Proposed
clock gated
sorter

Conventional
pipelined
sorter

Proposed
clock gated
sorter

Conventional
pipelined
sorter

Proposed
clock gated
sorter

Reduction (%)

Bitonic sort 8 36,456.23 35,345.87 6.545 6.776 1.3 0.585 46.59
16 74,234.45 75,456.78 6.900 6.723 1.47 0.71 48.90
32 145,667.3 144,589.8 7.423 7.733 1.88 0.912 51.83

Odd–even sort 8 32,762.34 30,231.89 5.845 5.812 1.39 0.641 52.55
16 63,298.75 61,234.98 5.987 5.634 1.62 0.71 46.90
32 125,987.6 122,889.9 8.412 8.854 2.1 0.912 47.02

Bubble sort 8 40,014.59 38,234.88 6.598 6.734 1.37 0.651 49.53
16 81,298.56 79,126.38 7.378 7.564 1.68 0.845 52.48
32 178,238.3 174,398.5 8.231 8.432 2.08 1.101 52.65

SN Computer Science (2023) 4:129	 Page 9 of 11  129

SN Computer Science

•	 Each vector is fed sequentially into the sorters and veri-
fied for correct functionality and switching activity file
(VCD) is generated.

Experimental Analysis with Clock Gating: The experi-
ments are conducted to evaluate the performance of the
different hardware sorters with clock gating (multi-Vth not
included). The microbenchmark described in the above sec-
tion is used to generate the switching activity and dynamic
power is calculated for the proposed benchmark. The area,
timing and power results are presented in Table 4 for an
operating frequency of 50 MHz. The synthesis is performed
for 50 MHz and gate-level simulations are performed to
generate the switching activity at different frequencies and
power consumption values are recorded and presented in
Table 4.

Experimental Analysis with Multi-Vth: The clock gating
and multi-Vth are two important structured low-power tech-
niques which we have incorporated in three different sorters
and we have presented the results. The primary objective
of deploying the multi-Vth is to improve the performance
without increasing the dynamic power. It is evident from
the table x that, there is significant reduction in the critical
path, so that we can operate the design at higher frequencies
across the PVT (Process, Voltage, Temperature) corners.
In Table 6, we also present the dynamic power consump-
tion for both Clock gating and Multi-Vth with Clock gating
for different frequencies. It is evident from Table 5 that the
improvement achieved in improving the critical path without
compromising the reduction of power consumption achieved
through clock gating is stable across frequencies.

As we have discussed above, there are no standard sort-
ing benchmarks available for architectural evaluation of
hardware sorting architectures, and we developed a novel
validation benchmark which fits the objective of measure-
ment and analysis of dynamic power consumption across
hardware sorting architectures. In this work, we created the
randomized testbench using system Verilog and generated
the randomized stimulus to match the statistical require-
ments of the power analysis benchmark.

In this work, we are working with three basic sorter archi-
tectures, the number of CAE blocks and the order in which
the data are fed influences the switching activity, which in
turn will have an effect on dynamic power consumption.
The power consumption for conventional sorters, clock gated
and clock gated with multi-Vt is presented for the described
benchmark.

Comparison

Comparative results for reduction in dynamic power for
relevant technique (bitonic sorter) are presented in Table 6.

Ta
bl

e 
5  

C
om

pa
ris

on
 o

f p
ow

er
 a

nd
 ti

m
in

g
of

 p
ro

po
se

d
(w

ith
 c

lo
ck

 g
at

in
g

an
d

m
ul

ti-
V

th
) a

nd
 c

on
ve

nt
io

na
l s

or
te

rs

So
rte

r
B

it
w

id
th

C
rit

ic
al

 p
at

h
@

 5
0

M
H

z
fr

eq
ue

nc
y

(in
 n

an
o

se
co

nd
s)

D
yn

am
ic

 p
ow

er
 c

on
su

m
pt

io
n

(m
W

) (
@

50
 M

H
z)

