
Vol.:(0123456789)

SN Computer Science (2023) 4:147
https://doi.org/10.1007/s42979-022-01542-x

SN Computer Science

ORIGINAL RESEARCH

FPGA‑Based Hardware Accelerator for Matrix Inversion

Venkata Siva Kumar Kokkiligadda1 · Vijitha Naikoti1 · Gaurao Sunil Patkotwar1 · Samrat L. Sabat1 ·
Rangababu Peesapati2 

Received: 20 April 2022 / Accepted: 2 December 2022 / Published online: 9 January 2023
© The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2022

Abstract
Matrix inversion is a computationally expensive operation in many scientific applications. Performing matrix inversion of
rank deficient large order matrices is still a challenge due to its computational overhead. This paper presents the hardware
implementation of matrix inversion with (i) singular value decomposition (SVD) based on Lanczos and implicit triQR algo-
rithms, (ii) QR method that uses modified Gram–Schmidt (MGS) technique and (iii) inbuilt linear algebra package QR inverse
using Xilinx Vivado high level synthesis platform. All the three algorithms are implemented on Pynq-Z1 Field Programmable
Gate Array (FPGA) using System on Chip (SoC) approach. The resource utilization along with accuracy, hardware execu-
tion time with and without loop optimization are reported for the aforementioned matrix inversion techniques of different
matrix sizes. We achieved the hardware acceleration factor with loop optimization as 111x and 104x, respectively, for the
matrix inversion of the MGS algorithm and SVD based on Lanczos algorithm with respect to the software implementation
execution time on Pynq-Z1 FPGA for the matrix size 90 × 90.

Keywords  Matrix inversion · SVD algorithm · Lanczos algorithm · Implicit triQR · QR decomposition · Modified Gram–
Schmidt

Introduction

Matrix inversion is a fundamental and computational
expensive unit in different scientific and engineering appli-
cations such as image recognition, least-square problem
solving, regression, and multiple-input multiple-output
(MIMO) wireless communication. There exist different
techniques such as determinant method and decomposi-
tion methods for matrix inversion depending on the matrix
characteristics. For a non-singular matrix the inverse
can be computed easily using Moore-Penrose method
i.e., A†

= (ATA)−1AT [14]. However, it fails to compute
the inverse of a singular matrix. Moreover the algorith-
mic complexity of inverse algorithms increases with the
increase in matrix size. Hence, several decomposition
algorithms such as lower-upper (LU) decomposition,
Cholesky decomposition, modified Cholesky decomposi-
tion, QR decomposition, and singular value decomposition
(SVD) are proposed to compute the matrix inverse. From
these algorithms, LU decomposition can be applied only
when the matrix is non-singular square [1], however, it
has stability issue. Cholesky decomposition technique can
be applied only when the matrix is symmetric, positive

This article is part of the topical collection “Smart and Connected
Electronic Systems” guest edited by Amlan Ganguly, Selcuk Kose,
Amit M. Joshi and Vineet Sahula.

 *	 Rangababu Peesapati
	 p.rangababu@nitm.ac.in

	 Venkata Siva Kumar Kokkiligadda
	 18phpe04@uohyd.ac.in

	 Vijitha Naikoti
	 19pimt03@uohyd.ac.in

	 Gaurao Sunil Patkotwar
	 19pimt11@uohyd.ac.in

	 Samrat L. Sabat
	 slssp@uohyd.ac.in

1	 Centre for Advanced Studies in Electronics Science
and Technology, University of Hyderabad, Hyderabad,
Telangana 500046, India

2	 Department of Electronics and Communications
Engineering, NIT Meghalaya, Shillong, Meghalaya 793001,
India

http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-022-01542-x&domain=pdf
http://orcid.org/0000-0003-2645-7634

	 SN Computer Science (2023) 4:147147  Page 2 of 11

SN Computer Science

definite and non-singular square matrix, whereas modi-
fied Cholesky can be applied for a negative semi-definite
matrix [12]. QR decomposition is accurate and stable com-
pared to LU decomposition and Cholesky decomposition
[6]. For a non-singular matrix, QR decomposition can be
performed using classical Gram–Schmidt (CGS), House-
hold transformation, or Givens Rotation (GR) techniques.
The Givens Rotation method is suitable when the matrix is
sparse [2]. The lack of parallelization in Household trans-
formation is the main bottleneck for its embedded hard-
ware implementation [8]. Thus, classical Gram–Schmidt
technique is being applied for non-sparse matrix. Although
CGS is simpler to implement but it is less stable [13].
Hence, modified Gram–Schmidt is an alternate stable tech-
nique being used to compute the inverse of a non-sparse
and non-singular matrix. The matrix inversion using QR
decomposition is applicable only for a full-rank matrix,
it fails when the input matrix is an rank-deficient i.e.
singular.

