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Abstract
In this paper, we propose six (6) fast and efficient classification schemes for different type of images (digits, objects, char-
acters) using the classical k-nearest neighbor (kNN) classifier. It is common knowledge that kNN is one of the most popular 
supervised classification algorithm. However, for large data collections, the classification is time consuming because of the 
distance calculations which increase with the number of training samples and the data dimensionality. To reduce the number 
of training samples, we propose two techniques that employ the notions of convex envelope and stratified sampling. For the 
convex envelope, only the data points building the convex hull will serve as designated prototypes (training samples), thus 
reducing considerably the computational burden. To reduce the dimensionality of the data, we considered auto-encoder 
networks and vector embedding. The former is learning a way to compact data representation using statistical machine learn-
ing and the latter is changing the data itself emphasizing how each data sample is organized in space compared to others. 
The experiments on multiple benchmark data collections such as MNIST, Fashion-MNIST and Lampung characters show 
a considerable classification speed up (up to 32× ) with no significant drop in accuracy when compared to results obtained 
using the complete data.

Keywords k-Nearest neighbor · Convex envelope · Stratified sampling · Autoencoder network · Vector embedding · Digit 
recognition · Character recognition · Classification

Introduction

Classification is an important goal in machine learning. 
Given a pattern (an image, an object, a (raw) measurement, 
etc.) a classification algorithm should be able to determine 
in which group (class) that pattern belongs. For that reason, 

current algorithms (except [1, 2]) look for similarities to 
identify relationships between the patterns.

Mainstream machine learning (ML) uses different feature 
representations and calculates different distance metrics to 
distinguish the class labels for the analyzed patterns. Meth-
ods such as k-Nearest Neighbor (kNN), Self Organizing Map 
(SOM), Growing Neural Gas (GNG), Neural networks (NN), 
Dynamic Time Warping (DTW), k-means clustering, etc. 
rely on distance calculations to make classification decisions 
or to back-propagate error in the system in case of neural 
networks [3]. Using this strategy, one pattern is compared 
to another using only feature based local comparisons. The 
distance metrics often used include Euclidean, Hamming, 
City block, Minkowski, Mahalanobis, Chebychev, Manhat-
tan, Cosine similarity, Jaccard similarity or Spearman coef-
ficient [4].

Though indisputably efficient, the methods that rely on 
distance calculations are very time costly. The higher the 
number of data points and/or their dimensionality, the higher 
the amount of time is needed to calculate the similarities. 
This is due to the mathematical complexity of distance met-
rics used in the classification process. If there is no time 
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constraint, one could calculate all the distances and get the 
best possible results. However, the run time complexity is 
primordial in modern real-time applications such as postal 
automation [5, 6], face matching [7], road sign recognition 
[8], etc.

To improve the run time complexity of kNN classifica-
tion, we propose several solutions to either reduce the size of 
the training dataset (class prototypes selection) or to dimin-
ish the data complexity (dimensionality) using different fea-
ture space transformations. For the former, we reduce the 
number of samples while keeping the data dimensionality 
intact. For the latter, we keep all the samples but represent 
them in a lower dimensional feature space.

For prototypes selection, we propose the concept of con-
vex envelope. However, the detection of the convex hull 
in large data sets considering high dimensional spaces is 
bounded by the time limits and memory limits [9]. To avoid 
such limitations, the data points are reduced to lower dimen-
sions using either Principal Component Analysis (PCA) or 
Feature Agglomeration (FA). Another technique we used for 
prototypes selection is called stratified sampling [10]. We 
considered it due to its success in the field of big data [11].

For the dimensionality reduction, we propose an auto-
encoder network able to map a high dimensional space into 
a low dimensional one by learning the transformations inside 
the model [12]. We also considered a vector embedding 
technique which transforms the original feature space into a 
spatial representation.

The novelty of this paper can be summarized as follows: 
(i) reduction of the original training set by using elements 
only from the convex envelope to serve as class prototypes, 
(ii) solving the convex envelop problem in high dimensional 
space by reducing the dimensionality of the original data, 
(iii) the usage of the auto-encoder networks and vector 
embedding to reduce the data dimensionality and (iv) the 
combination of the encoder and the vector embedding to 
produce a new feature representation for the data.

