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Abstract
Sorting is a very important function which is widely used in several applications like signal processing and other data center 
acceleration. Sorting is generally implemented on CPU or GPU, which takes several cycles to finish the sorting process. 
Further improvement in performance in sorting is possible through hardware acceleration either in FPGA or ASIC. The 
performance improvement and reducing the power consumption are the primary goals for researchers to improve the hard-
ware acceleration of sorting algorithms. The sorting techniques like Bubble sort, Bitonic sort and Odd–even sort are found 
suitable for hardware implementation and widely discussed in the research literature. It is evident from the literature survey 
endeavors from researchers to make these sorting techniques more modular and low power, which is required to design large-
scale sorting for data center-based applications. In this paper, we investigate application of generic and structured low-power 
technique like clock gating and Multi-Vth in designing the low-power sorters. The bubble sort, bitonic sort and odd–even 
sorting techniques are redesigned to make them low power using clock gating and multi-Vth technique. The implementation 
results show that the clock gating reduces the dynamic power consumption on sorters by 47.5% without much impact on the 
performance. Further performance improvement is achieved through adopting multi-Vth libraries without compromising the 
dynamic power reduction achieved through clock gating. The power reduction results obtained are comparable with state-
of-the-art low-power sorters which are complex in design. The proposed sorters are implemented and results are presented 
for Saed90nm standard cell libraries.

Keywords  Low power design · Clock gating · Multi-Vth · Sorting architecture

Introduction

Most of the algorithms used in computing today needs sort-
ing. Advancements in communications, cloud storage and 
high- performance computing are driving the innovation in 
the gig economy. Success in modern businesses depends 
upon reliable and fast services from the Cloud-based data 
centers. The major technological advancements like Bigdata, 
artificial intelligence (AI) and Blockchain are computation-
ally intensive and it is necessary to have high-performance 
computing infrastructure for data acceleration. Sorting is an 
important operation which is frequently used in most of the 
applications like graph theory, AI and in crunching the data 
getting generated in applications of Internet of Things (IoT) 
like smart city and smart transportation etc. Sorting opera-
tions can be implemented in both software and hardware 
or in hybrid way. Better speed of operation for sorting can 
be achieved in hardware implementation than in software, 
as it consumes excessive number of CPU cycles. The well-
structured and deterministic parallelism can be achieved in 
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hardware implementation than in software-based parallel 
implementation in multi-core CPUs. Hardware acceleration 
of sorting are implemented using either as a dedicated ASIC 
or FPGAs to meet the required performance [1, 2]. Hardware 
sorter architectures depend upon the target applications and 
number of inputs, width of the inputs and ordering of the 
data. The well-known categorization of the sorters is merge 
sorters and non-merge sorters. Merge sorters need the mem-
ory element along with sorting logic. Non-merge sorters like 
bitonic, bubble and odd–even sorters do not require memory 
element and general pre-processing and post-processing 
modules are enough [3]. Sorting in hardware is efficient than 
software implementation for short sequences whose length 
and width of the data are known a priori. A good amount of 
literature on sorting implementation in FPGA is available, 
because it does not require control flow instructions and it 
is not tedious to parallelize the sorting on FPGA devices. 
Modern data centers are built upon multi-core processors, 
GPUs and hardware accelerators for specific applications to 
serve the different application verticals, in which hardware 
sorters make place in most of the applications. Multi-core 
processors and GPUs are ASICs and hardware accelerators 
for custom applications like sorting are generally imple-
mented in FPGAs currently. The existing data centers face a 
problem of huge thermal heating and high-power consump-
tion and current computing configuration with FPGA-based 
hardware accelerators for custom applications like sorting 
does not solve the problem of high-power consumption 
and thermal heating. The problem of thermal heating and 
high-power consumption will further escalate with the full-
fledged deployment of high-speed 5G networks, advanced 
searching and machine learning techniques. The implemen-
tation of data intensive operations like sorting which are cur-
rently implemented in FPGA must be implemented in ASIC 
to address the problem of power consumption. The FPGA 
-based accelerators in data centers must be replaced with 
dedicated low-power ASICs to achieve required low-power 
consumption and reduce overall thermal heating of the data 
centers. FPGA-based computing systems for sorting have got 
several advantages like reconfigurability, efficient parallel-
ism for sorting, etc., and they have following disadvantages:

•	 Designing and developing low-power sorters without 
compromising the performance are limited in FPGA’s 
as already device is fabricated.