Alternatively, singular value decomposition (SVD) is
the most efficient decomposition technique in comput-
ing the pseudo-inverse of both singular and non-singular
matrices. The computational challenging task for com-
puting SVD is the finding of singular values, computed
using square root of eigenvalues. The eigenvalues can be
obtained using different algorithm techniques. Among
these, Jacobi algorithm is more accurate, but it has slow
convergence [10]. Jacobi method is simpler technique that
transforms a real symmetric matrix to a diagonal matrix
using orthogonal transformation, where the elements of
diagonal matrix are eigenvalues. For larger matrix, the
use of determinant method for computing the coefficient
of characteristics polynomial is numerically unstable.
The disadvantage of Jacobi method is addressed in Giv-
ens rotation method, which transforms the real and sym-
metric matrix for a tridiagonal matrix and then finds the
eigenvalues. Power method is a popular, simple and sta-
ble method to find the extreme eigenvalues for a square
matrix [7]. However, its convergence depends on the ratio
between the two largest eigenvalues and it is not suitable to
find all the eigenvalues of a matrix. Golub-Khan algorithm
is suitable for finding eigenvalues of a large dense sym-
metric matrices. Although it has improved computation
time but suffers with poor accuracy [5]. Tridiagonalization
using the Lanczos algorithm and diagonalization using the
QR method gives accurate estimates of singular values,
reduced computation time and memory storage compared
to the above algorithms [9]. Lanczos algorithm generates
a sequence of tridiagonal matrices and it is faster because,
the input matrix is not varied during the entire process.

Lanczos algorithm suffers from loss of orthogonality
among Lanczos vectors [3], that need to be compensated
using reorthogonalization. The eigenvalues are obtained
from the tridiagonal matrix by reducing it to a diagonal
matrix. In the current work, we use implicit triQR algo-
rithm to obtain eigenvalues by reducing the tridiagonal
matrix to a diagonal matrix using Givens rotation method
and Wilkinson shift technique [15], because of its high
convergence rate. Thus in this paper, SVD of the matrix is
computed based on the Lanczos and implicit triQR algo-
rithm suitable for evaluating the pseudo-inverse of a large
real matrix.

FPGAs are becoming popular as computing platforms
to implement computational intensive algorithms. In this
paper, we implemented the matrix inversion using SVD
decomposition based on Lanczos and implicit triQR algo-
rithm with and without inner loop optimization technique
on Pynq-Z1 FPGA and compare the hardware acceleration
factor, resource utilization with QR decomposition based on
MGS algorithm and HLS inbuilt QR algorithm.

The rest of the paper is organized as follows. “Algorithms
for Matrix Inversion” focuses on the matrix inversion algo-
rithms considered for implementation, “Simulation Results”
presents numerical simulation results of SVD and QR matrix
inverse, “Hardware Implementation Results” presents the
hardware implementation frame work and performance
analysis, followed by conclusions in “Conclusions”.

Algorithms for Matrix Inversion

Matrix decomposition algorithms are used to compute the
inverse of the matrix for larger dimensions. In the current
work, matrix inversion is performed using QR decomposi-
tion based on modified Gram–Schmidt algorithm and SVD
based on lanczos and with implicit triQR algorithm.

Matrix Inversion Using QR Decomposition Based
on Modified Gram–Schmidt Algorithm

In the QR decomposition algorithm, matrix A ∈ ℜM×N is
decomposed to matrices Q and R such that

where Q and R represents the orthogonal matrix and upper
triangular matrix respectively. The detailed steps for obtain-
ing Q and R using modified Gram–Schmidt is shown in
algorithm 1.

(1)A = QR,

SN Computer Science (2023) 4:147	 Page 3 of 11  147

SN Computer Science

After QR decomposition, the inverse of A is obtained as

Since Q is an orthogonal matrix, it satisfies the orthogonal-
ity property; Q−1

= QT , substituting it in Eq. (2), A−1 can be
rewritten as

Since R ∈ ℜN×N is the upper triangular matrix, R−1 can be
calculated by inverting the upper triangular matrix as shown
in Algorithm 2.

Matrix Inversion Using SVD Based on Lanczos
and Implicit triQR Algorithm

In the SVD decomposition, a real matrix A ∈ ℜM×N is
decomposed to matrices U, S and V as

where V ∈ ℜN×N and U ∈ ℜM×M represents the orthogonal
matrices and the columns of U and V are the eigenvectors
of A × AT or AT

× A . The diagonal elements of S ∈ ℜM×N
are the singular values of the matrix A and remaining ele-
ments of S are zero. The singular values are the square root
of eigenvalues.

The inverse of a non-singular square matrix A ∈ ℜN×N
can be computed using SVD as

Algorithm 1 Calculate Q,R = qrMGS(A)

Require: A ∈ �M×N

Ensure: Q,R = qrMGS(A)
1: for l = 1 : N do
2: R(l, l)= ‖A(1 : M, l)‖2
3: Q(1 : M, l) = A(1 : M, l)/R(l, l)
4: for t = l + 1 : N do
5: R(l, t) = Q(1 : M, l)T ∗A(1 : M, t)
6: A(1 : M, t) = A(1 : M, t)−Q(1 : M, l) ∗R(l, t)
7: end for
8: end for

(2)A−1
= R−1

× Q−1.

(3)A−1
= R−1

× QT .

