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Abstract
Matrix inversion is a computationally expensive operation in many scientific applications. Performing matrix inversion of 
rank deficient large order matrices is still a challenge due to its computational overhead. This paper presents the hardware 
implementation of matrix inversion with (i) singular value decomposition (SVD) based on Lanczos and implicit triQR algo-
rithms, (ii) QR method that uses modified Gram–Schmidt (MGS) technique and (iii) inbuilt linear algebra package QR inverse 
using Xilinx Vivado high level synthesis platform. All the three algorithms are implemented on Pynq-Z1 Field Programmable 
Gate Array (FPGA) using System on Chip (SoC) approach. The resource utilization along with accuracy, hardware execu-
tion time with and without loop optimization are reported for the aforementioned matrix inversion techniques of different 
matrix sizes. We achieved the hardware acceleration factor with loop optimization as 111x and 104x, respectively, for the 
matrix inversion of the MGS algorithm and SVD based on Lanczos algorithm with respect to the software implementation 
execution time on Pynq-Z1 FPGA for the matrix size 90 × 90.

Keywords  Matrix inversion · SVD algorithm · Lanczos algorithm · Implicit triQR · QR decomposition · Modified Gram–
Schmidt

Introduction

Matrix inversion is a fundamental and computational 
expensive unit in different scientific and engineering appli-
cations such as image recognition, least-square problem 
solving, regression, and multiple-input multiple-output 
(MIMO) wireless communication. There exist different 
techniques such as determinant method and decomposi-
tion methods for matrix inversion depending on the matrix 
characteristics. For a non-singular matrix the inverse 
can be computed easily using Moore-Penrose method 
i.e., A†

= (ATA)−1AT  [14]. However, it fails to compute 
the inverse of a singular matrix. Moreover the algorith-
mic complexity of inverse algorithms increases with the 
increase in matrix size. Hence, several decomposition 
algorithms such as lower-upper (LU) decomposition, 
Cholesky decomposition, modified Cholesky decomposi-
tion, QR decomposition, and singular value decomposition 
(SVD) are proposed to compute the matrix inverse. From 
these algorithms, LU decomposition can be applied only 
when the matrix is non-singular square [1], however, it 
has stability issue. Cholesky decomposition technique can 
be applied only when the matrix is symmetric, positive 
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definite and non-singular square matrix, whereas modi-
fied Cholesky can be applied for a negative semi-definite 
matrix [12]. QR decomposition is accurate and stable com-
pared to LU decomposition and Cholesky decomposition 
[6]. For a non-singular matrix, QR decomposition can be 
performed using classical Gram–Schmidt (CGS), House-
hold transformation, or Givens Rotation (GR) techniques. 
The Givens Rotation method is suitable when the matrix is 
sparse [2]. The lack of parallelization in Household trans-
formation is the main bottleneck for its embedded hard-
ware implementation [8]. Thus, classical Gram–Schmidt 
technique is being applied for non-sparse matrix. Although 
CGS is simpler to implement but it is less stable [13]. 
Hence, modified Gram–Schmidt is an alternate stable tech-
nique being used to compute the inverse of a non-sparse 
and non-singular matrix. The matrix inversion using QR 
decomposition is applicable only for a full-rank matrix, 
it fails when the input matrix is an rank-deficient i.e. 
singular.

Alternatively, singular value decomposition (SVD) is 
the most efficient decomposition technique in comput-
ing the pseudo-inverse of both singular and non-singular 
matrices. The computational challenging task for com-
puting SVD is the finding of singular values, computed 
using square root of eigenvalues. The eigenvalues can be 
obtained using different algorithm techniques. Among 
these, Jacobi algorithm is more accurate, but it has slow 
convergence [10]. Jacobi method is simpler technique that 
transforms a real symmetric matrix to a diagonal matrix 
using orthogonal transformation, where the elements of 
diagonal matrix are eigenvalues. For larger matrix, the 
use of determinant method for computing the coefficient 
of characteristics polynomial is numerically unstable. 
The disadvantage of Jacobi method is addressed in Giv-
ens rotation method, which transforms the real and sym-
metric matrix for a tridiagonal matrix and then finds the 
eigenvalues. Power method is a popular, simple and sta-
ble method to find the extreme eigenvalues for a square 
matrix [7]. However, its convergence depends on the ratio 
between the two largest eigenvalues and it is not suitable to 
find all the eigenvalues of a matrix. Golub-Khan algorithm 
is suitable for finding eigenvalues of a large dense sym-
metric matrices. Although it has improved computation 
time but suffers with poor accuracy [5]. Tridiagonalization 
using the Lanczos algorithm and diagonalization using the 
QR method gives accurate estimates of singular values, 
reduced computation time and memory storage compared 
to the above algorithms [9]. Lanczos algorithm generates 
a sequence of tridiagonal matrices and it is faster because, 
the input matrix is not varied during the entire process. 

