
Vol.:(0123456789)

SN Computer Science (2023) 4:47
https://doi.org/10.1007/s42979-022-01469-3

SN Computer Science

ORIGINAL RESEARCH

Optimization Strategies for the k‑Nearest Neighbor Classifier

Hermann Yepdjio Nkouanga1 · Szilárd Vajda2

Received: 15 March 2022 / Accepted: 21 October 2022 / Published online: 10 November 2022
© The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2022

Abstract
In this paper, we propose six (6) fast and efficient classification schemes for different type of images (digits, objects, char-
acters) using the classical k-nearest neighbor (kNN) classifier. It is common knowledge that kNN is one of the most popular
supervised classification algorithm. However, for large data collections, the classification is time consuming because of the
distance calculations which increase with the number of training samples and the data dimensionality. To reduce the number
of training samples, we propose two techniques that employ the notions of convex envelope and stratified sampling. For the
convex envelope, only the data points building the convex hull will serve as designated prototypes (training samples), thus
reducing considerably the computational burden. To reduce the dimensionality of the data, we considered auto-encoder
networks and vector embedding. The former is learning a way to compact data representation using statistical machine learn-
ing and the latter is changing the data itself emphasizing how each data sample is organized in space compared to others.
The experiments on multiple benchmark data collections such as MNIST, Fashion-MNIST and Lampung characters show
a considerable classification speed up (up to 32×) with no significant drop in accuracy when compared to results obtained
using the complete data.

Keywords k-Nearest neighbor · Convex envelope · Stratified sampling · Autoencoder network · Vector embedding · Digit
recognition · Character recognition · Classification

Introduction

Classification is an important goal in machine learning.
Given a pattern (an image, an object, a (raw) measurement,
etc.) a classification algorithm should be able to determine
in which group (class) that pattern belongs. For that reason,

current algorithms (except [1, 2]) look for similarities to
identify relationships between the patterns.

Mainstream machine learning (ML) uses different feature
representations and calculates different distance metrics to
distinguish the class labels for the analyzed patterns. Meth-
ods such as k-Nearest Neighbor (kNN), Self Organizing Map
(SOM), Growing Neural Gas (GNG), Neural networks (NN),
Dynamic Time Warping (DTW), k-means clustering, etc.
rely on distance calculations to make classification decisions
or to back-propagate error in the system in case of neural
networks [3]. Using this strategy, one pattern is compared
to another using only feature based local comparisons. The
distance metrics often used include Euclidean, Hamming,
City block, Minkowski, Mahalanobis, Chebychev, Manhat-
tan, Cosine similarity, Jaccard similarity or Spearman coef-
ficient [4].

Though indisputably efficient, the methods that rely on
distance calculations are very time costly. The higher the
number of data points and/or their dimensionality, the higher
the amount of time is needed to calculate the similarities.
This is due to the mathematical complexity of distance met-
rics used in the classification process. If there is no time

Hermann Yepdjio Nkouanga and Szilárd Vajda contributed equally
to this work.

This article is part of the topical collection “Advances in Applied
Image Processing and Pattern Recognition” guest edited by K C
Santosh.

 * Hermann Yepdjio Nkouanga
 hermann@pdx.edu

 * Szilárd Vajda
 szilard.vajda@cwu.edu

1 Department of Computer Science, Portland State University,
1825 SW Broadway, Portland 97201, OR, USA

2 Department of Computer Science, Central Washington
University, 400 University Way, Ellensburg 98926, WA, USA

http://orcid.org/0000-0003-2861-4891
http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-022-01469-3&domain=pdf

 SN Computer Science (2023) 4:4747 Page 2 of 9

SN Computer Science

constraint, one could calculate all the distances and get the
best possible results. However, the run time complexity is
primordial in modern real-time applications such as postal
automation [5, 6], face matching [7], road sign recognition
[8], etc.

To improve the run time complexity of kNN classifica-
tion, we propose several solutions to either reduce the size of
the training dataset (class prototypes selection) or to dimin-
ish the data complexity (dimensionality) using different fea-
ture space transformations. For the former, we reduce the
number of samples while keeping the data dimensionality
intact. For the latter, we keep all the samples but represent
them in a lower dimensional feature space.

For prototypes selection, we propose the concept of con-
vex envelope. However, the detection of the convex hull
in large data sets considering high dimensional spaces is
bounded by the time limits and memory limits [9]. To avoid
such limitations, the data points are reduced to lower dimen-
sions using either Principal Component Analysis (PCA) or
Feature Agglomeration (FA). Another technique we used for
prototypes selection is called stratified sampling [10]. We
considered it due to its success in the field of big data [11].