Algorithm 2 Calculate R−1 = inv(R)

Require: R ∈ �N×N

Ensure: R−1 = inv(R)
1: for l = 1 : N do
2: for p = 1 : t− 1 do
3: R−1(p, t) = R−1(p, (1 : t− 1)) ∗R((1 : t− 1), t)
4: end for
5: R−1((1 : t− 1), t) = R((1 : t− 1), t)/R(t, t)
6: R−1(t, t) = 1/R(t, t)
7: end for

(4)AM×N = UM×M × SM×N × VT
N×N

,

(5)A−1
N×N

= VN×N × S−1
N×N

× UT
N×N

,

where S−1 is the inverse of the matrix S. Similarly, the
pseudo-inverse of a non-singular rectangular matrix
A ∈ ℜM×N can be computed using

where S† is the pseudo-inverse of the matrix S. The detailed
steps for computing pseudo-inverse of the matrix A using
SVD based on Lanczos and implicit triQR algorithm is given
below.

Initially the input matrix is transformed to a symmetric

matrix B ∈ ℜN×N as

The Lanczos algorithm is applied on B to get the orthogo-
nal matrix Q ∈ ℜN×N and tridiagonal matrix T ∈ ℜN×N such
that

The detailed steps of Lanczos algorithm as shown in Algo-
rithm 3. After obtaining the T and Q matrices, implicit
triQR algorithm is applied on T and Q to get the eigenval-
ues or diagonal matrix D ∈ ℜN×N and eigen vector matrix
V ∈ ℜN×N respectively. The detailed steps of implicit triQR
algorithm as shown in Algorithm 4.

In terms of the eigenvalues and eigenvectors, the sym-
metric matrix B can be expressed as

(6)A
†

N×M
= VN×N × S

†

N×M
× UT

M×M
,

(7)BN×N = [AT
× A]N×N .

(8)QT
N×N

× BN×N × QN×N = TN×N .

	 SN Computer Science (2023) 4:147147  Page 4 of 11

SN Computer Science

From Eq. (9), the singular values of matrix A is calculated by
applying square root to the diagonal elements of D. The rank
of the matrix A can be used to obtain S ∈ ℜK×K by taking
only singular values greater than the SVD tolerance limit.
Since S is a diagonal matrix, and inverse of S i.e S† ∈ ℜK×K
can be obtained by reciprocating the diagonal elements of
S. The eigen vectors U ∈ ℜM×K is calculated by considering
k = K (number of eigenvalues) columns of VN×N.

From Eq. (6) the pseudo-inverse A† can be rewritten as

Substituting Eq. (10) in Eq. (11) gives,

Since the singular values are square root of eigenvalues, Eq.
(12) can be rewritten as

(9)BN×N = VN×N × DN×N × V−1
N×N

.

(10)UM×K = AM×N × VN×K × S
†

K×K
.

(11)A
†

N×M
= VN×K × S

†

K×K
× UT

K×M
.

(12)A
†

N×M
= VN×K × S

†

K×K
× (S

†

K×K
)
T
× VT

N×K
× AT

M×N
. The block diagram of matrix inverse computation using

SVD based on Lanczos, and implicit triQR algorithm is
shown in Fig. 1.

(13)A
†

N×M
= VN×K × DK×K × VT

N×K
× AT

M×N
.

Algorithm 3 Calculate T,Q = Lanczos(B, k)

Require: B ∈ �N×N , k.
Ensure: T,Q = Lanczos(B, k)
1: Initialize i = 0 , unit vector-Q0, R0 = q1 , and β0 = 1 .
2: while i=0 to k or βk �= 0 do
3: Qk+1 = Rk/βk

4: i = i+ 1
5: αk = QT

k .B.Qk

6: Rk = (A− αk.I).Qk −Qk−1.βk−1
7: βk = ‖Rk‖
8: end while
9: Tridiagonal matrix T , whose diagonal elements are αk and sub-diagonal

elements are βk is obtained. Q is obtained by augmenting column vectors
Qk.

Fig. 1   Block diagram of the
matrix inversion using SVD
algorithm based on Lanczos,
and implicit triQR algorithm

Orthogonal
Matrix Block

Lanczos
Block

Implicit triQR
Block

Compute
Singular valued

Matrix

Transpose Compute Pseudo
Inverse of S

†

K
D

†
†

=
† T

T

†

0 200 400 600 800 1000
Matrix Size

10-30

10-25

10-20

10-15

M
SE

Fig. 2   MSE of matrix inversion using QR decomposition based on
MGS algorithm

SN Computer Science (2023) 4:147	 Page 5 of 11  147

SN Computer Science

Algorithm 4 Calculate e, V = ImplicitTriqr(T,Q)

Require: T ∈ �N×N , Q ∈ �N×N .
Ensure: e, V = ImplicitTriqr(T,Q)
1: for m = N : 1 do
2: for i = 0 : convergence do
3: wi = Wilkinson shift ; Gi = Givens rotation
4: (T − wiI) → triQR
5: Tnext = triQR+ wi.I
6: Qnext = Gi.Q
7: T = Tnext

