
Vol.:(0123456789)

SN Computer Science (2023) 4:99
https://doi.org/10.1007/s42979-022-01470-w

SN Computer Science

ORIGINAL RESEARCH

Development of Noise Tolerant Document Image Binarization
Technique Employing an Accurate Square Root Circuit

Shyamali Mitra1 · Debojyoti Banerjee1 · Mrinal K. Naskar2

Received: 5 May 2022 / Accepted: 21 October 2022 / Published online: 17 December 2022
© The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2022

Abstract
Stochastic computing (SC) is a re-emerging paradigm that is inherently immune towards noise and shows low area and power
implementation of conventional binary logic based approaches. A stochastic square root circuit is proposed, which shows
faster convergence and less hardware area compared to the state-of-the-art methods and can be used for efficient real time
implementation of various algorithms that employ the square root circuit. In this paper, the Nick’s binarization algorithm
is introduced as a case study to identify its promise using various statistical metrics. This paper also introduces structural
modifications of some of the basic stochastic circuits obeying certain boundary conditions. A squarer circuit requiring the
least number of delay elements is calculated to reduce the hardware cost.

Keywords Document image binarization · OCR · Stochastic logic elements · Nick algorithm · Square root circuit · Noise
tolerant

Introduction

Image binarization is a critical preprocessing step in docu-
ment processing applications, including Optical Character
Recognition (OCR) and degraded document image recovery.
Traditional binarization techniques such as Niblack, Sau-
vola, Nick etc. generally do not perform well on historical
data as they are embedded with different types of noise. To
address this problem, researchers are exploring an alter-
nate paradigm for document image binarization to achieve
improved noise tolerant behaviour [1].

We introduce stochastic computing as another paradigm
for computing Nick’s threshold estimation in this research,
which has been shown to be more robust and area efficient
for intrinsically noisy document datasets. As a proof of con-
cept, we tested the proposal using the Bickley Diary and
Monk Cuper datasets. Our stochastic pipelined architecture
shows a huge reduction in design complexity, area, and
power consumption while also vastly improving noise and
fault tolerance capability. The computation of local thresh-
old is done in a 9 × 9 pixel-sized window in an image of size
M × N (for both conventional and Stochastic). Another issue
is the calculation of the standard deviation within the local
window that involves the calculation of square root using the
Newton–Raphson method. This requires a large circuit size
and computational burden [2]. As a result, increased hard-
ware complexity is a major area of concern in the implemen-
tation of the local thresholding algorithms. So, we propose a
stochastic square root circuit using the modified blocks that
shows faster convergence, greater accuracy and less hard-
ware area compared to the state-of-the-art methods.

The contributions in the present work can be highlighted
as; (a) A stochastic square root circuit has been proposed
showing faster convergence and greater accuracy compared
to the state-of-the-art methods [3, 4], (b) Modified arith-
metic logic blocks that give accurate results over the entire
input range. The results are verified using suitable graphs,

This article is part of the topical collection “Advances in Applied
Image Processing and Pattern Recognition” guest edited by K. C.
Santosh.

 * Shyamali Mitra
 shyamalimitra.iee@jadavpuruniversity.in

 Debojyoti Banerjee
 dbanerjee181@gmail.com

 Mrinal K. Naskar
 mrinaletce@gmail.com

1 Instrumentation and Electronics Engineering, Jadavpur
University, Kolkata, West Bengal, India

2 Electronics and Telecommunication Engineering, Jadavpur
University, Kolkata, West Bengal, India

http://orcid.org/0000-0001-6502-9056
http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-022-01470-w&domain=pdf

 SN Computer Science (2023) 4:9999 Page 2 of 14

SN Computer Science

(c) A stochastic architecture of Nick’s binarization algorithm
is proposed using the square root and squarer unit which is
more robust and noise tolerant than the conventional imple-
mentation. Two standard datasets are tested using different
statistical parameters.

 Stochastic Logic Units (SLU)

In a paradigm proposed by Gaines [5] and Poppelbaum
[6], logical computations are done on stochastic numbers.
Each real valued number is represented using a stream of 1s
and 0s. In a stochastic number X, the probability of 1 in X
is denoted as px . Then, px can be estimated from the ratio
n1

n
 , where n1 is the number of 1′s in X, e.g, px =

4

8
 may be

represented by 01011001. Such form of representation of
stochastic numbers is popularly known as Unipolar encod-
ing [5]. Stochastic Logic Unit consists of combinational and
sequential elements [5]. To design the square root circuit
we use the modified stochastic blocks as well as some basic
blocks to reduce the hardware resource utilization of the
overall circuit.

Absolute Subtraction

Absolute subtraction of two numbers i.e, pz = |px − py| can
be performed using an XOR gate acting on correlated inputs
[7] (shown in Fig. 1). To generate correlated numbers, same
LFSR can be used to generate two numbers or two different
LFSRs with a correlator circuit.

Stochastic Mean Circuit (SMC)

2n input bit streams can be averaged using a 2n ∶ 1 MUX
with n select bitstreams each representing a certain probabil-
ity. Figure 2 represents an 8 : 1 MUX calculating the average
of 8 inputs as pz = (p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7)∕8
[8].

Stochastic Number Storage

A 2n-bit SN that is generated from an n-bit binary number
can be stored effectively in an n-bit register in binary format
for further processing (See Fig. 3). The result of the stochas-
tic computation is stored using a counter that counts the
number of 1s in a bitstream and stores it in a register. Thus,
for a 256-bit sequence, we need only an 8-bit register for its
effective storage [5].

Stochastic Division Circuit

There are various division circuits that are proposed in the
literature [3, 5, 9]. Gaines [5] implemented an approxi-
mate division circuit using a single JK FF. The state equa-
tion that describes Boolean operation of a JK FF is given
as Q+ = J ⋅ Q + Q ⋅ K where J and K are the two inputs to
the JK flipflop. If the inputs are uncorrelated then using the
Lemma 1 of [10], Q+ is replaced by pq and Q by (1 − pq).
The input stochastic bit stream acting as the divisor (px2) is
given to the K input and the dividend (px1) is given to the
J input of the FF. The JK FF implements an approximate
division given by Eq. 1.

However, the circuit in Fig. 4a has a limited accuracy
when the input signal probabilities become comparable.
Other circuits using the Gaines ADDIE block controlling

(1)pq =
px1

px1 + px2
.

Fig. 1 An XOR gate as abso-
lute subtractor implementing
p
z
= |p

x
− p

y
|

Fig. 2 Mean calculation of
stochastic numbers using 8:1
MUX

Fig. 3 The Stochastic to binary number converter

Fig. 4 Division circuits a JK Flip flop implementing division b COR-
DIV Block

SN Computer Science (2023) 4:99 Page 3 of 14 99

SN Computer Science

output in a closed loop negative feedback have also been
suggested in the literature, e.g., [5], Chen and Hayes [9] etc.

