
Vol.:(0123456789)

SN Computer Science (2023) 4:85
https://doi.org/10.1007/s42979-022-01505-2

SN Computer Science

ORIGINAL RESEARCH

Combining Deep Learning with Good Old‑Fashioned Machine
Learning

Moshe Sipper1

Received: 4 March 2022 / Accepted: 10 November 2022 / Published online: 8 December 2022
© The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2022

Abstract
We present a comprehensive, stacking-based framework for combining deep learning with good old-fashioned machine
learning, called Deep GOld. Our framework involves ensemble selection from 51 retrained pretrained deep networks as
first-level models, and 10 machine-learning algorithms as second-level models. Enabled by today’s state-of-the-art software
tools and hardware platforms, Deep GOld delivers consistent improvement when tested on four image-classification datasets:
Fashion MNIST, CIFAR10, CIFAR100, and Tiny ImageNet. Of 120 experiments, in all but 10 Deep GOld improved the
original networks’ performance.

Keywords Machine learning · Deep learning · Image analysis · Pattern recognition

Introduction

The rapid rise of artificial intelligence (AI) in recent years
has been accompanied (and enabled) by staggering advances
both in software and hardware technologies. Tools, such as
PyTorch [1] for deep learning (DL), scikit-learn for machine
learning (ML) [2, 3], and graphics processing unit (GPU)
hardware, all enable faster and better prototyping and
deployment of AI systems than was possible a mere half-
decade ago.

While deep learning has taken the world by storm,
often—it would seem—at the expense of other computa-
tional paradigms, these (plentiful) latter are still quite alive
and kicking. We propose herein to revisit stacking-based
modeling [4], but within a comprehensive framework ena-
bled by modern state-of-the-art software packages and hard-
ware platforms.

As previously argued by Ref. [5, 6], significant improve-
ment can be attained by making use of models we are

already in possession of anyway, through what they termed
“conservation machine learning”: conserve models across
runs, users, and experiments—and make use of all of them.
Herein, focusing on image-classification tasks, we ask
whether, given a (possibly haphazard) collection of deep
neural networks (DNNs), can the tools at our disposal—
specifically, “good old-fashioned” ML algorithms, many of
which have been around for quite some time—help improve
prediction accuracy.

To wit, can we combine DL and ML in a manner that
improves DL performance? We answer positively, with a
major novelty being the use of the most DL and ML models
to date within a single, comprehensive framework.

The section “Previous Work” discusses related previ-
ous work. The section “Deep GOld: Algorithmic Setup”
describes Deep GOld—Deep Learning and Good Old-Fash-
ioned Machine Learning—which employs 51 deep networks
and 10 ML algorithms. The section “Results” presents the
results of 120 experiments over four image-classification
datasets: Fashion MNIST, CIFAR10, CIFAR100, and Tiny
ImageNet. We end with a discussion in the section “Discus-
sion” and concluding remarks in the section “Concluding
Remarks”.

This article is part of the topical collection “Advances in Applied
Image Processing and Pattern Recognition” guest edited by K. C.
Santosh.

 * Moshe Sipper
 sipper@bgu.ac.il

1 Department of Computer Science, Ben-Gurion University,
Beer Sheva 84105, Israel

http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-022-01505-2&domain=pdf
http://orcid.org/0000-0003-1811-472X

 SN Computer Science (2023) 4:8585 Page 2 of 8

SN Computer Science

Previous Work

There are many works that involve some form or other of
ensembling several models, and this section does not serve
as a full review, but focuses on those papers found to be
most relevant to our topic.

In an early work, [7] presented a technique called
Addemup that uses a genetic algorithm to search for an
accurate and diverse set of trained networks. Addemup
works by creating an initial population of networks, then
evolving new ones, keeping the set of networks that are as
accurate as possible while disagreeing with each other as
much as possible. They tested these on three DNA datasets
of about 1000 samples.