Lanczos algorithm suffers from loss of orthogonality 
among Lanczos vectors [3], that need to be compensated 
using reorthogonalization. The eigenvalues are obtained 
from the tridiagonal matrix by reducing it to a diagonal 
matrix. In the current work, we use implicit triQR algo-
rithm to obtain eigenvalues by reducing the tridiagonal 
matrix to a diagonal matrix using Givens rotation method 
and Wilkinson shift technique [15], because of its high 
convergence rate. Thus in this paper, SVD of the matrix is 
computed based on the Lanczos and implicit triQR algo-
rithm suitable for evaluating the pseudo-inverse of a large 
real matrix.

FPGAs are becoming popular as computing platforms 
to implement computational intensive algorithms. In this 
paper, we implemented the matrix inversion using SVD 
decomposition based on Lanczos and implicit triQR algo-
rithm with and without inner loop optimization technique 
on Pynq-Z1 FPGA and compare the hardware acceleration 
factor, resource utilization with QR decomposition based on 
MGS algorithm and HLS inbuilt QR algorithm.

The rest of the paper is organized as follows. “Algorithms 
for Matrix Inversion” focuses on the matrix inversion algo-
rithms considered for implementation, “Simulation Results” 
presents numerical simulation results of SVD and QR matrix 
inverse, “Hardware Implementation Results” presents the 
hardware implementation frame work and performance 
analysis, followed by conclusions in “Conclusions”.

Algorithms for Matrix Inversion

Matrix decomposition algorithms are used to compute the 
inverse of the matrix for larger dimensions. In the current 
work, matrix inversion is performed using QR decomposi-
tion based on modified Gram–Schmidt algorithm and SVD 
based on lanczos and with implicit triQR algorithm.

Matrix Inversion Using QR Decomposition Based 
on Modified Gram–Schmidt Algorithm

In the QR decomposition algorithm, matrix A ∈ ℜM×N is 
decomposed to matrices Q and R such that

where Q and R represents the orthogonal matrix and upper 
triangular matrix respectively. The detailed steps for obtain-
ing Q and R using modified Gram–Schmidt is shown in 
algorithm 1.

(1)A = QR,
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After QR decomposition, the inverse of A is obtained as

Since Q is an orthogonal matrix, it satisfies the orthogonal-
ity property; Q−1

= QT , substituting it in Eq. (2), A−1 can be 
rewritten as

Since R ∈ ℜN×N is the upper triangular matrix, R−1 can be 
calculated by inverting the upper triangular matrix as shown 
in Algorithm 2.

Matrix Inversion Using SVD Based on Lanczos 
and Implicit triQR Algorithm

In the SVD decomposition, a real matrix A ∈ ℜM×N  is 
decomposed to matrices U, S and V as

where V ∈ ℜN×N and U ∈ ℜM×M represents the orthogonal 
matrices and the columns of U and V are the eigenvectors 
of A × AT or AT

× A . The diagonal elements of S ∈ ℜM×N 
are the singular values of the matrix A and remaining ele-
ments of S are zero. The singular values are the square root 
of eigenvalues.

The inverse of a non-singular square matrix A ∈ ℜN×N 
can be computed using SVD as

Algorithm 1 Calculate Q,R = qrMGS(A)

Require: A ∈ �M×N

Ensure: Q,R = qrMGS(A)
1: for l = 1 : N do
2: R(l, l)= ‖A(1 : M, l)‖2
3: Q(1 : M, l) = A(1 : M, l)/R(l, l)
4: for t = l + 1 : N do
5: R(l, t) = Q(1 : M, l)T ∗A(1 : M, t)
6: A(1 : M, t) = A(1 : M, t)−Q(1 : M, l) ∗R(l, t)
7: end for
8: end for

(2)A−1
= R−1

× Q−1.

