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Abstract
For over 50 years researchers and practitioners have searched for ways to elicit and formalize expert knowledge to support 
AI applications. Expert systems and knowledge bases were all results of these efforts. The initial efforts on knowledge 
bases were focused on defining a domain and task intensionally with rather complex ontologies. The increasing complexity 
of knowledge and knowledge-based systems eventually led to the development of knowledge engineering methodologies. 
Knowledge graphs, in contrast to the traditional knowledge bases, represent knowledge more extensionally with a very large 
set of explicit statements and rather simpler and smaller ontologies. This paradigm change calls for a new take on knowledge 
engineering that focuses on the curation of ABox statements. In this paper, we introduce various aspects of the knowledge 
graphs lifecycle namely creation, hosting, curation and deployment. We define each task, give example approaches from 
the literature and explain our approach with a running example. Additionally, we present the German Tourism Knowledge 
Graph that is being implemented with our methodology.

Keywords  Knowledge graphs · Knowledge engineering · Knowledge graph lifecycle

Introduction

The vision of AI research that aimed to give computers the 
ability to “solve problems that are meant for humans” was 
implemented in the form of a General Problem Solver (GPS) 
[1]. The main idea behind GPS was that any problem can 
be solved by a computer if it can be formally defined. The 
GPS was an important milestone for AI and had important 

successes in solving many problems. However, it was soon 
realized that real-world problems need specific tasks and 
domain knowledge as a heuristic to tackle with AI. The 
“knowledge principle” coined by Feigenbaum [2] is still 
valid today. Is a conversational AI useful, when it can 
“understand” a user’s wish “to have a romantic dinner at 
a restaurant” in multiple languages via large-scale matrix 
multiplications, but does not know what dinner is or that it 
is eaten in a restaurant? Would an autonomously driving car 
not be safer, if it could cross-check its statistical inferences 
with a knowledge base?This article is part of the topical collection “Web Information 

Systems and Technologies 2021” guest edited by Joaquim Filipe, 
Francisco Domínguez Mayo and Massimo Marchiori.
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All scenarios above demonstrate the need for knowledge 
for AI to be useful, and not for the first time. Researchers 
and practitioners have looked for different ways to engineer 
or acquire expert knowledge and formalize them for comput-
ers in some form such as knowledge bases for many years. 
Knowledge graphs are the most recent attempt to achieve 
this knowledge acquisition goal. Knowledge Graphs are very 
large semantic nets that integrate heterogeneous data sources 
[3]. When looked closely, there are significant differences 
between traditional knowledge bases and knowledge graphs:

•	 Traditional knowledge bases are more focused on having 
complex and expressive TBoxes1 and smaller ABoxes.2 
The aim is to make the implicit knowledge described 
by TBox explicit with reasoning. Knowledge graphs in 
comparison have much larger ABoxes and relatively 
small and less complex TBoxes. The aim is to represent 
knowledge extensionally. The large ABox also means 
that knowledge graphs are typically several orders of 
magnitude larger than knowledge bases.

•	 Knowledge bases are typically tailored for specific 
domains and tasks and curated at a much smaller scale. 
Also, the separation of the TBox and ABox is much 
clearer. Knowledge graphs on the other hand are more 
flexible: adding a new type or a new instance is just add-
ing a node to the graph. The flexible data model allows 
knowledge graphs to integrate heterogeneous sources and 
expand rapidly.

The differences between knowledge bases and knowledge 
graphs (particularly the size and heterogeneity) call for a 
new perspective on knowledge engineering. Unlike tra-
ditional knowledge engineering methodologies, building 
knowledge graphs focus on large ABoxes and not complex 
TBoxes. Due to the heterogeneity of data sources, quality 
assessment, and improvement via correctness and enrich-
ment is also under focus.

In this paper, we present our methodology for building 
knowledge graphs (Fig. 1) that consists of:

•	 a Knowledge Creation step that focuses on the efficient 
creation of large ABoxes and lightweight ontology engi-
neering based on Schema.org for TBoxes

•	 a Knowledge Hosting step that considers provenance of 
the created knowledge from heterogeneous sources and 
contextualization of knowledge

•	 a Knowledge Curation step that aims to assess, correct, 
and enrich a knowledge graph. Quality issues in knowl-
edge graphs are inevitable due to the large size and het-
erogeneity. The assessment task evaluates the quality in 
various dimensions. Then, the quality is improved par-
ticularly in the correctness and completeness dimensions 
by cleaning and enriching the knowledge graph, respec-
tively.

•	 a Knowledge Deployment step that puts the knowledge 
graph in use

This paper is a compiled and extended version of our 
previous work such as [3, 4]. The main contribution of the 
paper is to take a look on traditional knowledge engineering 
from knowledge graph perspective. We identify challenges 
that emerge due to the aforementioned characteristics of 
knowledge graphs and propose various solutions to differ-
ent knowledge graph lifecycle tasks. The remainder of the 
paper first presents a subset of the knowledge graph which 
we use as a running example (Section “Running Example”). 
We then present each step of our methodology starting from 
Section “Knowledge Creation” until Section “Knowledge 
Deployment”. We introduce the German Tourism Knowl-
edge Graph (GTKG) that is being built with the knowledge 
graph lifecycle in Section “Building the German Tourism 
KnowledgeGraph”. We discuss the related work in Section 
“Related Work” and conclude with a summary and future 
work in Section “Conclusion and Future Work”.

Fig. 1   A methodology for building knowledge graphs

1  Terminological Box (TBox) defines the terminology (e.g.,types, 
properties) and other logical formulas used in a knowledge graph.
2  Assertional Box (ABox) refers to the facts that are described by the 
TBox in the knowledge graph.
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Running Example

As a running example to demonstrate different steps of 
our methodology, we use a subset of the German Tourism 
Knowledge Graph (GTKG). A detailed description of the 
knowledge graph will be given in Section 7.