Multiplication and Squaring Operation

Stochastic multiplication of two uncorrelated inputs as
shown in Fig. 5 can be done using an AND gate [5] and is
given by, pz = pxpy . Two bitstreams are said to be uncor-
related iff, pxy = pxpy . However, the results are not accurate
if the numbers are positively or negatively correlated [7].

However, the squaring operation [11] cannot be per-
formed accurately by simply giving the stochastic bitstream
as inputs to the AND gate. Thus, instead of square of SN it
produces the number itself [7], i.e, px.px = px

This happens due to high auto-correlation between inputs.
Hence, it is necessary to decrease correlation between the
given input sequence and then multiply using an AND gate
(Fig. 6). This can be performed in many ways one of which
is using two different LFSRs for generating the same input
probabilities and then multiplying using AND gate [3]. This
produces accurate results but the hardware cost increases
considerably as separate LFSRs are required for generating
the inputs.

An alternate solution to this problem was proposed by
Gaines [5] using isolators to reduce the correlation between
numbers and find square using an AND gate. The number
of isolators required to perform the squaring operation with
desired accuracy was found. It was observed that number of
isolators depends upon the seed polynomial chosen in the
LFSR and the progressive precision of the LFSR [12].

In order to estimate the correct and minimum number
of decorrelator circuit uncorrelate a given number, an error
analysis is conducted. The absolute values for different
number of delay elements (N = 1, 2, 3, 4, 5) is calculated
and is plotted in Fig. 7. It is observed that for N = 5 , the
sequences exhibit least value of SCC and hence the squar-
ing operation can be done accurately. This also allows least
number of decorrelator circuits thereby reducing the hard-
ware complexity.

Scaled Addition and Subtraction

Scaled addition and subtraction of correlated and uncor-
related numbers [13] can be done using a 2:1 MUX. The
scaling is controlled by the select line bit stream. A constant
scaling factor of 0.5 can be obtained by using a toggle flip-
flop irrespective of the input probability, as suggested by
Gaines [5]. For subtraction, only the subtrahend bitstream
is inverted. If each of the bitstream is equally probable, then

scaled addition is given by, pz =
(px+py)

2
 and for scaled sub-

traction, output is pz =
(px+1−py)

2
 as shown in the Fig. 8. This

is elucidated with the help of Examples 1 and 2.

Example 1 Scaled Addition: Consider two SNs with prob-

abilities px =
2

8
 and py =

4

8
 . Three different cases of correla-

tion between the two numbers are considered: (a) If px and py

are positively correlated, i.e, py =
4

8
 is 11110000 and px =

2

8

Fig. 5 AND gate implementing
p
z
= p

x
.p

y

Fig. 6 A Squarer circuit

Fig. 7 Absolute error vs Probability values for different delays

Fig. 8 2:1 MUX implementing a scaled addi-
tion p

z
= p

x
(1 − p

s
) + p

y
p
s
 b scaled subtraction

p
z
= p

x
(1 − p

s
) + (1 − p

y
)p

s

 SN Computer Science (2023) 4:9999 Page 4 of 14

SN Computer Science

is 11000000 and if the select input ps =
4

8
 is 10101010 then

for scaled addition pz =11100000 = 3
8
 , which is equal to the

desired value. (b) If px and py are negatively correlated, say,

py =
4

8
 is 11110000 px =

2

8
 is 00000011 and the select input

ps =
4

8
 is given by 10101100, then the result of scaled addi-

tion pz =
3

8
 is 01001100. (c) If px and py are uncorrelated,

say, py =
4

8
 is 11110000 and px =

2

8
 is 10001000 and the

select input is given by 10101100, then the output of scaled
addition is given by pz =

3

8
 is 10101000.

Example 2 Scaled Subtraction: Let us consider two SNs
that are relatively uncorrelated, say, X and Y with the prob-
abilities px =

5

8
 is given by 11111000 and py =

4

8
 is given

by 10100101 the select input S of the multiplexer is given
by 00111001, the output of the multiplexer Z is given by

01111010 whose probability is pz =
5

8
 , which is much closer

to the expected result ,i.e, px+1−py
2

 is 9
16

 . (b) For correlated
number the error increases and can be understood with the
help following example with stochastic number X given by
px =

5

8
 represented by 11111000 and Y given by py =

3

8
 rep-

resented by 11100000 and ps =
4

8
 input is 11110000, the

output Z is given by 11111111 which is pz = 1 , whereas the
expected output was 5

8
.

Thus, in all the cases of correlation, the relation between
the two inputs has been taken into account whereas the effect
of the third input i.e., the select input has been disregarded.
But in reality, the combinations between these three inputs
dictate the condition for accurate addition and subtraction
by MUX. If the condition is not satisfied, then the result of
scaled addition and subtraction deviates from the desired
value.

Adder Unit

MUX can be used to implement basic arithmetic functions
like scaled addition and subtraction. But MUX implement-
ing these basic functions produces inaccurate results [13].
There are various modified circuits found in literature that
are designed to generate more accurate results irrespective
of the input conditions [14]. Lee et al. [15] proposed an
adder circuit using a Toggle flip flop that switches between
0 and 1 when the input is 1. A necessary condition guides
the accurate operation of the adder circuit.

Theorem 1 Scaled addition in the expression, Ysum =
pA + pB

2

between two inputs a, b in association with select line s of a

multiplexer satisf ies the probability expression,
i001 + i110 = i010 + i101.

Proof Consider the three inputs a, b and s represented in
stochastic numbers as A,B and S respectively. The output of
the two input multiplexer [5, 6] is given by,

Using the truth table representation of the MUX, Y can be
given as

The probabilities of each of the input bitstreams are given by
the number of 1’s occurring in each bit stream. Thus prob-
ability of the input bitstreams A,B, S can be given by Eqs. 4,
5 and 6 respectively as

The output of multiplexer can also be obtained using PTM
through the matrix product of A and VMUX and is given by

Substituting pa and pb from Eqs. 4 and 5 into Eq. 2.

Now, comparing Eqs. 8 and 7 the following relation can be
obtained.

Equation 9 dictates that the condition that eventuates as a
result of an association between input lines and the select
input bitstream of Fig. 9. It is observed that the select line

(2)Ysum =
pA + pB

2
.

(3)Y = i010 + i011 + i101 + i111.

(4)pa =i010 + i011 + i110 + i111

(5)pb =i001 + i011 + i101 + i111

(6)ps =i100 + i101 + i110 + i111.

(7)Y = i010 + i011 + i101 + i111.

(8)Ysum =
i001 + i010

2
+ i011 +

i101 + i110

2
+ i111.

(9)i001 + i110 = i010 + i101;

Fig. 9 The adder circuit

SN Computer Science (2023) 4:99 Page 5 of 14 99

SN Computer Science

(S) of the multiplexer can be suitably implemented using the
XOR gate along with a T-FF. The results of the simulation
are shown in the Fig. 10. ◻

Subtractor Unit

MUX can be used to implement scaled subtraction [5] using
Theorem 2.