C
on

ve
nt

io
na

l
pi

pe
lin

ed

so
rte

r

Pr
op

os
ed

cl

oc
k

ga
te

d
so

rte
r

Pr
op

os
ed

 c
lo

ck

ga
te

d
w

ith
 m

ul
ti-

V
th

 so
rte

r

Re
du

ct
io

n
us

in
g

cl
oc

k
ga

te
d

w
ith

m

ul
ti-

V
th

 (%
)

C
on

ve
nt

io
na

l
pi

pe
lin

ed

so
rte

r

Pr
op

os
ed

cl

oc
k

ga
te

d
so

rte
r

Pr
op

os
ed

 c
lo

ck

ga
te

d
w

ith
 m

ul
ti-

V
th

 so
rte

r

Re
du

ct
io

n
us

in
g

cl
oc

k
ga

te
d

(%
)

Re
du

ct
io

n
us

in
g

cl
oc

k
ga

te
d

w
ith

m

ul
ti-

V
th

 (%
)

B
ito

ni
c

so
rt

8
6.

54
5

6.
77

6
4.

23
4

64
.6

9
1.

3
0.

58
5

0.
58

9
46

.5
9

45
.3

1
16

6.
9

6.
72

3
4.

78
9

69
.4

1
1.

47
0.

71
0.

67
2

48
.9

45
.7

1
32

7.
42

3
7.

73
3

5.
98

1
80

.5
7

1.
88

0.
91

2
1.

01
1

51
.8

3
53

.7
7

O
dd

–e
ve

n
so

rt
8

5.
84

5
5.

81
2

3.
91

2
66

.9
3

1.
39

0.
64

1
0.

65
3

52
.5

5
46

.9
7

16
5.

98
7

5.
63

4
4.

23
2

70
.6

9
1.

62
0.

71
0.

68
9

46
.9

42
.5

3
32

8.
41

2
8.

85
4

5.
82

1
69

.2
0

2.
1

0.
91

2
1.

10
1

47
.0

2
52

.4
2

B
ub

bl
e

so
rt

8
6.

59
8

6.
73

4
4.

43
2

67
.1

7
1.

37
0.

65
1

0.
66

2
49

.5
3

48
.3

2
16

7.
37

8
7.

56
4

4.
78

2
64

.8
1

1.
68

0.
84

5
0.

84
9

52
.4

8
50

.5
3

32
8.

23
1

8.
43

2
5.

92
1

71
.9

4
2.

08
1.

10
1

1.
21

0
52

.6
5

58
.1

7

	 SN Computer Science (2023) 4:129129  Page 10 of 11

SN Computer Science

Both [9] and [12] are based on bitonic sorting. The technique
proposed in [12] reduces the dynamic power significantly up
to 89% for 32-bit sorter. The presented values in the table for
comparison in Table 7 are normalized values. The formulas
used to derive the normalized values are shown below

where ‘M’ is number of elements sorted and ‘N’ is width
of the element. The calculation for normalized power is
presented in [17]. The proposed clock gated 32-bit sorter
reduces the dynamic power by 48.51%, which is better
than the low-power sorter presented in [9]. The technique
presented in [12] is based on unary processing, which
needs a pre-processing and post-processing modules. The
dynamic power calculation does not include the pre- and

Normalised powerproposed =
power × Excution time × 102

V
2
DD

×M × N
,

post-processing modules in dynamic power calculation. The
critical paths in the three different sorters are replaced with
LVt cells in the place of SVt cells using multi-Vth cells.
The proposed low-power bitonic sorter with clock gating
and multi-Vth significantly achieves significant reduction of
power by 48.51%. Multi-Vth also improves the speed of the
circuit by reducing the critical path. Table 7 represents the
comparisons between previous sorters and proposed sorters.
The performance has been improved without compromising
dynamic power consumption achieved through clock gating
using multi-Vth cells.

Comparative results for reduction in dynamic power for
relevant technique (bitonic sorter) are presented in Table 6.
Both [9] and [12] are based on bitonic sorting. The technique
proposed in [12] reduces the dynamic power significantly up
to 89% for 32-bit sorter.

