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Abstract
Stochastic computing (SC) is a re-emerging paradigm that is inherently immune towards noise and shows low area and power 
implementation of conventional binary logic based approaches. A stochastic square root circuit is proposed, which shows 
faster convergence and less hardware area compared to the state-of-the-art methods and can be used for efficient real time 
implementation of various algorithms that employ the square root circuit. In this paper, the Nick’s binarization algorithm 
is introduced as a case study to identify its promise using various statistical metrics. This paper also introduces structural 
modifications of some of the basic stochastic circuits obeying certain boundary conditions. A squarer circuit requiring the 
least number of delay elements is calculated to reduce the hardware cost.

Keywords  Document image binarization · OCR · Stochastic logic elements · Nick algorithm · Square root circuit · Noise 
tolerant

Introduction

Image binarization is a critical preprocessing step in docu-
ment processing applications, including Optical Character 
Recognition (OCR) and degraded document image recovery. 
Traditional binarization techniques such as Niblack, Sau-
vola, Nick etc. generally do not perform well on historical 
data as they are embedded with different types of noise. To 
address this problem, researchers are exploring an alter-
nate paradigm for document image binarization to achieve 
improved noise tolerant behaviour [1].

We introduce stochastic computing as another paradigm 
for computing Nick’s threshold estimation in this research, 
which has been shown to be more robust and area efficient 
for intrinsically noisy document datasets. As a proof of con-
cept, we tested the proposal using the Bickley Diary and 
Monk Cuper datasets. Our stochastic pipelined architecture 
shows a huge reduction in design complexity, area, and 
power consumption while also vastly improving noise and 
fault tolerance capability. The computation of local thresh-
old is done in a 9 × 9 pixel-sized window in an image of size 
M × N (for both conventional and Stochastic). Another issue 
is the calculation of the standard deviation within the local 
window that involves the calculation of square root using the 
Newton–Raphson method. This requires a large circuit size 
and computational burden [2]. As a result, increased hard-
ware complexity is a major area of concern in the implemen-
tation of the local thresholding algorithms. So, we propose a 
stochastic square root circuit using the modified blocks that 
shows faster convergence, greater accuracy and less hard-
ware area compared to the state-of-the-art methods.

The contributions in the present work can be highlighted 
as; (a) A stochastic square root circuit has been proposed 
showing faster convergence and greater accuracy compared 
to the state-of-the-art methods [3, 4], (b) Modified arith-
metic logic blocks that give accurate results over the entire 
input range. The results are verified using suitable graphs, 
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(c) A stochastic architecture of Nick’s binarization algorithm 
is proposed using the square root and squarer unit which is 
more robust and noise tolerant than the conventional imple-
mentation. Two standard datasets are tested using different 
statistical parameters.

 Stochastic Logic Units (SLU)

In a paradigm proposed by Gaines [5] and Poppelbaum 
[6], logical computations are done on stochastic numbers. 
Each real valued number is represented using a stream of 1s 
and 0s. In a stochastic number X, the probability of 1 in X 
is denoted as px . Then, px can be estimated from the ratio 
n1

n
 , where n1 is the number of 1′s in X, e.g, px =

4

8
 may be 

represented by 01011001. Such form of representation of 
stochastic numbers is popularly known as Unipolar encod-
ing [5]. Stochastic Logic Unit consists of combinational and 
sequential elements [5]. To design the square root circuit 
we use the modified stochastic blocks as well as some basic 
blocks to reduce the hardware resource utilization of the 
overall circuit.

Absolute Subtraction

Absolute subtraction of two numbers i.e, pz = |px − py| can 
be performed using an XOR gate acting on correlated inputs 
[7] (shown in Fig. 1). To generate correlated numbers, same 
LFSR can be used to generate two numbers or two different 
LFSRs with a correlator circuit.

Stochastic Mean Circuit (SMC)

2n input bit streams can be averaged using a 2n ∶ 1 MUX 
with n select bitstreams each representing a certain probabil-
ity. Figure 2 represents an 8 : 1 MUX calculating the average 
of 8 inputs as pz = (p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7)∕8 
[8].