The remainder of the paper is organized as follows. 
“Related work” discusses the kNN paradigm and the dif-
ferent attempts to reduce the time complexity in this clas-
sification scheme. In “Method” we introduce the prototype 
selection based on the convex hull, the encoder network, 
the stratified sampling and the vector embedding. “Experi-
ments” describes the data collections we used for the experi-
ments and the obtained results. Finally, “Conclusion” sum-
marizes the methods, the results and possible future works.

Related Work

Unequivocally, the k-nearest neighbor (kNN) can be con-
sidered the most used and the most studied supervised 
classification algorithm. Originally, proposed by Fix and 

Hodges [13], the kNN is a method to classify unknown 
patterns based on distance calculations to existing, —
already identified patterns, by inheriting the label of the 
pattern which resides the closest considering different dis-
tance metrics. Besides classification, the method can also 
be used for regression.

Formally, the problem can be stated as follows. Let 
P = {p1, p2,… , pn} be a template or reference set contain-
ing n number of points taking values in Rd , where d denotes 
the dimension of the data space. Let Q = {q1, q2,… , qm} 
be a query set containing m different data points with the 
same dimension. The k-nearest neighbor problem consists 
of searching for each point qi ∈ Q in the template set P 
given a specific distance metric.

Despite the rather limited and simplistic non-parametric 
strategy, kNN was used with success in many applications 
[14, 15]. Torralba et al. [16] argue that if the size of the 
data is adequate and the object classes to be recognized 
are rich there is no need for complex classification models. 
A kNN type classifier can perform in the same range as 
many, nowadays, popular parametric methods.

However, it is common knowledge that the kNN is lim-
ited by the size of the data, the dimensionality of the data 
and last but not least the complexity of the distance meas-
ure. A large amount of data, an increased data dimension-
ality and a complex distance measure can lead to tedious 
and time-consuming calculations. To mitigate this, several 
solutions focusing on reducing the computational com-
plexity of the kNN algorithm have been proposed in the 
literature over the years.

Some methods use graph-based solutions to approxi-
mate the nearest neighbor [17]. Some others use a data 
subsampling strategy to reduce the number of distance 
calculations by reducing the number of data points [18–20] 
considering different selection mechanisms meant to quan-
tify the quality of the selected reference points. In [21] the 
authors propose a dimensionality reduction on the origi-
nal data to reduce the number of calculations. In another 
attempt [22] the authors consider some preliminary clus-
tering followed by a selection process. Garcia et al. [23] 
focus more on the implementation of the method by utiliz-
ing parallel calculation in the GPU.

Recently, an extremely fast implementation of kNN called 
FAISS [24] was released. This implementation is based on 
building an index in the memory on which the similarity 
search operates. Despite considering this method in our pre-
vious study [25], we currently do not report any results using 
this method as we solely focus our attention on the kNN 
implementation provided by the Scikit-learn library [24].

To avoid hardware-dependent solutions and those that 
reduce the quality of the information, our methods are simi-
lar to those that do not alter the distance metric and act on 
the original feature space or carefully selected features. Such 



SN Computer Science (2023) 4:47 Page 3 of 9 47

SN Computer Science

solutions allow keeping the information intact while speed-
ing up the overall kNN classification process.

Method

Since we want to utilize the kNN as our classifier, the size 
and dimension of the data are critical. For that reason, 
instead of using all samples ∀pi ∈ P, i = 1, n as prototypes, 
the aim is to select only a limited number pk ∈ P, k = 1, k 
where k is the number ( k ≪ n ) of those capable to represent 
each classes or to select a new feature space of dimension l 
such as l ≪ d.

Convex Hull

To select the prototypes we combined two methods. For 
selection, we would like to use the concept of convex set, 
more specifically the notion of convex hull. The convex hull 
or convex envelope is the smallest convex set that contains 
it. Finding the convex hull of a finite set of 2D points or 
other low-dimensional Euclidean spaces is a fundamental 
algorithm in computational geometry.

Usually, for low-dimensional spaces, the complexity of 
the algorithm is O(nlogn) and can be obtained by Graham’s 
scan, Chan’s algorithm or the Kirkpatrick-Seidel algorithm 
[9].

An intuitive explanation of our method can be seen in 
Fig. 1. The elements (data points) constituting the convex 
hull represent all the points inside the convex envelope, thus 
we can substitute each class only by those points which build 

this particular set. A similar concept is applied to the Sup-
port Vector Machines (SVM) [26] when the support vec-
tors are identified. In 2D the solution for the convex hull is 
straightforward, but in higher dimensions, the n-dimensional 
convex envelope also inherits the same properties. There-
fore, the process is limited to calculating the convex set for 
each class separately.