Theorem 2 Scaled subtraction in the expression,
Ysub =

pA + 1 − pB

2
 between two inputs a, b in association

with select line s of a multiplexer satisfies the probability
expression,

i100 + i000

2
+ i110 = i101 +

i011 + i111

2
.

Proof Let us consider that the three inputs a, b and s rep-
resented as A,B and S respectively. The expression for the
scaled subtraction operation is given by

The probability of finding a ’0’ in pb can be given as (1 − pb)
and can be written as

Substituting pa and pb from Eqs. 4 and 11 respectively in
Eq. 10 we have,

Comparing Eq. 12 and 7 the following result is obtained.

This condition is satisfied by using an XOR gate at the
input of T-flip flop in the subtractor unit. The subtractor

(10)Ysub =
pA +

(
1 − pB

)
.

2

(11)
(
1 − pb

)
= i000 + i010 + i100 + i101.

(12)Ysub =
i000 + i100

2
+ i010 +

i011 + i111

2
+ i110

(13)
i100 + i000

2
+ i110 = i101 +

i011 + i111

2
.

unit satisfying this condition is shown in Fig. 11. It is noted
that the subtraction operation can be performed by replacing
pb with 1 − pb , which is obtained by passing pb through an
inverter circuit. ◻

Example 3 Let us consider two correlated numbers A given
by pa =

4

8
 represented by 1111000 and B given by pb =

3

8

represented by 11100000 and S input is given by 11110000
the output Z is given by 11111111 which is pz = 1 , whereas
the expected output was 4

8
 . Thus, N010 = 0 , N100 = 0 ,

N111 = 3 , N110 = 1 , and N000 = 3 . If we place the above
condition in the equation we would find 3

2
+ 1 ≠ 0 +

3

2
.

Square Root Circuit

Square root is one of the standard and essential blocks in
various mathematical operations like solution of non-linear
equations [16], calculation of standard deviation [17] in vari-
ous image processing and machine learning applications [1,
18–22]. There are various square root circuits implemented
in conventional binary logic [23] which have higher hard-
ware complexity as well as consume larger area with high
consumption of power [24–28]. Also, the number of itera-
tions required to converge to the closest value is larger. So,
there is a dire need to look for an alternative computing
technique that could implement the same logic with low
power and less hardware requirements. Several works exist
in literature that implement the square root function making
use of the probabilistic logic theory [3, 5].

The stochastic square root circuit was first proposed by
Gaines [5] in 1969 exploiting the basic sequential logic ele-
ment ADDIE that has a counter with negative feedback. An
up-down counter integrates the error. But the circuit suffers
from several disadvantages. It had slow convergence and

Fig. 10 The output comparison of the adder circuit

Fig. 11 The subtractor unit

 SN Computer Science (2023) 4:9999 Page 6 of 14

SN Computer Science

had a large latency as multiple iterations were required to
get the square root value. Also, the squaring operation was
performed by a single AND gate using a single D flip flop.
That could not uncorrelate a given sequence producing inac-
curate results in the end. The other drawback was the satura-
tion of n-bit counter. These drawbacks restricted its use in
real time applications.

To mitigate the issues with inaccuracy resulting from the
squarer circuit, Toral et al. [3] proposed with multiple ran-
dom number generators to fully eliminate the correlation
between the numbers. Thus the squaring operation was not
hardware efficient. The time square root �root =

2n

y2⋅Fclk

 , had
an exponential relationship with the length of bitstream n.
Thus, the circuit cannot be used in real time applications.
The accuracy of circuit decreases for low values of input
probability. As random number generators are the costliest
to implement, the increased number of RNGs in the circuit
resulted in an increased cost as well as power
consumption.

Wu et al. [29] proposed a stochastic square root circuit
by removing the saturating counter as in [3, 5]. Thus, hard-
ware complexity was reduced. It showed accurate results in
the higher range of inputs, i.e., 0.7–1. In the lower range of
inputs, i.e., 0–0.2 the accuracy of the circuit was not com-
mendable and also the number of clock cycles required to
find the desired accuracy was significant.

More recently, an SSRC was proposed by Mitra et al. [4],
that showed low latency and less hardware compared to its
predecessors in computing the square root value. A variable
length bitstream approach in representation of stochastic
numbers was adopted that could save significant number of
clock pulses. It was observed that in increasing the length of
bitstream in every iteration terminates the process in three
iterations requiring 448 clock pulses. However, the results
obtained with this approach could not exceed a certain accu-
racy range. So, we propose a square root circuit that is accu-
rate throughout the input range, i.e., the radicands ranging
between [0,1] requiring less hardware.

Proposed Square Root Circuit

The stochastic square root computation begins with the
binary number converted to a 256-bit stochastic number
with the help of LFSR. We subdivided the circuit into two
sections: (a) Error Detection Block and (b) Error Correction
Block. A MUX is placed to select either the input stochastic
number or the approximate square root value obtained as
an output from the circuit. A single high going pulse gener-
ated by the control unit C, selects ’1’ input of MUX to give
input SN sequence to the squarer circuit. At the trailing edge
of the pulse, the output from the 8-bit register is selected,

which gives the approximate square root value that needs to
be refined further.

Error Detection Block

This is implemented using a squarer circuit, absolute sub-
tractor unit and a 2-bit register as shown in Fig. 12. The
squaring operation is performed using a 5-bit shift register
as mentioned in Section 5. The output of the squarer and the
estimated square root value is compared using an absolute
subtractor. The output of absolute subtractor is stored in a
2-bit register, say, D(D1D0) , to count the number of 1′s . So
register D can store a maximum value of 3 in binary. If D1
bit is 1, then D contains a minimum value of 2, thus the
obtained guess value needs to be refined further and this is
accomplished when D1 bit of D register is 1. If D1 bit of
register D is 0, it indicates the processing is complete and
the guess value is obtained as output value. At the beginning
of every iteration the register D is cleared using a control
signal IT generated from the control unit C designed for
this circuit. The circuit operation is stopped once it is found
that D1 = 0 at the end of an iteration by disabling the LFSR
through enable of the control signal, i.e, DI = 1 . If D1 = 1 ,
the error persists and hence carried over to the Error Cor-
rection Block.

Error Correction Block

The error correction block consists of an adder, a division
block and an 8-bit register. The division circuit is imple-
mented using the CORDIV block. One of the two inputs
of CORDIV block comes from the input SN sequence and
another one from the last iteration. The output of CORDIV
block is given to one of the input of the MUX to produce the
required square root value SN . The obtained square root is
stored in the binary format in an 8-bit register which can be
used in next iteration for more accurate computation.

It has been found that the result of the square root value
converges to its desired value in two iterations in the major-
ity of the cases. This fact has been utilized and the circuit
is implemented using a single 8-bit register. In the case of a
single 8-bit register output stochastic number is not updated
during the second iteration. This is controlled using the IS
control signal that is generated from the control unit C.