Stochastic Number Storage

A 2n-bit SN that is generated from an n-bit binary number 
can be stored effectively in an n-bit register in binary format 
for further processing (See Fig. 3). The result of the stochas-
tic computation is stored using a counter that counts the 
number of 1s in a bitstream and stores it in a register. Thus, 
for a 256-bit sequence, we need only an 8-bit register for its 
effective storage [5].

Stochastic Division Circuit

There are various division circuits that are proposed in the 
literature [3, 5, 9]. Gaines [5] implemented an approxi-
mate division circuit using a single JK FF. The state equa-
tion that describes Boolean operation of a JK FF is given 
as Q+ = J ⋅ Q + Q ⋅ K where J and K are the two inputs to 
the JK flipflop. If the inputs are uncorrelated then using the 
Lemma 1 of [10], Q+ is replaced by pq and Q by ( 1 − pq ). 
The input stochastic bit stream acting as the divisor ( px2 ) is 
given to the K input and the dividend ( px1 ) is given to the 
J input of the FF. The JK FF implements an approximate 
division given by Eq. 1.

However, the circuit in Fig. 4a has a limited accuracy 
when the input signal probabilities become comparable. 
Other circuits using the Gaines ADDIE block controlling 

(1)pq =
px1

px1 + px2
.

Fig. 1   An XOR gate as abso-
lute subtractor implementing 
p
z
= |p

x
− p

y
|

Fig. 2   Mean calculation of 
stochastic numbers using 8:1 
MUX

Fig. 3   The Stochastic to binary number converter

Fig. 4   Division circuits a JK Flip flop implementing division b COR-
DIV Block
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output in a closed loop negative feedback have also been 
suggested in the literature, e.g., [5], Chen and Hayes [9] etc.

Multiplication and Squaring Operation

Stochastic multiplication of two uncorrelated inputs as 
shown in Fig. 5 can be done using an AND gate [5] and is 
given by, pz = pxpy . Two bitstreams are said to be uncor-
related iff, pxy = pxpy . However, the results are not accurate 
if the numbers are positively or negatively correlated [7].

However, the squaring operation [11] cannot be per-
formed accurately by simply giving the stochastic bitstream 
as inputs to the AND gate. Thus, instead of square of SN it 
produces the number itself [7], i.e, px.px = px

This happens due to high auto-correlation between inputs. 
Hence, it is necessary to decrease correlation between the 
given input sequence and then multiply using an AND gate 
(Fig. 6). This can be performed in many ways one of which 
is using two different LFSRs for generating the same input 
probabilities and then multiplying using AND gate [3]. This 
produces accurate results but the hardware cost increases 
considerably as separate LFSRs are required for generating 
the inputs.

An alternate solution to this problem was proposed by 
Gaines [5] using isolators to reduce the correlation between 
numbers and find square using an AND gate. The number 
of isolators required to perform the squaring operation with 
desired accuracy was found. It was observed that number of 
isolators depends upon the seed polynomial chosen in the 
LFSR and the progressive precision of the LFSR [12].

In order to estimate the correct and minimum number 
of decorrelator circuit uncorrelate a given number, an error 
analysis is conducted. The absolute values for different 
number of delay elements (N = 1, 2, 3, 4, 5) is calculated 
and is plotted in Fig. 7. It is observed that for N = 5 , the 
sequences exhibit least value of SCC and hence the squar-
ing operation can be done accurately. This also allows least 
number of decorrelator circuits thereby reducing the hard-
ware complexity.

Scaled Addition and Subtraction

Scaled addition and subtraction of correlated and uncor-
related numbers [13] can be done using a 2:1 MUX. The 
scaling is controlled by the select line bit stream. A constant 
scaling factor of 0.5 can be obtained by using a toggle flip-
flop irrespective of the input probability, as suggested by 
Gaines [5]. For subtraction, only the subtrahend bitstream 
is inverted. If each of the bitstream is equally probable, then 

scaled addition is given by, pz =
(px+py)

2
 and for scaled sub-

traction, output is pz =
(px+1−py)

2
 as shown in the Fig. 8. This 

is elucidated with the help of Examples 1 and 2.