Figure 2 shows two named graphs identified with URIs 
dzt-graph:5890432 and dzt-graph:3694323,4 The first graph 
contains a schema:Hotel instance (dzt-entity:166417787) 
that is described with the properties schema:description, 
schema:name and schema:geo. The second named 
graph contains a schema:Restaurant instance (dzt-
entity:40878907) that is described with the same proper-
ties as the schema:Hotel instance, and additionally with the 
schema:telephone property. In the remainder of the paper, 

we will refer to this running example to explain the various 
processes in the knowledge graph lifecycle.

Knowledge Creation

Knowledge creation refers to semantically annotating con-
tent, data, and services from heterogeneous sources with an 
ontology. This step can be split into two major tasks, given 
the nature of knowledge graphs:

•	 Bottom-up A lightweight ontology engineering task 
called domain specification that creates domain-specific 
patterns.

•	 Top-down: A large scale instance generation task as an 
application of the domain-specific patterns.

In the following, we will explain these two tasks and our 
approach to knowledge creation (Fig. 3).

Fig. 2   An excerpt from the GTKG

3  Assume dzt-graph is the namespace of the GTKG.
4  The rectangular boxes show literal values. Empty circles repre-
sent entities without identifiers. The edges represent the relationship 
between two entities.
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Bottom‑Up: Domain Specification Modeling

We take Schema.org as a reference ontology for knowledge 
graphs as it is a de-facto industrial standard for annotations 
on the web. These annotations are natural building blocks for 
knowledge graphs and usage of such a widespread ontology 
would increase the impact of a knowledge graph. Before 
the knowledge generation process starts, the domain(s) the 
knowledge graph is supposed to describe must be analyzed 
to figure out the domain entities and their relationships and 
then mapped to Schema.org. This process is quite challeng-
ing due to the nature of the vocabulary. Schema.org covers 
many domains with hundreds of types and properties, how-
ever, its coverage for specific domains is very shallow. This 
situation calls for an adaptation of Schema.org for specific 
domains and tasks. We call this adaptation process domain 
specification [5].

The domain specification process consists of two major 
operations. The reduction operation aims to eliminate 
the types and properties that are not relevant to a specific 
domain. Afterward, the ranges of the remaining properties 
can be also restricted when necessary. The extension opera-
tion aims to extend the remaining part of the vocabulary 
with domain-specific types and properties. The result of this 
process is a set of SHACL shapes that are called domain 
specifications. These operators are then used to guide the 
instance generation task.

Top‑Down: Application of Domain Specifications

This task involves instance generation via the application 
of the generated domain-specific patterns to heterogene-
ous sources. The instance generation process can be done 
manually, semi-automatically via supervised methods and 
declarative mappings, or fully automated. The manual crea-
tion of knowledge is typically suitable for annotation of 

content (e.g. text, images) on a small scale. For this task, 
we adopt form-based editors that are generated based on 
domain-specific patterns. Similarly, content can be annotated 
semi-automatically by applying a supervised NLP pipeline, 
particularly for Named Entity Recognition and Relation 
Extraction where the domain-specific patterns provide the 
template to be filled. Finally, content can be also automati-
cally annotated in an unsupervised manner. The research on 
this direction mostly deals with the open-domain informa-
tion extraction (e.g. OpenIE [6]). Most of the useful applica-
tions however require some sort of human intervention at the 
end (e.g., NELL [7]) to improve the precision.

Alongside unstructured content, the majority of the data 
comes in a semi-structured format (e.g. JSON, XML, CSV) 
typically through third-party APIs. The semantic annota-
tion of such data can be done programmatically, however, 
this approach does not scale as the number of different data 
sources increase. We benefit from declarative mapping 
approaches. There are many approaches; like SPARQL-Gen-
erate which extends SPARQL language as a mapping lan-
guage, and R2RML5-based languages such as RDF Mapping 
Language (RML) [8] and its derivations. Our knowledge 
creation approach makes use of RML due to its rather wide-
spread adoption and continuous development. We developed 
a mapping engine for RML called RocketRML. It is imple-
mented in NodeJS and shows particularly high performance 
with data in JSON format (see [9] for performance details 
for populating a large knowledge graph). Being an exten-
sion to R2RML, RML also works with multiple sources via 
JOIN operations that are done on a set of fields on each 
source that serve as primary and foreign keys.6 RocketRML 

Fig. 3   Knowledge creation approach

5  https://​www.​w3.​org/​TR/​r2rml/.
6  RML now also has extension like RML Fields in works to support 
nested objects without JOIN fields [10].

https://www.w3.org/TR/r2rml/
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implements some optimization via memoization of JOIN 
operations and can handle nested objects without any fields 
to JOIN. RocketRML is open-source and being maintained 
actively by the community.7 The details of the implementa-
tion of our knowledge creation approach can be found in [9].

In our running example, the knowledge creation process 
is conducted in a distributed manner. The domain-specific 
patterns for hotels and restaurants are created and published 
by tourism domain experts and the technology providers cre-
ate mappings from their metadata to the domain-specific pat-
terns. The mappings and data are then processed by Rock-
etRML and instances in the RDF data model are produced.

Knowledge Hosting

The previous section presented different methodologies for 
generating knowledge for knowledge graphs. Hosting those 
knowledge graphs raises various challenges (Section “Chal-
lenges”). Those challenges significantly affect the decision 
for a database paradigm to host knowledge graphs. In Sec-
tion “Database Paradigms for Hosting Knowledge Graphs”, 
we will discuss different ways of hosting knowledge graphs 
using different kinds of databases and the ones we adopt in 
our use cases.

Challenges

Hosting knowledge graphs brings several challenges with 
it. We identified the following challenges that need to be 
considered:

Size
A major characteristic of a knowledge graph that distin-

guishes it from traditional knowledge bases is its massive 
size which can reach billions of facts. The database must be 
able to support operations of such a large size.

Data model
Knowledge graphs have conceptually a graph structure. 