However, if higher accuracy or multiple iterations are
required, another 8-bit register R1 can be used in conjunc-
tion with 8-bit register R that is connected to the output of
the multiplexer. The output of R is connected to the register
R1 which is used along a 8 bit comparator to generate the
stochastic number for the next iteration. The output of the
register R1 is given to the register R at the beginning of the

SN Computer Science (2023) 4:99 Page 7 of 14 99

SN Computer Science

next iteration using a control signal IT generated from the
control circuit C as shown in Fig. 12. The circuit shows
faster convergence and accurately tracks the actual square
root value as shown in Fig.13.

Experimental Results and Analysis

In the proposed work, structure of some of the basic stochas-
tic circuit components are modified and also a stochastic

Fig. 12 Proposed square root
circuit

Algorithm 1 Calculation of square root of a stochastic number

Input: X//The 256 bit stochastic number generated by comparing 8 bit input
binary number with 8 bit LFSR

Output: R //the square root of the stochastic number
Initialisation : q = X;

1: r = q << 5 //Left shift 5 times to uncorrelate the given SN sequence
2: s = q ∗ r //Bit wise multiplication to get square of the number
3: t =| q − s | //Bitwise comparison to check the error
4: if (t >= 2) //if error exist need to iterate to get the exact value

q = (q/2) +X/(2 ∗ q) //q is the approximate square root value then
5: Go to Step 1
6: end if
7: R=q
8: return R

 SN Computer Science (2023) 4:9999 Page 8 of 14

SN Computer Science

square root circuit has been proposed. While designing the
squarer circuit we determined experimentally the number
of isolators required to uncorrelate the given sequence.
Referring to Fig. 7, the light blue line corresponding to
N(delay) = 5 has the lowest absolute error. For inputs rang-
ing from 0 to 0.31, the SN sequences are completely uncor-
related. From 0.31 to 0.88, though the input SN sequences
could not be completely correlated, the absolute error lies

within 0.01, indicating the numbers are almost uncorrelated.
Reducing the number of isolators thereby to uncorrelate a
given stochastic sequence resulted in a significant reduc-
tion of hardware complexity. All the circuits are synthesized
using Xilinx Spartan 6 xc6slx4 family of FPGA.

In order to escalate the accuracy of scaled addition and
subtraction, modified adder and subtractor have been pro-
posed. Fig. 10 shows the addition operation of the proposed

Table 1 Comparison of accuracies of the proposed method with [3, 4]

SL# Input Desired output Toral et al. Deviation Mitra et al.
(256- bit)

Deviation Proposed Deviation Improvement
w.r.t [3] (in %)

Improvement
w.r.t [4] (in
%)

1 0.1 0.316 0.492 0.176 0.289 0.027 0.313 0.004 97.881 86.277
2 0.2 0.447 0.508 0.061 0.410 0.037 0.446 0.001 98.558 97.643
3 0.3 0.548 0.551 0.003 0.563 0.015 0.545 0.003 6.601 80.669
4 0.4 0.632 0.621 0.011 0.602 0.031 0.631 0.001 89.152 96.010
5 0.5 0.707 0.699 0.008 0.688 0.020 0.704 0.003 64.923 85.889
6 0.6 0.775 0.762 0.013 0.789 0.014 0.773 0.002 88.300 89.585
7 0.7 0.837 0.828 0.009 0.797 0.040 0.836 0.000 94.528 98.826
8 0.8 0.894 0.898 0.004 0.914 0.020 0.893 0.002 56.463 91.107
9 0.9 0.949 0.945 0.003 0.922 0.027 0.948 0.001 75.661 96.940
10 1 1.000 0.996 0.004 0.988 0.012 0.998 0.002 50.000 83.334

Table 2 Hardware comparison
of the proposed method with the
method of [3, 4]

Quantity Number present Toral et al. Mitra et al. Proposed Method

Used % used Used % used Used % used

Slice registers 4800 45 0.94 17 0.35 17 0.35
Slice LUT’s 2400 76 3.17 33 1.38 31 1.29
Used as Logic 2400 75 3.13 – – 32 1.33
Occupied Slices 600 28 4.67 – – 12 2.00
LUT-FF pair 76 35 46.05 – – 14 18.42
Bonded IOB 102 45 44.12 27 26.47 19 18.6

Fig. 13 Accuracy comparison
of the proposed square root
circuit, [3], and [4]

SN Computer Science (2023) 4:99 Page 9 of 14 99

SN Computer Science

Fig. 14 Output images of Conventional and Stochastic implementation of Nick’s algorithm on Bickley Diary dataset; a original images; b
ground truths; c Conventional; d our method

 SN Computer Science (2023) 4:9999 Page 10 of 14

SN Computer Science

Fig. 15 Output images of Monk Cuper Set (MCS); a original images; b ground truths; c Conventional; d Our method

Fig. 16 Stochastic implementa-
tion Nick’s algorithm

SN Computer Science (2023) 4:99 Page 11 of 14 99

SN Computer Science

circuit which reveals much closer approximation to the exact
calculation for a 256-bit input sequence compared to the
state-of-the-art method [5].

Implementation of the square root circuit using the modified
stochastic elements resulted in a more accurate computation of
the square root value as shown in Table 1 compared to [3] and [4].
The advantage is that it is accurate throughout the entire range of
inputs as shown in Fig. 13. The circuit shows an average improve-
ment of 70.2 percent compared to [3] and 90.6 percent compared
to [4] (fixed-bitstream length approach). The proposed circuit
also shows faster convergence of the square root value compared
to [3]. Also, the hardware utilization of the proposed circuit is less
compared to [3] and is comparable with [4] as shown in Table 2.
Figure 13 shows the comparison of accuracy of the proposed
square root circuit and the circuit of [4] (with variable-bitstream
length approach) and [3], which depicts that the proposed circuit
is a better choice where accuracy is a concern.

Case Study: Nick’s Binarization on Noisy Document
Dataset

Stochastic computing is recently used in many image pro-
cessing applications due to its inherent robustness towards

noise. Many attempts can be seen in the literature [30–33].
In Nick, the threshold value is computed using the mean
u(x, y) and the variance of the pixel intensity values in a
W ×W sized window centered on (x, y) and is given as;

The square root in Eq. 14 is calculated using the proposed
square root circuit and the results are evaluated on two dif-
ferent standard binarization datasets: Bickley Diary dataset
and Monk Cuper Set (MCS) [34] for validation. The stochas-
tic architecture of the Nick’s method is shown in Fig. 16.

Using several statistical tests and hardware usage metrics,
we compare the experimental results of the conventional
local binarization approach and the proposed approach. No
image enhancing techniques such as noise removal, contrast
enhancement, etc. were used in this study. We have cho-
sen 14 different measures [35] namely; Precision, Recall,
F-measure, Sensitivity, Specificity, BCR (Balanced classi-
fication rate), AUC (Area Under Curve), BER (Balanced
error rate), SFmeasure (F-measure based on sensitivity and
specificity), Accuracy, GAccuracy (Geometric mean of sen-
sitivity and specificity), pF-Measure (pseudo F-Measure),

(14)T(x, y) = u(x, y) + k
√
variance + u2(x, y).