For the dimensionality reduction, we propose an auto-
encoder network able to map a high dimensional space into
a low dimensional one by learning the transformations inside
the model [12]. We also considered a vector embedding
technique which transforms the original feature space into a
spatial representation.

The novelty of this paper can be summarized as follows:
(i) reduction of the original training set by using elements
only from the convex envelope to serve as class prototypes,
(ii) solving the convex envelop problem in high dimensional
space by reducing the dimensionality of the original data,
(iii) the usage of the auto-encoder networks and vector
embedding to reduce the data dimensionality and (iv) the
combination of the encoder and the vector embedding to
produce a new feature representation for the data.

The remainder of the paper is organized as follows.
“Related work” discusses the kNN paradigm and the dif-
ferent attempts to reduce the time complexity in this clas-
sification scheme. In “Method” we introduce the prototype
selection based on the convex hull, the encoder network,
the stratified sampling and the vector embedding. “Experi-
ments” describes the data collections we used for the experi-
ments and the obtained results. Finally, “Conclusion” sum-
marizes the methods, the results and possible future works.

Related Work

Unequivocally, the k-nearest neighbor (kNN) can be con-
sidered the most used and the most studied supervised
classification algorithm. Originally, proposed by Fix and

Hodges [13], the kNN is a method to classify unknown
patterns based on distance calculations to existing, —
already identified patterns, by inheriting the label of the
pattern which resides the closest considering different dis-
tance metrics. Besides classification, the method can also
be used for regression.

Formally, the problem can be stated as follows. Let
P = {p1, p2,… , pn} be a template or reference set contain-
ing n number of points taking values in Rd , where d denotes
the dimension of the data space. Let Q = {q1, q2,… , qm}
be a query set containing m different data points with the
same dimension. The k-nearest neighbor problem consists
of searching for each point qi ∈ Q in the template set P
given a specific distance metric.

Despite the rather limited and simplistic non-parametric
strategy, kNN was used with success in many applications
[14, 15]. Torralba et al. [16] argue that if the size of the
data is adequate and the object classes to be recognized
are rich there is no need for complex classification models.
A kNN type classifier can perform in the same range as
many, nowadays, popular parametric methods.

However, it is common knowledge that the kNN is lim-
ited by the size of the data, the dimensionality of the data
and last but not least the complexity of the distance meas-
ure. A large amount of data, an increased data dimension-
ality and a complex distance measure can lead to tedious
and time-consuming calculations. To mitigate this, several
solutions focusing on reducing the computational com-
plexity of the kNN algorithm have been proposed in the
literature over the years.

Some methods use graph-based solutions to approxi-
mate the nearest neighbor [17]. Some others use a data
subsampling strategy to reduce the number of distance
calculations by reducing the number of data points [18–20]
considering different selection mechanisms meant to quan-
tify the quality of the selected reference points. In [21] the
authors propose a dimensionality reduction on the origi-
nal data to reduce the number of calculations. In another
attempt [22] the authors consider some preliminary clus-
tering followed by a selection process. Garcia et al. [23]
focus more on the implementation of the method by utiliz-
ing parallel calculation in the GPU.

Recently, an extremely fast implementation of kNN called
FAISS [24] was released. This implementation is based on
building an index in the memory on which the similarity
search operates. Despite considering this method in our pre-
vious study [25], we currently do not report any results using
this method as we solely focus our attention on the kNN
implementation provided by the Scikit-learn library [24].

To avoid hardware-dependent solutions and those that
reduce the quality of the information, our methods are simi-
lar to those that do not alter the distance metric and act on
the original feature space or carefully selected features. Such

SN Computer Science (2023) 4:47 Page 3 of 9 47

SN Computer Science

solutions allow keeping the information intact while speed-
ing up the overall kNN classification process.

Method

Since we want to utilize the kNN as our classifier, the size
and dimension of the data are critical. For that reason,
instead of using all samples ∀pi ∈ P, i = 1, n as prototypes,
the aim is to select only a limited number pk ∈ P, k = 1, k
where k is the number (k ≪ n) of those capable to represent
each classes or to select a new feature space of dimension l
such as l ≪ d.