8: Q = Qnext

9: end for
10: end for
11: After meeting convergence, T is converted to diagonal matrix D ∈ �N×N ,

whose diagonal elements are eigen values e and Q is converted to matrix V.
12: Sorting of eigenvalues [e, ind] = sort (e, ‘descend’)
13: Update eigen vector matrix V = Q(:, ind(1 : N))

Simulation Results

The floating-point matrix inversion using (i) QR decomposi-
tion based on MGS algorithm and (ii) SVD based on Lanc-
zos and implicit triQR algorithm is simulated using Matlab
tool to check the functionality. We have considered Matlab
inbuilt pinv as the reference algorithm. Random input matri-
ces of different sizes are considered as input matrices that
need to be inverted. Mean Square Error (MSE) for a matrix
of size t is obtained as

where Apinv is the inverse of matrix A using Matlab inbuilt
function pinv and AQRinv is the inverse of matrix A using
MGS based QR decomposition algorithm.

(14)MSE(t) =
1

t ∗ t

t−1
∑

i=0

t−1
∑

j=0

[

A
pinv

i,j
− A

QRinv

i,j

]2

,

Matrix Inversion Using QR Decomposition Based
on MGS Algorithm

In [13], MGS based algorithm is concluded as the good
choice for computing the matrix inverse among the CGS
and Householder based inverse technique. In Fig. 2, we
applied random input matrix sizes up to 1000 × 1000 for the
MGS based matrix inverse and reported the MSE between
the inverse obtained using QR decomposition and reference
algorithm (pinv).

From Fig. 2, it is observed that the mean square error
for QR inverse based on MGS algorithm is within an error
limit of ≤ 10−15.

Matrix Inversion Using SVD Decomposition
Algorithm

We applied SVD based on Lanczos and implicit triQR algo-
rithm to compute pseudo-inverse of both full rank and sin-
gular matrices (rank deficient) of different sizes. The MSE

0 200 400 600 800 1000
Matrix Size

10-35

10-30

10-25

10-20

10-15

10-10

10-5

M
SE

Fig. 3   MSE of matrix inversion using SVD for full rank matrices Fig. 4   MSE of matrix inversion using SVD for singular matrices

	 SN Computer Science (2023) 4:147147  Page 6 of 11

SN Computer Science

is obtained same as Eq. (14) except Qinv(A) is replaced with
Sinv(A).

where, Sinv(A) is the inverse of matrix A using SVD based
on Lanczos and implicit triQR algorithm. MSE of matrix
inversion using SVD for full rank and rank deficient matrix
are plotted in Figs. 3 and 4 respectively.

From Figs. 3 and 4, it is observed that the mean
square error for matrix inversion is within the error limit
MSE ≤ 10−07 verifying the functionality of the inverse using
SVD based on Lanczos and implicit triQR algorithm.

Hardware Implementation Results

Matrix inversion using QR decomposition and SVD algo-
rithms are implemented on Pynq-Z1 FPGA. Initially, we
tested the functionality of the considered matrix inversion
methods using C-simulation on Vivado HLS tool. The clock
period is set as 10ns. We synthesized the design with and
without inner loop pipelining optimization technique. Fur-
ther, we created the hardware Intellectual Property (IP) of
the matrix inverse algorithms. Overlay is created for this
hardware IP block and interfaced with the Zynq IP core
using AXI-Lite interface; as shown in Fig. 5. Finally, we
realised the design on Pynq-Z1 FPGA with the Jupyter

Fig. 5   SoC interface architec-
ture of the Matrix inversion IP

DDR3
Memory

Ethernet

ARM
Cortex-A9

AXI-
Interconnect

Block

INV_MGS_IP /
INV_SVD_IP

Computer

PYNQ SoC

PS(ARM Cortex-A9) PL(Programmable Logic)

AXI-LITE

Table 1   Performance analysis
of MGS based matrix inversion
without inner loop pipelining
optimization for various matrix
sizes

Matrix size 16 × 16 25 × 25 32 × 32 50 × 50 90 × 90

fmax (MHz) 114.29 114.29 114.29 114.29 103.80
Slice LUTs 4387 (8.25%) 4631 (8.70%) 4460 (8.38%) 4620 (8.68%) 4703 (8.84%)
Slice registers 5195 (4.88%) 5527 (5.19%) 5267 (4.95%) 5734 (5.33%) 5771 (5.42%)
BRAM 5 (3.57%) 8 (5.71%) 9 (6.43%) 33 (23.57%) 65 (46.43%)
DSP 5 (2.27%) 6 (2.73%) 5 (2.27%) 5 (2.27%) 5 (2.27%)
LUTRAM 197 (1.13%) 205 (1.18%) 198 (1.14%) 206 (1.18%) 207 (1.19%)
Static power (Watts) 0.137 0.138 0.138 0.141 0.147
Dynamic power (Watts) 1.367 1.374 1.372 1.432 1.506
IP power (Watts) 0.097 0.103 0.101 0.161 0.235
SoC power (Watts) 1.504 1.512 1.51 1.573 1.653
HET (s) 0.0013 0.0045 0.0092 0.0342 0.1965
MSE 2.59e

−13
3.17e

−13
1.61e

−11
1.97e

−11
7.41e

−11

Fig. 6   Illustration of loop
pipelining optimization tech-
nique [11]

for (i=0;i<3;i++){
RD;
CMP;
WR;

}
Without loop pipelining With loop pipelining

RD CMP WR RD CMP WR RD CMP WR

3 Cycles

8 Cycles

RD CMP WR
RD CMP WR

RD CMP WR

1 Cycles

4 Cycles

SN Computer Science (2023) 4:147	 Page 7 of 11  147

SN Computer Science

Notebook using Python. In this paper, we considered sin-
gle precision floating-point data type for implementation on
Pynq FPGA.