Example 1  Scaled Addition: Consider two SNs with prob-

abilities px =
2

8
 and py =

4

8
 . Three different cases of correla-

tion between the two numbers are considered: (a) If px and py 

are positively correlated, i.e, py =
4

8
 is 11110000 and px =

2

8
 

Fig. 5   AND gate implementing 
p
z
= p

x
.p

y

Fig. 6   A Squarer circuit

Fig. 7   Absolute error vs Probability values for different delays

Fig. 8   2:1 MUX implementing a scaled addi-
tion p

z
= p

x
(1 − p

s
) + p

y
p
s
 b scaled subtraction 

p
z
= p

x
(1 − p

s
) + (1 − p

y
)p

s
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is 11000000 and if the select input ps =
4

8
 is 10101010 then 

for scaled addition pz =11100000 = 3
8
 , which is equal to the 

desired value. (b) If px and py are negatively correlated, say, 

py =
4

8
 is 11110000 px =

2

8
 is 00000011 and the select input 

ps =
4

8
 is given by 10101100, then the result of scaled addi-

tion pz =
3

8
 is 01001100. (c) If px and py are uncorrelated, 

say, py =
4

8
 is 11110000 and px =

2

8
 is 10001000 and the 

select input is given by 10101100, then the output of scaled 
addition is given by pz =

3

8
 is 10101000.

Example 2  Scaled Subtraction: Let us consider two SNs 
that are relatively uncorrelated, say, X and Y with the prob-
abilities px =

5

8
 is given by 11111000 and py =

4

8
 is given 

by 10100101 the select input S of the multiplexer is given 
by 00111001, the output of the multiplexer Z is given by 

01111010 whose probability is pz =
5

8
 , which is much closer 

to the expected result ,i.e, px+1−py
2

 is 9
16

 . (b) For correlated 
number the error increases and can be understood with the 
help following example with stochastic number X given by 
px =

5

8
 represented by 11111000 and Y given by py =

3

8
 rep-

resented by 11100000 and ps =
4

8
 input is 11110000, the 

output Z is given by 11111111 which is pz = 1 , whereas the 
expected output was 5

8
.

Thus, in all the cases of correlation, the relation between 
the two inputs has been taken into account whereas the effect 
of the third input i.e., the select input has been disregarded. 
But in reality, the combinations between these three inputs 
dictate the condition for accurate addition and subtraction 
by MUX. If the condition is not satisfied, then the result of 
scaled addition and subtraction deviates from the desired 
value.

Adder Unit

MUX can be used to implement basic arithmetic functions 
like scaled addition and subtraction. But MUX implement-
ing these basic functions produces inaccurate results [13]. 
There are various modified circuits found in literature that 
are designed to generate more accurate results irrespective 
of the input conditions [14]. Lee et al. [15] proposed an 
adder circuit using a Toggle flip flop that switches between 
0 and 1 when the input is 1. A necessary condition guides 
the accurate operation of the adder circuit.

Theorem 1  Scaled addition in the expression, Ysum =
pA + pB

2
 

between two inputs a, b in association with select line s of a 

multiplexer satisf ies the probability expression, 
i001 + i110 = i010 + i101.

Proof  Consider the three inputs a, b and s represented in 
stochastic numbers as A,B and S respectively. The output of 
the two input multiplexer [5, 6] is given by,

Using the truth table representation of the MUX, Y can be 
given as

The probabilities of each of the input bitstreams are given by 
the number of 1’s occurring in each bit stream. Thus prob-
ability of the input bitstreams A,B, S can be given by Eqs. 4, 
5 and 6 respectively as

The output of multiplexer can also be obtained using PTM 
through the matrix product of A and VMUX and is given by

Substituting pa and pb from Eqs. 4 and 5 into Eq. 2.

Now, comparing Eqs. 8 and 7 the following relation can be 
obtained.

Equation 9 dictates that the condition that eventuates as a 
result of an association between input lines and the select 
input bitstream of Fig. 9. It is observed that the select line 

(2)Ysum =
pA + pB

2
.

(3)Y = i010 + i011 + i101 + i111.

(4)pa =i010 + i011 + i110 + i111

(5)pb =i001 + i011 + i101 + i111

(6)ps =i100 + i101 + i110 + i111.