•	 In ASIC designs, we can use standard low-power tech-
niques like clock gating, Multi VDD, Multi-Vth, power 
gating and dynamic voltage frequency scaling (DVFS) to 
reduce power consumption which may not supported in 
all available FPGA devices.

Gradually, FPGA-based hardware accelerators in cur-
rent servers will be replaced by programmable ASIC-based 

hardware accelerators, which is required to balance the 
power without compromising the performance requirements 
[4, 5].

In this work, we focus on designing the low-power sorting 
architectures and comparison of low-power implementation 
of widely used sorting techniques. The standard and struc-
tured low-power digital design techniques like clock gating, 
multi-VDD, multi-Vth, power gating and Dynamic Voltage 
Frequency Scaling (DVFS) can be applied on widely used 
sorting engines like bitonic sorting, odd–even sorting and 
bubble sorting and analyses of power and performance is 
an unexplored area of research. In this paper, we primarily 
focus on clock gating and multi-Vth (Threshold Voltage) 
based techniques to achieve low power on different sort-
ing engines and we present the power performance trade-off 
results for three widely used sorting engines.

This paper is organized as follows: the section "Back-
ground" presents the literature survey on existing ASIC and 
FPGA implementation of different sorting engines and brief 
literature review on standard sorting techniques used in the 
recent past. The section "Structured low-power techniques" 
discusses structured low-power techniques widely used in 
low-power design and their importance like clock gating, 
etc. The section "Implementation and Results" presents 
the implementation of low-power sorting and the section 
"Result analysis" discusses the results, comparison and 
analysis. Finally, in the section "Conclusion", conclusion 
of the paper is presented. This paper is an extension to our 
work presented in [6]. The improvements to the work done 
to the work presented in [6] are as follows:

•	 Modification of the Compare and Swap (CAS) to add the 
direction signal to the sorter to perform ascending and 
descending order. To accommodate the asynchronous 
direction signal, the complete CAS unit is redesigned to 
make direction signal synchronous.

•	 Standard sorting benchmarks are used to perform power 
analysis and to compare the different sorters.

•	 Power vs performance analysis of different sorters is 
performed for different multi-Vth libraries for modified 
CAS.

Background

Hardware implementation of sorting has attracted the 
researchers all along from last 4 decades [7]. Computa-
tional complexity of well-known sorting techniques is 
presented in Table 1. It is evident from the literature sur-
vey that merge sorting needs memory element along with 
sorting logic and other sorting techniques does not need 
memory element. Fastest sorting methods are odd–even 
and bitonic sorters for streaming data [2, 3, 8]. Sorters 
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can be implemented either using combinational circuits 
or can be sequential circuits with sorter datapath. Sequen-
tial Sorters are good candidates for pipelining and parallel 
processing.

Generic Compare and Swap Circuit (CAS) for Sorters

Hardware implementation of sorters primarily composed of 
series of compare and swap units. The circuit diagram of 
compare and swap unit is shown in Fig. 1. The two values 
are compared using a comparator and the result is applied 
to the two multiplexers that select the values to generate the 
output in an ascending or descending order. The two sym-
bols + and − used to represent the ascending and descending 
units, respectively.

To handle the large data sets, bubble, bitonic and 
odd–even sorts are employed [8, 9]. As the width of the data 
increase, the number of comparators required is enormous. It 
is practically not possible to implement such a large vertical 
array of comparators. There is a need to design the sorter in 
modular way, so that the design can be expanded easily to 
increasing data widths.

Taxonomy of Sorters

Sorting is a one of the primitive Data Base Management 
System (DBMS) operation and researchers have proposed 
several sorting algorithms which are generally implemented 
on general-purpose CPU for several decades. Software sort-
ing algorithms can be classified into two categories: simple 
sorting algorithms, which work on limited amount of data 
where the unsorted data are completely fit in the available 
memory. Another category is Merge-sort algorithms, which 
work on large amount of data, in which data are split into 
several chunks and sorted. Finally, sorted data are merged 
to get the intended final sorting result. The common sorting 
algorithms which work on limited amount of known size 
of data are bubble sort, insertion sort, etc. The well-known 
merge sorters, which work on large chunks of data, are 
merge sorters and tag sorters.