The proposed clock gated 32-bit sorter reduces the
dynamic power by 48.51%, which is better than the low-
power sorter presented in [9]. The technique presented in
[12] is based on unary processing, which needs a pre-pro-
cessing and post-processing modules. The dynamic power
calculation does not include the pre- and post-processing
modules in dynamic power calculation. The critical paths in
the three different sorters are replaced with LVt cells in the
place of SVt cells using multi-Vth cells. The proposed low-
power bitonic sorter with clock gating and multi-Vth signifi-
cantly achieves significant reduction of power by 48.51%.
Multi-Vth also improves the speed of the circuit by reducing
the critical path. Table 7 represents the comparisons between
previous sorters and proposed sorters. The performance has
been improved without compromising dynamic power con-
sumption achieved through clock gating using Multi-Vth
cells.

Table 6   Dynamic power consumption of proposed (with clock gating and multi-Vth) and conventional sorters

Sorter (32-bit) Operating Fre-
quency (MHz)

Dynamic power consumption (mW)

Conventional
pipelined sorter

Proposed clock
gated sorter

Proposed clock gated
with multi-Vth sorter

Reduction (clock
gated) (%)

Reduction (clock
gated with multi-Vth)
(%)

Bitonic sort 20 1.76 0.82 0.89 46.59 50.57
40 1.82 0.89 0.94 48.9 51.64
60 1.91 0.99 1.05 51.83 54.97
80 1.96 1.03 1.11 52.55 56.68

Odd–even sort 20 1.94 0.91 0.98 46.9 50.51
40 2.02 0.95 1.06 47.02 52.47
60 2.14 1.06 1.19 49.53 55.61
80 2.21 1.16 1.22 52.48 55.21

Bubble sort 20 1.88 0.99 1.1 52.65 58.51
40 2.06 1.05 1.18 50.97 57.28
60 2.18 1.12 1.21 51.37 55.51
80 2.23 1.24 1.29 53.91 57.84

Table 7   Comparison of dynamic power consumption of proposed and
existing schemes

Bitonic
Sorter

Percentage
of dynamic
power
reduction in
comparison
with con-
ventional
bitonic
sorter
(unary
processing)
[12]

Percent-
age of
reduction in
comparison
with con-
ventional
bitonic
sorter (low
power) [9]

Percent-
age of
reduction in
comparison
with con-
ventional
bitonic
sorter with
proposed
clock gated
bitonic
sorter

Percentage of
reduction in
comparison
with conven-
tional bitonic
sorter with
proposed
clock gated
with multi-
Vth bitonic
sorter

32-bit 89% 37.01% 48.51% 48.36%

SN Computer Science (2023) 4:129	 Page 11 of 11  129

SN Computer Science

Conclusion

It is evident from the literature survey that the suitable non-
merge sorting techniques for hardware implementation
are bitonic sorting, bubble sorting and odd–even sorting.
The improvements in performance and reduction in power
consumption are concerns in designing sorting techniques
for hardware implementation. In this paper, we have used
well-established structured low-power techniques like clock
gating and multi-Vth to achieve low-power consumption on
three different hardware sorting techniques and trade-off
between area, timing and power consumption is analyzed.
Multi-Vth libraries are used to further reduce the critical
path or increase the frequency.

The clock gated sorting architectures are compared with
state-of-the-art recent low-power sorting schemes and com-
parative results are presented and multi-Vth implementa-
tion will reduce the critical path without compromising the
dynamic power consumption reduction achieved through
clock gating. The proposed clock gated sorters reduce the
dynamic power consumption by 47.5% in comparison with
conventional (non-clock gated) sorting circuits. The clock
gating technique on sorters is also analyzed for range of
frequencies and it is found that the dynamic power consump-
tion decreases in proposed clock gated sorters incrementally
with increase in frequency of operation. The proposed clock
gated technique reduces the dynamic power consumption
significantly in three widely used sorting techniques in com-
parison with earlier techniques.

Declarations 

Conflict of Interest  On behalf of all authors, the corresponding author
states that there is no conflict of interest.

References

	 1.	 Marcelino R, Neto HC, Cardoso JMP. Sorting Units for FPGA-
Based Embedded Systems. In: Proc. IFIP Cong. Distributed
Embedded Systems: Design, Middleware and Resources, 2008;
11–22.