From a storage perspective, the TBox and ABox are not 
strictly separated, they are all just nodes and edges of a 
graph. The database paradigm must support the graph data 
structure properly.

Heterogeneity of sources
Typically, knowledge graphs are built from heterogene-

ous sources where each source uses a different format for 
representing its knowledge. Related to the challenge above, 
the database paradigm must support the flexible expansion 

of the knowledge graph when a new type, property, or asser-
tion is added.

Points of view
Knowledge graphs are typically not built for a particu-

lar use-case but are used for several use-cases coming from 
various applications. The different use-cases will likely have 
other requirements concerning the usage of a knowledge 
graph. Those requirements can also be conflicting, e.g., one 
use-case requires that local businesses have a single address 
only, whereas another use-case allows multiple addresses.

Database Paradigms for Hosting Knowledge Graphs

Knowledge graphs can be hosted using various database 
paradigms, such as relational databases, document stores, 
and graph databases.

We examine three major paradigms that are widely 
adopted in practice to see how well they are suitable for 
the knowledge hosting task. Relational databases can host 
knowledge graphs via different approaches such as the 
statement table approach where triples are stored in a single 
table, the class-table approach where each type corresponds 
to a table and the property-table approach where each prop-
erty corresponds to a table. Each of these approaches has 
various drawbacks such as requiring expensive self-joins 
or recompilation of the schema anytime a type or property 
is introduced to the knowledge graph. Alternatively, ontol-
ogy-based access to relational databases (i.e., Virtual RDF 
Graphs) can be used, however, they also need complex map-
pings and middle layers to support querying and reasoning.

Document stores are more flexible in terms of schema 
compared to relational databases. However, they suffer 
from the mismatch between the graph nature of knowledge 
graphs and the document-based paradigm as they require 
either joins between different collections or nested storage 
of instances which make it cumbersome to delete and update 
the data. Moreover, like relational databases, they lack native 
reasoning support.

Given the limitations above, an obvious choice for host-
ing knowledge graphs is graph databases. Many enterprise 
graph database solutions can manage the large size of knowl-
edge graphs. A graph in a graph database is represented 
by nodes and edges. Nodes represent entities and edge 
the relationships between those entities. This provides the 
flexibility needed for accommodating expanding nature of 
knowledge graphs. Two data models are currently dominat-
ing the knowledge graph scene: Property Graphs and native 
RDF Graphs.

Nodes in Property Graphs represent entities in the graph 
and hold any number of property assertions. A label can be 
used to describe the node’s role within the graph. Relation-
ships represent a connection between two nodes, specifying 7  https://​github.​com/​seman​tifyit/​Rocke​tRML.

https://github.com/semantifyit/RocketRML
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the relationship between those. A relationship always con-
tains a direction given by a start and end node. Besides, 
relationships in Property Graphs can have property value 
assertions assigned.

Native RDF Graph databases or Triplestores support 
the RDF data model. RDF is triple-based and by default 
supports only binary relationships. This normally gives an 
advantage to Property Graphs as they can natively store 
statements about statements by attaching property-value 
pairs to the relationships between two entities. This capa-
bility allows seamless attachment of provenance information 
to the statements in a knowledge graph. There are, how-
ever, several methods used to reify RDF statements to miti-
gate this shortcoming of the RDF model. Two of them are 
Named Graphs [11] and a recent extension called RDF-Star 
[12]. Named Graphs extend the standard RDF triple model 
with a fourth element called “context” and make it a quad 
model. This context element can be the subject of other tri-
ples, which allows making statements about statements. The 
statements that share the same context URI are grouped into 
the same conceptual subgraph. RDF-Star provides a mecha-
nism to create nested triples. A triple can be embedded into 
another triple as a subject which allows again making state-
ments about statements.

In the end, from the modeling point of view, there is not 
much difference between RDF triplestores and property-
graph databases. Triplestores are built on solid recommenda-
tions from W3C which leads them to have a standard query 
language and reasoning support via RDFS and OWL2. Prop-
erty graphs are still quite vendor-specifically implemented. 
Therefore, we make use of RDF Graph Databases to host 
our knowledge graphs.

As a reification technique, we use Named Graphs as it 
is built into the SPARQL standard and supported by many 
industrial Triplestores out-of-the-box. We use named graphs 
to group statements into subgraphs based on their prove-
nance and attach license information, tempo-spatial scope, 
and more. In our running example, we have two named 
graphs. These named graphs contain knowledge created 
based on the data coming from different providers. Addi-
tional provenance information is attached to these named 
graphs via using the named graph URIs as subjects and 

describing them with properties from ontologies like PROV-
O8 and Schema.org. In Fig. 4 we demonstrate provenance 
information attached to dzt-graph:5890432.

Although graph databases address many challenges of 
hosting knowledge graphs, they are still not the end of the 
story. Named graphs are still part of a knowledge graph 
physically. This makes it quite challenging to support dif-
ferent points of view that may involve possibly conflicting 
constraints and inference rules. Moreover, the curation 
operations explained in the following section are still done 
over a large knowledge graph which may not be as efficient 
as applications need. These challenges and our solution are 
discussed further in Section “Knowledge Deployment”.

Knowledge Curation

Due to its large size and heterogeneity, a knowledge graph 
may have quality issues to be solved to become a useful 
resource for applications. Therefore, knowledge graphs must 
go under a series of operations that together comprise the 
knowledge curation process. In the following we will intro-
duce these three major processes for assessing an improving 
the quality of knowledge graphs.

Knowledge Assessment

Knowledge assessment aims to evaluate the quality of 
knowledge graphs. The literature on quality assessment 
can be traced back to data quality research. Data quality 
is often defined as fitness for use and evaluated from vari-
ous dimensions. In the 2000s these definitions have been 
adapted and updated across the Linked Open Data commu-
nity, particularly with dimensions specific to the nature of 
linked data on the web (e.g., how well the data is interlinked, 
are the sources verifiable, is the dataset logically consistent) 
[13–15].