In hardware implementation, sorters can be categorized 
in different ways. One such categorization is: Comparator 
based sorters and Comparator-less sorters. The well-known 
comparator-based sorters are insertion sort, bubble sort and 
quick sort. The comparator-less sorters are bucket sort and 
radix sort.

Further, sorters can be categorized as modular and non-
modular sorters. The Compare and Swap (CAS) is used in 
both modular and non-modular sorters. Bubble sort, Odd 
even sort and bitonic sort are the examples of modular sort-
ers, which are scalable. By adding and arranging the CAS 
structures, we can scale these sorters for different bit-widths.

There are few types of sorters in which scaling is difficult 
and such sorters can be categorized as non-modular sort-
ers. Example of such sorters are panning sorter and weaving 
sorters [10]. The modular sorters like Bubble sort, Odd–even 
sort and Bitonic sorters are briefly explained.

Bubble Sort

For a small set of inputs, it is feasible to implement the 
bubble sort in hardware. The smallest or largest number is 
selected in each round through a series of comparisons. The 
bubble sort algorithm requires M comparisons and switching 
events in the first stage with an input size of M. Similarly, in 
the second stage, it requires M−1 comparisons and switching 
events and so on until the completion of the sorting process. 
The run time complexity is O(M2), in which ‘M’ is the input 
size. Figure 2 shows the parallel bubble sorting network in 
which compare operations can be executed sequentially by 
applying pipelining.

Odd–Even Sort

Batcher proposed the odd–even merging sort by merging 
the two sorted sequences into a complete sorted result. An 

Table 1   Algorithms and complexity

Sorting techniques Best case/average case Worst case

Bubble sort O(n) O(n2)
Heap sort O(nlogn) O(nlogn)
Insertion sort O(n)/O(n2/4) O(n2)
Merge sort O(nlogn)/O(nlogn) O(nlogn)
Quick sort O(n)/O(nlogn) O(n2)
Selection sort O(n2)/O(n2) O(n2)

Fig. 1   Representation of compare and swap units used in sorters
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M-input odd–even merging unit is represented by OE−M, 
where ‘M’ should be the power of two. Sorted output can be 
generated by constructing the series of parallel merging units 
from OE-2 s, OE-4 s…to OE-M. When the input dataset 
consists of 2P samples, there will be 2P-1 OE-2 s in the first 
stage, 2P-2 OE-4 s in the second stage and so on. Figure 3 
illustrates the eight-input odd–even merge sorting network.

Bitonic Sort

Bitonic sorting is also proposed by Batcher in [8]. Bitonic 
sorter is constructed using the one sequence in increasing 
order and another one in decreasing order. The bitonic merg-
ing unit merge the two sequences with equal length into 
sorted output. The input size of the bitonic merging unit 
must be in a power of two. The ‘M’ sorter unit receives an 
ascending and descending sequence, and both the sequences 
contain ‘M/2’ samples. It is called BM-M, where M is repre-
sented as 2P. To build the complete 2P input bitonic sorting 
circuit, a series of bitonic merging units is applied recur-
sively to generate the sub-sequence.

The 2P input bitonic sorting network comprises 2P-1 par-
allel BM-2 s in first stage and 2P-2 BM-4 s in the second 
level and so on. Figure 4 shows the Bitonic sorting network 
for eight inputs.

It is well known from the literature and it is established 
in research that bitonic and odd–even sorter is suitable to 
design large-scale high-speed pipelined sorting networks.

ASIC Implementation of Modular Sorting 
Techniques

Large-scale sorting networks are designed using modular 
design techniques that hierarchically design large sorting 
units from smaller building blocks. The sorting units are 
composed of small and regular design blocks connected with 
modular fashion which simplifies the designing of large-
scale sorting circuits. The modular approach of designing 
sorting networks will make adopting pipelining and low-
power schemes easy [3]. The modular approach proposed in 
[8] is extended in [9]. The paper [9] propose the low-power 
sorting network, which uses the modular sorter design pro-
posed in [8].