(7)Y = i010 + i011 + i101 + i111.

(8)Ysum =
i001 + i010

2
+ i011 +

i101 + i110

2
+ i111.

(9)i001 + i110 = i010 + i101;

Fig. 9   The adder circuit
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(S) of the multiplexer can be suitably implemented using the 
XOR gate along with a T-FF. The results of the simulation 
are shown in the Fig. 10. 	�  ◻

Subtractor Unit

MUX can be used to implement scaled subtraction [5] using 
Theorem 2.

Theorem  2  Scaled subtraction in the expression, 
Ysub =

pA + 1 − pB

2
 between two inputs a, b in association 

with select line s of a multiplexer satisfies the probability 
expression, 

i100 + i000

2
+ i110 = i101 +

i011 + i111

2
.

Proof  Let us consider that the three inputs a, b and s rep-
resented as A,B and S respectively. The expression for the 
scaled subtraction operation is given by

The probability of finding a ’0’ in pb can be given as (1 − pb) 
and can be written as

Substituting pa and pb from Eqs. 4 and 11 respectively in 
Eq. 10 we have,

Comparing Eq. 12 and 7 the following result is obtained.

This condition is satisfied by using an XOR gate at the 
input of T-flip flop in the subtractor unit. The subtractor 

(10)Ysub =
pA +

(
1 − pB

)
.

2

(11)
(
1 − pb

)
= i000 + i010 + i100 + i101.

(12)Ysub =
i000 + i100

2
+ i010 +

i011 + i111

2
+ i110

(13)
i100 + i000

2
+ i110 = i101 +

i011 + i111

2
.

unit satisfying this condition is shown in Fig. 11. It is noted 
that the subtraction operation can be performed by replacing 
pb with 1 − pb , which is obtained by passing pb through an 
inverter circuit. 	�  ◻

Example 3  Let us consider two correlated numbers A given 
by pa =

4

8
 represented by 1111000 and B given by pb =

3

8
 

represented by 11100000 and S input is given by 11110000 
the output Z is given by 11111111 which is pz = 1 , whereas 
the expected output was 4

8
 . Thus, N010 = 0 , N100 = 0 , 

N111 = 3 , N110 = 1 , and N000 = 3 . If we place the above 
condition in the equation we would find 3

2
+ 1 ≠ 0 +

3

2
.

Square Root Circuit

Square root is one of the standard and essential blocks in 
various mathematical operations like solution of non-linear 
equations [16], calculation of standard deviation [17] in vari-
ous image processing and machine learning applications [1, 
18–22]. There are various square root circuits implemented 
in conventional binary logic [23] which have higher hard-
ware complexity as well as consume larger area with high 
consumption of power [24–28]. Also, the number of itera-
tions required to converge to the closest value is larger. So, 
there is a dire need to look for an alternative computing 
technique that could implement the same logic with low 
power and less hardware requirements. Several works exist 
in literature that implement the square root function making 
use of the probabilistic logic theory [3, 5].

The stochastic square root circuit was first proposed by 
Gaines [5] in 1969 exploiting the basic sequential logic ele-
ment ADDIE that has a counter with negative feedback. An 
up-down counter integrates the error. But the circuit suffers 
from several disadvantages. It had slow convergence and 

Fig. 10   The output comparison of the adder circuit

Fig. 11   The subtractor unit
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had a large latency as multiple iterations were required to 
get the square root value. Also, the squaring operation was 
performed by a single AND gate using a single D flip flop. 
That could not uncorrelate a given sequence producing inac-
curate results in the end. The other drawback was the satura-
tion of n-bit counter. These drawbacks restricted its use in 
real time applications.

To mitigate the issues with inaccuracy resulting from the 
squarer circuit, Toral et al. [3] proposed with multiple ran-
dom number generators to fully eliminate the correlation 
between the numbers. Thus the squaring operation was not 
hardware efficient. The time square root �root =

2n

y2⋅Fclk

 , had 
an exponential relationship with the length of bitstream n. 
Thus, the circuit cannot be used in real time applications. 
The accuracy of circuit decreases for low values of input 
probability. As random number generators are the costliest 
to implement, the increased number of RNGs in the circuit 
resulted in an increased cost as well as power 
consumption.