Convex Hull

To select the prototypes we combined two methods. For
selection, we would like to use the concept of convex set,
more specifically the notion of convex hull. The convex hull
or convex envelope is the smallest convex set that contains
it. Finding the convex hull of a finite set of 2D points or
other low-dimensional Euclidean spaces is a fundamental
algorithm in computational geometry.

Usually, for low-dimensional spaces, the complexity of
the algorithm is O(nlogn) and can be obtained by Graham’s
scan, Chan’s algorithm or the Kirkpatrick-Seidel algorithm
[9].

An intuitive explanation of our method can be seen in
Fig. 1. The elements (data points) constituting the convex
hull represent all the points inside the convex envelope, thus
we can substitute each class only by those points which build

this particular set. A similar concept is applied to the Sup-
port Vector Machines (SVM) [26] when the support vec-
tors are identified. In 2D the solution for the convex hull is
straightforward, but in higher dimensions, the n-dimensional
convex envelope also inherits the same properties. There-
fore, the process is limited to calculating the convex set for
each class separately.

As mentioned earlier, in high dimensional spaces the con-
vex hull algorithm implementations are bounded by time
and memory constraints. To overcome them, we decided
to reduce the dimensionality of the data points using either
Principal Component Analysis (PCA) or Feature Agglom-
eration (FA). PCA is a technique that reduces dimensionality
by discarding those features that contain the same informa-
tion. The reduced dimensions are linear combinations of the
original variables and they are independent of each other. FA
is an unsupervised technique that uses hierarchical clustering
to reduce the dimensionality of the data.

Note: We also experimented with an encoder network
to reduce the dimensionality of the data. Although such
reduction was used with success in comparable scenarios
[27], though admittedly using way more dimensions, the
data was not separable in such low dimensions. Therefore,
we were not able to identify the convex hulls for the differ-
ent classes. The representation of the MNIST digits in a 2D
space, using an encoder network can be observed in Fig. 2.
It is to be observed the considerable overlap among the dif-
ferent classes.

Once the convex envelope for each class is defined,
those samples that are part of the envelope are identified
and designated as the new class prototypes. However, the

Fig. 1 An intuitive explanation
for the convex hull-based clas-
sification. The elements on the
borders can also represent the
elements inside the convex hull

 SN Computer Science (2023) 4:4747 Page 4 of 9

SN Computer Science

classification is not happening in this reduced space but in
the original space of the data. This mapping to the original
space is useful as in this space the data representation is
complete. Using the reduced dimensionality space (we set
it to six (6) in our experiments based on trial runs) for the
classification would significantly impact the results because
of the important information loss.

Dissimilarity space embedding

Another way to transform the original feature space is the
dissimilarity space embedding [2]. This generic scheme
allows the transformation of all kinds of feature spaces into a
new representation that emphasizes not the data point itself,
but its spatial relationship to other data points by introduc-
ing the diss(⋅, ⋅) metric. The dissimilarity metric (diss(x, y))
can be perceived as a distance measure between the data
point in question (x) and the prototype (y). The idea behind
this representation is completely based on the dissimilarity
measure diss.

Intuitively, the idea of the dissimilarity is to trans-
form an original representation into an n-dimensional
vector, where each element in the vector is a distance
of the sample in question to some prototype Pi . The
new representation for a certain point x will look like
Vx = (diss(x, p1), diss(x, p2),… , diss(x, pn)) . The p1 , p2 , ...,

pn are the prototypes (class representatives) and n controls
the number of the prototypes and implicitly the dimensional-
ity of the new feature space.

This dissimilarity space embedding will allow us to meas-
ure,- –instead of dealing with raw features, how each data
point defines itself compared to its neighbors. However,
despite the fact that this transformation is very efficient, the
question is how those prototypes (see p1 , p2 , ..., pn) should
be selected. For our experiments, we considered a simple
selection technique, namely the k-means clustering. Even
though the method is not producing the best results, it has
several advantages. First, it is an unsupervised technique,
therefore it can be applied without any apriori knowledge or
human involvement. Second, the parameter k (see the num-
ber of clusters) allows us to have full control over the dimen-
sionality. For our purpose, we considered for each class the
same amount of clusters, and the prototypes for each class
(see pi, i = 1, k) were assigned as the class centroids of the
clusters.