Matrix Inversion Using QR Decomposition Based
on MGS Algorithm

The matrix inversion using QR decomposition based on the
MGS algorithm is implemented on the Pynq-Z1 FPGA using
AXI-Lite interfacing between Processing System (PS) and
Programmable Logic (PL) of PYNQ FPGA. We reported the
resource utilization, power consumption, hardware execution
time (HET) and mean square error for different matrix size
in Table 1.

From the Table 1, it is observed that for lower-order
matrix MGS method gives less MSE but for the higher-order
matrix the accuracy decreases. Similarly the HET increases
with increase in matrix dimension.

Pipelining is an optimization technique that decreases the
execution time of a function or loop. Figure 6 analyses the

Table 2   Performance analysis
of MGS-based matrix inversion
with inner loop pipelining
optimization for various matrix
sizes

Matrix Size 16 × 16 25 × 25 32 × 32 50 × 50 90 × 90

fmax (MHz) 109.92 103.80 109.92 103.80 103.80
Slice LUTs 4684 (8.80%) 4928 (9.26%) 4778 (8.98%) 4962 (9.33%) 5124 (9.63%)
Slice registers 5358 (5.04%) 5607 (5.27%) 5450 (5.12%) 5734 (5.39%) 5860 (5.51%)
BRAM 5 (3.57%) 8 (5.71%) 9 (6.43%) 33 (23.57%) 65 (46.43%)
DSP 5 (2.27%) 10 (4.55%) 5 (2.27%) 9 (4.09%) 9 (4.09%)
LUTRAM 210 (1.21%) 223 (1.28%) 213 (1.22%) 228 (1.31%) 230 (1.32%)
Static power (Watts) 0.137 0.138 0.137 0.141 0.146
Dynamic power (Watts) 1.361 1.370 1.362 1.425 1.496
IP power (Watts) 0.091 0.099 0.092 0.155 0.225
SoC power (Watts) 1.499 1.508 1.5 1.567 1.642
HET(s) 0.0008 0.0024 0.0053 0.0181 0.1044
MSE 2.59e

−13
3.17e

−13
1.61e

−11
1.97e

−11
7.41e

−11

Table 3   HAF of MGS matrix inverse using without and with inner
loop pipelining optimization for different matrix sizes

SET (s) WO inner loop
pipelining

With inner loop
pipelining

Matrix Size HET (s) HAF HET (s) HAF

16 × 16 0.0572 0.0013 44 0.0008 72
25 × 25 0.2371 0.0045 53 0.0024 98
32 × 32 0.5157 0.0092 56 0.0053 97
50 × 50 1.9814 0.0342 58 0.0181 109
90 × 90 11.6218 0.1965 59 0.1044 111

Table 4   Performance analysis of LAP QR based matrix inversion with various matrix sizes

Matrix Size 16 × 16 25 × 25 32 × 32 50 × 50 90 × 90

fmax(MHz) 114.29 103.80 114.29 103.80 103.80
Slice LUTs 9934 (18.67%) 10153 (19.08%) 9969 (18.74%) 10186 (19.15%) 10419 (19.58%)
Slice registers 11278 (10.60%) 11588 (10.99%) 11324 (10.64%) 11625 (10.93%) 12270 (11.53%)
BRAM 9 (6.43%) 15 (10.36%) 17 (12.14%) 52 (36.79%) 106 (75.36%)
DSP 34(15.45%) 39 (17.73%) 34 (15.45%) 39 (17.73%) 39 (17.73%)
LUTRAM 776 (4.46%) 830 (4.77%) 732 (4.21%) 844 (4.85%) 674 (3.87%)
Static power (Watts) 0.140 0.141 0.141 0.146 0.154
Dynamic power (Watts) 1.451 1.479 1.454 1.527 1.625
IP power (Watts) 0.183 0.21 0.186 0.259 0.357
SoC power (Watts) 1.591 1.62 1.595 1.673 1.78
HET (s) 0.0026 0.0028 0.0034 0.0072 0.0301
MSE 1.28e

−13
1.9e

−13
4.03e

−12
5.60e

−12
2.57e

−12

	 SN Computer Science (2023) 4:147147  Page 8 of 11

SN Computer Science

instruction execution without (WO) and with loop pipelin-
ing optimization technique. Figure 6 illustrates that, if a
task requires eight clock cycles to execute, with enabling
loop pipelining technique, the same task can complete the
execution in four clock cycles. In this current work, we used

pipelining loop optimization method to speed up the hard-
ware execution time.