Wu et al. [29] proposed a stochastic square root circuit 
by removing the saturating counter as in [3, 5]. Thus, hard-
ware complexity was reduced. It showed accurate results in 
the higher range of inputs, i.e., 0.7–1. In the lower range of 
inputs, i.e., 0–0.2 the accuracy of the circuit was not com-
mendable and also the number of clock cycles required to 
find the desired accuracy was significant.

More recently, an SSRC was proposed by Mitra et al. [4], 
that showed low latency and less hardware compared to its 
predecessors in computing the square root value. A variable 
length bitstream approach in representation of stochastic 
numbers was adopted that could save significant number of 
clock pulses. It was observed that in increasing the length of 
bitstream in every iteration terminates the process in three 
iterations requiring 448 clock pulses. However, the results 
obtained with this approach could not exceed a certain accu-
racy range. So, we propose a square root circuit that is accu-
rate throughout the input range, i.e., the radicands ranging 
between [0,1] requiring less hardware.

Proposed Square Root Circuit

The stochastic square root computation begins with the 
binary number converted to a 256-bit stochastic number 
with the help of LFSR. We subdivided the circuit into two 
sections: (a) Error Detection Block and (b) Error Correction 
Block. A MUX is placed to select either the input stochastic 
number or the approximate square root value obtained as 
an output from the circuit. A single high going pulse gener-
ated by the control unit C, selects ’1’ input of MUX to give 
input SN sequence to the squarer circuit. At the trailing edge 
of the pulse, the output from the 8-bit register is selected, 

which gives the approximate square root value that needs to 
be refined further.

Error Detection Block

This is implemented using a squarer circuit, absolute sub-
tractor unit and a 2-bit register as shown in Fig. 12. The 
squaring operation is performed using a 5-bit shift register 
as mentioned in Section 5. The output of the squarer and the 
estimated square root value is compared using an absolute 
subtractor. The output of absolute subtractor is stored in a 
2-bit register, say, D(D1D0) , to count the number of 1′s . So 
register D can store a maximum value of 3 in binary. If D1 
bit is 1, then D contains a minimum value of 2, thus the 
obtained guess value needs to be refined further and this is 
accomplished when D1 bit of D register is 1. If D1 bit of 
register D is 0, it indicates the processing is complete and 
the guess value is obtained as output value. At the beginning 
of every iteration the register D is cleared using a control 
signal IT generated from the control unit C designed for 
this circuit. The circuit operation is stopped once it is found 
that D1 = 0 at the end of an iteration by disabling the LFSR 
through enable of the control signal, i.e, DI = 1 . If D1 = 1 , 
the error persists and hence carried over to the Error Cor-
rection Block.

Error Correction Block

The error correction block consists of an adder, a division 
block and an 8-bit register. The division circuit is imple-
mented using the CORDIV block. One of the two inputs 
of CORDIV block comes from the input SN sequence and 
another one from the last iteration. The output of CORDIV 
block is given to one of the input of the MUX to produce the 
required square root value SN . The obtained square root is 
stored in the binary format in an 8-bit register which can be 
used in next iteration for more accurate computation.

It has been found that the result of the square root value 
converges to its desired value in two iterations in the major-
ity of the cases. This fact has been utilized and the circuit 
is implemented using a single 8-bit register. In the case of a 
single 8-bit register output stochastic number is not updated 
during the second iteration. This is controlled using the IS 
control signal that is generated from the control unit C.

However, if higher accuracy or multiple iterations are 
required, another 8-bit register R1 can be used in conjunc-
tion with 8-bit register R that is connected to the output of 
the multiplexer. The output of R is connected to the register 
R1 which is used along a 8 bit comparator to generate the 
stochastic number for the next iteration. The output of the 
register R1 is given to the register R at the beginning of the 
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next iteration using a control signal IT generated from the 
control circuit C as shown in Fig. 12. The circuit shows 
faster convergence and accurately tracks the actual square 
root value as shown in Fig.13.