Other Strategies

To reduce the dimensionality, we involved an auto-encoder
type of network [12]. Such a neural network instead of
applying some mathematically defined formula to transform
the data learns the transformation itself in an unsupervised

Fig. 2 A 2D representation of the MNIST test collection considering an encoder network to reduce the 784 features to 2. The different colors
represent the different digit classes

SN Computer Science (2023) 4:47 Page 5 of 9 47

SN Computer Science

manner. This efficient encoding process is governed by opti-
mizing the reconstruction performances of the original input
at the output. These models are capable of learning a cer-
tain encoding for some data collection, —usually involving
dimensionality reduction, by training the model to ignore
insignificant data.

For data subsampling, —besides the convex hull method,
we borrowed from computational statistics the concept of
stratified sampling which can reduce the variance when a
Monte Carlo method is used to estimate statistics from a
certain number of data points. The advantage of this method
is that we can fully control the amount of data the method
can retain.

Experiments

First, we present briefly the datasets used in these experi-
ments followed by the achieved results. To be able to judge
the quality of the methods, we report our accuracy and speed
performance compared to the classical k-nearest neighbor
utilizing brute force, –which compares each query example
with all the reference samples [23].

Data Collections

MNIST [28] is a well-known benchmark dataset1 contain-
ing separated digits assigned to 10 different classes. The
images, —coming mainly from US census forms, are size
normalized and centered to 28 ×28 gray-level images. The
data set contains 60, 000 and 10, 000 images for training and
testing, respectively.

Fashion-MNIST [29] is a newly introduced benchmark
dataset2 comprising ten different types of fashion products.
The original images were converted to 28x28 gray-scale
images. The size of the training and the test set is similar
to MNIST. 60, 000 images are considered for training and
10, 000 images are used for testing.

The Lampung characters used in these experiments were
extracted from a multi-writer handwritten collection pro-
duced by 82 high school students from Bandar Lampung,
Indonesia. The Lampung texts are created as transcriptions
of some fairy tales. One exemplary document snippet can
be seen in Fig. 3. 23, 447 and 7853 characters were col-
lected for training and testing respectively. Altogether, 18
different character classes were identified. Each character is
represented by a centered and normalized 32 ×32 gray-scale
image. More details about this publicly available data are
to be found in [30, 31]. Is to be noted, that for convenience
purposes the original images were resized to 28 ×28 keeping
the aspect ratio intact.

Experimental System

All our experiments were performed on an Intel 2.8 GHz
machine equipped with 24 GB of RAM running Ubuntu
18.04. For the kNN classification experiments, we consid-
ered the kNN algorithm implemented in the Scikit-learn
library [32].

For the encoder network, we considered the solution pro-
posed by Zhang [33]. Some optimization strategies such as
manual search, random search, grid search, etc. implemented
in frameworks such as Optuna [34] or HyperOpt [35] could
have provided a more compact encoding. However, such
parameter optimization was currently out of the scope for
these experiments.

Results

In this section, we will present several results. We aim to
show how the methods we propose perform on different data
benchmarks. For all our experiments we considered accu-
racy as a measurement of success. We also recorded the
elapsed time for each experiment to measure the impact of
each method on the speed component.

To compare the performances of our strategies, we
defined a golden standard, namely the accuracy and the
elapsed time when the kNN [32] is applied to the complete
dataset. This will be considered as the baseline system for
all our experiments. For all our trials, we considered the L2

Fig. 3 A text written in Lampung script

1 http:// yann. lecun. com/ exdb/ mnist/.
2 https:// github. com/ zalan dores earch/ fashi on- mnist.

http://yann.lecun.com/exdb/mnist/
https://github.com/zalandoresearch/fashion-mnist

 SN Computer Science (2023) 4:4747 Page 6 of 9

SN Computer Science

(Euclidean) norm as the distance metric for the kNN and k
(size of the neighborhood) was set to 1.

In Table 1 we can observe that the baseline method,
–using all 60.000 MNIST digit samples from the train-
ing dataset reaches a high recognition score of 96.91%.
To achieve this, the kNN implementation from [32] spent
approximately 1873 s to calculate Euclidean distances for
all the test samples. Considering that we have 60,000 train
samples and 10,000 test samples, altogether 600,000,000
distance calculations were necessary which indisputably
take a considerable amount of time.

However, once we apply the reduction strategies to reduce
the number of reference points, the time is reduced to 270
and 167 s for PCA and FA, respectively. A more descending
trend is to be observed for the vector embedding (see 48 s),
the encoder (see 57 s), and for the combination of the two
methods (see 79 s). It is to be noted, that not only the execu-
tion time diminishes considerably, but also the accuracy
increases for the encoder and combination method.