A few years later, [8] presented an approach named
Genetic Algorithm-based Selective ENsemble (GASEN)
to select some neural networks from a pool of candidates,
and assign weights to their contributions to the resultant
ensemble. The networks had one hidden layer with five
hidden units. The efficacy of this method was shown for
regression and classification problems over structured
(non-image) datasets of a few thousand samples. Another
work by [9] studied financial-decision applications,
wherein a neural-network ensemble prediction was
similarly reached by weighting the decision of each
ensemble member.

A more recent example (one of many) of straightforward
ensembling is given in [10], who presented an ensemble
neural-network model for real-time prediction of urban
f loods. Their ensemble approach used a number of
artificial neural networks with identical topology, trained
with different initial weights. The final result of maximum
water level was the ensemble mean. Ensemble sizes
examined were 1, 5, and 10.

In a similar vein, [11] trained multiple neural networks
and combined their outputs using three combination
strategies: simple average, weighted average, and what
they termed a meta-learner, which applied a Bayesian
regulation algorithm to the network outputs. The
application field considered was real-time production
monitoring in the oil and gas industry, specifically, virtual
flow meters that infer multiphase flow rates from ancillary
measurements, and are attractive and cost-effective
solutions to meet monitoring demands, reduce operational
costs, and improve oil recovery efficiency.

Ref. [12] trained five convolutional neural networks
(CNNs) to detect ankle fractures in radiographic views.
Model outputs were evaluated using both one and three
radiographic views. Ensembles were created from a
combination of CNNs after training. They implemented a
simple voting method to consolidate the output from the
three views and ensemble of models.

Ref. [13] presented a malware detection method called
MalNet, which uses a stacking ensemble with two deep
neural networks—CNN and LSTM—as first-level learners,
and logistic regression as a second-level learner.

Ref. [14] examined neural-network ensemble
classification for lung cancer disease diagnosis. They
proposed an ensemble of Weight Optimized Neural Network
with Maximum-Likelihood Boosting (WONN-MLB), which
essentially seeks to find optimal weights for a weighted
(linear) majority vote. Ref. [15] applied a neural-network
ensemble to intrusion detection, again using weighted
majority voting.

Ref. [16] recently presented a cogent case for the
use of XGBoost for tabular data, demonstrating that it
outperformed deep models. They also showed that an
ensemble comprising four deep models and XGBoost,
predicting through weighted voting, worked best for the
tabular datasets considered.

Ref. [17] proposed an ensemble DNN for tumor detection
in colorectal histology images. The mechanism consists
of weights that are derived from individual models. The
weights are assigned to the ensemble DNN based on their
metrics and the ensemble model is then trained. The model
is again retrained by freezing all the layers, except for the
fully connected and dense layers.

Ref. [18] presented an ensemble DL method to detect
retinal disorders. Their method comprised three pretrained
architectures—DenseNet, VGG16, InceptionV3—and a
fourth Custom CNN of their own design. The individual
results obtained from the four architectures were then
combined to form an ensemble network that yielded superb
performance over a dataset of retinal images.

Ref. [19] examined Deep Q-learning, presenting an
ensemble approach that improved stability during training,
resulting in improved average performance.

As noted above, [5, 6] presented conservation machine
learning, which conserves models across runs, users, and
experiments, and makes use of them. They showed that
significant improvement could be attained by employing
ML models already available anyway.

Deep GOld: Algorithmic Setup

Stacking (or Stacked Generalization) [4] is an ensemble
method that uses multiple models to tackle classification or
regression problems. The main idea is to first train different
models on the original problem. The outputs of these models
are considered to be a first level, which are then passed on
to a second level to perform the final prediction. The inputs
to the second-level model are thus the outputs of the first-
level models.

SN Computer Science (2023) 4:85 Page 3 of 8 85

SN Computer Science

Our framework involves deep networks as first-level
models and ML methods as second-level models. For the
former we used PyTorch, one of the top-two most popular
and performant deep-learning software tools [1]. The mod-
ule torchvision.models contains 59 deep-network
models that were pretrained on the large-scale (over 1 mil-
lion images), 1000-class ImageNet dataset [20].