Dynamic power consumption is the major part of power 
consumption in CMOS designs. Reducing the switch-
ing activity will reduce the dynamic power consumption. 
Switching activity increases when the input dataset increases 
or bit width of the input is large. With the increase in bit 
width, the compare and swap action in sorting network, 
which increases the switching activity enormously, which 
increases the dynamic power consumption. To reduce the 
dynamic power, an immobile comparing unit which move 
the indexes of samples instead of moving the actual input 
data is proposed. This technique [9] reduces the power sig-
nificantly. Different kind of modular approach is presented in 
[11], which sorts the data on the fly without any comparison 
operation and number of clock cycles consumed is linearly 
proportional to the number of inputs, with a speed complex-
ity of order of O(N). Unary processing-based bitonic sorting 
network is proposed in [12]. The authors of [12] present the 
results that unary processing-based bitonic sorting network 
reduces the hardware cost and power consumption in com-
parison with conventional bitonic sorting network.

Fig. 2   Bubble sorter

Fig. 3   Odd–even sorter

Fig. 4   Bitonic sorter
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The detailed comparison of the above-mentioned tech-
niques is presented in Table 2.

Challenges in Designing Large‑Scale Modular 
Sorting Networks

It is evident from the literature survey that the major chal-
lenges in designing large sorting networks are as follows: 

•	 The most important challenge is the long critical paths 
and increase with the input bit width. The long critical 
paths impact the operating frequency decrease the overall 
performance. Pipelined implementation of sorters will 
reduce the critical paths to the larger extent [8].

•	 The pipelined implementation increases the switching 
activity significantly and makes the design power hungry. 
There is a need to decrease the power consumption by 
adopting the suitable low-power techniques.

The pipelining/parallel processing increases the dynamic 
power which has become the one of the primary concerns in 
modern data centers.

In this work, we primarily focus on three important sort-
ing algorithms: odd–even sorting bubble sorting and bitonic 

sorting. We will apply structured low-power technique 
like clock gating on pipelined sequential implementations 
of odd– even sorting and bitonic sorting and analyze the 
dynamic power for ASIC design. To the best of our knowl-
edge, a generic well-established clock gating and multi-Vth 
(threshold) technique is employed on sorting networks to 
reduce the power consumption and optimize the critical 
paths. We will present the comparative results for different 
sorters for power, performance and area.

Modified Compare and Swap Circuit

The modified Compare and Swap (CAS) circuit diagram is 
shown in Fig. 5.

The basic CAS circuit presented in Fig. 1 is improved by 
adding an XOR gate. 2-Input XOR gate is fed with direction 
signal which is an external input and other input to the XOR 
gate is the output of the comparator. The direction signal is 
added to change the direction of sorter to perform ascending 
or descending order sorting [13]. Most of the times, the CAS 
circuits used in sorters are combinational circuits as shown 
in Fig. 5, which will have the following issues: 

•	 The output of CAS circuits is not synchronized and mis-
matches in the output of multiplexer during gate-level 
simulation and post-layout simulation. To ensure the 
mismatches between the outputs of the multiplexers, the 
outputs must be clocked.

•	 In the combinational CAS circuit, direction signal is fed 
into XOR gate is fully asynchronous and it needs to be 
synchronous to avoid mismatches and proper functioning 
of the overall circuit.

The proposed modified CAS circuit is fully synchronous 
and both asynchronous inputs and outputs are clocked. This 
improves the working of CAS significantly. The un-clocked 
CAS is large combinational circuit and converting the large 
combinational CAS into sequential CAS reduces the synthe-
sis and simulation mismatches. The combinational CAS is 
replaced by a sequential CAS shown in Fig. 5. In this work, 
we have used modified sequential CAS in the implementa-
tion of Bubble, Bitonic and Odd–even sorter.

Structured Low Power Techniques

The design for low power is a vast subject and low-power 
requirements can be achieved at circuit level, gate level, RTL 
level and system level. The circuit level changes are difficult 
to adopt in semi-custom design. As semi-custom designs use 
already available standard cell libraries from foundry, the 

Fig. 5   Modified CAS

Table 3   Features of multi-Vth CELLS

Vth Leakage power Dynamic power Speed

LVth Highest Highest Highest
SVth Normal Normal Normal
HVth Lowest Lowest Lowest
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improvements at logic gates level are also difficult. After 
a several years of research, industry has adopted matured 
low-power techniques which can be adopted in semi-custom 
design flow easily and require no modification in design 
or architecture. Such techniques are: Clock gating, Power 
gating, using Multi VDD and Multi-Vth (Threshold Volt-
age) libraries. In this work, we apply only two structured 
low-power techniques on sorters namely, clock gating and 
multi-threshold.