Experimental Results and Analysis

In the proposed work, structure of some of the basic stochas-
tic circuit components are modified and also a stochastic 

Fig. 12   Proposed square root 
circuit

Algorithm 1 Calculation of square root of a stochastic number

Input: X//The 256 bit stochastic number generated by comparing 8 bit input
binary number with 8 bit LFSR

Output: R //the square root of the stochastic number
Initialisation : q = X;

1: r = q << 5 //Left shift 5 times to uncorrelate the given SN sequence
2: s = q ∗ r //Bit wise multiplication to get square of the number
3: t =| q − s | //Bitwise comparison to check the error
4: if (t >= 2) //if error exist need to iterate to get the exact value

q = (q/2) +X/(2 ∗ q) //q is the approximate square root value then
5: Go to Step 1
6: end if
7: R=q
8: return R
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square root circuit has been proposed. While designing the 
squarer circuit we determined experimentally the number 
of isolators required to uncorrelate the given sequence. 
Referring to Fig. 7, the light blue line corresponding to 
N(delay) = 5 has the lowest absolute error. For inputs rang-
ing from 0 to 0.31, the SN sequences are completely uncor-
related. From 0.31 to 0.88, though the input SN sequences 
could not be completely correlated, the absolute error lies 

within 0.01, indicating the numbers are almost uncorrelated. 
Reducing the number of isolators thereby to uncorrelate a 
given stochastic sequence resulted in a significant reduc-
tion of hardware complexity. All the circuits are synthesized 
using Xilinx Spartan 6 xc6slx4 family of FPGA.

In order to escalate the accuracy of scaled addition and 
subtraction, modified adder and subtractor have been pro-
posed. Fig. 10 shows the addition operation of the proposed 

Table 1   Comparison of accuracies of the proposed method with [3, 4]

SL# Input Desired output Toral et al. Deviation Mitra et al. 
(256- bit)

Deviation Proposed Deviation Improvement 
w.r.t [3] (in %)

Improvement 
w.r.t [4] (in 
%)

1 0.1 0.316 0.492 0.176 0.289 0.027 0.313 0.004 97.881 86.277
2 0.2 0.447 0.508 0.061 0.410 0.037 0.446 0.001 98.558 97.643
3 0.3 0.548 0.551 0.003 0.563 0.015 0.545 0.003 6.601 80.669
4 0.4 0.632 0.621 0.011 0.602 0.031 0.631 0.001 89.152 96.010
5 0.5 0.707 0.699 0.008 0.688 0.020 0.704 0.003 64.923 85.889
6 0.6 0.775 0.762 0.013 0.789 0.014 0.773 0.002 88.300 89.585
7 0.7 0.837 0.828 0.009 0.797 0.040 0.836 0.000 94.528 98.826
8 0.8 0.894 0.898 0.004 0.914 0.020 0.893 0.002 56.463 91.107
9 0.9 0.949 0.945 0.003 0.922 0.027 0.948 0.001 75.661 96.940
10 1 1.000 0.996 0.004 0.988 0.012 0.998 0.002 50.000 83.334

Table 2   Hardware comparison 
of the proposed method with the 
method of [3, 4]

Quantity Number present Toral et al. Mitra et al. Proposed Method

Used % used Used % used Used % used

Slice registers 4800 45 0.94 17 0.35 17 0.35
Slice LUT’s 2400 76 3.17 33 1.38 31 1.29
Used as Logic 2400 75 3.13 – – 32 1.33
Occupied Slices 600 28 4.67 – – 12 2.00
LUT-FF pair 76 35 46.05 – – 14 18.42
Bonded IOB 102 45 44.12 27 26.47 19 18.6

Fig. 13   Accuracy comparison 
of the proposed square root 
circuit, [3], and [4]
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Fig. 14   Output images of Conventional and Stochastic implementation of Nick’s algorithm on Bickley Diary dataset; a original images; b 
ground truths; c Conventional; d our method
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Fig. 15   Output images of Monk Cuper Set (MCS); a original images; b ground truths; c Conventional; d Our method

Fig. 16   Stochastic implementa-
tion Nick’s algorithm
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circuit which reveals much closer approximation to the exact 
calculation for a 256-bit input sequence compared to the 
state-of-the-art method [5].