Of the 59 models, we retained 51 (8 models proved some-
what unwieldy or evoked a “not implemented” error). Each
of the models was first retrained over the four datasets we
experimented with in this paper: Fashion MNIST, CIFAR10,
CIFAR100, and Tiny ImageNet. As seen in Table 1, these
datasets contain between 50,000 and 100,000 greyscale or
color images in the training set, 10,000 images in the test set,
with number of classes ranging between 10 and 200. Retrain-
ing was necessary, since the datasets contain images that dif-
fer in size and number of classes from ImageNet.

For retraining, we replaced the last fully connected (FC)
1000-class layer with a sequence of blocks comprising
three layers: {FC, batchnorm, leaky ReLU}, denoted FBL.
The final number of features of the original network was

reduced to the dataset’s number of classes through halv-
ing the number of nodes at each layer, starting with the
closest power of 2. Consider en example: If the original
network ended with 600 features, and the dataset con-
tains 100 classes, then our modified network’s final layers
comprised a 512-node, 3-layer FBL block (512 being the
closest power of 2 to 600), followed by a 256-node FBL,
followed by a 128-node FBL, and ending with the 100
classes. In addition, the first convolutional layer of the
original network needed adjustment in some cases. The
retraining phase is detailed in Algorithm 1.

Algorithm 1 Retrain 51 pretrained models

Input:

dataset ← dataset to be used
pretrained ← {alexnet, densenet121, densenet161, densenet169, densenet201,
efficientnet b0, efficientnet b1, efficientnet b2, efficientnet b3, efficientnet b4,
efficientnet b5, efficientnet b6, efficientnet b7, mnasnet0 5, mnasnet1 0,
mobilenet v2, mobilenet v3 large, mobilenet v3 small, regnet x 16gf, reg-
net x 1 6gf, regnet x 32gf, regnet x 3 2gf, regnet x 400mf, regnet x 800mf,
regnet x 8gf, regnet y 16gf, regnet y 1 6gf, regnet y 32gf, regnet y 3 2gf, reg-
net y 400mf, regnet y 800mf, regnet y 8gf, resnet101, resnet152, resnet18,
resnet34, resnet50, resnext101 32x8d, resnext50 32x4d, shufflenet v2 x0 5, shuf-
flenet v2 x1 0, vgg11, vgg11 bn, vgg13, vgg13 bn, vgg16, vgg16 bn, vgg19,
vgg19 bn, wide resnet101 2, wide resnet50 2} # Networks pretrained over
ImageNet dataset

Output:

Retrained models and their test scores

1: Load training set and test set of dataset
2: for net ∈ pretrained do
3: Replace net final layer, and possibly adjust first convolutional layer
4: Train entire net for 20 epochs over training set # mini-batch size: 64 (8 for

Tiny ImageNet), optimizer: SGD
5: Save trained net and test set score
6: end for

Table 1 Datasets

Dataset Images Classes Training Test

Fashion MNIST 28 × 28 grayscale 10 60,000 10,000
CIFAR10 32 × 32 color 10 50,000 10,000
CIFAR100 32 × 32 color 100 50,000 10,000
Tiny ImageNet 64 × 64 color 200 100,000 10,000

 SN Computer Science (2023) 4:8585 Page 4 of 8

SN Computer Science

Once Algorithm 1 is run for all four datasets, we are in
possession of 51 trained models per dataset. We can now
proceed to perform the two-level prediction, as detailed
in Algorithm 2. Our interest herein was to study what one
can do with models one has at hand. Towards this end,
we first selected from the 51 retrained models three ran-
dom ensembles of networks, of sizes 3, 7, and 11. Each
network of an ensemble was then run over both the train-
ing and test sets of the dataset in question (without any
training—only feed-forward output computation). These
first-level outputs were then concatenated to form an input
dataset for the second level. For example, if the ensemble
contains seven networks, and the dataset in question is
CIFAR100, then the first level creates two datasets: a train-
ing set with 50,000 samples and 701 features, and a test set
with 10,000 samples and 701 features (701: 7 networks ×
100 classes + 1 target class).