For assessing knowledge quality, there are already sev-
eral frameworks with a specific degree of mechanization 

Fig. 4   Provenance information 
attached to a named graph

8  https://​www.​w3.​org/​TR/​prov-o/.

https://www.w3.org/TR/prov-o/
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and dimension focus. For instance, some frameworks can 
assess the quality of knowledge graphs manually (e.g., 
Sieve [16]), by crowdsourcing (e.g., TripleCheckMate 
[17]), via external knowledge (e.g., RDFUnit [18]) and 
semi-automatically (e.g., Luzzu [19]). Most of the frame-
works have their source code available, however, they 
are no longer maintained, except for Luzzu and RDFU-
nit, which are distributed with GPL-3.0 and Apache-2.0 
licence, respectively. More recently approaches that tar-
get the assessment of declerative mappings instead of 
the entire knowledge graph appeared [20, 21]. These 
approaches bring significant performance advantages; 
however, they can only be used to evaluate certain dimen-
sions and metrics.

In the remainder of the section, we will first introduce the 
dimensions, metrics and their calculation functions, which 
are cornerstones of defining different aspects of quality and 
operationalizing the quality assessment process. Then, we 
dive deeper into two selected dimensions and their metrics, 
namely correctness and completeness as they are the aspects 
of knowledge graphs we are mainly improving with the cura-
tion process. Finally, we will present how we calculate an 
aggregated quality score for a knowledge graph.

Quality Dimensions, Metrics and their Calculation Functions 
for Knowledge Graphs

A quality dimension speficies a criterion for which the 
knowledge graph quality can be assessed. Based on the data 
quality literature, we can identify 23 dimensions that can 
be applied on knowledge graphs [3]. These dimensions are 
Accessibility, Accuracy (Correctness), Appropriate amount, 
Believability, Completeness, Concise representation, Con-
sistent representation, Cost-effectiveness, Ease of manipula-
tion, Ease of operation, Ease of understanding, Flexibility, 
Free-of-error, Interoperability, Objectivity, Relevancy, Rep-
utation, Security, Timeliness, Tracability, Understandabil-
ity, Value-addedness and Variety. For example, Accessbility 
dimension specifies the criterion that “data or part of it must 
be available and retrievable.”

Each dimension has a certain number of metrics that 
amount to 42 metrics in total. The metrics of a dimension 
formalize the criterion and enable the assessment of the 
extent a knowledge graph fulfills the criterion of that dimen-
sion. For example, Accessibility dimension has a metric 
called “Availability of a knowledge graph” which evaluates 
the ability of derefencing URIs in a knowledge graph.

Each metric has a measurement function that allows to 
calculate a value for the metric. A measurement function 
returns a value between 0 and 1. For example, “Availability 
of a knowledge graph” metric ( mavailability ) can be calculated 
with the following function, given a knowledge graph k

where rsucc is the number of successful requests sent to a 
sample of URIs in the knowledge graph in a time frame and 
rall is the number of all requests sent.

The impact of the each metric for the assessment of a 
dimension, and each dimension to the assessment of the 
overall quality of a knowledge graph may be different 
based on the domain an application. For instance, in case 
of a knowledge graph for financial and medical applications 
correctness and reliability may be more important than com-
pleteness. Therefore, we propose a weighted approach that 
allows defining weight coefficients for individual dimensions 
and metrics per domain. This allows stakeholders to deter-
mine what dimension and metric are important for a given 
domain (e.g. events, POIs, accommodation).

Selected Dimensions: Correctness and Completeness

Among the 23 dimensions, we select correctness and com-
pleteness to explain in more detail, as they are the core 
dimensions targeted by the knowledge curation process. We 
will introduce both dimensions including the metrics they 
consist of the calculation functions for those metrics.

Correctness
The correctness dimension (may also be known as Accu-

racy) assesses the degree of which the knowledge graph is 
syntactically and semantically correct. The dimension con-
sists of four metrics:

Metric: Syntactic correctness with regards to RDF 
evaluates whether the RDF dumps of a knowledge graph 
have valid RDF syntax. The calculation function of this 
metric is returns the ratio of valid RDF dump documents 
exported from a knowledge graph to all RDF dump docu-
ments exported from a knowledge graph. This function can 
be implemented rather straightforwardly via an RDF syntax 
verifier.

Metric: Syntactic correctness of literal values evaluates 
whether the literal property values in a knowledge graph 
obey certain syntactical rules. The calculation function of 
this metric returns the ratio of triples whose literal-valued 
objects obey to certain syntactical rules among all triples 
with literal-valued objects. The calculation function can be 
implemented via regular expressions, via checking against 
the lexical space of their datatypes and known reference 
sources via string similarity measurements.

Metric: Syntactic correctness of resource identifiersevalu-
ates whether the resource identifiers used in a knowledge 
graph are syntactically correct. The calculation function of 
this metric returns the ratio of syntactically valid resource 
identifiers to the all resource identifiers used in the knowl-
edge graph. The metric can be implemented by checking 

(1)mavailability(k) = rsucc∕rall,
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URIs against vocabularies used in the knowledge graphs via 
string similarity measures.

Metric: Semantic correctness of statementsevaluates 
whether the statements (assertions in the ABox) in a knowl-
edge graph are correct in terms of a formal specification or 
the domain they describe. The calculation function of this 
metric returns the ratio of semantically correct statements to 
the all statements in a knowledge graph. The implementation 
of this metric can be done in various ways such as statistical 
methods like outlier detection for seeing if an instance asser-
tion is correct based on property distributions (e.g. [22]), 
checking against formal constraints (e.g., domain-specifi-
cations in the form of SHACL constraints) or crowdsourc-
ing (e.g. collecting feedback from people whether the phone 
number of a business is correct).