	 2.	 Sklyarov V, Skliarova I. High-performance implementation of
regular and easily scalable sorting networks on an FPGA. Elsevier
J Microprocess Microsyst. 2014;38(5):470–84.

	 3.	 Alaparthi S, Gulati K, Khatri SP. Sorting binary numbers in
hardware—a novel algorithm and its implementation. In: 2009
IEEE International Symposium on Circuits and Systems, 2009,
pp. 2225–2228.

	 4.	 Dayarathna M, Wen Y, Fan R. Data center energy con-
sumption modeling: a survey. IEEE Commun Surv Tutor.
2016;18(1):732–94.

	 5.	 Falsafi B, Dally B, Singh D, Chiou D, Yi JJ, Sendag R. FPGAs
versus GPUs in data centers. IEEE Micro. 2017;37(1):60–72.

	 6.	 Preethi P, Mohan KG, Sudeendra Kumar K, Kamala Kanta
Mahapatra. Low power sorters using clock gating. In: 7th IEEE
International Symposium on Smart Electronic Systems (iSES-
2021) 2021.

	 7.	 Thompson CD. The VLSI complexity of sorting. IEEE Trans
Comput. 1983;32(12):1171–84.

	 8.	 Farmahini-Farahani A, Duwe HJ III, Schulte MJ, Compton K.
Modular design of high-throughput, low-latency sorting units.
IEEE Trans Comput. 2013;62(7):1389–402.

	 9.	 Lin S, Chen P, Lin Y. Hardware design of low-power high-through-
put sorting unit. IEEE Trans Comput. 2017;66(8):1383–95.

	10.	 Pedroni V, Jasinski RP, Pedroni RU. Panning sorter: an approach
to the design of minimal-hardware parallel-input data sorters.
Electron Lett. 2010;46(18):1262–3.

	11.	 Abdel-Hafeez S, Gordon-Ross A. An efficient O(N) comparison−
free sorting algorithm. IEEE Trans Very Large-Scale Integr VLSI
Syst. 2017;25(6):1930–42.

	12.	 Najafi MH, Lilja DJ, Riedel MD, Bazargan K. Low- cost sorting
network circuits using unary processing. IEEE Trans Very Large-
Scale Integr VLSI Syst. 2018;26(8):1471–80.

	13.	 Norollah A, Kazemi Z, Beitollahi H, Hely D. Hardware support
for efficient and low-power data sorting in massive data appli-
cation: the 3D sorting method. IEEE Consum Electron Mag.
2021;11:87–94.

	14.	 Rabaey JM. Low power design essentials. Springer; 2009. (ISBN:
978-0-387-71712-8).

	15.	 Madaminov S. Comprehensive framework for sorting benchmarks.
In: Proceedings of the VLDB 2019 PhD Workshop, California,
August 26th, 2019.

	16.	 Norollah A. RTHS: a low-cost high-performance real-time hard-
ware sorter, using a multidimensional sorting algorithm. IEEE
Trans Very Large Scale Integr VLSI Syst. 2019;99:1–13.

	17.	 Locharla GR, Kallur SK. Implementation of MIMO data reor-
dering and scheduling methodologies for eight-parallel variable
length multi-path delay commutator FFT/IFFT. In: IET computers
and design techniques, VDAT, 2016.

Publisher's Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of
such publishing agreement and applicable law.

	Sorter Design with Structured Low Power Techniques
	Abstract
	Introduction
	Background
	Generic Compare and Swap Circuit (CAS) for Sorters
	Taxonomy of Sorters
	Bubble Sort
	Odd–Even Sort
	Bitonic Sort

	ASIC Implementation of Modular Sorting Techniques
	Challenges in Designing Large-Scale Modular Sorting Networks
	Modified Compare and Swap Circuit

	Structured Low Power Techniques
	Clock Gating
	Multi-Threshold Libraries

	Implementation and Results
	Clock Gating Implementation
	Multi-Vth Implementation

	Result Analysis
	Comparison

	Conclusion
	References

