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Abstract
We present a comprehensive, stacking-based framework for combining deep learning with good old-fashioned machine 
learning, called Deep GOld. Our framework involves ensemble selection from 51 retrained pretrained deep networks as 
first-level models, and 10 machine-learning algorithms as second-level models. Enabled by today’s state-of-the-art software 
tools and hardware platforms, Deep GOld delivers consistent improvement when tested on four image-classification datasets: 
Fashion MNIST, CIFAR10, CIFAR100, and Tiny ImageNet. Of 120 experiments, in all but 10 Deep GOld improved the 
original networks’ performance.

Keywords Machine learning · Deep learning · Image analysis · Pattern recognition

Introduction

The rapid rise of artificial intelligence (AI) in recent years 
has been accompanied (and enabled) by staggering advances 
both in software and hardware technologies. Tools, such as 
PyTorch [1] for deep learning (DL), scikit-learn for machine 
learning (ML) [2, 3], and graphics processing unit (GPU) 
hardware, all enable faster and better prototyping and 
deployment of AI systems than was possible a mere half-
decade ago.

While deep learning has taken the world by storm, 
often—it would seem—at the expense of other computa-
tional paradigms, these (plentiful) latter are still quite alive 
and kicking. We propose herein to revisit stacking-based 
modeling [4], but within a comprehensive framework ena-
bled by modern state-of-the-art software packages and hard-
ware platforms.

As previously argued by Ref. [5, 6], significant improve-
ment can be attained by making use of models we are 

already in possession of anyway, through what they termed 
“conservation machine learning”: conserve models across 
runs, users, and experiments—and make use of all of them. 
Herein, focusing on image-classification tasks, we ask 
whether, given a (possibly haphazard) collection of deep 
neural networks (DNNs), can the tools at our disposal—
specifically, “good old-fashioned” ML algorithms, many of 
which have been around for quite some time—help improve 
prediction accuracy.

To wit, can we combine DL and ML in a manner that 
improves DL performance? We answer positively, with a 
major novelty being the use of the most DL and ML models 
to date within a single, comprehensive framework.

The section “Previous Work” discusses related previ-
ous work. The section “Deep GOld: Algorithmic Setup” 
describes Deep GOld—Deep Learning and Good Old-Fash-
ioned Machine Learning—which employs 51 deep networks 
and 10 ML algorithms. The section “Results” presents the 
results of 120 experiments over four image-classification 
datasets: Fashion MNIST, CIFAR10, CIFAR100, and Tiny 
ImageNet. We end with a discussion in the section “Discus-
sion” and concluding remarks in the section “Concluding 
Remarks”.

This article is part of the topical collection “Advances in Applied 
Image Processing and Pattern Recognition” guest edited by K. C. 
Santosh.
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Previous Work

There are many works that involve some form or other of 
ensembling several models, and this section does not serve 
as a full review, but focuses on those papers found to be 
most relevant to our topic.

In an early work, [7] presented a technique called 
Addemup that uses a genetic algorithm to search for an 
accurate and diverse set of trained networks. Addemup 
works by creating an initial population of networks, then 
evolving new ones, keeping the set of networks that are as 
accurate as possible while disagreeing with each other as 
much as possible. They tested these on three DNA datasets 
of about 1000 samples.

A few years later, [8] presented an approach named 
Genetic Algorithm-based Selective ENsemble (GASEN) 
to select some neural networks from a pool of candidates, 
and assign weights to their contributions to the resultant 
ensemble. The networks had one hidden layer with five 
hidden units. The efficacy of this method was shown for 
regression and classification problems over structured 
(non-image) datasets of a few thousand samples. Another 
work by [9] studied financial-decision applications, 
wherein a neural-network ensemble prediction was 
similarly reached by weighting the decision of each 
ensemble member.

A more recent example (one of many) of straightforward 
ensembling is given in [10], who presented an ensemble 
neural-network model for real-time prediction of urban 
f loods. Their ensemble approach used a number of 
artificial neural networks with identical topology, trained 
with different initial weights. The final result of maximum 
water level was the ensemble mean. Ensemble sizes 
examined were 1, 5, and 10.