Fig. 17 Average performance metrics calculated on some selected images of Bickley Diary dataset for conventional and stochastic implementa-
tion of Nick’s algorithm

Fig. 18 Average Performance metrics calculated on all images of Monk Cuper Set (MCS) for conventional and stochastic implementation of
Nick’s algorithm

 SN Computer Science (2023) 4:9999 Page 12 of 14

SN Computer Science

Ta
bl

e
3

 D
iff

er
en

t p
er

fo
rm

an
ce

 m
et

ric
s c

al
cu

la
te

d
(B

ic
kl

ey
 D

ia
ry

 d
at

as
et

) f
or

 c
on

ve
nt

io
na

l a
nd

 st
oc

ha
sti

c
im

pl
em

en
ta

tio
n

of
 N

ic
k’

s a
lg

or
ith

m
 a

t k
=
0
.1

SL
#

Pr
ec

is
io

n
Re

ca
ll

F-
m

ea
su

re
 (%

)
Se

ns
iti

vi
ty

Sp
ec

ifi
ci

ty
B

C
R

B
ER

 (%
)

F-
m

ea
su

re
 o

f
se

ns
/s

pe
c

(%
)

G
eo

m
et

ric

A
cc

ur
ac

y
pF

M
ea

su
re

 (%
)

N
R

M
PS

N
R

D
R

D
M

PM
 (x

10
00

)

C
on

ve
nt

io
na

l
Im

ag
e#

1
0.

30
6

0.
58

9
40

.3
01

0.
58

9
0.

82
2

0.
70

5
29

.4
63

68
.6

14
0.

69
6

40
.0

72
0.

29
5

6.
87

0
27

.9
78

10
0.

29
4

Im
ag

e#
2

0.
35

3
0.

61
3

44
.7

57
0.

61
3

0.
84

5
0.

72
9

27
.1

22
71

.0
26

0.
71

9
44

.6
52

0.
27

1
7.

37
1

25
.3

82
62

.3
47

Im
ag

e#
3

0.
33

0
0.

55
7

41
.4

34
0.

55
7

0.
85

7
0.

70
7

29
.3

02
67

.5
22

0.
69

1
41

.2
02

0.
29

3
7.

52
4

26
.1

73
88

.2
20

Im
ag

e#
4

0.
29

3
0.

61
6

39
.7

07
0.

61
6

0.
79

7
0.

70
6

29
.3

75
69

.4
60

0.
70

0
39

.4
62

0.
29

4
6.

48
1

32
.7

26
79

.0
55

Im
ag

e#
5

0.
36

1
0.

59
2

44
.8

36
0.

59
2

0.
86

0
0.

72
6

27
.3

65
70

.1
58

0.
71

4
44

.6
18

0.
27

4
7.

67
0

24
.9

09
96

.9
88

Im
ag

e#
6

0.
40

3
0.

55
8

46
.8

37
0.

55
8

0.
87

4
0.

71
6

28
.3

58
68

.1
59

0.
69

9
46

.2
88

0.
28

4
7.

76
5

21
.1

97
71

.4
77

Im
ag

e#
7

0.
40

1
0.

66
1

49
.9

20
0.

66
1

0.
84

5
0.

75
3

24
.6

79
74

.2
02

0.
74

8
49

.6
66

0.
24

7
7.

45
0

22
.1

52
55

.2
61

St
oc

ha
sti

c
Im

ag
e#

1
0.

82
1

0.
60

0
69

.3
18

0.
60

0
0.

98
3

0.
79

1
20

.8
79

74
.4

96
0.

76
8

74
.6

48
0.

20
9

12
.0

35
7.

48
1

20
.3

31
Im

ag
e#

2
0.

82
1

0.
58

6
68

.3
62

0.
58

6
0.

98
2

0.
78

4
21

.5
96

73
.3

86
0.

75
9

74
.9

88
0.

21
6

11
.8

26
8.

30
0

18
.5

90
Im

ag
e#

3
0.

75
5

0.
46

2
57

.3
32

0.
46

2
0.

98
1

0.
72

2
27

.8
38

62
.8

39
0.

67
3

65
.3

48
0.

27
8

11
.1

21
10

.2
94

20
.0

15
Im

ag
e#

4
0.

78
9

0.
59

8
68

.0
49

0.
59

8
0.

97
8

0.
78

8
21

.1
77

74
.2

50
0.

76
5

74
.7

35
0.

21
2

11
.7

01
8.

63
7

17
.9

36
Im

ag
e#

5
0.

85
9

0.
55

3
67

.2
86

0.
55

3
0.

98
8

0.
77

1
22

.9
47

70
.9

21
0.

73
9

75
.9

51
0.

22
9

11
.9

99
8.

13
4

9.
49

2
Im

ag
e#

6
0.

82
5

0.
57

6
67

.8
16

0.
57

6
0.

98
1

0.
77

9
22

.1
48

72
.5

61
0.

75
2

74
.1

05
0.

22
1

11
.4

21
8.

53
0

17
.1

19
Im

ag
e#

7
0.

87
1

0.
73

2
79

.5
24

0.
73

2
0.

98
3

0.
85

7
14

.2
67

83
.8

91
0.

84
8

84
.6

50
0.

14
3

12
.9

18
5.

93
5

14
.6

14

Ta
bl

e
4

 D
iff

er
en

t p
er

fo
rm

an
ce

 m
et

ric
s c

al
cu

la
te

d
(B

ic
kl

ey
 D

ia
ry

 d
at

as
et

) f
or

 c
on

ve
nt

io
na

l a
nd

 st
oc

ha
sti

c
im

pl
em

en
ta

tio
n

of
 N

ic
k’

s a
lg

or
ith

m
 a

t k
=
0
.2

SL
#

Pr
ec

is
io

n
Re

ca
ll

F-
m

ea
su

re
 (%

)
Se

ns
iti

vi
ty

Sp
ec

ifi
ci

ty
B

C
R

B
ER

 (%
)

F-
m

ea
su

re
 o

f
se

ns
/s

pe
c

(%
)

G
eo

m
et

ric

A
cc

ur
ac

y
pF

M
ea

su
re

 (%
)

N
R

M
PS

N
R

D
R

D
M

PM
 (

x1
00

0)

C
on

ve
nt

io
na

l
Im

ag
e#

1
0.

42
5

0.
40

7
41

.5
52

0.
40

7
0.

92
6

0.
66

7
33

.3
47

56
.5

18
0.

61
4

40
.9

08
0.

33
3

8.
70

3
16

.2
70

50
.6

72
Im

ag
e#

2
0.

50
8

0.
43

4
46

.8
21

0.
43

4
0.

94
2

0.
68

8
31

.1
82

59
.4

63
0.

64
0

46
.6

21
0.

31
2

9.
22

5
14

.6
25

27
.3

28
Im

ag
e#

3
0.

43
7

0.
32

1
37

.0
27

0.
32

1
0.