We applied inner loop pipelining optimization to the
MGS-based matrix inversion algorithm. The resources,
MSE and HET are tabulated in Table 2. It shows that with
inner loop pipelining optimization technique, there is sub-
stantial improvement in HET at the cost of negligible change
in resources.

We calculated the software execution time (SET) on
ARM dual core Cortex-9 processor and used it to calculate
the hardware acceleration factor (HAF) as

For different matrix size, the HAF with and without inner
loop pipelining optimization is tabulated in Table 3. From
the Table 3, we observe that, decrease in HET due to inner
loop pipelining increases the HAF of the algorithm.

(15)HAF =
SOFTWARE EXECUTION TIME (SET)

HARDWARE EXECUTION TIME (HET)
.

Table 5   Performance analysis of SVD based matrix inversion for different matrix sizes without inner loop pipelining optimization

Matrix Size 16 × 16 25 × 25 32 × 32 50 × 50 90 × 90

fmax (MHz) 108.58 108.75 114.29 114.29 114.29
Slice LUTs 14521 (27.30%) 15326 (28.81%) 14628 (27.50%) 14941 (28.08%) 15081 (28.35%)
Slice registers 16500 (15.51%) 17402 (16.36%) 16587 (15.59%) 17607 (16.55%) 17826 (16.75%)
BRAM 9 (6.43%) 14 (9.64%) 17 (12.14%) 47 (33.21%) 87 (61.79%)
DSP 55 (25%) 55 (25%) 55 (25%) 55 (25%) 55 (25%)
LUTRAM 555 (3.19%) 757 (4.35%) 438 (2.52%) 370 (2.13%) 372 (2.14%)
Static power (Watts) 0.144 0.145 0.145 0.151 0.159
Dynamic power (Watts) 1.622 1.638 1.632 1.709 1.815
IP power (Watts) 0.351 0.367 0.362 0.439 0.544
SoC power (Watts) 1.766 1.783 1.777 1.86 1.973
HET (s) 0.0061 0.0231 0.0462 0.1671 0.9562
MSE 1.71e

−11
2.07e

−11
9.69e

−08
1.91e

−07
6.97e

−08

Table 6   Performance analysis of SVD based matrix inversion for various matrix sizes with inner loop pipelining optimization

Matrix size 16 × 16 25 × 25 32 × 32 50 × 50 90 × 90

fmax (MHz) 108.75 103.80 114.29 103.80 103.80
Slice LUTs 15699 (29.51%) 16559 (31.13%) 15828 (29.75%) 16179 (30.41%) 16593 (31.19%)
Slice registers 17252 (16.21%) 17940 (16.86%) 17395 (16.35%) 18069 (16.98%) 18374 (17.27%)
BRAM 10 (7.14%) 15 (10.56%) 18 (12.86%) 47 (33.57%) 87 (62.14%)
DSP 55 (25%) 60 (27.27%) 55 (25%) 58 (26.36%) 58 (26.36%)
LUTRAM 540 (3.10%) 708 (4.07%) 443 (2.55%) 386 (2.22%) 389 (2.24%)
Static power (Watts) 0.144 0.145 0.145 0.150 0.157
Dynamic power (Watts) 1.609 1.626 1.628 1.683 1.753
IP power (Watts) 0.339 0.356 0.357 0.413 0.482
SoC power (Watts) 1.754 1.771 1.773 1.833 1.909
HET(s) 0.0037 0.0121 0.0243 0.0932 0.5411
MSE 1.71e

−11
2.07e

−11
9.69e

−08
1.91e

−07
6.97e

−08

Table 7   HAF of SVD matrix inverse using without and with inner
loop pipelining optimization for different matrix sizes

Matrix size SET (s) WO inner loop
pipelining

With inner loop
pipelining

HET (s) HAF HET (s) HAF

16 × 16 0.3771 0.0061 61 0.0037 102
25 × 25 1.3672 0.0234 58 0.0121 112
32 × 32 2.7232 0.0461 59 0.0243 109
50 × 50 9.7614 0.1679 58 0.0932 104
90 × 90 56.2591 0.9559 59 0.5411 104

SN Computer Science (2023) 4:147	 Page 9 of 11  147

SN Computer Science

Further, we implemented the matrix inversion using lin-
ear algebra package (LAP) QR decomposition algorithm
available in Vivado HLS tool and report the performance
for various matrix sizes in the Table 4.

From the Table 4, it is observed that matrix inversion
using LAP QR decomposition gives comparable accuracy as
MGS-based method, however it consumes more resources
compared to the MGS-based inversion method.

Matrix Inversion Using SVD Based on Lanczos
and Implicit triQR Algorithms

An IP is created for the matrix inversion using SVD
decomposition and implemented on Pynq-Z1 FPGA with
AXI-Lite interfacing. We synthesized the design with and
without inner loop pipelining optimization technique. The
hardware resources, execution time and mean square error
for the inversion IP with and without inner loop pipelining
optimization for different matrix dimensions is tabulated in
Tables 5 and 6 respectively.

SVD based matrix inversion IP gives acceptable func-
tional results.

We evaluated the hardware acceleration factor (HAF)
of matrix inversion IP using SVD based on Lanczos and
implicit triQR with and without inner loop pipelining opti-
mization. The hardware acceleration factor for matrices of
different size are tabulated in the Table 7.