(3)A−1
= R−1

× QT .

Algorithm 2 Calculate R−1 = inv(R)

Require: R ∈ �N×N

Ensure: R−1 = inv(R)
1: for l = 1 : N do
2: for p = 1 : t− 1 do
3: R−1(p, t) = R−1(p, (1 : t− 1)) ∗R((1 : t− 1), t)
4: end for
5: R−1((1 : t− 1), t) = R((1 : t− 1), t)/R(t, t)
6: R−1(t, t) = 1/R(t, t)
7: end for

(4)AM×N = UM×M × SM×N × VT
N×N

,

(5)A−1
N×N

= VN×N × S−1
N×N

× UT
N×N

,

where S−1 is the inverse of the matrix S. Similarly, the 
pseudo-inverse of a non-singular rectangular matrix 
A ∈ ℜM×N can be computed using

where S† is the pseudo-inverse of the matrix S. The detailed 
steps for computing pseudo-inverse of the matrix A using 
SVD based on Lanczos and implicit triQR algorithm is given 
below.

Initially the input matrix is transformed to a symmetric 

matrix B ∈ ℜN×N as

The Lanczos algorithm is applied on B to get the orthogo-
nal matrix Q ∈ ℜN×N and tridiagonal matrix T ∈ ℜN×N such 
that

The detailed steps of Lanczos algorithm as shown in Algo-
rithm 3. After obtaining the T and Q matrices, implicit 
triQR algorithm is applied on T and Q to get the eigenval-
ues or diagonal matrix D ∈ ℜN×N and eigen vector matrix 
V ∈ ℜN×N respectively. The detailed steps of implicit triQR 
algorithm as shown in Algorithm 4.

In terms of the eigenvalues and eigenvectors, the sym-
metric matrix B can be expressed as

(6)A
†

N×M
= VN×N × S

†

N×M
× UT

M×M
,

(7)BN×N = [AT
× A]N×N .

(8)QT
N×N

× BN×N × QN×N = TN×N .
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From Eq. (9), the singular values of matrix A is calculated by 
applying square root to the diagonal elements of D. The rank 
of the matrix A can be used to obtain S ∈ ℜK×K by taking 
only singular values greater than the SVD tolerance limit. 
Since S is a diagonal matrix, and inverse of S i.e S† ∈ ℜK×K 
can be obtained by reciprocating the diagonal elements of 
S. The eigen vectors U ∈ ℜM×K is calculated by considering 
k = K ( number of eigenvalues) columns of VN×N.

From Eq. (6) the pseudo-inverse A† can be rewritten as

Substituting Eq. (10) in Eq. (11) gives,

Since the singular values are square root of eigenvalues, Eq. 
(12) can be rewritten as

(9)BN×N = VN×N × DN×N × V−1
N×N

.

(10)UM×K = AM×N × VN×K × S
†

K×K
.

(11)A
†

N×M
= VN×K × S

†

K×K
× UT

K×M
.

(12)A
†

N×M
= VN×K × S

†

K×K
× (S

†

K×K
)
T
× VT

N×K
× AT

M×N
. The block diagram of matrix inverse computation using 

SVD based on Lanczos, and implicit triQR algorithm is 
shown in Fig. 1.

(13)A
†

N×M
= VN×K × DK×K × VT

N×K
× AT

M×N
.

Algorithm 3 Calculate T,Q = Lanczos(B, k)

Require: B ∈ �N×N , k.
Ensure: T,Q = Lanczos(B, k)
1: Initialize i = 0 , unit vector-Q0, R0 = q1 , and β0 = 1 .
2: while i=0 to k or βk �= 0 do
3: Qk+1 = Rk/βk

4: i = i+ 1
5: αk = QT

k .B.Qk

6: Rk = (A− αk.I).Qk −Qk−1.βk−1
7: βk = ‖Rk‖
8: end while
9: Tridiagonal matrix T , whose diagonal elements are αk and sub-diagonal

elements are βk is obtained. Q is obtained by augmenting column vectors
Qk.