Algorithm 2 Two-level prediction

Input:

dataset ← dataset to be used
ml algs ← {SGDClassifier, PassiveAggressiveClassifier, RidgeClassifier, Logis-
ticRegression, KNeighborsClassifier, RandomForestClassifier, MLPClassifier,
XGBClassifier, LGBMClassifier, CatBoostClassifier}

Output:

Test scores for majority prediction, and for all ML algorithms

level 1: generate datasets from outputs of retrained networks
1: for i ∈ {3,7,11} do
2: networks ← pick i networks at random from retrained networks of Algo-

rithm 1
3: for net ∈ networks do
4: Run net over training set and test set
5: Accumulate generated outputs along with (known) targets
6: end for
7: Generate 2 datasets, respectively: train-i, test-i
8: end for

level 2: run ML algorithms over datasets generated by level 1
9: for i ∈ {3,7,11} do

10: for alg ∈ ml algs do
11: Load train-i, test-i
12: Run alg to fit model to train-i
13: Test fitted model on test-i
14: end for
15: end for

After the first level produced output datasets, we passed
these along to the second level, wherein we employed ten
ML algorithms:

 1. sklearn.linear_model.SGDClassifier:
Linear classifiers with SGD training.

 2. s k l e a r n . l i n e a r _ m o d e l .
PassiveAggressiveClassifier: Passive
Aggressive Classifier [21].

 3. sklearn.linear_model.RidgeClassifier:
Classifier using Ridge regression.

 4. s k l e a r n . l i n e a r _ m o d e l .
LogisticRegression: Logistic Regression
classifier.

 5. s k l e a r n . n e i g h b o r s .
KNeighborsClassifier: Classifier implementing
the k-nearest neighbors vote.

SN Computer Science (2023) 4:85 Page 5 of 8 85

SN Computer Science

 6. sklearn.ensemble.RandomForestClassi-
fier: A random forest classifier.

 7. sklearn.neural_network.MLPClassifier:
Multi-layer Perceptron classifier, with five hidden
layers of size 64 neurons each.

 8. xgboost.XGBClassifier: XGBoost classifier
[22].

 9. lightgbm.LGBMClassifier: LightGBM classifier
[23].

 10. catboost.CatBoostClassifier: CatBoost
classifier [24].

Results

Unsurprisingly, we found significant differences in the runt-
ime of the level-2 ML algorithms (Algorithm 2). While some
methods, such as RidgeClassifier and KNeighborsClassi-
fier, were very fast, usually finishing within minutes, others
proved slow (notably, XGBClassifier and CatBoostClassi-
fier, which took several hours). While the number of samples

of the generated ML datasets for the four problems studied
is similar (identical to the original datasets—Table 1), the
number of features differs by an order of magnitude: with
ten classes for Fashion MNIST and CIFAR10, 100 classes
for CIFAR100, and 200 classes for Tiny ImageNet, the latter
two have 10 and 20 times more features than the former two,
respectively. Some ML methods are known to scale less well
with number of features.

ML runtimes for Fashion MNIST and CIFAR10 proved
sufficiently fast to afford the use of hyperparamater tun-
ing. Towards this end, we used Optuna, a state-of-the-art,
automatic, hyperparameter optimization software frame-
work [25], which we previously used successfully [26, 27].
Optuna offers a define-by-run style user API where one can
dynamically construct the search space, and an efficient
sampling algorithm and pruning algorithm. Moreover, our
experience has shown it to be fairly easy to set up. Optuna
formulates the hyperparameter optimization problem as a
process of minimizing or maximizing an objective function
given a set of hyperparameters as an input. The hyperparam-
eter ranges and sets are given in Table 2. With CIFAR100

Table 2 Hyperparameter value ranges and sets used by Optuna

Algorithm Parameter Values

SGDClassifier alpha [1e – 05, 1]
penalty {‘l2’, ‘l1’, ‘elasticnet’}

PassiveAggressiveClassifier C [1e – 02, 10]
fit_intercept {True, False}
shuffle {True, False}

RidgeClassifier alpha [1e – 3, 10]
solver {‘auto’, ‘svd’, ‘cholesky’, ‘lsqr’, ‘sparse_cg’, ‘sag’, ‘saga’}

LogisticRegression penalty {‘l1’, ‘l2’}
solver {‘liblinear’, ‘saga’}

KNeighborsClassifier weights {‘uniform’, ‘distance’}
algorithm {‘auto’, ‘ball_tree’, ‘kd_tree’, ‘brute’ }
n_neighbors [2, 20]