As mentioned earlier, in high dimensional spaces the con-
vex hull algorithm implementations are bounded by time 
and memory constraints. To overcome them, we decided 
to reduce the dimensionality of the data points using either 
Principal Component Analysis (PCA) or Feature Agglom-
eration (FA). PCA is a technique that reduces dimensionality 
by discarding those features that contain the same informa-
tion. The reduced dimensions are linear combinations of the 
original variables and they are independent of each other. FA 
is an unsupervised technique that uses hierarchical clustering 
to reduce the dimensionality of the data.

Note: We also experimented with an encoder network 
to reduce the dimensionality of the data. Although such 
reduction was used with success in comparable scenarios 
[27], though admittedly using way more dimensions, the 
data was not separable in such low dimensions. Therefore, 
we were not able to identify the convex hulls for the differ-
ent classes. The representation of the MNIST digits in a 2D 
space, using an encoder network can be observed in Fig. 2. 
It is to be observed the considerable overlap among the dif-
ferent classes.

Once the convex envelope for each class is defined, 
those samples that are part of the envelope are identified 
and designated as the new class prototypes. However, the 

Fig. 1  An intuitive explanation 
for the convex hull-based clas-
sification. The elements on the 
borders can also represent the 
elements inside the convex hull



 SN Computer Science (2023) 4:4747 Page 4 of 9

SN Computer Science

classification is not happening in this reduced space but in 
the original space of the data. This mapping to the original 
space is useful as in this space the data representation is 
complete. Using the reduced dimensionality space (we set 
it to six (6) in our experiments based on trial runs) for the 
classification would significantly impact the results because 
of the important information loss.

Dissimilarity space embedding

Another way to transform the original feature space is the 
dissimilarity space embedding [2]. This generic scheme 
allows the transformation of all kinds of feature spaces into a 
new representation that emphasizes not the data point itself, 
but its spatial relationship to other data points by introduc-
ing the diss(⋅, ⋅) metric. The dissimilarity metric (diss(x, y)) 
can be perceived as a distance measure between the data 
point in question (x) and the prototype (y). The idea behind 
this representation is completely based on the dissimilarity 
measure diss.

Intuitively, the idea of the dissimilarity is to trans-
form an original representation into an n-dimensional 
vector, where each element in the vector is a distance 
of the sample in question to some prototype Pi . The 
new representation for a certain point x will look like 
Vx = (diss(x, p1), diss(x, p2),… , diss(x, pn)) . The p1 , p2 , ..., 

pn are the prototypes (class representatives) and n controls 
the number of the prototypes and implicitly the dimensional-
ity of the new feature space.

This dissimilarity space embedding will allow us to meas-
ure,- –instead of dealing with raw features, how each data 
point defines itself compared to its neighbors. However, 
despite the fact that this transformation is very efficient, the 
question is how those prototypes (see p1 , p2 , ..., pn ) should 
be selected. For our experiments, we considered a simple 
selection technique, namely the k-means clustering. Even 
though the method is not producing the best results, it has 
several advantages. First, it is an unsupervised technique, 
therefore it can be applied without any apriori knowledge or 
human involvement. Second, the parameter k (see the num-
ber of clusters) allows us to have full control over the dimen-
sionality. For our purpose, we considered for each class the 
same amount of clusters, and the prototypes for each class 
(see pi, i = 1, k ) were assigned as the class centroids of the 
clusters.

Other Strategies

To reduce the dimensionality, we involved an auto-encoder 
type of network [12]. Such a neural network instead of 
applying some mathematically defined formula to transform 
the data learns the transformation itself in an unsupervised 

Fig. 2  A 2D representation of the MNIST test collection considering an encoder network to reduce the 784 features to 2. The different colors 
represent the different digit classes
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manner. This efficient encoding process is governed by opti-
mizing the reconstruction performances of the original input 
at the output. These models are capable of learning a cer-
tain encoding for some data collection, —usually involving 
dimensionality reduction, by training the model to ignore 
insignificant data.

For data subsampling, —besides the convex hull method, 
we borrowed from computational statistics the concept of 
stratified sampling which can reduce the variance when a 
Monte Carlo method is used to estimate statistics from a 
certain number of data points. The advantage of this method 
is that we can fully control the amount of data the method 
can retain.