Fig. 1   Block diagram of the 
matrix inversion using SVD 
algorithm based on Lanczos, 
and implicit triQR algorithm
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Fig. 2   MSE of matrix inversion using QR decomposition based on 
MGS algorithm
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Algorithm 4 Calculate e, V = ImplicitTriqr(T,Q)

Require: T ∈ �N×N , Q ∈ �N×N .
Ensure: e, V = ImplicitTriqr(T,Q)
1: for m = N : 1 do
2: for i = 0 : convergence do
3: wi = Wilkinson shift ; Gi = Givens rotation
4: (T − wiI) → triQR
5: Tnext = triQR+ wi.I
6: Qnext = Gi.Q
7: T = Tnext

8: Q = Qnext

9: end for
10: end for
11: After meeting convergence, T is converted to diagonal matrix D ∈ �N×N ,

whose diagonal elements are eigen values e and Q is converted to matrix V.
12: Sorting of eigenvalues [e, ind] = sort (e, ‘descend’ )
13: Update eigen vector matrix V = Q(:, ind(1 : N))

Simulation Results

The floating-point matrix inversion using (i) QR decomposi-
tion based on MGS algorithm and (ii) SVD based on Lanc-
zos and  implicit triQR algorithm is simulated using Matlab 
tool to check the functionality. We have considered Matlab 
inbuilt pinv as the reference algorithm. Random input matri-
ces of different sizes are considered as input matrices that 
need to be inverted. Mean Square Error (MSE) for a matrix 
of size t is obtained as

where Apinv is the inverse of matrix A using Matlab inbuilt 
function pinv and AQRinv is the inverse of matrix A using 
MGS based QR decomposition algorithm.

(14)MSE(t) =
1

t ∗ t

t−1
∑

i=0

t−1
∑

j=0

[

A
pinv

i,j
− A

QRinv

i,j

]2

,

Matrix Inversion Using QR Decomposition Based 
on MGS Algorithm

In [13], MGS based algorithm is concluded as the good 
choice for computing the matrix inverse among the CGS 
and Householder based inverse technique. In Fig. 2, we 
applied random input matrix sizes up to 1000 × 1000 for the 
MGS based matrix inverse and reported the MSE between 
the inverse obtained using QR decomposition and reference 
algorithm (pinv).

From Fig. 2, it is observed that the mean square error 
for QR inverse based on MGS algorithm is within an error 
limit of ≤ 10−15.

Matrix Inversion Using SVD Decomposition 
Algorithm

We applied SVD based on Lanczos and implicit triQR algo-
rithm to compute pseudo-inverse of both full rank and sin-
gular matrices (rank deficient) of different sizes. The MSE 

0 200 400 600 800 1000
Matrix Size

10-35

10-30

10-25

10-20

10-15

10-10

10-5

M
SE

Fig. 3   MSE of matrix inversion using SVD for full rank matrices Fig. 4   MSE of matrix inversion using SVD for singular matrices
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is obtained same as Eq. (14) except Qinv(A) is replaced with 
Sinv(A).

where, Sinv(A) is the inverse of matrix A using SVD based 
on Lanczos and implicit triQR algorithm. MSE of matrix 
inversion using SVD for full rank and rank deficient matrix 
are plotted in Figs. 3 and 4 respectively.

From Figs.  3 and   4, it is observed that the mean 
square error for matrix inversion is within the error limit 
MSE ≤ 10−07 verifying the functionality of the inverse using 
SVD based on Lanczos and implicit triQR algorithm.

Hardware Implementation Results

Matrix inversion using QR decomposition and SVD algo-
rithms are implemented on Pynq-Z1 FPGA. Initially, we 
tested the functionality of the considered matrix inversion 
methods using C-simulation on Vivado HLS tool. The clock 
period is set as 10ns. We synthesized the design with and 
without inner loop pipelining optimization technique. Fur-
ther, we created the hardware Intellectual Property (IP) of 
the matrix inverse algorithms. Overlay is created for this 
hardware IP block and interfaced with the Zynq IP core 
using AXI-Lite interface; as shown in Fig. 5. Finally, we 
realised the design on Pynq-Z1 FPGA with the Jupyter 

Fig. 5   SoC interface architec-
ture of the Matrix inversion IP

DDR3
Memory

Ethernet

ARM
Cortex-A9

AXI-
Interconnect 

Block

INV_MGS_IP /
INV_SVD_IP

Computer

PYNQ SoC

PS(ARM Cortex-A9) PL(Programmable Logic)

AXI-LITE

Table 1   Performance analysis 
of MGS based matrix inversion 
without inner loop pipelining 
optimization for various matrix 
sizes