RandomForestClassifier n_estimators [10, 1000]
min_weight_fraction_leaf [0, 0.5]
max_features {‘auto’, ‘sqrt’, ‘log2’}

MLPClassifier activation {‘identity’, ‘logistic’, ‘tanh’, ‘relu’}
solver {‘lbfgs’, ‘sgd’, ‘adam’}
hidden_layer_sizes {(64,64), (64,64,64), (64,64,64,64), (64,64,64,64)}

XGBClassifier n_estimators [10, 1000]
learning_rate [0.01, 0.2]
gamma [0, 0.4]

LGBMClassifier n_estimators [10, 1000]
learning_rate [0.01, 0.2]
bagging_fraction [0.5, 0.95]

CatBoostClassifier iterations [2, 10]
depth [2, 10]
learning_rate [1e-2, 10]

 SN Computer Science (2023) 4:8585 Page 6 of 8

SN Computer Science

and Tiny ImageNet, we did not use Optuna, but rather ran
the ML algorithms with their default values.

Table 3 presents our results (we set a 10-h limit on an
ML algorithm’s run of a row in the table, i.e., the level-2

loop of Algorithm 2.) A total of 120 experiments were per-
formed: 4 datasets × ensembles of size 3, 7, and 11 × 10
complete runs per dataset. In each experiment, we generated
level-1 datasets and then executed the ML algorithms, as

Table 3 Results for ensembles of 3, 7, and 11 random networks

Accuracy scores shown are over test sets. Net score of best network, Maj score of majority prediction, ML score of best ML method. For the
latter, the ML method producing the best score is given in parentheses. RG Classifier using Ridge regression, KN k-nearest neighbors classifier,
SG Linear classifier with SGD training, PA Passive Aggressive classifier, LR Logistic regression, RF Random Forest classifier, MP Multi-layer
perceptron, LG LightGBM, XG XGBoost, CB Catboost

Dataset 3 networks 7 networks 11 networks

Net Maj ML Net Maj ML Net Maj ML

Fashion MNIST 91.97% 92.38% 92.40% (KN) 92.23% 93.12% 93.38% (KN) 94.22% 93.79% 94.40% (RG)
91.97% 92.05% 92.50% (KN) 92.40% 93.26% 93.25% (KN) 94.22% 93.62% 94.57% (KN)
92.32% 92.95% 92.80% (KN) 93.24% 93.69% 93.59% (KN) 93.24% 93.57% 94.11% (RG)
92.05% 92.39% 92.61% (KN) 94.01% 93.15% 94.54% (RG) 93.24% 93.71% 93.92% (KN)
91.67% 91.40% 92.00% (KN) 92.95% 93.57% 93.95% (KN) 94.01% 93.19% 94.50% (KN)
91.98% 92.93% 92.74% (KN) 92.27% 93.16% 93.37% (KN) 93.86% 93.75% 93.84% (KN)
92.14% 92.69% 93.19% (KN) 93.86% 93.24% 94.00% (RG) 93.63% 93.83% 94.07% (KN)
91.82% 92.27% 92.51% (RF) 92.27% 93.09% 93.48% (KN) 93.86% 93.81% 94.25% (KN)
93.86% 92.79% 93.94% (KN) 92.95% 93.14% 93.82% (RF) 94.01% 93.78% 94.66% (RG)
91.82% 92.81% 92.42% (RG) 93.86% 92.85% 94.18% (KN) 94.01% 93.53% 94.39% (RG)