Clock Gating

Generally, data are loaded into the registers infrequently in 
most of the designs, and the clock signal is fed continuously. 
Clock signal will continuously toggle at every pre-defined 
cycle. Clock signal drives the large capacitive load mak-
ing clock as a major source of switching power dissipation. 
Gating a group of flip-flops in the design, which are enabled 
by same control signal, reduces the unnecessary toggles on 
clock. Power is not dissipated during the idle period when 
the register is switched off by gating function. Dynamic 
power consumption is saved in the gated clock network. The 
clock to the register files of an unused module is turned off 
using an extra AND gate, which is controlled by an enable 
signal. Extra AND gate and enable control signal can be 
introduced either in RTL or in the gate-level netlist using 
scripts. The conceptual diagram of clock gating is shown 
in Fig. 5.

Multi‑Threshold Libraries

Standard cell libraries contain cells with different threshold 
voltages for MOS devices in each standard cell.

Most of the standard cell libraries support different power 
and speed characteristics. Along with other several param-
eters like sizing of the transistor, the Vth (threshold voltage) 
of the logic gate determines the power and speed of the cell. 
Generally, libraries support High Vth (HVt), Standard Vth 
(SVt) and Low Vth (LVt) classes of cells. The features of the 
three different multi-Vth cells are presented in the Table 3. 
The HVth cells have lower leakage and dynamic power and 
less speed. LVth cells will have highest leakage and dynamic 
power and smaller delays. SVth cells will have normal power 
consumption and normal speed (Table 3).

Implementation and Results

Clock Gating Implementation

To further speed up the operation, we implemented pipelin-
ing of sorting networks as described in [14]. Sorting circuits 

will have large number of comparators between inputs and 
outputs. Pipelining is implemented in sorting network by 
ensuring that the clocked register/pipeline stage has only one 
comparator between its input and output. Pipeline stages will 
increase with size of the input and 8-element sorting net-
work needs a 6-stage pipelining, 16-element sorting network 
needs 10 pipelining stages and 32-bit sorting network needs 
15 stage pipelining and so on. In this work, we implemented 
pipelined versions of bitonic sorting, odd–even sorting and 
bubble sorting in Verilog and simulated in Xilinx Vivado 
Simulator and Cadence NCSim. The designs are synthesized 
in Cadence Genus Synthesis tools using saed90nm library 
and synthesized gate-level netlist is verified in Cadence 
NCSim. Clock gating is implemented using PERL script-
ing and clock gated netlist is verified for functionality in 
Cadence NCSim.

Multi‑Vth Implementation

Multi-threshold voltage technique uses Standard Vth, Low 
Vth and High Vth cells. In this technique, lower threshold 
gates are used in critical path and high threshold are used in 
the non-critical path. This methodology improves the speed 
of operation without an increase in the power consumption. 
The areas of low Vth and high Vth cells are same as that of 
standard Vth cells. Therefore, in the critical paths or in any 
other paths of the design, Standard Vth cells can be replaced 
with either low Vth or High Vth cells as per the requirement. 
This technique improves the performance without compro-
mising on area and increasing power consumption.

Multi-Vth implementation can be performed in various 
ways. It can be done during RTL synthesis, and gate-level 
netlist or during layout through engineering change order. 
Logic synthesis is a process of converting the RTL Verilog 
code into functionally equivalent gate-level netlist.

The standard cell libraries with multiple Vth can used in 
synthesis to achieve different Vth cells for different timing 
paths in the design. Synthesis is an ideal place to perform 
multi-Vth implementation. Synthesis is performed using the 
Standard Vth (SVth) library.

In this work, three sorters are implemented using both 
clock gating and multi-Vth. The process followed to incorpo-
rate clock gating is explained above. Multi-Vth implementa-
tion for sorters is performed as follows:

•	 Clock gating is performed after the RTL synthesis. The 
clock gated gate-level circuit obtained from synthesis is 
simulated for functional verification. Synthesis is per-
formed using Standard Vth (SVt) library with normal 
design constraints.