For the encoder solution, —when 784 features were
encoded into 50 features by optimizing the reconstruction
error, the accuracy gain is 0.79%, while the speed gain is
32.8× . Similarly, for the combination (50 features coming
from the encoder network and the remaining 50 from vector
embedding) the accuracy gain is 0.72%, while the speed gain
is 23.7× . This leads us to the conclusion that it is possible to
achieve more accuracy with less computation burden. For
the stratified sampling and the vector embedding, the speed
gain is considerable but the accuracy is decreasing a bit com-
pared to the baseline method.

The Fashion-MNIST results are shown in Table 2. The
baseline system reports 84.97% accuracy when all 60.000
items were considered as training material. With the reduc-
tion (see PCA) the accuracy loss is 10.21% but the speed
gain is 5.5× . However, similarly to the previous case (see
MNIST results in Table 1), the encoder and the combination
method outperform the baseline system. The encoder shows
a net accuracy gain of 1.92% with a speed acceleration of
9.3× , while the combination method has a net gain of 1.07%
and an acceleration of 22× . Admittedly, the accuracy gain
for the combination method is less than in the case of the

encoder, but the speed gain is more than double, which in
real-time applications could be a huge advantage.

Similar trend observed in Table 2 can also be observed in
Table 3 when the data reduction strategy is applied to Lam-
pung characters. The data is reduced by 65%, the accuracy
loss is 7.45% and the speed gain almost tripled for the PCA
solution combined with the convex envelop. However, the
results reported for the encoder solution and the combination
method are astonishing. For the encoder the accuracy gain is
6.98% and the speed-up factor is 12.2× . For the combination
the accuracy gain is 5.69% and the speed-up factor is 11.3×.

Note: One could observe that there are no results reported
for the stratified sampling for the Lampung data (see more
in Table 3). This is due to the fact that during the clustering
which precedes the stratified sampling some clusters contain
only one sample which prohibits the stratified sampling to
select the prototypes.

Thoroughly analyzing all the results, one could observe
the following trends. For each collection, the encoder solu-
tion provides the best results and usually the highest speed
gain (except for the Lampung collection), which leads to
the conclusion that all these collections contain redundant
information and that can lead to some confusion. The auto-
encoder networks are very reliable tools to diminish data
dimensionality and due to the strict optimization rule gov-
erned only by the reconstruction error minimization, the
representation is very compact and meaningful. Another
advantage of this method is its adaptability as the size of
the bottleneck is adjustable.

Table 1 kNN [32] classification results for MNIST

Method # Samples/dimension Acc. (%) Time (s)

Baseline 60,000 (784) 96.91 1873
PCA 19,943 (784) 94.91 270
FA 13,555 (784) 93.97 167
Strat. samp. 54,000 (784) 96.73 830
Encoder 60,000 (50) 97.7 57
Feat. embed. 60,000 (250) 95.14 48
Combination 60,000 (100) 97.63 79

Table 2 kNN [32] classification results for Fashion-MNIST

Method # Samples/dimension Acc. (%) Time (s)

Baseline 60,000 (784) 84.97 684
PCA 10,421 (784) 74.76 124
FA 9077 (784) 73.01 115
Strat. samp. 54,000 (784) 84.62 615
Encoder 60,000 (150) 86.88 73
Feat. embed. 60,000 (300) 77.79 20
Combination 60,000 (100) 86.04 31

Table 3 kNN [32] classification results for Lampung

Method # Samples/dimension Acc. (%) Time (s)

Baseline 23,447 (784) 83.94 306
PCA 8848 (784) 73.97 132
FA 8022 (784) 76.49 115
Strat. samp. – – –
Encoder 23,447 (100) 90.92 25
Feat. embed. 23,447 (540) 80.48 48
Combination 23,447 (140) 89.63 27

SN Computer Science (2023) 4:47 Page 7 of 9 47

SN Computer Science

An interesting conclusion is related to the vector space
embedding. The technique is very useful, and it can trans-
form all kinds of feature representation into a spatial rep-
resentation where the original features do not contribute
much but rather how each data point is positioned com-
pared to other data points. In our experiments, we have
seen that for this method the speed gain is considerable
even though the classification accuracy falls short behind
the baseline method. However, when the method is paired
with the encoder-generated features, the results consider-
ably outperform the baseline method and also the convex
hull-related strategies. This leads us to the conclusion that
the encoder-generated features and the spatial distribution
of the data points complement each other forming a very
strong bond that can be considered as an alternative feature
representation.