From the Table 7, it is observed that inner loop pipelin-
ing optimization gives higher HAF compared to the design
without inner loop pipelining optimization irrespective of
order of the matrix.

For a fair comparison of resources, we calculate the
figure of merit (FoM) parameter as

where FF, LUT, DSP, and BRAM represent the number of
Flip Flops, Lookup Tables, DSP slices, and Block RAMs
used by the SoC. We gave less weight to FF and LUT com-
pared to DSP and BRAM by looking into the available
resources. The weight parameter 16 and 8 are chosen empiri-
cally. The FoM and HET for all three implementation meth-
ods for different matrix sizes are tabulated in Table 8. From
the Table 8, it is observed that for lower order matrix, MGS-
based QR inverse took less hardware execution time and
less FoM compared to linear algebra package QR inverse,
whereas for higher order matrix linear algebra package QR
inverse took less hardware execution time. FoM of linear
algebra package QR inverse is nearly double than MGS-
based QR inverse technique for the higher order matrices.
These two methods are applicable for non-singular matrices
only. Although SVD based on Lanczos inverse took more
HET and FoM compared to linear algebra package QR
inverse and MGS-based QR inverse methods, it is applicable
for both singular and non-singular matrices.

(16)FoM = [(DSP + BRAM) × 16] + [(FF + LUT) × 8],

Table 8   HET and FoM
comparison of matrix inverse
using different algorithm
techniques

Matrix size LAP QR QR (MGS) SVD (Lanczos)

FoM HET (s) FoM HET (s) FoM HET (s)

16 × 16 170384 0.0026 80496 0.0008 264648 0.0037
25 × 25 174792 0.0028 84568 0.0024 277192 0.0121
32 × 32 171160 0.0034 82048 0.0053 266952 0.0243
50 × 50 175944 0.0072 86240 0.0181 275664 0.0932
90 × 90 183832 0.0301 89056 0.1044 282056 0.5411

Table 9   Performance comparison of different matrix inversion algorithms for matrix size 25 × 25

Ref Algo. fmax
(MHz)

Resource Utilization FoM Computa-
tion time
(ms)

Power (mW) EDP (fJ) MAE

[4] GR NA BRAM = 10, DSP = 32, FF = 6741,
LUT=7143

111744 1.05 124 NA 2.27e
−07

[4] Gauss Jordan NA BRAM = 3, DSP = 5, FF = 1801, LUT =
2209

32208 3.91 123 NA 1.56e
−06

Prop. work MGS 114 BRAM = 8 , DSP = 10, FF = 4928, LUT
= 5607

84568 2.4 99 0.0076 1.79e
−06

[4] SVD NA BRAM = 14, DSP = 49, FF = 9313, LUT
= 11340

166232 11.24 126 NA 3.09e
−07

Prop. work Lanczos 103.8 BRAM = 15, DSP = 60, FF = 17940, LUT
= 16559

277192 12.1 356 0.0331 1.59e
−05

	 SN Computer Science (2023) 4:147147  Page 10 of 11

SN Computer Science

Table 9 compares resource utilization, FoM, computa-
tion time, power consumption, energy delay product (EDP)
and maximum absolute error (MAE) of the SVD and MGS-
based matrix inverse algorithms for matrix size 25 × 25.

EDP is computed as

where P and fmax represents total power consumed by the IP
and its maximum operating frequency respectively.

The hardware accuracy i.e. maximum absolute error
between the input matrix and the reconstructed matrix is
computed from the inverse matrix using pseudo inverse
property Ar = AA−1A as

where A and Ar represents the input matrix and recon-
structed matrix evaluated using a pseudo inverse property.

From the Table 9, it is observed that GR and MGS-based
matrix inverse algorithm take less FoM, computation time,
and power than the proposed SVD-based on Lanczos matrix
inverse algorithm. GR and MGS-based matrix inverse algo-
rithm works for only non-singular matrices, but SVD-based
on Lanczos matrix inverse works for both singular and
non-singular matrices. Gauss Jordan-based matrix inverse
algorithm takes less FoM, power, and computation time
compared to the proposed SVD-based on Lanczos matrix
inverse algorithm, but if the order of matrix increases, then
Gauss Jordan-based matrix inverse becomes slow. Similarly,
the previously implemented SVD-based matrix inverse algo-
rithm [4] takes less FoM and power, but computation time is
almost comparable to the proposed SVD-based on Lanczos
matrix inverse algorithm. SVD based on Lanczos is a more
appropriate when the input is a large sparse matrix.

Conclusions

In this work, we designed and realized accelerators for
matrix inverse algorithms namely (i) QR decomposition
based on modified Gram–Schmidt, (ii) SVD based on Lanc-
zos and implicit triQR algorithm, and (iii) linear algebra
package QR inverse of Xilinx Vivado HLS on SoC platform
in Pynq Jupyter note book environment. After realization,
the functionality, area, timing, and power are extracted and
compared. We reported the hardware acceleration factor
for QR decomposition using MGS-based matrix inversion
and SVD based matrix inversion technique. We included
reorthogonalization to increase the stability of Lanczos
algorithm. The proposed SVD based matrix inverse is the

(17)EDP =
P

f 2
max

,

(18)MAE =∣ A − Ar ∣,

most efficient decomposition technique in computing the
pseudo-inverse of a square and rectangular rank deficient
matrix. In future, we will develop a fixed-point matrix inver-
sion optimized hardware IP of the proposed matrix inversion
algorithms to reduce hardware resources.