Completeness
The completeness dimension asseses the degree of which 

a knowledge graph contains the sufficient and necessary 
statements for a domain and application in hand. This defi-
nition already makes assessing the completeness of a knowl-
edge graph subjective and to automate the measurement of 
metrics a formal description of what complete means must 
be available. In the data quality literature (including LOD) 
completeness is typically assessed in terms of an ontology 
or a gold standard dataset [14]. This approach is problem-
atic because it ignores the use case and application context 
aspect of the dimension. For example, not all properties of a 
type defined in an ontology may be relevant for an applica-
tion or finding a golden standard dataset may be challeng-
ing for domain-specific knowledge graphs. We propose the 
following metrics:

 Metric: Coverage of a domain by a knowledge graph 
evaluates whether a knowledge graph is complete in terms 
of the requirements of a given domain. The calculation 
function returns the ratio of average number of properties 
used on the instances of a type to all properties of that type 
defined by a domain expert. This metric can be implemented 
with the help of the domain specific patterns introduced in 
the Knowledge Creation process. These patterns generated 
by domain experts specify an extend subset of schema.org 
which can be used to determine the properties of a type that 
is required to consider an instance complete.

Metric: Completeness of a knowledge graph for an appli-
cation evaluates whether a knowledge graph is complete in 
terms of the requirements of an application. The calculation 
function  returns the ratio of successful queries to a knowl-
edge graph to all queries by an application. The metric can 
be implemented with the help of examining the query logs 
of the knowledge graph.

Weighted Aggregate Quality Score Calculation

After the scores for all metrics for all dimensions are calcu-
lated via their functions, a weighted aggregate quality score 
is obtained. Given a knowledge graph k the formula below 
is used to calculate the weighted aggregate quality score of 
the ith dimension for k, di(k) ∈ [0, 1] , where pi is the number 
of metrics in the ith dimension, mi,j(k) ∈ [0, 1] is the score 
of the jth metric of the ith dimension for k, and �i,j is the 
weight of the jth metric of the ith dimension and 

∑pi
j=1

�i,j = 1

.

Once the scores for all dimensions are calculated, the 
weighted aggregated quality score for a knowledge graph 
T(k) is calculated with the following formula, where n is the 
total number of dimensions, and �i is the weight of the ith 
dimension and 

∑n

i=1
�i = 1.

Assume we have both instances in our running example in 
the same sample. We want to calculate the syntactic cor-
rectness of literal values. We realize that one of the geoco-
ordinates (4926178) does not fit the syntactic structure of 
WGS84 format9 as it is missing a decimal point. If these two 
instances are only instances in the sample, then there are 9 
literal values in total. The ratio of correct literal values to all 
literal values would amount to 0.89.

An important thing to keep in mind about knowledge 
assessment is that its main purpose is to indicate the over-
all quality of a knowledge graph. For example, assessing 
the correctness of a knowledge graph is not about identify-
ing individual errors, but assessing a representative sample 
whose evaluation gives an idea whether the correctness is 
at the desired level. In the next two chapters, we will par-
ticularly focus on what to do, when the quality is low in 
completeness and correctness dimensions.

Knowledge Cleaning

Knowledge Cleaning is a part of Knowledge Curation that 
aims to improve the correctness of knowledge graphs. 
Knowledge cleaning consists of two subtasks, namely error 
detection, and error correction. In the following, we define 
the types and sources of errors in a knowledge graph, the 

(2)di(k) =

pi
∑

j=1

mi,j(k).�i,j

(3)T(k) =

n
∑

i=1

di(k).�i

9  https://​en.​wikip​edia.​org/​wiki/​World_​Geode​tic_​System.

https://en.wikipedia.org/wiki/World_Geodetic_System
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approaches, and tools that tackle the knowledge cleaning 
task from the literature, and our approach to the task.

Like any other knowledge curation task, the cleaning task 
is targeting the assertions in the ABox. Errors may therefore 
stem from wrong instance assertions, wrong equality asser-
tions, and wrong property-value assertions. The knowledge 
cleaning task deals with two types of errors namely syntactic 
and semantic errors. Aligned with the definitions made for 
the correctness dimension in the knowledge assessment task, 
syntactic errors occur due to identifiers or literal values not 
following certain structure and syntax rules. Semantic errors 
occur either due to violation of formal specifications or the 
domain the knowledge graph is describing.

There are many approaches and their implementations 
in the literature targeting the knowledge cleaning task. For 
error detection, most popular approach is to use integrity 
constraints (e.g., RDFUnit [18]) for detection of semantic 
errors. Traditionally these constraints were represented by 
SPARQL queries, but in the last 5 years, SHACL is the most 
popular one as it is a W3C recommendation and supported 
by many triple store implementations. Additional approaches 
for detection include statistical analysis of the distribution of 
types and properties to identify semantically wrong instance 
assertions and domain range violations (e.g., [23]) and using 
logic to detect semantically wrong equality assertions (e.g., 
[24]). Once errors are detected, they can be corrected by 
either removing wrong assertions or adding new assertions 
to make the wrong statements fit the formal specifications. 
LOD Laundromat [25] and more recently RDFDoc is a 
tool that fixes syntactic errors in RDF data by using vari-
ous heuristics. Other approaches like HoloClean [26] and 
KATARA [27] combine external knowledge sources, crowd-
sourcing, and statistical methods. In the recent years, rule-
based approaches (e.g., [28]) and machine learning-based 
approaches that benefit from knowledge graph embeddings 
(e.g., [29]) also emerged.

Our approach to knowledge cleaning focuses on the 
detection task. We developed VeriGraph, a tool to verify 
instances in knowledge graphs based on domain-specific pat-
terns encoded as SHACL shapes. From a functionality point 
of view, VeriGraph adopts an integrity constraint checking 
approach. It can work directly on SPARQL endpoints. It 
contains certain optimizations that allow scalable operation 
on a knowledge graph. The major improvement is that the 
knowledge graph is not verified by checking each constraint 
in the shape one by one but on instances that are cached 
locally. This reduced the number of SPARQL queries run 
on the triple store the knowledge graph is stored, therefore 
decreasing the overhead significantly. The details about the 
performance can be found in [30].