When looking at the results from the three datasets, we
can see that all the solutions (including the baseline one)
perform significantly better for MNIST than for the other
datasets in terms of classification accuracy. For example,
the baseline system yields 96.91% for MNIST but only
84.97% and 83.94% for Fashion-MNIST and Lampung,
respectively. The encoder system yields 97.7% for MNIST
but only 86.88% and 90.92% for Fashion-MNIST and
Lampung, respectively. In terms of classification time, the
gain for all the solutions (across all the datasets) compared
to their corresponding baseline systems is proportional to
the amount of data that is reduced from the original data.

Despite the fact that all three data collections are dif-
ferent: (a) one is a large collection of rather simple digits
(see MNIST), (b) the other is similar in size but represents
fashion items (see Fashion-MNIST) and (c) last the Lam-
pung characters collection is less numerous but represent-
ing almost twice as many classes and more complex in
the shapes, one could say that the trend of these methods
is similar. All of them substantially reduce the execution
time for the classification. For all the collections, some of
the proposed methods obtain even better scores than if we
would have either considered the complete collection or
kept the original feature representations. This shows the
efficiency of the methods in terms of speed and accuracy.

Before reaching to the conclusion, one should discuss
the limitations of the convex hull-based solutions. While
the gain is valuable for the MNIST, the accuracy drop for
the other two collections might not make these methods
very attractive. The current results lead to the conclusion
that for these collections the convexity notion might not
be straightforward. The different class-wise convex hulls
can overlap and create confusion between different classes.
Due to the computational complexity of the convex hull,
the reduction of the feature space (see PCA or FA) will
also hardly influence the exact calculation of the convex
envelopes.

Conclusion

In this manuscript, we proposed several efficient and easy-
to-implement solutions to reduce the complexity of the
k-nearest neighbor classifier. This classical strategy is very
efficient and easy to apply to all kinds of classification
tasks. However, due to the tremendous distance calcula-
tions between the query item and the prototype items, this
classifier should be avoided when there is a time constraint
such as in real-time applications. The classification time
will grow considerably once we have many training sam-
ples (see prototypes) and the dimensionality of the data
is high.

For that reason, we concentrated our effort to develop
different strategies to mitigate this time constraint. The
proposed solutions focus on either reducing the number of
prototype samples (i.e. FA, PCA and stratified sampling)
or transforming the feature space to a more compact repre-
sentation of the same data (i.e. encoder, vector embedding
and their combination).

The first strategy is trying to discard prototypes that do
not contribute to the classification, thus creating an excess
of calculations. The second strategy is keeping the proto-
types in place but focusing on reducing the dimensionality
of the data. Both strategies try to achieve the same out-
come: reduce the computational burden.

First, to reduce the number of reference points we con-
sidered only the data points which build the convex hull.
All the points inside the convex envelope were discarded.
However, due to the time and memory complexity of iden-
tifying the convex envelope, a data reduction strategy was
necessary. We experimented with PCA and FA, respec-
tively. The high dimension (see 784) of each data collec-
tion was reduced to six (6), a condition which ensured to
run the convex hull algorithm with success. However, as
it can be observed the results are somehow ambiguous.
There is a substantial speed gain, however, the accuracy
starts to drop considerably for the MNIST-Fashion and
Lampung. Second, the stratified sampling is reporting
way more promising results by considerably increasing
the speed component while staying close right behind the
baseline system (which uses all the prototype samples) in
terms of accuracy.

For the feature space transformation, the encoder net-
work, the vector space embedding and their combination
outperform all the previous approaches. The encoder net-
work transformed all feature representations into more
compact ones, where besides considerable speed gains
(see MNIST: 32.8× , MNIST-Fashion: 9.3× and Lampung:
12.2×) the performances did not drop, but rather improved
by 0.72%, 1.92%, and 6.98% for MNIST, MNIST Fashion,
and Lampung respectively. While the individual results for

 SN Computer Science (2023) 4:4747 Page 8 of 9

SN Computer Science

the feature embedding are fading behind the encoded ver-
sion, the combination of the two is rather impressive. This
suggests that these features complement each other and the
spatial disposition of the data points relative to other data
points is an important characteristic.

To further improve the convex hull-related methods, one
could think of calculating the convex envelope differently.
Instead of calculating the envelope using all the elements,
some unsupervised clustering could be applied and several
smaller convex hulls could be established. Later, these con-
vex hulls could be merged into a global one. For the encoder
network, some more sophisticated architecture could yield
even higher performances.