Acknowledgements  The first author would like to thank the University
Grants Commission, Govt. of India for providing research fellowship
to carryout this work.

Declarations 

 Conflict of Interest  The authors declare that they have no conflict of
interest.

References

	 1.	 Baliarsingh P, Nayak L, Kumar V. On matrix inversions
through difference operators. Iranian J Sci Tech Trans A: Sci.
2018;42(4):2069–77.

	 2.	 Chang RCH, Chih-Hung L, Kuang-Hao L, et al. Iterative QR
decomposition architecture using the modified Gram-Schmidt
algorithm for MIMO systems. IEEE Trans Circuits Syst I: Regu-
lar Papers. 2010;57(5):1095–102.

	 3.	 Chen J, Saad Y. Lanczos vectors versus singular vectors for
effective dimension reduction. IEEE Trans Knowl Data Eng.
2008;21(8):1091–103.

	 4.	 Chetan S, Manikandan J, Lekshmi V, et al. Hardware implemen-
tation of floating point matrix inversion modules on FPGAs. In:
Proc. IEEE 32nd International Conference on Microelectronics
(ICM), 1–4 , 2020.

	 5.	 Chung J, Saibaba AK, Brown M, et al. Efficient generalized
Golub-Kahan based methods for dynamic inverse problems.
Inverse Problems. 2018;34(2): 021005.

	 6.	 Kokkinos Y, Margaritis KG. Managing the computational cost of
model selection and cross-validation in extreme learning machines
via Cholesky, SVD, QR and eigen decompositions. Iranian J Sci
Tech Trans A: Sci. 2018;295:29–45.

	 7.	 Nigam N, Pollock S. A simple extrapolation method for clustered
eigenvalues. Num Algorithms. 2022;89(1):115–43.

	 8.	 Omran SS, Abdul-abbas AK. Design and implementation of
32-bits MIPS processor to perform QRD based on FPGA. In:
Proc. IEEE International Conference on Engineering Technology
and their Applications (IICETA), 36–41, 2018.

	 9.	 Pradhan T, Routray A, Kabi B. Comparative evaluation of sym-
metric SVD algorithms for real-time face and eye tracking. In:
Matrix information geometry. Springer, pp. 323–40, 2013.

	10.	 Shi Z, He Q, Liu Y. Accelerating parallel Jacobi method for matrix
eigenvalue computation in DOA estimation algorithm. IEEE
Trans Vehicular Tech. 2020;69(6):6275–85.

	11.	 Solod P, Jindapetch N, Sengchuai K, et al. High level synthesis
optimizations of road lane detection development on ZYNQ-7000.
Pertanika J Sci Tech. 2021. 10.47836/pjst.29.2.01.

	12.	 Venkata Reddy K, Rangababu P, Sabat SL. System on chip imple-
mentation of low complex orthogonal matching pursuit algorithm
on FPGA. In: Proc. 2020 IEEE 6th International Conference on
Signal Processing and Communication (ICSC), pp. 178–84, 2020.

	13.	 Venkata Siva Kumar K, Venkata Reddy K, Sabat SL, et al. Sys-
tem on chip implementation of floating point matrix inversion

SN Computer Science (2023) 4:147	 Page 11 of 11  147

SN Computer Science

using modified Gram-Schmidt based QR decomposition on PYNQ
FPGA. In: Proc. IEEE International Symposium on Smart Elec-
tronic Systems (iSES)(Formerly iNiS), pp. 84–8, 2021.

	14.	 Yang Q, Xiaoji L, Yaoming Y. Developing reverse order law for
the Moore-Penrose inverse with the product of three linear opera-
tors. J Math. 2021;2021:6585951.

	15.	 Zee FGV, de Geijn RAV, QuintanaOrt G. Restructuring the tridi-
agonal and bidiagonal QR algorithms for performance. ACM
Trans Math Softw (TOMS). 2014;40(3):1–34.

Publisher's Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of
such publishing agreement and applicable law.

	FPGA-Based Hardware Accelerator for Matrix Inversion
	Abstract
	Introduction
	Algorithms for Matrix Inversion
	Matrix Inversion Using QR Decomposition Based on Modified Gram–Schmidt Algorithm
	Matrix Inversion Using SVD Based on Lanczos and Implicit triQR Algorithm

	Simulation Results
	Matrix Inversion Using QR Decomposition Based on MGS Algorithm
	Matrix Inversion Using SVD Decomposition Algorithm

	Hardware Implementation Results
	Matrix Inversion Using QR Decomposition Based on MGS Algorithm
	Matrix Inversion Using SVD Based on Lanczos and Implicit triQR Algorithms

	Conclusions
	Acknowledgements
	References