Matrix size 16 × 16 25 × 25 32 × 32 50 × 50 90 × 90

fmax (MHz) 114.29 114.29 114.29 114.29 103.80
Slice LUTs 4387 (8.25%) 4631 (8.70%) 4460 (8.38%) 4620 (8.68%) 4703 (8.84%)
Slice registers 5195 (4.88%) 5527 (5.19%) 5267 (4.95%) 5734 (5.33%) 5771 (5.42%)
BRAM 5 (3.57%) 8 (5.71%) 9 (6.43%) 33 (23.57%) 65 (46.43%)
DSP 5 (2.27%) 6 (2.73%) 5 (2.27%) 5 (2.27%) 5 (2.27%)
LUTRAM 197 (1.13%) 205 (1.18%) 198 (1.14%) 206 (1.18%) 207 (1.19%)
Static power (Watts) 0.137 0.138 0.138 0.141 0.147
Dynamic power (Watts) 1.367 1.374 1.372 1.432 1.506
IP power (Watts) 0.097 0.103 0.101 0.161 0.235
SoC power (Watts) 1.504 1.512 1.51 1.573 1.653
HET (s) 0.0013 0.0045 0.0092 0.0342 0.1965
MSE 2.59e

−13
3.17e

−13
1.61e

−11
1.97e

−11
7.41e

−11

Fig. 6   Illustration of loop 
pipelining optimization tech-
nique [11]

for (i=0;i<3;i++){
RD;
CMP;
WR;

}
Without loop pipelining With loop pipelining

RD CMP WR RD CMP WR RD CMP WR

3 Cycles

8 Cycles

RD CMP WR
RD CMP WR

RD CMP WR

1 Cycles

4 Cycles



SN Computer Science (2023) 4:147	 Page 7 of 11  147

SN Computer Science

Notebook using Python. In this paper, we considered sin-
gle precision floating-point data type for implementation on 
Pynq FPGA.

Matrix Inversion Using QR Decomposition Based 
on MGS Algorithm

The matrix inversion using QR decomposition based on the 
MGS algorithm is implemented on the Pynq-Z1 FPGA using 
AXI-Lite interfacing between Processing System (PS) and 
Programmable Logic (PL) of PYNQ FPGA. We reported the 
resource utilization, power consumption, hardware execution 
time (HET) and mean square error for different matrix size 
in Table 1.

From the Table 1, it is observed that for lower-order 
matrix MGS method gives less MSE but for the higher-order 
matrix the accuracy decreases. Similarly the HET increases 
with increase in matrix dimension.

Pipelining is an optimization technique that decreases the 
execution time of a function or loop. Figure  6 analyses the 

Table 2   Performance analysis 
of MGS-based matrix inversion 
with inner loop pipelining 
optimization for various matrix 
sizes

Matrix Size 16 × 16 25 × 25 32 × 32 50 × 50 90 × 90

fmax (MHz) 109.92 103.80 109.92 103.80 103.80
Slice LUTs 4684 (8.80%) 4928 (9.26%) 4778 (8.98%) 4962 (9.33%) 5124 (9.63%)
Slice registers 5358 (5.04%) 5607 (5.27%) 5450 (5.12%) 5734 (5.39%) 5860 (5.51%)
BRAM 5 (3.57%) 8 (5.71%) 9 (6.43%) 33 (23.57%) 65 (46.43%)
DSP 5 (2.27%) 10 (4.55%) 5 (2.27%) 9 (4.09%) 9 (4.09%)
LUTRAM 210 (1.21%) 223 (1.28%) 213 (1.22%) 228 (1.31%) 230 (1.32%)
Static power (Watts) 0.137 0.138 0.137 0.141 0.146
Dynamic power (Watts) 1.361 1.370 1.362 1.425 1.496
IP power (Watts) 0.091 0.099 0.092 0.155 0.225
SoC power (Watts) 1.499 1.508 1.5 1.567 1.642
HET(s) 0.0008 0.0024 0.0053 0.0181 0.1044
MSE 2.59e

−13
3.17e

−13
1.61e

−11
1.97e

−11
7.41e

−11

Table 3   HAF of MGS matrix inverse using without and with inner 
loop pipelining optimization for different matrix sizes