Declarations

 Conflict of interest On behalf of all authors, the corresponding author
states that there is no conflict of interest.

References

 1. Duin RPW, Verzakov S. Fast knn mode seeking clustering applied
to active learning. CoRR abs/1712.07454 (2017).

 2. Pekalska E, Duin RPW, Paclík P. Prototype selection for dissim-
ilarity-based classifiers. Pattern Recognit. 2006;39(2):189–208.

 3. Bishop CM. Neural networks for pattern recognition. New York:
Oxford University Press Inc; 1995.

 4. Irani J, Pise N, Phatak M. Clustering techniques and the similar-
ity measures used in clustering: a survey. Int J Comput Appl.
2016;134:9–14.

 5. Sharma N, Sengupta A, Sharma R, Pal U, Blumenstein M. Pin-
code detection using deep CNN for postal automation. In: Inter-
national conference on image and vision computing, 2017;1–6.

 6. Vajda S, Roy K, Pal U, Chaudhuri BB, Belaïd A. Automation of
Indian postal documents written in Bangla and English. Int J Pat-
tern Recognit Artif Intell. 2009;23(8):1599–632.

 7. Borovikov E, Vajda S. Facematch: real-world face image retrieval.
In: Santosh, K.C., Hangarge, M., Bevilacqua, V., Negi, A. editors.
Recent trends in image processing and pattern recognition—First
international conference, RTIP2R 2016, Bidar, India, December
16–17, 2016, Revised selected papers. Communications in com-
puter and information science, 2016; 709, pp. 405–419.

 8. Wang C. Research and application of traffic sign detection and
recognition based on deep learning. In: 2018 international confer-
ence on robots intelligent system (ICRIS), 2018;150–152.

 9. Avis D, Bremner D. How good are convex hull algorithms? In:
Snoeyink, J. editor. Proceedings of the eleventh annual sympo-
sium on computational geometry, Vancouver, B.C., Canada, June
5–12, 1995, pp. 20–28.

 10. Shahrokh Esfahani M, Dougherty ER. Effect of separate sampling
on classification accuracy. Bioinformatics, 2013;30(2), 242–250.
https:// doi. org/ 10. 1093/ bioin forma tics/ btt662. https:// acade mic.
oup. com/ bioin forma tics/ artic le- pdf/ 30/2/ 242/ 17147 301/ btt662.
pdf.

 11. Liu Z, Zhang A. A survey on sampling and profiling over big data
(technical report). CoRR abs/2005.05079. 2020.

 12. Hinton GE, Salakhutdinov RR. Reducing the dimensionality of
data with neural networks. Science. 2006;313(5786):504–7.

 13. Fix E, Hodges JL. Discriminatory analysis: nonparametric dis-
crimination, consistency properties. 1951.

 14. Agarwal Y, Poornalatha G. Analysis of the nearest neighbor
classifiers: a review. In: Chiplunkar, N., Fukao, T. editors.
Advances in artificial intelligence and data engineering—Select
proceedings of AIDE 2019. Advances in intelligent systems and
computing, pp. 559–570. Springer, Berlin, 2021. International
conference on artificial intelligence and data engineering, AIDE
2019; Conference date: 23-05-2019 through 24-05-2019.

 15. Taunk K, De S, Verma S, Swetapadma A. A brief review of
nearest neighbor algorithm for learning and classification. In:
2019 international conference on intelligent computing and con-
trol systems (ICCS), pp. 1255–1260, 2019.

 16. Torralba A, Fergus R, Freeman WT. 80 million tiny images: a
large data set for nonparametric object and scene recognition.
PAMI. 2008;30(11):1958–70.

 17. Hajebi K, Abbasi-Yadkori Y, Shahbazi H, Zhang H. Fast approx-
imate nearest-neighbor search with k-nearest neighbor graph.
In: Proceedings of the twenty-second international joint confer-
ence on artificial intelligence-vol. 2. 2011;1312–1317.

 18. Bentley JL. Multidimensional divide-and-conquer. Commun
ACM. 1980;23(4):214–29.

 19. Friedman JH, Bentley JL, Finkel RA. An algorithm for finding
best matches in logarithmic expected time. ACM Trans Math
Softw. 1977;3(3):209–26.

 20. Indyk P, Motwani R. Approximate nearest neighbors: towards
removing the curse of dimensionality. In: Proceedings of the
thirtieth annual ACM symposium on theory of computing.
STOC ’98, pp. 604–613. ACM, New York; 1998.