CIFAR10 74.72% 71.00% 75.87% (KN) 75.60% 79.78% 80.42% (KN) 87.82% 80.94% 88.29% (RG)
71.67% 72.10% 75.05% (RG) 86.90% 80.54% 87.53% (RG) 83.57% 80.09% 84.82% (RG)
82.48% 82.03% 83.30% (KN) 87.33% 85.50% 89.15% (RG) 87.33% 80.82% 89.12% (RG)
74.82% 74.68% 75.05% (KN) 74.72% 75.76% 79.29% (KN) 86.60% 83.28% 86.43% (RG)
74.95% 76.48% 76.26% (KN) 86.90% 82.72% 87.57% (RG) 86.60% 79.93% 87.24% (RG)
75.60% 75.28% 76.79% (KN) 83.57% 81.31% 83.95% (KN) 87.22% 81.54% 88.33% (RF)
76.21% 77.77% 78.27% (KN) 74.00% 74.30% 77.96% (KN) 86.90% 84.44% 86.67% (RG)
86.90% 85.96% 88.16% (LR) 86.90% 84.74% 86.72% (RG) 86.60% 82.26% 87.71% (RG)
86.60% 81.76% 86.92% (KN) 86.90% 82.54% 88.00% (RG) 87.82% 83.36% 89.56% (RG)
76.43% 72.62% 77.42% (SG) 86.60% 77.97% 87.08% (RG) 87.82% 85.02% 89.59% (RG)

CIFAR100 48.86% 51.02% 54.69% (KN) 55.70% 55.11% 59.50% (RG) 60.76% 60.10% 66.02% (RG)
48.74% 44.95% 51.68% (KN) 60.76% 60.11% 65.82% (LR) 61.66% 62.50% 67.30% (RG)
48.74% 49.47% 54.08% (KN) 46.38% 51.97% 54.61% (KN) 9.58% 57.51% 66.07% (LR)
60.08% 55.30% 63.67% (SG) 61.30% 54.45% 64.14% (RG) 9.58% 58.43% 64.86% (RG)
47.06% 47.46% 52.48% (RG) 61.30% 57.22% 64.08% (RG) 60.08% 59.00% 64.55% (RG)
47.55% 50.94% 53.64% (RG) 60.08% 56.86% 64.46% (RG) 60.76% 56.07% 64.25% (LR)
46.55% 43.81% 51.19% (KN) 47.55% 47.91% 52.79% (SG) 9.58% 58.29% 64.89% (RG)
61.30% 57.47% 63.86% (RG) 48.86% 50.85% 54.93% (RG) 61.30% 57.09% 65.07% (RG)
46.30% 44.65% 50.30% (SG) 9.58% 53.56% 56.81% (KN) 9.58% 59.39% 66.34% (RG)
9.58% 33.88% 44.23% (SG) 61.66% 57.84% 64.84% (SG) 61.48% 58.78% 65.20% (LR)

Tiny ImageNet 55.77% 54.32% 59.97% (RG) 57.40% 56.06% 63.32% (RG) 67.30% 65.33% 70.17% (RG)
53.50% 54.83% 59.61% (LR) 54.83% 53.33% 59.26% (RG) 57.40% 63.72% 66.00% (RG)
58.34% 48.45% 61.60% (RG) 58.34% 60.59% 64.30% (RG) 57.23% 58.45% 64.31% (RG)
58.34% 59.91% 63.05% (RG) 55.77% 54.83% 60.10% (RG) 58.62% 60.42% 65.19% (RG)
53.50% 50.97% 58.10% (RG) 55.47% 53.11% 60.11% (RG) 56.20% 60.78% 63.83% (RG)
57.23% 47.54% 59.88% (RG) 58.62% 61.26% 62.14% (RG) 67.30% 64.33% 69.88% (RG)
58.62% 59.98% 64.69% (RG) 58.62% 62.41% 66.24% (RG) 56.20% 60.02% 64.09% (RG)
57.40% 56.14% 62.76% (LR) 56.16% 60.85% 63.46% (RG) 58.62% 62.44% 65.94% (RG)
54.76% 53.81% 60.57% (RG) 56.61% 57.70% 63.76% (RG) 58.34% 63.05% 65.98% (RG)
57.23% 48.52% 60.31% (RG) 58.34% 62.00% 63.85% (RG) 58.62% 62.90% 66.46% (RG)

SN Computer Science (2023) 4:85 Page 7 of 8 85

SN Computer Science

delineated in Algorithm 2. We then compared three values:
(1) the test score of the top network amongst the random
ensemble (known from Algorithm 1); (2) the test score of
majority prediction, wherein the predicted class is deter-
mined through a majority vote amongst the ensemble’s net-
works’ outputs; (3) the test score of the top ML method. The
code is available at https:// github. com/ moshe sipper.