Experiments

First, we present briefly the datasets used in these experi-
ments followed by the achieved results. To be able to judge 
the quality of the methods, we report our accuracy and speed 
performance compared to the classical k-nearest neighbor 
utilizing brute force, –which compares each query example 
with all the reference samples [23].

Data Collections

MNIST [28] is a well-known benchmark dataset1 contain-
ing separated digits assigned to 10 different classes. The 
images, —coming mainly from US census forms, are size 
normalized and centered to 28 ×28 gray-level images. The 
data set contains 60, 000 and 10, 000 images for training and 
testing, respectively.

Fashion-MNIST [29] is a newly introduced benchmark 
dataset2 comprising ten different types of fashion products. 
The original images were converted to 28x28 gray-scale 
images. The size of the training and the test set is similar 
to MNIST. 60, 000 images are considered for training and 
10, 000 images are used for testing.

The Lampung characters used in these experiments were 
extracted from a multi-writer handwritten collection pro-
duced by 82 high school students from Bandar Lampung, 
Indonesia. The Lampung texts are created as transcriptions 
of some fairy tales. One exemplary document snippet can 
be seen in Fig. 3. 23, 447 and 7853 characters were col-
lected for training and testing respectively. Altogether, 18 
different character classes were identified. Each character is 
represented by a centered and normalized 32 ×32 gray-scale 
image. More details about this publicly available data are 
to be found in [30, 31]. Is to be noted, that for convenience 
purposes the original images were resized to 28 ×28 keeping 
the aspect ratio intact.

Experimental System

All our experiments were performed on an Intel 2.8 GHz 
machine equipped with 24 GB of RAM running Ubuntu 
18.04. For the kNN classification experiments, we consid-
ered the kNN algorithm implemented in the Scikit-learn 
library [32].

For the encoder network, we considered the solution pro-
posed by Zhang [33]. Some optimization strategies such as 
manual search, random search, grid search, etc. implemented 
in frameworks such as Optuna [34] or HyperOpt [35] could 
have provided a more compact encoding. However, such 
parameter optimization was currently out of the scope for 
these experiments.

Results

In this section, we will present several results. We aim to 
show how the methods we propose perform on different data 
benchmarks. For all our experiments we considered accu-
racy as a measurement of success. We also recorded the 
elapsed time for each experiment to measure the impact of 
each method on the speed component.

To compare the performances of our strategies, we 
defined a golden standard, namely the accuracy and the 
elapsed time when the kNN [32] is applied to the complete 
dataset. This will be considered as the baseline system for 
all our experiments. For all our trials, we considered the L2 

Fig. 3  A text written in Lampung script

1 http:// yann. lecun. com/ exdb/ mnist/.
2 https:// github. com/ zalan dores earch/ fashi on- mnist.

http://yann.lecun.com/exdb/mnist/
https://github.com/zalandoresearch/fashion-mnist
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(Euclidean) norm as the distance metric for the kNN and k 
(size of the neighborhood) was set to 1.

In Table 1 we can observe that the baseline method, 
–using all 60.000 MNIST digit samples from the train-
ing dataset reaches a high recognition score of 96.91%. 
To achieve this, the kNN implementation from [32] spent 
approximately 1873 s to calculate Euclidean distances for 
all the test samples. Considering that we have 60,000 train 
samples and 10,000 test samples, altogether 600,000,000 
distance calculations were necessary which indisputably 
take a considerable amount of time.

However, once we apply the reduction strategies to reduce 
the number of reference points, the time is reduced to 270 
and 167 s for PCA and FA, respectively. A more descending 
trend is to be observed for the vector embedding (see 48 s), 
the encoder (see 57 s), and for the combination of the two 
methods (see 79 s). It is to be noted, that not only the execu-
tion time diminishes considerably, but also the accuracy 
increases for the encoder and combination method.

For the encoder solution, —when 784 features were 
encoded into 50 features by optimizing the reconstruction 
error, the accuracy gain is 0.79%, while the speed gain is 
32.8× . Similarly, for the combination (50 features coming 
from the encoder network and the remaining 50 from vector 
embedding) the accuracy gain is 0.72%, while the speed gain 
is 23.7× . This leads us to the conclusion that it is possible to 
achieve more accuracy with less computation burden. For 
the stratified sampling and the vector embedding, the speed 
gain is considerable but the accuracy is decreasing a bit com-
pared to the baseline method.