In a similar vein, [11] trained multiple neural networks 
and combined their outputs using three combination 
strategies: simple average, weighted average, and what 
they termed a meta-learner, which applied a Bayesian 
regulation algorithm to the network outputs. The 
application field considered was real-time production 
monitoring in the oil and gas industry, specifically, virtual 
flow meters that infer multiphase flow rates from ancillary 
measurements, and are attractive and cost-effective 
solutions to meet monitoring demands, reduce operational 
costs, and improve oil recovery efficiency.

Ref. [12] trained five convolutional neural networks 
(CNNs) to detect ankle fractures in radiographic views. 
Model outputs were evaluated using both one and three 
radiographic views. Ensembles were created from a 
combination of CNNs after training. They implemented a 
simple voting method to consolidate the output from the 
three views and ensemble of models.

Ref. [13] presented a malware detection method called 
MalNet, which uses a stacking ensemble with two deep 
neural networks—CNN and LSTM—as first-level learners, 
and logistic regression as a second-level learner.

Ref. [14] examined neural-network ensemble 
classification for lung cancer disease diagnosis. They 
proposed an ensemble of Weight Optimized Neural Network 
with Maximum-Likelihood Boosting (WONN-MLB), which 
essentially seeks to find optimal weights for a weighted 
(linear) majority vote. Ref. [15] applied a neural-network 
ensemble to intrusion detection, again using weighted 
majority voting.

Ref. [16] recently presented a cogent case for the 
use of XGBoost for tabular data, demonstrating that it 
outperformed deep models. They also showed that an 
ensemble comprising four deep models and XGBoost, 
predicting through weighted voting, worked best for the 
tabular datasets considered.

Ref. [17] proposed an ensemble DNN for tumor detection 
in colorectal histology images. The mechanism consists 
of weights that are derived from individual models. The 
weights are assigned to the ensemble DNN based on their 
metrics and the ensemble model is then trained. The model 
is again retrained by freezing all the layers, except for the 
fully connected and dense layers.

Ref. [18] presented an ensemble DL method to detect 
retinal disorders. Their method comprised three pretrained 
architectures—DenseNet, VGG16, InceptionV3—and a 
fourth Custom CNN of their own design. The individual 
results obtained from the four architectures were then 
combined to form an ensemble network that yielded superb 
performance over a dataset of retinal images.

Ref. [19] examined Deep Q-learning, presenting an 
ensemble approach that improved stability during training, 
resulting in improved average performance.

As noted above, [5, 6] presented conservation machine 
learning, which conserves models across runs, users, and 
experiments, and makes use of them. They showed that 
significant improvement could be attained by employing 
ML models already available anyway.

Deep GOld: Algorithmic Setup

Stacking (or Stacked Generalization) [4] is an ensemble 
method that uses multiple models to tackle classification or 
regression problems. The main idea is to first train different 
models on the original problem. The outputs of these models 
are considered to be a first level, which are then passed on 
to a second level to perform the final prediction. The inputs 
to the second-level model are thus the outputs of the first-
level models.
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Our framework involves deep networks as first-level 
models and ML methods as second-level models. For the 
former we used PyTorch, one of the top-two most popular 
and performant deep-learning software tools [1]. The mod-
ule torchvision.models contains 59 deep-network 
models that were pretrained on the large-scale (over 1 mil-
lion images), 1000-class ImageNet dataset [20].

Of the 59 models, we retained 51 (8 models proved some-
what unwieldy or evoked a “not implemented” error). Each 
of the models was first retrained over the four datasets we 
experimented with in this paper: Fashion MNIST, CIFAR10, 
CIFAR100, and Tiny ImageNet. As seen in Table 1, these 
datasets contain between 50,000 and 100,000 greyscale or 
color images in the training set, 10,000 images in the test set, 
with number of classes ranging between 10 and 200. Retrain-
ing was necessary, since the datasets contain images that dif-
fer in size and number of classes from ImageNet.

For retraining, we replaced the last fully connected (FC) 
1000-class layer with a sequence of blocks comprising 
three layers: {FC, batchnorm, leaky ReLU}, denoted FBL. 
The final number of features of the original network was 

reduced to the dataset’s number of classes through halv-
ing the number of nodes at each layer, starting with the 
closest power of 2. Consider en example: If the original 
network ended with 600 features, and the dataset con-
tains 100 classes, then our modified network’s final layers 
comprised a 512-node, 3-layer FBL block (512 being the 
closest power of 2 to 600), followed by a 256-node FBL, 
followed by a 128-node FBL, and ending with the 100 
classes. In addition, the first convolutional layer of the 
original network needed adjustment in some cases. The 
retraining phase is detailed in Algorithm 1.