Discussion

As observed in Table 3, of the total of 120 experiments, an
ML algorithm won in all but ten experiments (four were won
by the retrained network, and six by majority prediction).

We note that classical algorithms, notably Ridge
regression and k-nearest neighbors, worked best (they
account for 104 of the wins). They are also fast, scalable, and
amenable to quick hyperparameter tuning. If one wishes to
focus on a smaller batch of ML algorithms, these two seem
like an excellent choice.

As noted in the section “Introduction”, we often find
ourselves in possession of a plethora of models, either
collected by us through many experiments, or by others
(witness our use of pretrained models herein). Benefiting
from current state-of-the-art technology, Deep GOld
leverages this wealth of models to attain better performance.
One can of course tailor the framework to available deep
networks and to a personal predilection for any ML
algorithm(s).

Concluding Remarks

We presented Deep GOld, a comprehensive, stacking-based
framework for combining deep learning with machine
learning. Our framework involves ensemble selection from
51 retrained pretrained deep networks as first-level models,
and 10 machine-learning algorithms as second-level models.
We demonstrated the unequivocal benefits of the approach
over four image-classification datasets.

We suggest a number of paths for future research:

• Further analysis of ML algorithms whose inputs are
the outputs of deep networks. Do some ML methods
inherently work better with such datasets?

• Currently, the features for level 2 comprise only the
level-1 outputs. We might enhance this setup through
automatic feature construction.

• Train (or retrain) the level-1 networks alongside a
level-2 ML model: (1) After each training epoch of the
networks in the ensemble, generate a dataset from the
network outputs; (2) a level-2 ML algorithm then fits a

model to the level-1 dataset; (3) the ML model generates
class probabilities, which are used to ascribe loss values
to the networks-in-training.

Acknowledgements I would like to thank Raz Lapid for the helpful
discussions.

Declarations

Conflict of Interest M. Sipper declares that he has no conflict of inter-
est.

Research Involving Human Participants and/or Animals This article
does not contain any studies with human participants or animals per-
formed by any of the authors.

Informed Consent Not applicable.

References

 1. Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G,
Killeen T, Lin Z, Gimelshein N, Antiga L, et al. PyTorch: an
imperative style, high-performance deep learning library. arXiv
preprint; 2019. arXiv: 1912. 01703.

 2. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Gri-
sel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, Vanderp-
las J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay
E. Scikit-learn: machine learning in Python. J Mach Learn Res.
2011;12:2825–30.

 3. Scikit-learn: machine learning in python; 2022. https:// scikit-
learn. org/. Accessed: 2022-1-12.

 4. Wolper t DH. Stacked generalization. Neural Netw.
1992;5(2):241–59.

 5. Sipper M, Moore JH. Conservation machine learning. BioData
Min. 2020;13(1):9.

 6. Sipper M, Moore JH. Conservation machine learning: a case study
of random forests. Nat Sci Rep. 2021;11(1):3629.

 7. Opitz D, Shavlik J. Generating accurate and diverse members of a
neural-network ensemble. In: Touretzky D, Mozer MC, Hasselmo
M, editors. Advances in neural information processing systems,
vol. 8. Cambridge: MIT Press; 1996.

 8. Zhou Z-H, Wu J, Tang W. Ensembling neural networks: many
could be better than all. Artif Intell. 2002;137(1–2):239–63.

 9. West D, Dellana S, Qian J. Neural network ensemble strate-
gies for financial decision applications. Comput Oper Res.
2005;32(10):2543–59.

 10. Berkhahn S, Fuchs L, Neuweiler I. An ensemble neural net-
work model for real-time prediction of urban floods. J Hydrol.
2019;575:743–54.

 11. Al-Qutami TA, Ibrahim R, Ismail I, Ishak MA. Virtual multiphase
flow metering using diverse neural network ensemble and adaptive
simulated annealing. Expert Syst Appl. 2018;93:72–85.