We can demonstrate how error detection and correction 
work with our running example as follows: The error detec-
tion tool finds out that the value of schema:latitude property 

attached to dzt-entity:166417787 does not fit the structure 
of the WGS84 format based on a regular expression defined 
on a SHACL shape, as it is missing a decimal point. Once 
the error is detected, the correction process tries to place a 
decimal point by following a predefined heuristic for geoco-
ordinates. Given that the latitude value can be between – 90 
and 90, there are only two places the decimal point can go. A 
decimal point after the first digit would lead to 4.926178 and 
after the second digit to 49.26178. Given the heuristic that 
the knowledge graph contains hotels within Europe, the first 
option would be eliminated as combined with the longitude 
it refers to a point around Nigeria.

It is not a surprise that most of the approaches for knowl-
edge cleaning focus on the detection task rather than the 
correction task. This is related to various challenges of cor-
rection. It is typically very challenging to correct semantic 
errors as there are not many ways to automate finding out 
the real phone number of a business and correct the wrong 
one, without actually calling the business. Therefore, many 
approaches have to work with external sources that are 
assumed to be reliable. This is not particularly easy, espe-
cially for domain-specific knowledge graphs. Another option 
is to go with a crowdsourcing approach where the users of 
the knowledge graph have the opportunity to detect errors 
in assertions and suggest fixes. Nevertheless, the knowledge 
cleaning task, particularly automated correction remains an 
interesting research topic.

Knowledge Enrichment

Knowledge Enrichment (KE) is the task of adding missing 
knowledge to KGs to improve their completeness. Complete-
ness can be increased by adding missing instance asser-
tions, identity assertions (so-called sameAs links), or other 
property value assertions that connect arbitrary instances 
to instances and literals. Increasing the completeness of a 
knowledge graph mainly implies the integration of exter-
nal sources into a knowledge graph. Once the sources to 
integrate are identified, the enrichment process continues 
with three major steps [31]: (1) Merging of different sche-
mata. This implies the mapping of the schema of an external 
source to the schema of the knowledge graph. (2) Identifying 
and resolving the missing assertions (e.g. identifying a hotel 
is also a restaurant, connecting two Points of Interest that 
have a containment relationship). (3) Resolving any conflicts 
that were introduced after new assertions (e.g. violation of 
disjointness between types after instance assertions, having 
multiple distinct values for a property with singular cardinal-
ity after identity assertions between two instances).

In our work, we currently focus on identity assertions. 
The creation of identity assertions is commonly referred to 
as the Duplicate Detection (DD) task. Identity assertions 
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declare that two instances of a knowledge graph describe 
the same object of discourse.

Knowledge enrichment, especially duplicate detection 
is a challenge that is at least as old as computer science 
itself, therefore many approaches have been developed. In 
the context of knowledge graphs and traditionally Linked 
Open Data there have been approaches like Duke [32], SILK 
[33], LIMES [34] that use similarity functions supported by 
user-created heuristics such as identification of important 
properties, like EAGER [35] that benefit from pre-trained 
vector models of knowledge graphs and approaches that 
benefit from knowledge graph embeddings (e.g., [36, 37]).

Our approach currently focuses on the first two steps of a 
typical enrichment process and follows a simple workflow 
that is frequently used in research for this area. The work-
flow is roughly divided into five steps: 

1.	 Mapping schemata.
2.	 Indexing instances.
3.	 Applying pre-filtering.
4.	 Comparing instances.
5.	 Applying decision model.

In the following we will briefly explain our methodology for 
duplicate detection. The details about the implementation 
can be found in [38].

Mapping schemata The schemata mapping process cor-
responds to the ontology alignment task which is already 
heavily researched and it is another beast by itself. Since we 
assume Schema.org as the reference ontology for knowledge 
graphs, such an alignment is only done when an external 
knowledge source is being integrated, and even then only 
partially for the relevant part of the ontology.

Indexing instances
After the schemata are mapped, the knowledge graphs 

whose instances are going to be linked must be indexed. For 
our knowledge graphs, we use Elasticsearch as an indexing 
technology. Triplestores like GraphDB provide connectors 
to indexing services like Elasticsearch which automatically 
index instances for a given set of types and specified set 
of properties and/or property paths. This enables our DD 
process to quickly search for similar instances among the 
graph data.

Applying pre-filtering
Pre-filtering approaches are used to remove the most 

obvious non-duplicate instances for a given sample 
instance from the list of candidate duplicates as fast as 
possible. This is done to counteract the quadratic com-
plexity of DD tasks. For this purpose, we make use of 
the more_like_this query function that is provided 

by Elasticsearch. Other indexing solutions also provide 
similar functionalities. It allows for vastly different grades 
of strictness when creating candidate lists for an instance.

Comparing instances
After the candidate list for an instance was created, we 

dedicate more resources to the comparison of each can-
didate to the instance. We compare instances, property 
by property where we have to differentiate between three 
types of property value comparisons: 

1.	 Literal to literal we defined multiple comparisons and 
standardization functions for a subset of data types in the 
XML Schema Language. Comparison functions assign a 
value in the range of 0–1 to a pair of literals. This value 
could stem from the ratio of two numbers (e.g., literals 
of datatype xsd:unsignedInt) or the Levenshtein 
distance between to words. Optional standardization 
functions aim to make literal values more comparable 
(e.g., date standardizer which translates months in their 
alphanumerical form to the respective numerical form).

2.	 Instance to literal Property values that can be repre-
sented by literals and instances usually provide the same 
information in both forms. For the instance form, the 
information is likely distributed across multiple proper-
ties. To make these comparable, we apply a recursive 
serialization function that constructs a literal value rep-
resentation for an instance to make them comparable 
with the functions for literal to literal comparison.