SET (s) WO inner loop 
pipelining

With inner loop 
pipelining

Matrix Size HET (s) HAF HET (s) HAF

16 × 16 0.0572 0.0013 44 0.0008 72
25 × 25 0.2371 0.0045 53 0.0024 98
32 × 32 0.5157 0.0092 56 0.0053 97
50 × 50 1.9814 0.0342 58 0.0181 109
90 × 90 11.6218 0.1965 59 0.1044 111

Table 4   Performance analysis of LAP QR based matrix inversion with various matrix sizes

Matrix Size 16 × 16 25 × 25 32 × 32 50 × 50 90 × 90

fmax(MHz) 114.29 103.80 114.29 103.80 103.80
Slice LUTs 9934 (18.67%) 10153 (19.08%) 9969 (18.74%) 10186 (19.15%) 10419 (19.58%)
Slice registers 11278 (10.60%) 11588 (10.99%) 11324 (10.64%) 11625 (10.93%) 12270 (11.53%)
BRAM 9 (6.43%) 15 (10.36%) 17 (12.14%) 52 (36.79%) 106 (75.36%)
DSP 34( 15.45%) 39 (17.73%) 34 (15.45%) 39 (17.73%) 39 (17.73%)
LUTRAM 776 (4.46%) 830 (4.77%) 732 (4.21%) 844 (4.85%) 674 (3.87%)
Static power (Watts) 0.140 0.141 0.141 0.146 0.154
Dynamic power (Watts) 1.451 1.479 1.454 1.527 1.625
IP power (Watts) 0.183 0.21 0.186 0.259 0.357
SoC power (Watts) 1.591 1.62 1.595 1.673 1.78
HET (s) 0.0026 0.0028 0.0034 0.0072 0.0301
MSE 1.28e

−13
1.9e

−13
4.03e

−12
5.60e

−12
2.57e

−12
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instruction execution without (WO) and with loop pipelin-
ing optimization technique. Figure 6 illustrates that, if a 
task requires eight clock cycles to execute, with enabling 
loop pipelining technique, the same task can complete the 
execution in four clock cycles. In this current work, we used 

pipelining loop optimization method to speed up the hard-
ware execution time.

We applied inner loop pipelining optimization to the 
MGS-based matrix inversion algorithm. The resources, 
MSE and HET are tabulated in Table 2. It shows that with 
inner loop pipelining optimization technique, there is sub-
stantial improvement in HET at the cost of negligible change 
in resources.

We calculated the software execution time (SET) on 
ARM dual core Cortex-9 processor and used it to calculate 
the hardware acceleration factor (HAF) as

For different matrix size, the HAF with and without inner 
loop pipelining optimization is tabulated in Table 3. From 
the Table 3, we observe that, decrease in HET due to inner 
loop pipelining increases the HAF of the algorithm.

(15)HAF =
SOFTWARE EXECUTION TIME (SET)

HARDWARE EXECUTION TIME (HET)
.

Table 5   Performance analysis of SVD based matrix inversion for different matrix sizes without inner loop pipelining optimization

Matrix Size 16 × 16 25 × 25 32 × 32 50 × 50 90 × 90

fmax (MHz) 108.58 108.75 114.29 114.29 114.29
Slice LUTs 14521 (27.30%) 15326 (28.81%) 14628 (27.50%) 14941 (28.08%) 15081 (28.35%)
Slice registers 16500 (15.51%) 17402 (16.36%) 16587 (15.59%) 17607 (16.55%) 17826 (16.75%)
BRAM 9 (6.43%) 14 (9.64%) 17 (12.14%) 47 (33.21%) 87 (61.79%)
DSP 55 (25%) 55 (25%) 55 (25%) 55 (25%) 55 (25%)
LUTRAM 555 (3.19%) 757 (4.35%) 438 (2.52%) 370 (2.13%) 372 (2.14%)
Static power (Watts) 0.144 0.145 0.145 0.151 0.159
Dynamic power (Watts) 1.622 1.638 1.632 1.709 1.815
IP power (Watts) 0.351 0.367 0.362 0.439 0.544
SoC power (Watts) 1.766 1.783 1.777 1.86 1.973
HET (s) 0.0061 0.0231 0.0462 0.1671 0.9562
MSE 1.71e

−11
2.07e

−11
9.69e

−08
1.91e

−07
6.97e

−08

Table 6   Performance analysis of SVD based matrix inversion for various matrix sizes with inner loop pipelining optimization