94
8

0.
63

4
36

.5
57

47
.9

77
0.

55
2

36
.6

81
0.

36
6

9.
11

3
16

.2
78

46
.1

16
Im

ag
e#

4
0.

42
9

0.
48

4
45

.5
07

0.
48

4
0.

91
2

0.
69

8
30

.1
96

63
.2

43
0.

66
4

44
.8

46
0.

30
2

8.
55

6
18

.1
43

34
.0

00
Im

ag
e#

5
0.

48
6

0.
38

4
42

.8
98

0.
38

4
0.

94
6

0.
66

5
33

.5
08

54
.5

97
0.

60
3

42
.6

27
0.

33
5

9.
21

4
15

.7
37

49
.6

33
Im

ag
e#

6
0.

50
9

0.
36

1
42

.2
37

0.
36

1
0.

94
7

0.
65

4
34

.6
04

52
.2

50
0.

58
5

41
.1

77
0.

34
6

8.
85

3
15

.1
94

39
.8

35
Im

ag
e#

7
0.

53
8

0.
54

6
54

.1
91

0.
54

6
0.

92
6

0.
73

6
26

.3
69

68
.7

26
0.

71
1

53
.6

45
0.

26
4

9.
02

5
13

.8
39

29
.3

72
St

oc
ha

sti
c

Im
ag

e#
1

0.
82

1
0.

60
0

69
.3

18
0.

60
0

0.
98

3
0.

79
1

20
.8

79
74

.4
96

0.
76

8
74

.6
48

0.
20

9
12

.0
35

7.
48

1
20

.3
31

Im
ag

e#
2

0.
82

1
0.

58
6

68
.3

62
0.

58
6

0.
98

2
0.

78
4

21
.5

96
73

.3
86

0.
75

9
74

.9
88

0.
21

6
11

.8
26

8.
30

0
18

.5
90

Im
ag

e#
3

0.
75

5
0.

46
2

57
.3

32
0.

46
2

0.
98

1
0.

72
2

27
.8

38
62

.8
39

0.
67

3
65

.3
48

0.
27

8
11

.1
21

10
.2

94
20

.0
15

Im
ag

e#
4

0.
78

9
0.

59
8

68
.0

49
0.

59
8

0.
97

8
0.

78
8

21
.1

77
74

.2
50

0.
76

5
74

.7
35

0.
21

2
11

.7
01

8.
63

7
17

.9
36

Im
ag

e#
5

0.
85

9
0.

55
3

67
.2

86
0.

55
3

0.
98

8
0.

77
1

22
.9

47
70

.9
21

0.
73

9
75

.9
51

0.
22

9
11

.9
99

8.
13

4
9.

49
2

Im
ag

e#
6

0.
82

5
0.

57
6

67
.8

16
0.

57
6

0.
98

1
0.

77
9

22
.1

48
72

.5
61

0.
75

2
74

.1
05

0.
22

1
11

.4
21

8.
53

0
17

.1
19

Im
ag

e#
7

0.
87

1
0.

73
2

79
.5

24
0.

73
2

0.
98

3
0.

85
7

14
.2

67
83

.8
91

0.
84

8
84

.6
50

0.
14

3
12

.9
18

5.
93

5
14

.6
14

SN Computer Science (2023) 4:99 Page 13 of 14 99

SN Computer Science

NRM (Negative rate metric), PSNR (Peak signal-to-noise
ratio), DRD (Distance reciprocal distortion metric), MPM
(Misclassification penalty metric) to compare the results.

We have experimented using two values of k = 0.1 and
0.2. Several metrics are calculated, that denote that the sto-
chastic implementation in Tables 3, 4 and 5 are close to the
ideal values of each. The graphs in Fig. 17a, b show the
average values of the selected metrics of all the images of
Bickley Diary dataset at k = 0.1 and k = 0.2 . It is observed
that all the metrics perform well for k = 0.2 , so the experi-
ment on the Monk Cuper Set (MCS) is done only on k = 0.2 .
In Fig. 18a, b, we have plotted the average values of the
selected metrics of all the images and the standard devia-
tion of the Monk Cuper Set. Some of the sample images of
the Bickley Diary dataset and Monk Cuper Set along with
the ground truth and binarization outcomes are shown in
Figs. 14a–d and 15a–d.

Conclusion

The proposed stochastic square root circuit is used in
this study to stochastically implement Nick’s binariza-
tion method on noisy document images in order to better
handle noise-related issues. We have also tweaked some
logic blocks to improve individual accuracy and reduce the
amount of hardware required. We showed that the perfor-
mance of stochastic Nick is better than that of the current
method. An array of datasets can benefit from the proposed
approach because stochastic computing is able to handle
both the extrinsic and intrinsic noise of an image. The key
to this result is the incorporation of bitwise operations into a
stochastic model, which can then be generalised to produce
an efficient architecture for a wide range of applications.

Declarations

Conflict of Interest There is no conflict of interest with others.

References

 1. Mitra S, Santosh KC, Naskar MK. Niblack binarization on
document images: area efficient, low cost, and noise toler-
ant stochastic architecture. Int J Pattern Recognit Artif Intell.
2021;35(04):2154013. https:// doi. org/ 10. 1142/ S0218 00142 15401
36.

 2. Ypma TJ. Historical development of the Newton-Raphson method.
SIAM Rev. 1995;37(4):531–51. https:// doi. org/ 10. 1137/ 10371 25.

 3. Toral SL, Quero JM, Franquelo LG. Stochastic pulse coded arith-
metic. In: 2000 IEEE International Symposium on Circuits and
Systems (ISCAS), 2000:1:599–6021 . https:// doi. org/ 10. 1109/
ISCAS. 2000. 857166.

 4. Mitra S, Banerjee D, Naskar MK. A low latency stochastic square
root circuit. In: 2021 34th International Conference on VLSI Ta

bl
e

5
 D

iff
er

en
t p

er
fo

rm
an

ce
 m

et
ric

s c
al

cu
la

te
d

(M
on

k
C

up
er

 S
et

 (M
C

S)
) f

or
 fi

rs
t fi

ve
 im

ag
es

 fo
r c

on
ve

nt
io

na
l a

nd
 st

oc
ha

sti
c

im
pl

em
en

ta
tio

n
of

 N
ic

k’
s a

lg
or

ith
m

 a
t k

=
0
.2

SL
#

M
et

ho
d#

Pr
ec

is
io

n
Re

ca
ll

F-
m

ea
su

re
 (%

)
Se

ns
iti

vi
ty

Sp
ec

ifi
ci

ty
B

C
R

B
ER

 (%
)

F-
m

ea
su

re
 o

f
se

ns
/s

pe
c

(%
)

G
eo

m
et

ric

A
cc

ur
ac

y
pF

M
ea

su
re

 (%
)

 N
R

M
PS

N
R

D
R

D
M

PM
 (×

10
00

)

Im
ag

e#
1

C
on

ve
nt

io
na

l
0.

56
5

0.
57

7
57

.0
83

0.
57

7
0.