3.	 Instance to instance We have multiple options for this 
type of comparison: (a) We could compare the URIs 
that are used to identify the instances. This would make 
this type of comparison a literal to literal comparison. 
(b) We can apply the recursive serialization function, 
we already described in comparison type 2 and apply 
it to both instances. (c) Their properties are compared 
individually, and their similarities are aggregated. This 
is the most precise way of comparing instances but also 
requires the most effort in run-time, configuring, and 
understanding.

This differentiation is necessary since properties can have 
multiple disjunctive types for their range as it is the case 
with schema.org.

Applying decision model
After the instance comparison is complete, we apply 

a decision model that decides whether two compared 
instances are duplicates. A weighted aggregation of the 
properties’ similarities is used to compute an overall 
similarity score. A weight describes the ability of a prop-
erty to contribute to identifying an identity link between 
two instances. We simply use a similarity threshold to 
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determine whether a pair of instances should be consid-
ered for identity link creation.

In our running example, there are two instances of 
schema:Hotel and schema:Restaurant respectively. Given 
that schema:Hotel and schema:Restaurant are both subtypes 
of schema:LocalBusiness, the duplicate detection approach 
selects them as candidates after pre-filtering. Assuming 
the configuration for local businesses consider the prop-
erties schema:description, schema:geo, schema:name and 
schema:telephone. These properties have different weights 
for influencing duplicate detection (e.g. geo coordinates 
have a higher effect while description has a lower one). For 
schema:geo, a similarity metric based on Haversine dis-
tance, and for other properties string similarity metrics can 
be adopted. Due to a high similarity (i.e., same name, same 
geo-coordinates), these two instances are identified as dupli-
cates and an identity link between dzt-entity:166417787 
and dzt-entity:40878907 is created. This link improves 
completeness from different perspectives. For example, 
now we know that both are instances of schema:Hotel and 
schema:Restaurant, and the phone number of the hotel is 
completed with the property value from the restaurant. The 
next step would then be finding a strategy for resolving 
conflicting properties. Here there will be multiple descrip-
tions for both instances. The enrichment process can select 
one of them or keep both, depending on the constraints of 
the domain and task. An important consideration here is 
how knowledge cleaning and enrichment interplay. On one 
hand, the enrichment process may not perform very well, if 
the geocoordinate is not corrected beforehand; on the other 
hand, the conflicting property values may be caught by the 
cleaning process.

Knowledge Deployment

Knowledge graphs can power a variety of applications like 
web search, Intelligent Personal Assistants, and autonomous 
agents. When deploying a knowledge graph there can be 
challenges due to its nature. These challenges are mainly 
related to the size of knowledge graphs and various points 
of view of applications. The curation tasks may take too 
long on large knowledge graphs, and the applications that 
give real-time responses may not afford to wait until the 
curation tasks are complete. Even with a simple formalism 
like RDFS, tasks like reasoning with domain and ranges and 
query answering run into problems operating on a knowl-
edge graph with around 130 million triples.10 In addition, 
different use cases might have different (contradictory) rules 
and constraints for the underlying data. Representing those 
in a single knowledge graph is impossible.

The state of the art approaches typically focus on the opti-
mization of query performance when it comes to knowl-
edge deployment. There are approaches that aim to balance 
SPARQL query processing between clients and servers (e.g., 
WiseKG [39]) and approaches that benefit from optimization 
techniques of relational databases for graph querying [40].

We propose introducing an intermediate layer between 
the knowledge graph and applications called Knowledge 
Access and Representation Layer (see Fig. 5) to tackle the 
challenges above. The knowledge graph as the basis for the 
layer is treated as a data lake allowing it to be erroneous 
and incomplete. With Knowledge Activators at its core, the 
layer on top operates on use-case-specific subgraphs (called 

Fig. 5   Knowledge Access & Representation Layer Overview

10  See the benchmark results at https://​github.​com/​kev-​ang/​mskr.

https://github.com/kev-ang/mskr
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views) of the knowledge graph. Each view is attached to 
a knowledge activator, which contains a specific TBox 
that serves the needs of specific application contexts. The 
Knowledge Access and Representation Layer addresses both 
size and point of view issues: the former is addressed via the 
small size of views that allow efficient knowledge curation, 
and the latter is addressed via the Knowledge Activators 
that can support different constraints and inference rules for 
the same data. At the same time, the newly introduced layer 
allows the integration of external data on the fly. Working 
on materialized subgraphs of knowledge graphs has been 
investigated [41], however not significantly implemented 
in paractice. We developed a GraphQL based interface that 
can be used for view extraction [42]. In the next steps, this 
interface will be extended with RML mapping capabilities to 
enable mapping between the TBox of the knowledge graph 
and the use case specific TBox in the knowledge activators.

In our running example, different applications may have 
different requirements in terms of the format of geocoor-
dinates. One application may work with coordinates in 
WGS84 format, another one British Nation Grid (BNG)11 
system. Accommodating the needs of both applications is 
only possible if we can define custom syntactic and seman-
tic constraints for different applications via Knowledge 
Activators.

A control and data flow component based on Abstract 
State Machines handle the data flow between Knowledge 
Activators. Finally, an API allows various applications to 
access the Knowledge Access and Representation Layer. The 
implementation of the layer is currently still in progress.

Building the German Tourism Knowledge 
Graph

The German Tourism Knowledge Graph (GTKG) is at the 
core of the Open Data Germany12 initiative led by the Ger-
man National Tourism Board. The main goal of the project 
is to integrate and curate data from all regional tourism mar-
keting organizations in Germany to provide a high-quality 
knowledge source for intelligent applications and improve 
the positioning of German tourism in Europe and beyond.

The knowledge graph is built around several main con-
cepts that are particularly important for German tourism 
such as POIs, Tours, Events, Accommodation, Gastronomy, 
and Holiday Offers. It integrates data from more than 16 
heterogeneous sources.

The initial deployment of GTKG contains more than 20K 
Event, more than 20K POI and more than 5K Tour instances. 