Implementation of the square root circuit using the modified 
stochastic elements resulted in a more accurate computation of 
the square root value as shown in Table 1 compared to [3] and [4]. 
The advantage is that it is accurate throughout the entire range of 
inputs as shown in Fig. 13. The circuit shows an average improve-
ment of 70.2 percent compared to [3] and 90.6 percent compared 
to [4] (fixed-bitstream length approach). The proposed circuit 
also shows faster convergence of the square root value compared 
to [3]. Also, the hardware utilization of the proposed circuit is less 
compared to [3] and is comparable with [4] as shown in Table 2. 
Figure 13 shows the comparison of accuracy of the proposed 
square root circuit and the circuit of [4] (with variable-bitstream 
length approach) and [3], which depicts that the proposed circuit 
is a better choice where accuracy is a concern.

Case Study: Nick’s Binarization on Noisy Document 
Dataset

Stochastic computing is recently used in many image pro-
cessing applications due to its inherent robustness towards 

noise. Many attempts can be seen in the literature [30–33]. 
In Nick, the threshold value is computed using the mean 
u(x, y) and the variance of the pixel intensity values in a 
W ×W  sized window centered on (x, y) and is given as;

The square root in Eq. 14 is calculated using the proposed 
square root circuit and the results are evaluated on two dif-
ferent standard binarization datasets: Bickley Diary dataset 
and Monk Cuper Set (MCS) [34] for validation. The stochas-
tic architecture of the Nick’s method is shown in Fig. 16.

Using several statistical tests and hardware usage metrics, 
we compare the experimental results of the conventional 
local binarization approach and the proposed approach. No 
image enhancing techniques such as noise removal, contrast 
enhancement, etc. were used in this study. We have cho-
sen 14 different measures [35] namely; Precision, Recall, 
F-measure, Sensitivity, Specificity, BCR (Balanced classi-
fication rate), AUC (Area Under Curve), BER (Balanced 
error rate), SFmeasure (F-measure based on sensitivity and 
specificity), Accuracy, GAccuracy (Geometric mean of sen-
sitivity and specificity), pF-Measure (pseudo F-Measure), 

(14)T(x, y) = u(x, y) + k
√
variance + u2(x, y).

Fig. 17   Average performance metrics calculated on some selected images of Bickley Diary dataset for conventional and stochastic implementa-
tion of Nick’s algorithm

Fig. 18   Average Performance metrics calculated on all images of Monk Cuper Set (MCS) for conventional and stochastic implementation of 
Nick’s algorithm
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NRM (Negative rate metric), PSNR (Peak signal-to-noise 
ratio), DRD (Distance reciprocal distortion metric), MPM 
(Misclassification penalty metric) to compare the results.

We have experimented using two values of k = 0.1 and 
0.2. Several metrics are calculated, that denote that the sto-
chastic implementation in Tables 3, 4 and 5 are close to the 
ideal values of each. The graphs in Fig. 17a, b show the 
average values of the selected metrics of all the images of 
Bickley Diary dataset at k = 0.1 and k = 0.2 . It is observed 
that all the metrics perform well for k = 0.2 , so the experi-
ment on the Monk Cuper Set (MCS) is done only on k = 0.2 . 
In Fig. 18a, b, we have plotted the average values of the 
selected metrics of all the images and the standard devia-
tion of the Monk Cuper Set. Some of the sample images of 
the Bickley Diary dataset and Monk Cuper Set along with 
the ground truth and binarization outcomes are shown in 
Figs. 14a–d and 15a–d.

Conclusion

The proposed stochastic square root circuit is used in 
this study to stochastically implement Nick’s binariza-
tion method on noisy document images in order to better 
handle noise-related issues. We have also tweaked some 
logic blocks to improve individual accuracy and reduce the 
amount of hardware required. We showed that the perfor-
mance of stochastic Nick is better than that of the current 
method. An array of datasets can benefit from the proposed 
approach because stochastic computing is able to handle 
both the extrinsic and intrinsic noise of an image. The key 
to this result is the incorporation of bitwise operations into a 
stochastic model, which can then be generalised to produce 
an efficient architecture for a wide range of applications.
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