93
1

0.
75

4
24

.5
96

71
.2

29
0.

73
3

58
.4

93
0.

24
6

9.
35

4
14

.2
76

23
.0

56
St

oc
ha

sti
c

0.
90

3
0.

64
9

75
.5

23
0.

64
9

0.
98

9
0.

81
9

18
.0

92
78

.3
72

0.
80

1
88

.3
07

0.
18

1
12

.4
96

6.
66

6.
00

5
Im

ag
e#

2
C

on
ve

nt
io

na
l

0.
39

5
0.

60
5

47
.7

97
0.

60
5

0.
95

1
0.

77
8

22
.2

02
73

.9
69

0.
75

9
49

.0
01

0.
22

2
11

.7
47

25
.9

62
21

.1
73

St
oc

ha
sti

c
0.

58
4

0.
66

6
62

.2
46

0.
66

6
0.

97
5

0.
82

1
17

.9
49

79
.1

53
0.

80
6

68
.8

47
0.

17
9

13
.8

85
16

.1
72

11
.8

22
Im

ag
e#

3
C

on
ve

nt
io

na
l

0.
58

7
0.

61
1

59
.8

73
0.

61
1

0.
93

3
0.

77
2

22
.8

02
73

.8
49

0.
75

5
63

.4
09

0.
22

8
9.

56
1

18
.8

72
25

.9
46

St
oc

ha
sti

c
0.

84
0.

62
2

71
.4

43
0.

62
2

0.
98

2
0.

80
2

19
.8

47
76

.1
12

0.
78

1
82

.9
99

0.
19

8
11

.7
32

11
.0

63
7.

55
2

Im
ag

e#
4

C
on

ve
nt

io
na

l
0.

54
6

0.
58

1
56

.3
36

0.
58

1
0.

92
7

0.
75

4
24

.5
62

71
.4

68
0.

73
4

58
.7

69
0.

24
6

9.
28

8
19

.3
09

13
.8

3
St

oc
ha

sti
c

0.
82

8
0.

68
6

75
.0

21
0.

68
6

0.
97

9
0.

83
2

16
.7

72
80

.6
59

0.
81

9
84

.1
2

0.
16

8
12

.2
38

9.
49

8
9.

44
6

Im
ag

e#
5

C
on

ve
nt

io
na

l
0.

66
4

0.
56

4
61

.0
11

0.
56

4
0.

91
7

0.
74

1
25

.9
23

69
.8

71
0.

71
9

66
.7

96
0.

25
9

7.
90

4
19

.2
1

33
.8

96
St

oc
ha

sti
c

0.
89

2
0.

61
1

72
.5

19
0.

61
1

0.
97

9
0.

79
5

20
.5

23
75

.2
27

0.
77

3
82

.7
3

0.
20

5
9.

82
8

11
.9

34
18

.5
51

https://doi.org/10.1142/S0218001421540136
https://doi.org/10.1142/S0218001421540136
https://doi.org/10.1137/1037125
https://doi.org/10.1109/ISCAS.2000.857166
https://doi.org/10.1109/ISCAS.2000.857166

 SN Computer Science (2023) 4:9999 Page 14 of 14

SN Computer Science

Design and 2021 20th International Conference on Embedded
Systems (VLSID), 2021; p. 7–12 https:// doi. org/ 10. 1109/ VLSID
51830. 2021. 00006.

 5. Gaines BR. In: Tou, JT. editors. Stochastic computing systems,
Boston: Springer; 1969, p. 37–172. https:// doi. org/ 10. 1007/
978-1- 4899- 5841-9_2.

 6. Poppelbaum, WJ, Afuso C, Esch JW. Stochastic computing ele-
ments and systems. In: Proceedings of the November 14–16, 1967,
Fall Joint Computer Conference. AFIPS ’67 (Fall), ACM, New
York, NY, USA, 1967; pp. 635–644. https:// doi. org/ 10. 1145/
14656 11. 14656 96.

 7. Alaghi A, Hayes JP. Exploiting correlation in stochastic circuit
design. In: 2013 IEEE 31st International Conference on computer
design (ICCD), 2013; p. 39–46. https:// doi. org/ 10. 1109/ ICCD.
2013. 66570 23.

 8. Ting P, Hayes JP. Stochastic logic realization of matrix operations.
In: 2014 17th Euromicro Conference on digital system design,
2014; p. 356–364. https:// doi. org/ 10. 1109/ DSD. 2014. 75.

 9. Chen T, Hayes JP. Design of division circuits for stochastic com-
puting. In: 2016 IEEE Computer Society Annual Symposium
on VLSI (ISVLSI), 2016; p. 116–121. https:// doi. org/ 10. 1109/
ISVLSI. 2016. 48.

 10. Parker KP, McCluskey EJ. Probabilistic treatment of general com-
binational networks. IEEE Trans Comput. 1975;C–24(6):668–70.
https:// doi. org/ 10. 1109/T- C. 1975. 224279.

 11. Ting P, Hayes JP. On the role of sequential circuits in stochastic
computing. In: Proceedings of the on Great Lakes Symposium on
VLSI 2017. GLSVLSI ’17, ACM, New York, NY, USA, 2017; p.
475–478. https:// doi. org/ 10. 1145/ 30604 03. 30604 53.

 12. Alaghi A, Cheng Li, Hayes, J.P.: Stochastic circuits for real-time
image-processing applications. In: 2013 50th ACM/EDAC/IEEE
Design Automation Conference (DAC), 2013; p. 1–6. https:// doi.
org/ 10. 1145/ 24632 09. 24889 01.

 13. Alaghi A, Hayes JP. Survey of stochastic computing. ACM Trans
Embed Comput Syst. 2013;12(2s):92–19219. https:// doi. org/ 10.
1145/ 24657 87. 24657 94.

 14. Ting P, Hayes JP. Eliminating a hidden error source in stochastic
circuits. In: 2017 IEEE International Symposium on defect and
fault tolerance in VLSI and nanotechnology systems (DFT), 2017;
p. 1–6. https:// doi. org/ 10. 1109/ DFT. 2017. 82444 36.

 15. Lee VT, Alaghi A, Hayes JP, Sathe V, Ceze L. Energy-efficient
hybrid stochastic-binary neural networks for near-sensor comput-
ing. In: Design, Automation Test in Europe Conference Exhibition
(DATE), 2017; p. 213–18 https:// doi. org/ 10. 23919/ DATE. 2017.
79269 51

 16. Ambrosio V, Molica Bisci G, Repovš D. Nonlinear equations
involving the square root of the Laplacian. Discrete Contin Dyn
Syst S. 2019;12(2):151–70. https:// doi. org/ 10. 3934/ dcdss. 20190
11.

 17. Kumar V, Gupta P. Importance of statistical measures in digital
image processing. Int J Emerg Technol Adv Eng. 2012;2(8):56-62.

 18. Yang P, Song W, Zhao X, Zheng R, Qingge L. An improved
Otsu threshold segmentation algorithm. Int J Comput Sci Eng.
2020;22(1):146–53.