These instances amount a total of 7.5M statements. The 
schema used to describe these instances are aligned with 
the schemas developed by the Open Data Tourism Alliance 
(ODTA). ODTA is an initiative that brings tourism domain 
experts from the German-speaking area of Europe (DACH 
region), namely Austria, Germany, Italy (South Tyrol), and 
Switzerland. These domain experts together with semantic 
technology experts create domain-specific patterns for the 
DACH region as a de facto standardized data model. ODTA 
also provides tutorials and supporting material for IT solu-
tion providers for the usage of domain-specific patterns for 
knowledge creation.

Different aspects of building knowledge graphs presented 
in this paper are being implemented in a toolkit by Onlim, 
a company that deals with knowledge graphs and applica-
tions powered by knowledge graphs. This toolkit is called 
Knowledge Graph Management Platform (KGMP) and is 
currently primarily used for building the GTKG. The KGMP 
provides tooling for knowledge creation based on domain-
specific patterns created by ODTA, hosting with provenance 
tracking via named graphs powered by GraphDB, curation 
that focuses on correctness and completeness dimensions 
for assessment, and error detection for cleaning and asser-
tion of identity links for enrichment. For deployment, the 
platform provides query interfaces and APIs for various 
applications and a web application for browsing the knowl-
edge graph. The platform is under ongoing development and 
tooling for the remaining tasks mentioned in the paper is 
being implemented.

The knowledge graph is currently in the pre-production 
phase (Fig. 6) and will be publicly available with an open 
license in May 2022. The current number of 7.5M state-
ments is rapidly increasing as more regional marketing 
organizations join the knowledge creation process. The pro-
gress can be tracked on the Open Data Germany website.13

Related Work

The knowledge graph building process can be compared 
with the traditional knowledge engineering in the core of 
which ontology engineering lies. There are many ontology 
engineering methods with various nuances between them. 
For example, some focus on collaboration and distributed 
development while others focus on iterative development 
and modularization. A recent survey covers many of these 
approaches in detail [43]. Despite their nuances, the tra-
ditional knowledge engineering methodologies typically 
follow a create-develop-evaluate-update-deploy approach. 
This is comparable with our process model for building 

13  https://​open-​data-​germa​ny.​org/​daten​besta​nd/.

11  https://​en.​wikip​edia.​org/​wiki/​Ordna​nce_​Survey_​Natio​nal_​Grid.
12  https://​open-​data-​germa​ny.​org/.

https://open-data-germany.org/datenbestand/
https://en.wikipedia.org/wiki/Ordnance_Survey_National_Grid
https://open-data-germany.org/
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knowledge graphs as it also consists of processes like crea-
tion, assessment, cleaning, enrichment, and deployment. 
The major difference however is that traditional knowledge 
engineering focuses on large and complex TBoxes while 
building knowledge graphs would need efficient and effec-
tive methods for ABox heavy knowledge engineering due to 
the reasons discussed in the paper.

The individual aspects of building knowledge graphs and 
more traditionally linked open datasets have been the focus 
of both researchers and practitioners for many years. We 
already covered the state of the art on each aspect to some 
extent in the Sections “Knowledge Creation”, “Knowledge 
Hosting”, “Knowledge Curation” and “Knowledge Deploy-
ment”. There are also various recent surveys studying 

different aspects of knowledge graph building. For example, 
the survey from Paulheim [44] covers various approaches for 
knowledge cleaning and enrichment. Another survey covers 
entity alignment approaches for knowledge enrichment [45]. 
A quick look at the literature shows that a significant amount 
of effort is put into the creative aspect of building knowledge 
graphs, which is also evident from the plethora of declara-
tive mapping languages and tools, as well as the activities 
of the W3C Knowledge Graph Construction Community 
Group.14 Although the individual aspects are important, 
knowledge graphs have a lifecycle that goes beyond one-
shot knowledge creation activities. As also pointed out in a 
recent survey [46], the maintanance step is as crucial as the 
creation step. In this paper, we present a holistic approach 

Fig. 6   A screenshot from the pre-production deployment of the knowledge graph

14  https://​github.​com/​kg-​const​ruct/.

https://github.com/kg-construct/
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to building knowledge graphs that cover the process from 
creation to deployment.

A relevant methodology was proposed by Sequeda et al. 
[47]. The methodology follows the principle of applying 
small iterations of simple TBox modeling and a popula-
tion of relatively larger ABoxes based on this TBox. The 
produced knowledge graph is then evaluated and iteratively 
expanded until the requirements of the use case are satisfied. 
The methodology is however mainly focused on knowledge 
creation and also comparable with our knowledge creation 
approach and presented bottom-up and top-down models. 
However, we see the knowledge graph building process as 
more than just creating as its quality and maintenance are 
also fundamental for applications to work properly with it.

Conclusion and Future Work

Acquisition and representation of domain and task knowl-
edge have been a crucial goal for AI, especially since Feigen-
baum’s knowledge principle. This goal led to various works 
such as knowledge-based systems. The increasing complex-
ity of knowledge-based systems led to the development of 
knowledge engineering methodologies for the systematic 
development and maintenance of such systems. Knowledge 
graphs are the latest answer to this search. Although on the 
surface knowledge graphs may look like “yet another knowl-
edge base in graph form”, there are fundamental differences. 
Unlike traditional knowledge bases, knowledge graphs are 
ABox heavy, meaning that knowledge is more explicitly 
represented than hidden in complex TBoxes. There are also 
inherently larger and their flexible data model allows rather 
seamless integration of heterogeneous data sources.

The fundamental differences in the size and heterogeneity 
of knowledge graphs call for a different knowledge engineer-
ing paradigm that is more focused on the creation, hosting, 
and curation of ABox than TBox. We presented different 
aspects of building a knowledge graph and explained how it 
is being implemented in a significant project in the tourism 
domain.

In future work, we will continue with the refinement of 
the aspects such as assessment to make them more suitable 
for knowledge graphs and work on the missing parts of our 
approach such as semi-automated knowledge correction and 
link detection beyond identity links.
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