Algorithm 1 Retrain 51 pretrained models

Input:

dataset ← dataset to be used
pretrained ← {alexnet, densenet121, densenet161, densenet169, densenet201,
efficientnet b0, efficientnet b1, efficientnet b2, efficientnet b3, efficientnet b4,
efficientnet b5, efficientnet b6, efficientnet b7, mnasnet0 5, mnasnet1 0,
mobilenet v2, mobilenet v3 large, mobilenet v3 small, regnet x 16gf, reg-
net x 1 6gf, regnet x 32gf, regnet x 3 2gf, regnet x 400mf, regnet x 800mf,
regnet x 8gf, regnet y 16gf, regnet y 1 6gf, regnet y 32gf, regnet y 3 2gf, reg-
net y 400mf, regnet y 800mf, regnet y 8gf, resnet101, resnet152, resnet18,
resnet34, resnet50, resnext101 32x8d, resnext50 32x4d, shufflenet v2 x0 5, shuf-
flenet v2 x1 0, vgg11, vgg11 bn, vgg13, vgg13 bn, vgg16, vgg16 bn, vgg19,
vgg19 bn, wide resnet101 2, wide resnet50 2} # Networks pretrained over
ImageNet dataset

Output:

Retrained models and their test scores

1: Load training set and test set of dataset
2: for net ∈ pretrained do
3: Replace net final layer, and possibly adjust first convolutional layer
4: Train entire net for 20 epochs over training set # mini-batch size: 64 (8 for

Tiny ImageNet), optimizer: SGD
5: Save trained net and test set score
6: end for

Table 1  Datasets

Dataset Images Classes Training Test

Fashion MNIST 28 × 28 grayscale 10 60,000 10,000
CIFAR10 32 × 32 color 10 50,000 10,000
CIFAR100 32 × 32 color 100 50,000 10,000
Tiny ImageNet 64 × 64 color 200 100,000 10,000
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Once Algorithm 1 is run for all four datasets, we are in 
possession of 51 trained models per dataset. We can now 
proceed to perform the two-level prediction, as detailed 
in Algorithm 2. Our interest herein was to study what one 
can do with models one has at hand. Towards this end, 
we first selected from the 51 retrained models three ran-
dom ensembles of networks, of sizes 3, 7, and 11. Each 
network of an ensemble was then run over both the train-
ing and test sets of the dataset in question (without any 
training—only feed-forward output computation). These 
first-level outputs were then concatenated to form an input 
dataset for the second level. For example, if the ensemble 
contains seven networks, and the dataset in question is 
CIFAR100, then the first level creates two datasets: a train-
ing set with 50,000 samples and 701 features, and a test set 
with 10,000 samples and 701 features (701: 7 networks × 
100 classes + 1 target class).

Algorithm 2 Two-level prediction

Input:

dataset ← dataset to be used
ml algs ← {SGDClassifier, PassiveAggressiveClassifier, RidgeClassifier, Logis-
ticRegression, KNeighborsClassifier, RandomForestClassifier, MLPClassifier,
XGBClassifier, LGBMClassifier, CatBoostClassifier}

Output:

Test scores for majority prediction, and for all ML algorithms

# level 1: generate datasets from outputs of retrained networks
1: for i ∈ {3,7,11} do
2: networks ← pick i networks at random from retrained networks of Algo-

rithm 1
3: for net ∈ networks do
4: Run net over training set and test set
5: Accumulate generated outputs along with (known) targets
6: end for
7: Generate 2 datasets, respectively: train-i, test-i
8: end for

# level 2: run ML algorithms over datasets generated by level 1
9: for i ∈ {3,7,11} do

10: for alg ∈ ml algs do
11: Load train-i, test-i
12: Run alg to fit model to train-i
13: Test fitted model on test-i
14: end for
15: end for

After the first level produced output datasets, we passed 
these along to the second level, wherein we employed ten 
ML algorithms: 

 1. sklearn.linear_model.SGDClassifier: 
Linear classifiers with SGD training.

 2. s k l e a r n . l i n e a r _ m o d e l .
PassiveAggressiveClassifier: Passive 
Aggressive Classifier [21].

 3. sklearn.linear_model.RidgeClassifier: 
Classifier using Ridge regression.