•	 Static timing analysis (STA) is performed to find out the 
critical path/group of critical paths in the design. With 
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the help of STA, we can analyze the delay of all the paths 
in the design.

•	 Categorize the paths in the design as high slack, medium 
slack and low slack paths. The categorization of paths 
is performed based on the slack value of each path. The 
path with lowest slack (which is also a critical path) is 
grouped in low slack category, and similarly, all paths 
are placed in either high slack or medium slack or low 
slack group depending upon their slack value. Design is 
synthesized using SVth library.

•	 Further, in the non-critical paths (paths with high slack), 
the standard Vth cells are replaced with higher Vth (High 
Vt) cells. In paths with lowest slack (critical paths), the 
standard Vth cells are replaced with LVth cells.

•	 The standard cells which are common to two or three 
timing paths are not replaced with either HVth or LVth 
cells. The normal standard Vth cells are retained.

•	 PERL scripting is developed to replace the cells in syn-
thesized gate-level netlist.

•	 Cadence Genus and Tempus tools are used to perform 
synthesis and static timing analysis, respectively. Syn-
opsys Saed90nm is used for synthesis.

Result Analysis

Benchmarks: Sorting accounts for more than 20% of com-
puting in most of the enterprise applications. And there 
are several sorting algorithms which are intended to get 
deployed on general-purpose processors, GPGPUs and 
FPGAs. A sorting technique which will work efficiently 
on multi-core processors may not work on the FPGAs or 
dedicated ASICs. To measure and evaluate the performance 
of the sorting techniques, sorting benchmark programs are 
devised and explained in [15]. The existing benchmarks 

[15] primarily target the general-purpose CPUs and GPG-
PUs and not developed to evaluate the sorting algorithms 
implemented on FPGAs or dedicated ASICs. The authors 
in [15] present the case for comprehensive framework for 
sorting benchmarks, which suggests that sorting benchmarks 
must be designed targeting the intended target like FPGA, 
GPGPU or CPU and irrespective of hardware target, and 
the programs/benchmarks used to evaluate the sorting algo-
rithms must have some statistical characteristics like Gauss-
ian distribution and collectible system statistics like I/O uti-
lization, etc. The existing benchmarks in [15] are designed 
for CPUs and GPUs and those are not useful for FPGA or 
ASIC evaluation.

The benchmarks presented in [15] like Gray sort, Ten-
cent sort, etc. are designed to verify the performance based 
on fast memory access and SDRAM burst sizes. These 
benchmarks are good for CPU and GPU and there is a 
need for benchmarks for FPGA or ASIC implementations 
for comparison of sorting architectures independent of 
other parameters like memory access etc. In this work, to 
evaluate the implementation of sorting techniques (Bub-
ble, Bitonic and Odd–even) for power consumption, we 
define the microbenchmark with the following statistical 
characteristics: 

•	 The number of test vectors in microbenchmark is 512 and 
width of each vector can be 8-bit, 16-bit or 32-bit. The 
input vectors are fed into sorters sequentially and each 
vector will have a randomness of 50%. It means that each 
vector will have equal number of ones and zeros. The 
uniformity in each vector is chosen as 50% to ensure the 
maximum switching activity in the circuit, so that we can 
measure maximum dynamic power more accurately.

Table 4   Comparison of area, power and timing of proposed and conventional sorters

Sorter Bit width Area in square microns (syn-
thesized @ 50 MHz)

Critical path @ 50 MHz fre-
quency (in nanoseconds)

Dynamic power consumption (mW) (@50 MHz)

Conventional 
pipelined 
sorter

Proposed 
clock gated 
sorter

Conventional 
pipelined 
sorter

Proposed 
clock gated 
sorter

Conventional 
pipelined 
sorter

Proposed 
clock gated 
sorter

Reduction (%)

Bitonic sort 8 36,456.23 35,345.87 6.545 6.776 1.3 0.585 46.59
16 74,234.45 75,456.78 6.900 6.723 1.47 0.71 48.90
32 145,667.3 144,589.8 7.423 7.733 1.88 0.912 51.83