 19. Liu W, Hu E-W, Su B, Wang J. Using machine learning techniques
for dsp software performance prediction at source code level. Con-
nect Sci. 2021;33(1):26–41.

 20. Chouder R, Benhamidouche N. New exact solutions to nonlinear
diffusion equation that occurs in image processing. Int J Comput
Sci Math. 2019;10(4):364–74.

 21. Chen K, Wang G, Chen J, Yuan S, Wei G. Impact of climate
changes on manufacturing: Hodrick-Prescott filtering and a

partial least squares regression model. Int J Comput Sci Eng.
2020;22(2–3):211–20.

 22. Liu A, Li P, Deng X, Ren L. A sigmoid attractiveness based
improved firefly algorithm and its applications in iir filter design.
Connect Sci. 2021;33(1):1–25.

 23. Ren H, Hoang LB, Chen H-C, Wei BWY. Design of a 16-bit cmos
divider/square-root circuit. In: Proceedings of 27th Asilomar Con-
ference on Signals, Systems and Computers, 1993; p. 807–8111.
https:// doi. org/ 10. 1109/ ACSSC. 1993. 342633.

 24. Kabuo H, Taniguchi T, Miyoshi A, Yamashita H, Urano M, Eda-
matsu H, Kuninobu S. Accurate rounding scheme for the Newton-
Raphson method using redundant binary representation. IEEE
Trans Comput. 1994;43(1):43–51.

 25. Verma K. On the centroidal mean newton’s method for simple
and multiple roots of nonlinear equations. Int J Comput Sci Math.
2016;7(2):126–43.

 26. Haridas SG, Ziavras SG. Fpga implementation of a Cholesky
algorithm for a shared-memory multiprocessor architecture. Par-
allel Algorithms Appl. 2004;19(4):211–26.

 27. Vázquez Á, Bruguera JD. Iterative algorithm and architecture for
exponential, logarithm, powering, and root extraction. IEEE Trans
Comput. 2012;62(9):1721–31.

 28. Singh A. An efficient fifth-order iterative scheme for solving a
system of nonlinear equations and pde. Int J Comput Sci Math.
2020;11(4):316–26.

 29. Wu D, San Miguel J. In-stream stochastic division and square root
via correlation. In: 2019 56th ACM/IEEE Design Automation
Conference (DAC), IEEE, 2019; p. 1–6.

 30. Li P, Lilja DJ. Using stochastic computing to implement digital
image processing algorithms. In: Proceedings of the 2011 IEEE
29th International Conference on computer design. ICCD ’11,
IEEE Computer Society, USA, 2011; p. 154–161. https:// doi. org/
10. 1109/ ICCD. 2011. 60813 91.

 31. Xu W, Xie G, Wang S, Lin Z, Han J, Zhang Y. A stochastic com-
puting architecture for local contrast and mean image thresholding
algorithm. Int J Circ Theory Appl. 2022. https:// doi. org/ 10. 1002/
cta. 3320.

 32. Lee VT, Alaghi A, Pamula R, Sathe VS, Ceze L, Oskin M. Archi-
tecture considerations for stochastic computing accelerators. IEEE
Trans Comput Aided Des Integr Circ Syst. 2018;37(11):2277–89.
https:// doi. org/ 10. 1109/ TCAD. 2018. 28583 38.

 33. Baker TJ, Sun Y, Hayes JP. Benefits of stochastic computing in
hearing aid filterbank design. In: 2021 IEEE Biomedical Circuits
and Systems Conference (BioCAS), 2021; p. 1–5. https:// doi. org/
10. 1109/ BioCA S49922. 2021. 96450 21.

 34. He S, Schomaker L, Shi Z. Monk Cuper Set (MCS) for bench-
marking historical document image binarization. https:// doi. org/
10. 5281/ zenodo. 47678 09.

 35. Moghaddam RF. Objective evaluation of binarization methods for
document images. 2013. https:// in. mathw orks. com/ matla bcent ral/
filee xchan ge/ 27652- objec tive- evalu ation- of- binar izati on- metho
ds- for- docum ent- images. Accessed 31 Mar 2022.

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of
such publishing agreement and applicable law.

https://doi.org/10.1109/VLSID51830.2021.00006
https://doi.org/10.1109/VLSID51830.2021.00006
https://doi.org/10.1007/978-1-4899-5841-9_2
https://doi.org/10.1007/978-1-4899-5841-9_2
https://doi.org/10.1145/1465611.1465696
https://doi.org/10.1145/1465611.1465696
https://doi.org/10.1109/ICCD.2013.6657023
https://doi.org/10.1109/ICCD.2013.6657023
https://doi.org/10.1109/DSD.2014.75
https://doi.org/10.1109/ISVLSI.2016.48
https://doi.org/10.1109/ISVLSI.2016.48
https://doi.org/10.1109/T-C.1975.224279
https://doi.org/10.1145/3060403.3060453
https://doi.org/10.1145/2463209.2488901
https://doi.org/10.1145/2463209.2488901
https://doi.org/10.1145/2465787.2465794
https://doi.org/10.1145/2465787.2465794
https://doi.org/10.1109/DFT.2017.8244436
https://doi.org/10.23919/DATE.2017.7926951
https://doi.org/10.23919/DATE.2017.7926951
https://doi.org/10.3934/dcdss.2019011
https://doi.org/10.3934/dcdss.2019011
https://doi.org/10.1109/ACSSC.1993.342633
https://doi.org/10.1109/ICCD.2011.6081391
https://doi.org/10.1109/ICCD.2011.6081391
https://doi.org/10.1002/cta.3320
https://doi.org/10.1002/cta.3320
https://doi.org/10.1109/TCAD.2018.2858338
https://doi.org/10.1109/BioCAS49922.2021.9645021
https://doi.org/10.1109/BioCAS49922.2021.9645021
https://doi.org/10.5281/zenodo.4767809
https://doi.org/10.5281/zenodo.4767809
https://in.mathworks.com/matlabcentral/fileexchange/27652-objective-evaluation-of-binarization-methods-for-document-images
https://in.mathworks.com/matlabcentral/fileexchange/27652-objective-evaluation-of-binarization-methods-for-document-images
https://in.mathworks.com/matlabcentral/fileexchange/27652-objective-evaluation-of-binarization-methods-for-document-images

	Development of Noise Tolerant Document Image Binarization Technique Employing an Accurate Square Root Circuit
	Abstract
	Introduction
	 Stochastic Logic Units (SLU)
	Absolute Subtraction
	Stochastic Mean Circuit (SMC)
	Stochastic Number Storage
	Stochastic Division Circuit
	Multiplication and Squaring Operation
	Scaled Addition and Subtraction
	Adder Unit
	Subtractor Unit

	Square Root Circuit
	Proposed Square Root Circuit
	Error Detection Block
	Error Correction Block

	Experimental Results and Analysis
	Case Study: Nick’s Binarization on Noisy Document Dataset

	Conclusion
	References