The Fashion-MNIST results are shown in Table 2. The 
baseline system reports 84.97% accuracy when all 60.000 
items were considered as training material. With the reduc-
tion (see PCA) the accuracy loss is 10.21% but the speed 
gain is 5.5× . However, similarly to the previous case (see 
MNIST results in Table 1), the encoder and the combination 
method outperform the baseline system. The encoder shows 
a net accuracy gain of 1.92% with a speed acceleration of 
9.3× , while the combination method has a net gain of 1.07% 
and an acceleration of 22× . Admittedly, the accuracy gain 
for the combination method is less than in the case of the 

encoder, but the speed gain is more than double, which in 
real-time applications could be a huge advantage.

Similar trend observed in Table 2 can also be observed in 
Table 3 when the data reduction strategy is applied to Lam-
pung characters. The data is reduced by 65%, the accuracy 
loss is 7.45% and the speed gain almost tripled for the PCA 
solution combined with the convex envelop. However, the 
results reported for the encoder solution and the combination 
method are astonishing. For the encoder the accuracy gain is 
6.98% and the speed-up factor is 12.2× . For the combination 
the accuracy gain is 5.69% and the speed-up factor is 11.3×.

Note: One could observe that there are no results reported 
for the stratified sampling for the Lampung data (see more 
in Table 3). This is due to the fact that during the clustering 
which precedes the stratified sampling some clusters contain 
only one sample which prohibits the stratified sampling to 
select the prototypes.

Thoroughly analyzing all the results, one could observe 
the following trends. For each collection, the encoder solu-
tion provides the best results and usually the highest speed 
gain (except for the Lampung collection), which leads to 
the conclusion that all these collections contain redundant 
information and that can lead to some confusion. The auto-
encoder networks are very reliable tools to diminish data 
dimensionality and due to the strict optimization rule gov-
erned only by the reconstruction error minimization, the 
representation is very compact and meaningful. Another 
advantage of this method is its adaptability as the size of 
the bottleneck is adjustable.

Table 1  kNN [32] classification results for MNIST

Method # Samples/dimension Acc. (%) Time (s)

Baseline 60,000 (784) 96.91 1873
PCA 19,943 (784) 94.91 270
FA 13,555 (784) 93.97 167
Strat. samp. 54,000 (784) 96.73 830
Encoder 60,000 (50) 97.7 57
Feat. embed. 60,000 (250) 95.14 48
Combination 60,000 (100) 97.63 79

Table 2  kNN [32] classification results for Fashion-MNIST

Method # Samples/dimension Acc. (%) Time (s)

Baseline 60,000 (784) 84.97 684
PCA 10,421 (784) 74.76 124
FA 9077 (784) 73.01 115
Strat. samp. 54,000 (784) 84.62 615
Encoder 60,000 (150) 86.88 73
Feat. embed. 60,000 (300) 77.79 20
Combination 60,000 (100) 86.04 31

Table 3  kNN [32] classification results for Lampung

Method # Samples/dimension Acc. (%) Time (s)

Baseline 23,447 (784) 83.94 306
PCA 8848 (784) 73.97 132
FA 8022 (784) 76.49 115
Strat. samp. – – –
Encoder 23,447 (100) 90.92 25
Feat. embed. 23,447 (540) 80.48 48
Combination 23,447 (140) 89.63 27
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An interesting conclusion is related to the vector space 
embedding. The technique is very useful, and it can trans-
form all kinds of feature representation into a spatial rep-
resentation where the original features do not contribute 
much but rather how each data point is positioned com-
pared to other data points. In our experiments, we have 
seen that for this method the speed gain is considerable 
even though the classification accuracy falls short behind 
the baseline method. However, when the method is paired 
with the encoder-generated features, the results consider-
ably outperform the baseline method and also the convex 
hull-related strategies. This leads us to the conclusion that 
the encoder-generated features and the spatial distribution 
of the data points complement each other forming a very 
strong bond that can be considered as an alternative feature 
representation.