Odd–even sort 8 32,762.34 30,231.89 5.845 5.812 1.39 0.641 52.55
16 63,298.75 61,234.98 5.987 5.634 1.62 0.71 46.90
32 125,987.6 122,889.9 8.412 8.854 2.1 0.912 47.02

Bubble sort 8 40,014.59 38,234.88 6.598 6.734 1.37 0.651 49.53
16 81,298.56 79,126.38 7.378 7.564 1.68 0.845 52.48
32 178,238.3 174,398.5 8.231 8.432 2.08 1.101 52.65
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•	 Each vector is fed sequentially into the sorters and veri-
fied for correct functionality and switching activity file 
(VCD) is generated.

Experimental Analysis with Clock Gating: The experi-
ments are conducted to evaluate the performance of the 
different hardware sorters with clock gating (multi-Vth not 
included). The microbenchmark described in the above sec-
tion is used to generate the switching activity and dynamic 
power is calculated for the proposed benchmark. The area, 
timing and power results are presented in Table 4 for an 
operating frequency of 50 MHz. The synthesis is performed 
for 50 MHz and gate-level simulations are performed to 
generate the switching activity at different frequencies and 
power consumption values are recorded and presented in 
Table 4.

Experimental Analysis with Multi-Vth: The clock gating 
and multi-Vth are two important structured low-power tech-
niques which we have incorporated in three different sorters 
and we have presented the results. The primary objective 
of deploying the multi-Vth is to improve the performance 
without increasing the dynamic power. It is evident from 
the table x that, there is significant reduction in the critical 
path, so that we can operate the design at higher frequencies 
across the PVT (Process, Voltage, Temperature) corners. 
In Table 6, we also present the dynamic power consump-
tion for both Clock gating and Multi-Vth with Clock gating 
for different frequencies. It is evident from Table 5 that the 
improvement achieved in improving the critical path without 
compromising the reduction of power consumption achieved 
through clock gating is stable across frequencies.

As we have discussed above, there are no standard sort-
ing benchmarks available for architectural evaluation of 
hardware sorting architectures, and we developed a novel 
validation benchmark which fits the objective of measure-
ment and analysis of dynamic power consumption across 
hardware sorting architectures. In this work, we created the 
randomized testbench using system Verilog and generated 
the randomized stimulus to match the statistical require-
ments of the power analysis benchmark.

In this work, we are working with three basic sorter archi-
tectures, the number of CAE blocks and the order in which 
the data are fed influences the switching activity, which in 
turn will have an effect on dynamic power consumption. 
The power consumption for conventional sorters, clock gated 
and clock gated with multi-Vt is presented for the described 
benchmark.

Comparison

Comparative results for reduction in dynamic power for 
relevant technique (bitonic sorter) are presented in Table 6. 
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Both [9] and [12] are based on bitonic sorting. The technique 
proposed in [12] reduces the dynamic power significantly up 
to 89% for 32-bit sorter. The presented values in the table for 
comparison in Table 7 are normalized values. The formulas 
used to derive the normalized values are shown below 

where ‘M’ is number of elements sorted and ‘N’ is width 
of the element. The calculation for normalized power is 
presented in [17]. The proposed clock gated 32-bit sorter 
reduces the dynamic power by 48.51%, which is better 
than the low-power sorter presented in [9]. The technique 
presented in [12] is based on unary processing, which 
needs a pre-processing and post-processing modules. The 
dynamic power calculation does not include the pre- and 

Normalised powerproposed =
power × Excution time × 102

V
2
DD

×M × N
,

post-processing modules in dynamic power calculation. The 
critical paths in the three different sorters are replaced with 
LVt cells in the place of SVt cells using multi-Vth cells. 
The proposed low-power bitonic sorter with clock gating 
and multi-Vth significantly achieves significant reduction of 
power by 48.51%. Multi-Vth also improves the speed of the 
circuit by reducing the critical path. Table 7 represents the 
comparisons between previous sorters and proposed sorters. 
The performance has been improved without compromising 
dynamic power consumption achieved through clock gating 
using multi-Vth cells.

Comparative results for reduction in dynamic power for 
relevant technique (bitonic sorter) are presented in Table 6. 
Both [9] and [12] are based on bitonic sorting. The technique 
proposed in [12] reduces the dynamic power significantly up 
to 89% for 32-bit sorter.