 12. Kitamura G, Chung CY, Moore BE. Ankle fracture detection uti-
lizing a convolutional neural network ensemble implemented with
a small sample, de novo training, and multiview incorporation. J
Digit Imaging. 2019;32(4):672–7.

 13. Yan J, Qi Y, Rao Q. Detecting malware with an ensemble
method based on deep neural network. Secur Commun Netw.
2018;2018:7247095. https:// doi. org/ 10. 1155/ 2018/ 72470 95.

 14. Alzubi JA, Bharathikannan B, Tanwar S, Manikandan R,
Khanna A, Thaventhiran C. Boosted neural network ensemble

https://github.com/moshesipper
http://arxiv.org/abs/1912.01703
https://scikit-learn.org/
https://scikit-learn.org/
https://doi.org/10.1155/2018/7247095

 SN Computer Science (2023) 4:8585 Page 8 of 8

SN Computer Science

classification for lung cancer disease diagnosis. Appl Soft Com-
put. 2019;80:579–91.

 15. Ludwig SA. Applying a neural network ensemble to intrusion
detection. J Artif Intell Soft Comput Res. 2019;9:177–88.

 16. Shwartz-Ziv R, Armon A. Tabular data: deep learning is not all
you need. Inf Fusion. 2022;81:84–90.

 17. Ghosh S, Bandyopadhyay A, Sahay S, Ghosh R, Kundu I, Santosh
KC. Colorectal histology tumor detection using ensemble deep
neural network. Eng Appl Artif Intell. 2021;100: 104202.

 18. Paul D, Tewari A, Ghosh S, Santosh KC. OCTx: Ensembled deep
learning model to detect retinal disorders. In: 2020 IEEE 33rd
International Symposium on Computer-Based Medical Systems
(CBMS). 2020; p. 526–31.

 19. Elliott DL, Santosh KC, Anderson C. Gradient boosting in crowd
ensembles for Q-learning using weight sharing. Int J Mach Learn
Cybern. 2020;11(10):2275–87.

 20. Deng J, Dong W, Socher R, Li L-J, Li K, Fei-Fei L. ImageNet: a
large-scale hierarchical image database. In: 2009 IEEE conference
on computer vision and pattern recognition. 2009; p. 248–55.

 21. Crammer K, Dekel O, Keshet J, Shalev-Shwartz S, Singer
Y. Online passive-aggressive algorithms. J Mach Learn Res.
2006;7(19):551–85.

 22. Chen T, Guestrin C. XGBoost: a scalable tree boosting system. In:
Proceedings of the 22nd ACM SIGKDD international conference
on knowledge discovery and data mining. KDD ’16. 2016; pp.
785–94, New York, NY, USA.

 23. Ke G, Meng Q, Finley T, Wang T, Chen W, Ma W, Ye Q, Liu T-Y.
LightGBM: a highly efficient gradient boosting decision tree. Adv
Neural Inf Process Syst. 2017;30:3146–54.

 24. Prokhorenkova L, Gusev G, Vorobev A, Dorogush AV, Gulin A.
CatBoost: unbiased boosting with categorical features. arXiv pre-
print. 2017; arXiv: 1706. 09516.

 25. Akiba T, Sano S, Yanase T, Ohta T, Koyama M. Optuna: a next-
generation hyperparameter optimization framework. In: Pro-
ceedings of the 25th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, 2019; p. 2623–31.

 26. Sipper M. Neural networks with à la carte selection of activation
functions. SN Comput Sci. 2021;2(470). https:// doi. org/ 10. 1007/
s42979- 021- 00885-1.

 27. Sipper M, Moore JH. AddGBoost: a gradient boosting-style
algorithm based on strong learners. Mach Learn Appl. 2022;7:
100243.

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of
such publishing agreement and applicable law.

http://arxiv.org/abs/1706.09516
https://doi.org/10.1007/s42979-021-00885-1
https://doi.org/10.1007/s42979-021-00885-1

	Combining Deep Learning with Good Old-Fashioned Machine Learning
	Abstract
	Introduction
	Previous Work
	Deep GOld: Algorithmic Setup
	Results
	Discussion
	Concluding Remarks
	Acknowledgements
	References