 21. Jalan A, Kar P. Accelerating extreme classification via adap-
tive feature agglomeration. CoRR abs/1905.11769. arXiv: 1905.
11769. 2019.

 22. Vajda S, Santosh KC. A fast k-nearest neighbor classifier using
unsupervised clustering. In: Santosh KC, Hangarge M, Bev-
ilacqua V, Negi A editors. Recent trends in image processing
and pattern recognition—first international conference, RTIP2R
2016, Bidar, India, December 16–17, 2016, Revised selected
papers. Communications in computer and information science,
vol. 709, pp. 185–193, 2016.

 23. Garcia V, Debreuve E, Barlaud M. Fast k nearest neighbor
search using GPU. In: 2008 IEEE Computer Society confer-
ence on computer vision and pattern recognition workshops,
pp. 1–6, 2008.

 24. Johnson J, Douze M, Jégou H. Billion-scale similarity search with
gpus. CoRR abs/1702.08734. 2017. arXiv: 1702. 08734.

 25. Yepdjio H, Vajda S. A fast and efficient k-nearest neighbor classi-
fier using a convex envelop. In: International conference on recent
trends in image processing and pattern recognition, RTIP2R 2021,
Msida, Malta, December 8–10. Communications in Computer and
Information Science, 2021.

 26. Cortes C, Vapnik V. Support-vector networks. Mach Learn.
1995;20(3):273–97.

 27. Vajda S, Rangoni Y, Cecotti H. Semi-automatic ground truth gen-
eration using unsupervised clustering and limited manual labe-
ling: application to handwritten character recognition. Pattern
Recognit Lett. 2015;58:23–8.

 28. LeCun Y, Bottou L, Bengio Y, Haffner P. Gradient-based learning
applied to document recognition. In: Intelligent signal processing,
pp. 306–351, 2001.

 29. Xiao H, Rasul K, Vollgraf R. Fashion-mnist: a novel image
dataset for benchmarking machine learning algorithms. CoRR
abs/1708.07747; 2017.

 30. Junaidi A, Vajda S, Fink GA. Lampung—a new handwritten char-
acter benchmark: database, labeling and recognition. In: Inter-
national workshop on multilingual OCR (MOCR), pp. 105–112.
ACM, Beijing, 2011.

https://doi.org/10.1093/bioinformatics/btt662
https://academic.oup.com/bioinformatics/article-pdf/30/2/242/17147301/btt662.pdf
https://academic.oup.com/bioinformatics/article-pdf/30/2/242/17147301/btt662.pdf
https://academic.oup.com/bioinformatics/article-pdf/30/2/242/17147301/btt662.pdf
http://arxiv.org/abs/1905.11769
http://arxiv.org/abs/1905.11769
http://arxiv.org/abs/1702.08734

SN Computer Science (2023) 4:47 Page 9 of 9 47

SN Computer Science

 31. Vajda S, Junaidi A, Fink GA. A semi-supervised ensemble learn-
ing approach for character labeling with minimal human effort.
In: ICDAR, pp. 259–263, 2011.

 32. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Gri-
sel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, Vanderp-
las J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay
E. Scikit-learn: machine learning in Python. J Mach Learn Res.
2011;12:2825–30.

 33. Computer Science University of Toronto: transpose convolutions
and autoencoders. https:// www. cs. toron to. edu/ ~lczha ng/ 360/ lec/
w05/ autoe ncoder. html. Accessed 03 Jan 2021.

 34. Akiba T, Sano S, Yanase T, Ohta T, Koyama M. Optuna: a next-
generation hyperparameter optimization framework. In: Pro-
ceedings of the 25rd ACM SIGKDD international conference on
knowledge discovery and data mining. 2019.

 35. Bergstra J, Komer B, Eliasmith C, Yamins D, Cox DD. Hyperopt:
a python library for model selection and hyperparameter optimiza-
tion. Comput Sci Discov. 2015;8(1): 014008.

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of
such publishing agreement and applicable law.

https://www.cs.toronto.edu/%7elczhang/360/lec/w05/autoencoder.html
https://www.cs.toronto.edu/%7elczhang/360/lec/w05/autoencoder.html

	Optimization Strategies for the k-Nearest Neighbor Classifier
	Abstract
	Introduction
	Related Work
	Method
	Convex Hull
	Dissimilarity space embedding
	Other Strategies

	Experiments
	Data Collections
	Experimental System
	Results

	Conclusion
	References