Matrix size 16 × 16 25 × 25 32 × 32 50 × 50 90 × 90

fmax (MHz) 108.75 103.80 114.29 103.80 103.80
Slice LUTs 15699 (29.51%) 16559 (31.13%) 15828 (29.75%) 16179 (30.41%) 16593 (31.19%)
Slice registers 17252 (16.21%) 17940 (16.86%) 17395 (16.35%) 18069 (16.98%) 18374 (17.27%)
BRAM 10 (7.14%) 15 (10.56%) 18 (12.86%) 47 (33.57%) 87 (62.14%)
DSP 55 (25%) 60 (27.27%) 55 (25%) 58 (26.36%) 58 (26.36%)
LUTRAM 540 (3.10%) 708 (4.07%) 443 (2.55%) 386 (2.22%) 389 (2.24%)
Static power (Watts) 0.144 0.145 0.145 0.150 0.157
Dynamic power (Watts) 1.609 1.626 1.628 1.683 1.753
IP power (Watts) 0.339 0.356 0.357 0.413 0.482
SoC power (Watts) 1.754 1.771 1.773 1.833 1.909
HET(s) 0.0037 0.0121 0.0243 0.0932 0.5411
MSE 1.71e

−11
2.07e

−11
9.69e

−08
1.91e

−07
6.97e

−08

Table 7   HAF of SVD matrix inverse using without and with inner 
loop pipelining optimization for different matrix sizes

Matrix size SET (s) WO inner loop 
pipelining

With inner loop 
pipelining

HET (s) HAF HET (s) HAF

16 × 16 0.3771 0.0061 61 0.0037 102
25 × 25 1.3672 0.0234 58 0.0121 112
32 × 32 2.7232 0.0461 59 0.0243 109
50 × 50 9.7614 0.1679 58 0.0932 104
90 × 90 56.2591 0.9559 59 0.5411 104
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Further, we implemented the matrix inversion using lin-
ear algebra package (LAP) QR decomposition algorithm 
available in Vivado HLS tool and report the performance 
for various matrix sizes in the Table 4.

From the Table 4, it is observed that matrix inversion 
using LAP QR decomposition gives comparable accuracy as 
MGS-based method, however it consumes more resources 
compared to the MGS-based inversion method.

Matrix Inversion Using SVD Based on Lanczos 
and Implicit triQR Algorithms

An IP is created for the matrix inversion using SVD 
decomposition and implemented on Pynq-Z1 FPGA with 
AXI-Lite interfacing. We synthesized the design with and  
without inner loop pipelining optimization technique. The 
hardware resources, execution time and mean square error 
for the inversion IP with and without inner loop pipelining 
optimization for different matrix dimensions is tabulated in 
Tables 5 and 6 respectively.

SVD based matrix inversion IP gives acceptable func-
tional results.

We evaluated the hardware acceleration factor (HAF) 
of matrix inversion IP using SVD based on Lanczos and 
implicit triQR with and without inner loop pipelining opti-
mization. The hardware acceleration factor for matrices of 
different size are tabulated in the Table 7.

From the Table 7, it is observed that inner loop pipelin-
ing optimization gives higher HAF compared to the design 
without inner loop pipelining optimization irrespective of 
order of the matrix.

For a fair comparison of resources, we calculate the 
figure of merit (FoM) parameter as

where FF, LUT, DSP, and BRAM represent the number of 
Flip Flops, Lookup Tables, DSP slices, and Block RAMs 
used by the SoC. We gave less weight to FF and LUT com-
pared to DSP and BRAM by looking into the available 
resources. The weight parameter 16 and 8 are chosen empiri-
cally. The FoM and HET for all three implementation meth-
ods for different matrix sizes are tabulated in Table 8. From 
the Table 8, it is observed that for lower order matrix, MGS-
based QR inverse took less hardware execution time and 
less FoM compared to linear algebra package QR inverse, 
whereas for higher order matrix linear algebra package QR 
inverse took less hardware execution time. FoM of linear 
algebra package QR inverse is nearly double than MGS-
based QR inverse technique for the higher order matrices. 
These two methods are applicable for non-singular matrices 
only. Although SVD based on Lanczos inverse took more 
HET and FoM compared to linear algebra package QR 
inverse and MGS-based QR inverse methods, it is applicable 
for both singular and non-singular matrices.