 4. s k l e a r n . l i n e a r _ m o d e l .
LogisticRegression: Logistic Regression 
classifier.

 5. s k l e a r n . n e i g h b o r s .
KNeighborsClassifier: Classifier implementing 
the k-nearest neighbors vote.
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 6. sklearn.ensemble.RandomForestClassi-
fier: A random forest classifier.

 7. sklearn.neural_network.MLPClassifier: 
Multi-layer Perceptron classifier, with five hidden 
layers of size 64 neurons each.

 8. xgboost.XGBClassifier: XGBoost classifier 
[22].

 9. lightgbm.LGBMClassifier: LightGBM classifier 
[23].

 10. catboost.CatBoostClassifier: CatBoost 
classifier [24].

Results

Unsurprisingly, we found significant differences in the runt-
ime of the level-2 ML algorithms (Algorithm 2). While some 
methods, such as RidgeClassifier and KNeighborsClassi-
fier, were very fast, usually finishing within minutes, others 
proved slow (notably, XGBClassifier and CatBoostClassi-
fier, which took several hours). While the number of samples 

of the generated ML datasets for the four problems studied 
is similar (identical to the original datasets—Table 1), the 
number of features differs by an order of magnitude: with 
ten classes for Fashion MNIST and CIFAR10, 100 classes 
for CIFAR100, and 200 classes for Tiny ImageNet, the latter 
two have 10 and 20 times more features than the former two, 
respectively. Some ML methods are known to scale less well 
with number of features.

ML runtimes for Fashion MNIST and CIFAR10 proved 
sufficiently fast to afford the use of hyperparamater tun-
ing. Towards this end, we used Optuna, a state-of-the-art, 
automatic, hyperparameter optimization software frame-
work [25], which we previously used successfully [26, 27]. 
Optuna offers a define-by-run style user API where one can 
dynamically construct the search space, and an efficient 
sampling algorithm and pruning algorithm. Moreover, our 
experience has shown it to be fairly easy to set up. Optuna 
formulates the hyperparameter optimization problem as a 
process of minimizing or maximizing an objective function 
given a set of hyperparameters as an input. The hyperparam-
eter ranges and sets are given in Table 2. With CIFAR100 

Table 2  Hyperparameter value ranges and sets used by Optuna

Algorithm Parameter Values

SGDClassifier alpha [1e – 05, 1]
penalty {‘l2’, ‘l1’, ‘elasticnet’}

PassiveAggressiveClassifier C [1e – 02, 10]
fit_intercept {True, False}
shuffle {True, False}

RidgeClassifier alpha [1e – 3, 10]
solver {‘auto’, ‘svd’, ‘cholesky’, ‘lsqr’, ‘sparse_cg’, ‘sag’, ‘saga’}

LogisticRegression penalty {‘l1’, ‘l2’}
solver {‘liblinear’, ‘saga’}

KNeighborsClassifier weights {‘uniform’, ‘distance’}
algorithm {‘auto’, ‘ball_tree’, ‘kd_tree’, ‘brute’ }
n_neighbors [2, 20]

RandomForestClassifier n_estimators [10, 1000]
min_weight_fraction_leaf [0, 0.5]
max_features {‘auto’, ‘sqrt’, ‘log2’}

MLPClassifier activation {‘identity’, ‘logistic’, ‘tanh’, ‘relu’}
solver {‘lbfgs’, ‘sgd’, ‘adam’}
hidden_layer_sizes {(64,64), (64,64,64), (64,64,64,64), (64,64,64,64)}

XGBClassifier n_estimators [10, 1000]
learning_rate [0.01, 0.2]
gamma [0, 0.4]

LGBMClassifier n_estimators [10, 1000]
learning_rate [0.01, 0.2]
bagging_fraction [0.5, 0.95]

CatBoostClassifier iterations [2, 10]
depth [2, 10]
learning_rate [1e-2, 10]
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and Tiny ImageNet, we did not use Optuna, but rather ran 
the ML algorithms with their default values.