When looking at the results from the three datasets, we 
can see that all the solutions (including the baseline one) 
perform significantly better for MNIST than for the other 
datasets in terms of classification accuracy. For example, 
the baseline system yields 96.91% for MNIST but only 
84.97% and 83.94% for Fashion-MNIST and Lampung, 
respectively. The encoder system yields 97.7% for MNIST 
but only 86.88% and 90.92% for Fashion-MNIST and 
Lampung, respectively. In terms of classification time, the 
gain for all the solutions (across all the datasets) compared 
to their corresponding baseline systems is proportional to 
the amount of data that is reduced from the original data.

Despite the fact that all three data collections are dif-
ferent: (a) one is a large collection of rather simple digits 
(see MNIST), (b) the other is similar in size but represents 
fashion items (see Fashion-MNIST) and (c) last the Lam-
pung characters collection is less numerous but represent-
ing almost twice as many classes and more complex in 
the shapes, one could say that the trend of these methods 
is similar. All of them substantially reduce the execution 
time for the classification. For all the collections, some of 
the proposed methods obtain even better scores than if we 
would have either considered the complete collection or 
kept the original feature representations. This shows the 
efficiency of the methods in terms of speed and accuracy.

Before reaching to the conclusion, one should discuss 
the limitations of the convex hull-based solutions. While 
the gain is valuable for the MNIST, the accuracy drop for 
the other two collections might not make these methods 
very attractive. The current results lead to the conclusion 
that for these collections the convexity notion might not 
be straightforward. The different class-wise convex hulls 
can overlap and create confusion between different classes. 
Due to the computational complexity of the convex hull, 
the reduction of the feature space (see PCA or FA) will 
also hardly influence the exact calculation of the convex 
envelopes.

Conclusion

In this manuscript, we proposed several efficient and easy-
to-implement solutions to reduce the complexity of the 
k-nearest neighbor classifier. This classical strategy is very 
efficient and easy to apply to all kinds of classification 
tasks. However, due to the tremendous distance calcula-
tions between the query item and the prototype items, this 
classifier should be avoided when there is a time constraint 
such as in real-time applications. The classification time 
will grow considerably once we have many training sam-
ples (see prototypes) and the dimensionality of the data 
is high.

For that reason, we concentrated our effort to develop 
different strategies to mitigate this time constraint. The 
proposed solutions focus on either reducing the number of 
prototype samples (i.e. FA, PCA and stratified sampling) 
or transforming the feature space to a more compact repre-
sentation of the same data (i.e. encoder, vector embedding 
and their combination).

The first strategy is trying to discard prototypes that do 
not contribute to the classification, thus creating an excess 
of calculations. The second strategy is keeping the proto-
types in place but focusing on reducing the dimensionality 
of the data. Both strategies try to achieve the same out-
come: reduce the computational burden.

First, to reduce the number of reference points we con-
sidered only the data points which build the convex hull. 
All the points inside the convex envelope were discarded. 
However, due to the time and memory complexity of iden-
tifying the convex envelope, a data reduction strategy was 
necessary. We experimented with PCA and FA, respec-
tively. The high dimension (see 784) of each data collec-
tion was reduced to six (6), a condition which ensured to 
run the convex hull algorithm with success. However, as 
it can be observed the results are somehow ambiguous. 
There is a substantial speed gain, however, the accuracy 
starts to drop considerably for the MNIST-Fashion and 
Lampung. Second, the stratified sampling is reporting 
way more promising results by considerably increasing 
the speed component while staying close right behind the 
baseline system (which uses all the prototype samples) in 
terms of accuracy.

For the feature space transformation, the encoder net-
work, the vector space embedding and their combination 
outperform all the previous approaches. The encoder net-
work transformed all feature representations into more 
compact ones, where besides considerable speed gains 
(see MNIST: 32.8× , MNIST-Fashion: 9.3× and Lampung: 
12.2× ) the performances did not drop, but rather improved 
by 0.72%, 1.92%, and 6.98% for MNIST, MNIST Fashion, 
and Lampung respectively. While the individual results for 
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the feature embedding are fading behind the encoded ver-
sion, the combination of the two is rather impressive. This 
suggests that these features complement each other and the 
spatial disposition of the data points relative to other data 
points is an important characteristic.

To further improve the convex hull-related methods, one 
could think of calculating the convex envelope differently. 
Instead of calculating the envelope using all the elements, 
some unsupervised clustering could be applied and several 
smaller convex hulls could be established. Later, these con-
vex hulls could be merged into a global one. For the encoder 
network, some more sophisticated architecture could yield 
even higher performances.
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