(16)FoM = [(DSP + BRAM) × 16] + [(FF + LUT) × 8],

Table 8   HET and FoM 
comparison of matrix inverse 
using different algorithm 
techniques

Matrix size LAP QR QR (MGS) SVD (Lanczos)

FoM HET (s) FoM HET (s) FoM HET (s)

16 × 16 170384 0.0026 80496 0.0008 264648 0.0037
25 × 25 174792 0.0028 84568 0.0024 277192 0.0121
32 × 32 171160 0.0034 82048 0.0053 266952 0.0243
50 × 50 175944 0.0072 86240 0.0181 275664 0.0932
90 × 90 183832 0.0301 89056 0.1044 282056 0.5411

Table 9   Performance comparison of different matrix inversion algorithms for matrix size 25 × 25

Ref Algo. fmax 
(MHz)

Resource Utilization FoM Computa-
tion time 
(ms)

Power (mW) EDP (fJ) MAE

[4] GR NA BRAM = 10, DSP = 32, FF = 6741, 
LUT=7143

111744 1.05 124 NA 2.27e
−07

[4] Gauss Jordan NA BRAM = 3, DSP = 5, FF = 1801, LUT = 
2209

32208 3.91 123 NA 1.56e
−06

Prop. work MGS 114 BRAM = 8 , DSP = 10, FF = 4928, LUT 
= 5607

84568 2.4 99 0.0076 1.79e
−06

[4] SVD NA BRAM = 14, DSP = 49, FF = 9313, LUT 
= 11340

166232 11.24 126 NA 3.09e
−07

Prop. work Lanczos 103.8 BRAM = 15, DSP = 60, FF = 17940, LUT 
= 16559

277192 12.1 356 0.0331 1.59e
−05
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Table 9 compares resource utilization, FoM, computa-
tion time, power consumption, energy delay product (EDP) 
and maximum absolute error (MAE) of the SVD and MGS-
based matrix inverse algorithms for matrix size 25 × 25.

EDP is computed as

where P and fmax represents total power consumed by the IP 
and its maximum operating frequency respectively.

The hardware accuracy i.e. maximum absolute error  
between the input matrix and the reconstructed matrix is 
computed from the inverse matrix using pseudo inverse 
property Ar = AA−1A as

where A and Ar represents the input matrix and recon-
structed matrix evaluated using a pseudo inverse property.

From the Table 9, it is observed that GR and MGS-based 
matrix inverse algorithm take less FoM, computation time, 
and power than the proposed SVD-based on Lanczos matrix 
inverse algorithm. GR and MGS-based matrix inverse algo-
rithm works for only non-singular matrices, but SVD-based 
on Lanczos matrix inverse works for both singular and 
non-singular matrices. Gauss Jordan-based matrix inverse 
algorithm takes less FoM, power, and computation time 
compared to the proposed SVD-based on Lanczos matrix 
inverse algorithm, but if the order of matrix increases, then 
Gauss Jordan-based matrix inverse becomes slow. Similarly, 
the previously implemented SVD-based matrix inverse algo-
rithm [4] takes less FoM and power, but computation time is 
almost comparable to the proposed SVD-based on Lanczos 
matrix inverse algorithm. SVD based on Lanczos is a more 
appropriate when the input is a large sparse matrix.

Conclusions

In this work, we designed and realized accelerators for 
matrix inverse algorithms namely (i) QR decomposition 
based on modified Gram–Schmidt, (ii) SVD based on Lanc-
zos and implicit triQR algorithm, and (iii) linear algebra 
package QR inverse of Xilinx Vivado HLS on SoC platform 
in Pynq Jupyter note book environment. After realization, 
the functionality, area, timing, and power are extracted and 
compared. We reported the hardware acceleration factor 
for QR decomposition using MGS-based matrix inversion 
and SVD based matrix inversion technique. We included 
reorthogonalization to increase the stability of Lanczos 
algorithm. The proposed SVD based matrix inverse is the 

(17)EDP =
P

f 2
max

,

(18)MAE =∣ A − Ar ∣,

most efficient decomposition technique in computing the 
pseudo-inverse of a square and rectangular rank deficient 
matrix. In future, we will develop a fixed-point matrix inver-
sion optimized hardware IP of the proposed matrix inversion 
algorithms to reduce hardware resources.
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