Table 3 presents our results (we set a 10-h limit on an 
ML algorithm’s run of a row in the table, i.e., the level-2 

loop of Algorithm 2.) A total of 120 experiments were per-
formed: 4 datasets × ensembles of size 3, 7, and 11 × 10 
complete runs per dataset. In each experiment, we generated 
level-1 datasets and then executed the ML algorithms, as 

Table 3  Results for ensembles of 3, 7, and 11 random networks

Accuracy scores shown are over test sets. Net score of best network, Maj score of majority prediction, ML score of best ML method. For the 
latter, the ML method producing the best score is given in parentheses. RG Classifier using Ridge regression, KN k-nearest neighbors classifier, 
SG Linear classifier with SGD training, PA Passive Aggressive classifier, LR Logistic regression, RF Random Forest classifier, MP Multi-layer 
perceptron, LG LightGBM, XG XGBoost, CB Catboost

Dataset 3 networks 7 networks 11 networks

Net Maj ML Net Maj ML Net Maj ML

Fashion MNIST 91.97% 92.38% 92.40% (KN) 92.23% 93.12% 93.38% (KN) 94.22% 93.79% 94.40% (RG)
91.97% 92.05% 92.50% (KN) 92.40% 93.26% 93.25% (KN) 94.22% 93.62% 94.57% (KN)
92.32% 92.95% 92.80% (KN) 93.24% 93.69% 93.59% (KN) 93.24% 93.57% 94.11% (RG)
92.05% 92.39% 92.61% (KN) 94.01% 93.15% 94.54% (RG) 93.24% 93.71% 93.92% (KN)
91.67% 91.40% 92.00% (KN) 92.95% 93.57% 93.95% (KN) 94.01% 93.19% 94.50% (KN)
91.98% 92.93% 92.74% (KN) 92.27% 93.16% 93.37% (KN) 93.86% 93.75% 93.84% (KN)
92.14% 92.69% 93.19% (KN) 93.86% 93.24% 94.00% (RG) 93.63% 93.83% 94.07% (KN)
91.82% 92.27% 92.51% (RF) 92.27% 93.09% 93.48% (KN) 93.86% 93.81% 94.25% (KN)
93.86% 92.79% 93.94% (KN) 92.95% 93.14% 93.82% (RF) 94.01% 93.78% 94.66% (RG)
91.82% 92.81% 92.42% (RG) 93.86% 92.85% 94.18% (KN) 94.01% 93.53% 94.39% (RG)

CIFAR10 74.72% 71.00% 75.87% (KN) 75.60% 79.78% 80.42% (KN) 87.82% 80.94% 88.29% (RG)
71.67% 72.10% 75.05% (RG) 86.90% 80.54% 87.53% (RG) 83.57% 80.09% 84.82% (RG)
82.48% 82.03% 83.30% (KN) 87.33% 85.50% 89.15% (RG) 87.33% 80.82% 89.12% (RG)
74.82% 74.68% 75.05% (KN) 74.72% 75.76% 79.29% (KN) 86.60% 83.28% 86.43% (RG)
74.95% 76.48% 76.26% (KN) 86.90% 82.72% 87.57% (RG) 86.60% 79.93% 87.24% (RG)
75.60% 75.28% 76.79% (KN) 83.57% 81.31% 83.95% (KN) 87.22% 81.54% 88.33% (RF)
76.21% 77.77% 78.27% (KN) 74.00% 74.30% 77.96% (KN) 86.90% 84.44% 86.67% (RG)
86.90% 85.96% 88.16% (LR) 86.90% 84.74% 86.72% (RG) 86.60% 82.26% 87.71% (RG)
86.60% 81.76% 86.92% (KN) 86.90% 82.54% 88.00% (RG) 87.82% 83.36% 89.56% (RG)
76.43% 72.62% 77.42% (SG) 86.60% 77.97% 87.08% (RG) 87.82% 85.02% 89.59% (RG)

CIFAR100 48.86% 51.02% 54.69% (KN) 55.70% 55.11% 59.50% (RG) 60.76% 60.10% 66.02% (RG)
48.74% 44.95% 51.68% (KN) 60.76% 60.11% 65.82% (LR) 61.66% 62.50% 67.30% (RG)
48.74% 49.47% 54.08% (KN) 46.38% 51.97% 54.61% (KN) 9.58% 57.51% 66.07% (LR)
60.08% 55.30% 63.67% (SG) 61.30% 54.45% 64.14% (RG) 9.58% 58.43% 64.86% (RG)
47.06% 47.46% 52.48% (RG) 61.30% 57.22% 64.08% (RG) 60.08% 59.00% 64.55% (RG)
47.55% 50.94% 53.64% (RG) 60.08% 56.86% 64.46% (RG) 60.76% 56.07% 64.25% (LR)
46.55% 43.81% 51.19% (KN) 47.55% 47.91% 52.79% (SG) 9.58% 58.29% 64.89% (RG)
61.30% 57.47% 63.86% (RG) 48.86% 50.85% 54.93% (RG) 61.30% 57.09% 65.07% (RG)
46.30% 44.65% 50.30% (SG) 9.58% 53.56% 56.81% (KN) 9.58% 59.39% 66.34% (RG)
9.58% 33.88% 44.23% (SG) 61.66% 57.84% 64.84% (SG) 61.48% 58.78% 65.20% (LR)