The proposed clock gated 32-bit sorter reduces the 
dynamic power by 48.51%, which is better than the low-
power sorter presented in [9]. The technique presented in 
[12] is based on unary processing, which needs a pre-pro-
cessing and post-processing modules. The dynamic power 
calculation does not include the pre- and post-processing 
modules in dynamic power calculation. The critical paths in 
the three different sorters are replaced with LVt cells in the 
place of SVt cells using multi-Vth cells. The proposed low-
power bitonic sorter with clock gating and multi-Vth signifi-
cantly achieves significant reduction of power by 48.51%. 
Multi-Vth also improves the speed of the circuit by reducing 
the critical path. Table 7 represents the comparisons between 
previous sorters and proposed sorters. The performance has 
been improved without compromising dynamic power con-
sumption achieved through clock gating using Multi-Vth 
cells.

Table 6   Dynamic power consumption of proposed (with clock gating and multi-Vth) and conventional sorters

Sorter  (32-bit) Operating Fre-
quency (MHz)

Dynamic power consumption (mW)

Conventional 
pipelined sorter

Proposed clock 
gated sorter

Proposed clock gated 
with multi-Vth sorter

Reduction (clock 
gated) (%)

Reduction (clock 
gated with multi-Vth) 
(%)

Bitonic sort 20 1.76 0.82 0.89 46.59 50.57
40 1.82 0.89 0.94 48.9 51.64
60 1.91 0.99 1.05 51.83 54.97
80 1.96 1.03 1.11 52.55 56.68

Odd–even sort 20 1.94 0.91 0.98 46.9 50.51
40 2.02 0.95 1.06 47.02 52.47
60 2.14 1.06 1.19 49.53 55.61
80 2.21 1.16 1.22 52.48 55.21

Bubble sort 20 1.88 0.99 1.1 52.65 58.51
40 2.06 1.05 1.18 50.97 57.28
60 2.18 1.12 1.21 51.37 55.51
80 2.23 1.24 1.29 53.91 57.84

Table 7   Comparison of dynamic power consumption of proposed and 
existing schemes

Bitonic 
Sorter

Percentage 
of dynamic 
power 
reduction in 
comparison 
with con-
ventional 
bitonic 
sorter 
(unary 
processing) 
[12]

Percent-
age of 
reduction in 
comparison 
with con-
ventional 
bitonic 
sorter (low 
power) [9]

Percent-
age of 
reduction in 
comparison 
with con-
ventional 
bitonic 
sorter with 
proposed 
clock gated 
bitonic 
sorter

Percentage of 
reduction in 
comparison 
with conven-
tional bitonic 
sorter with 
proposed 
clock gated 
with multi-
Vth bitonic 
sorter

32-bit 89% 37.01% 48.51% 48.36%



SN Computer Science (2023) 4:129	 Page 11 of 11  129

SN Computer Science

Conclusion

It is evident from the literature survey that the suitable non-
merge sorting techniques for hardware implementation 
are bitonic sorting, bubble sorting and odd–even sorting. 
The improvements in performance and reduction in power 
consumption are concerns in designing sorting techniques 
for hardware implementation. In this paper, we have used 
well-established structured low-power techniques like clock 
gating and multi-Vth to achieve low-power consumption on 
three different hardware sorting techniques and trade-off 
between area, timing and power consumption is analyzed. 
Multi-Vth libraries are used to further reduce the critical 
path or increase the frequency.

The clock gated sorting architectures are compared with 
state-of-the-art recent low-power sorting schemes and com-
parative results are presented and multi-Vth implementa-
tion will reduce the critical path without compromising the 
dynamic power consumption reduction achieved through 
clock gating. The proposed clock gated sorters reduce the 
dynamic power consumption by 47.5% in comparison with 
conventional (non-clock gated) sorting circuits. The clock 
gating technique on sorters is also analyzed for range of 
frequencies and it is found that the dynamic power consump-
tion decreases in proposed clock gated sorters incrementally 
with increase in frequency of operation. The proposed clock 
gated technique reduces the dynamic power consumption 
significantly in three widely used sorting techniques in com-
parison with earlier techniques.
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