Tiny ImageNet 55.77% 54.32% 59.97% (RG) 57.40% 56.06% 63.32% (RG) 67.30% 65.33% 70.17% (RG)
53.50% 54.83% 59.61% (LR) 54.83% 53.33% 59.26% (RG) 57.40% 63.72% 66.00% (RG)
58.34% 48.45% 61.60% (RG) 58.34% 60.59% 64.30% (RG) 57.23% 58.45% 64.31% (RG)
58.34% 59.91% 63.05% (RG) 55.77% 54.83% 60.10% (RG) 58.62% 60.42% 65.19% (RG)
53.50% 50.97% 58.10% (RG) 55.47% 53.11% 60.11% (RG) 56.20% 60.78% 63.83% (RG)
57.23% 47.54% 59.88% (RG) 58.62% 61.26% 62.14% (RG) 67.30% 64.33% 69.88% (RG)
58.62% 59.98% 64.69% (RG) 58.62% 62.41% 66.24% (RG) 56.20% 60.02% 64.09% (RG)
57.40% 56.14% 62.76% (LR) 56.16% 60.85% 63.46% (RG) 58.62% 62.44% 65.94% (RG)
54.76% 53.81% 60.57% (RG) 56.61% 57.70% 63.76% (RG) 58.34% 63.05% 65.98% (RG)
57.23% 48.52% 60.31% (RG) 58.34% 62.00% 63.85% (RG) 58.62% 62.90% 66.46% (RG)



SN Computer Science (2023) 4:85 Page 7 of 8 85

SN Computer Science

delineated in Algorithm 2. We then compared three values: 
(1) the test score of the top network amongst the random 
ensemble (known from Algorithm 1); (2) the test score of 
majority prediction, wherein the predicted class is deter-
mined through a majority vote amongst the ensemble’s net-
works’ outputs; (3) the test score of the top ML method. The 
code is available at https:// github. com/ moshe sipper.

Discussion

As observed in Table 3, of the total of 120 experiments, an 
ML algorithm won in all but ten experiments (four were won 
by the retrained network, and six by majority prediction).

We note that classical algorithms, notably Ridge 
regression and k-nearest neighbors, worked best (they 
account for 104 of the wins). They are also fast, scalable, and 
amenable to quick hyperparameter tuning. If one wishes to 
focus on a smaller batch of ML algorithms, these two seem 
like an excellent choice.

As noted in the section “Introduction”, we often find 
ourselves in possession of a plethora of models, either 
collected by us through many experiments, or by others 
(witness our use of pretrained models herein). Benefiting 
from current state-of-the-art technology, Deep GOld 
leverages this wealth of models to attain better performance. 
One can of course tailor the framework to available deep 
networks and to a personal predilection for any ML 
algorithm(s).

Concluding Remarks

We presented Deep GOld, a comprehensive, stacking-based 
framework for combining deep learning with machine 
learning. Our framework involves ensemble selection from 
51 retrained pretrained deep networks as first-level models, 
and 10 machine-learning algorithms as second-level models. 
We demonstrated the unequivocal benefits of the approach 
over four image-classification datasets.

We suggest a number of paths for future research:

• Further analysis of ML algorithms whose inputs are 
the outputs of deep networks. Do some ML methods 
inherently work better with such datasets?

• Currently, the features for level 2 comprise only the 
level-1 outputs. We might enhance this setup through 
automatic feature construction.

• Train (or retrain) the level-1 networks alongside a 
level-2 ML model: (1) After each training epoch of the 
networks in the ensemble, generate a dataset from the 
network outputs; (2) a level-2 ML algorithm then fits a 

model to the level-1 dataset; (3) the ML model generates 
class probabilities, which are used to ascribe loss values 
to the networks-in-training.
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