
Vol.:(0123456789)

SN Computer Science (2023) 4:16
https://doi.org/10.1007/s42979-022-01429-x

SN Computer Science

ORIGINAL RESEARCH

A Knowledge Graph Perspective on Knowledge Engineering

Umutcan Simsek1  · Elias Kärle2 · Kevin Angele1,2 · Elwin Huaman1 · Juliette Opdenplatz1,2 · Dennis Sommer1 ·
Jürgen Umbrich2 · Dieter Fensel1

Received: 12 April 2022 / Accepted: 16 September 2022 / Published online: 17 October 2022
© The Author(s) 2022

Abstract
For over 50 years researchers and practitioners have searched for ways to elicit and formalize expert knowledge to support
AI applications. Expert systems and knowledge bases were all results of these efforts. The initial efforts on knowledge
bases were focused on defining a domain and task intensionally with rather complex ontologies. The increasing complexity
of knowledge and knowledge-based systems eventually led to the development of knowledge engineering methodologies.
Knowledge graphs, in contrast to the traditional knowledge bases, represent knowledge more extensionally with a very large
set of explicit statements and rather simpler and smaller ontologies. This paradigm change calls for a new take on knowledge
engineering that focuses on the curation of ABox statements. In this paper, we introduce various aspects of the knowledge
graphs lifecycle namely creation, hosting, curation and deployment. We define each task, give example approaches from
the literature and explain our approach with a running example. Additionally, we present the German Tourism Knowledge
Graph that is being implemented with our methodology.

Keywords  Knowledge graphs · Knowledge engineering · Knowledge graph lifecycle

Introduction

The vision of AI research that aimed to give computers the
ability to “solve problems that are meant for humans” was
implemented in the form of a General Problem Solver (GPS)
[1]. The main idea behind GPS was that any problem can
be solved by a computer if it can be formally defined. The
GPS was an important milestone for AI and had important

successes in solving many problems. However, it was soon
realized that real-world problems need specific tasks and
domain knowledge as a heuristic to tackle with AI. The
“knowledge principle” coined by Feigenbaum [2] is still
valid today. Is a conversational AI useful, when it can
“understand” a user’s wish “to have a romantic dinner at
a restaurant” in multiple languages via large-scale matrix
multiplications, but does not know what dinner is or that it
is eaten in a restaurant? Would an autonomously driving car
not be safer, if it could cross-check its statistical inferences
with a knowledge base?This article is part of the topical collection “Web Information

Systems and Technologies 2021” guest edited by Joaquim Filipe,
Francisco Domínguez Mayo and Massimo Marchiori.

 *	 Umutcan Simsek
	 umutcan.simsek@sti2.at

 *	 Dieter Fensel
	 dieter.fensel@sti2.at

	 Elias Kärle
	 elias.kaerle@onlim.at

	 Kevin Angele
	 kevin.angele@sti2.at

	 Elwin Huaman
	 elwin.huaman@sti2.at

	 Juliette Opdenplatz
	 juliette.opdenplatz@sti2.at

	 Dennis Sommer
	 dennis.sommer@sti2.at

	 Jürgen Umbrich
	 juergen.umbrich@onlim.com

1	 Semantic Technology Institute Innsbruck, University
of Innsbruck, Technikerstrasse 21a, 6020 Innsbruck, Tyrol,
Austria

2	 Onlim GmbH, Weintraubengasse 22, 1020 Vienna, Austria

http://orcid.org/0000-0001-6459-474X
http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-022-01429-x&domain=pdf

	 SN Computer Science (2023) 4:1616  Page 2 of 16

SN Computer Science

All scenarios above demonstrate the need for knowledge
for AI to be useful, and not for the first time. Researchers
and practitioners have looked for different ways to engineer
or acquire expert knowledge and formalize them for comput-
ers in some form such as knowledge bases for many years.
Knowledge graphs are the most recent attempt to achieve
this knowledge acquisition goal. Knowledge Graphs are very
large semantic nets that integrate heterogeneous data sources
[3]. When looked closely, there are significant differences
between traditional knowledge bases and knowledge graphs:

•	 Traditional knowledge bases are more focused on having
complex and expressive TBoxes1 and smaller ABoxes.2
The aim is to make the implicit knowledge described
by TBox explicit with reasoning. Knowledge graphs in
comparison have much larger ABoxes and relatively
small and less complex TBoxes. The aim is to represent
knowledge extensionally. The large ABox also means
that knowledge graphs are typically several orders of
magnitude larger than knowledge bases.

•	 Knowledge bases are typically tailored for specific
domains and tasks and curated at a much smaller scale.
Also, the separation of the TBox and ABox is much
clearer. Knowledge graphs on the other hand are more
flexible: adding a new type or a new instance is just add-
ing a node to the graph. The flexible data model allows
knowledge graphs to integrate heterogeneous sources and
expand rapidly.

The differences between knowledge bases and knowledge
graphs (particularly the size and heterogeneity) call for a
new perspective on knowledge engineering. Unlike tra-
ditional knowledge engineering methodologies, building
knowledge graphs focus on large ABoxes and not complex
TBoxes. Due to the heterogeneity of data sources, quality
assessment, and improvement via correctness and enrich-
ment is also under focus.

In this paper, we present our methodology for building
knowledge graphs (Fig. 1) that consists of:

•	 a Knowledge Creation step that focuses on the efficient
creation of large ABoxes and lightweight ontology engi-
neering based on Schema.org for TBoxes

•	 a Knowledge Hosting step that considers provenance of
the created knowledge from heterogeneous sources and
contextualization of knowledge

•	 a Knowledge Curation step that aims to assess, correct,
and enrich a knowledge graph. Quality issues in knowl-
edge graphs are inevitable due to the large size and het-
erogeneity. The assessment task evaluates the quality in
various dimensions. Then, the quality is improved par-
ticularly in the correctness and completeness dimensions
by cleaning and enriching the knowledge graph, respec-
tively.

•	 a Knowledge Deployment step that puts the knowledge
graph in use

This paper is a compiled and extended version of our
previous work such as [3, 4]. The main contribution of the
paper is to take a look on traditional knowledge engineering
from knowledge graph perspective. We identify challenges
that emerge due to the aforementioned characteristics of
knowledge graphs and propose various solutions to differ-
ent knowledge graph lifecycle tasks. The remainder of the
paper first presents a subset of the knowledge graph which
we use as a running example (Section “Running Example”).
We then present each step of our methodology starting from
Section “Knowledge Creation” until Section “Knowledge
Deployment”. We introduce the German Tourism Knowl-
edge Graph (GTKG) that is being built with the knowledge
graph lifecycle in Section “Building the German Tourism
KnowledgeGraph”. We discuss the related work in Section
“Related Work” and conclude with a summary and future
work in Section “Conclusion and Future Work”.

Fig. 1   A methodology for building knowledge graphs

1  Terminological Box (TBox) defines the terminology (e.g.,types,
properties) and other logical formulas used in a knowledge graph.
2  Assertional Box (ABox) refers to the facts that are described by the
TBox in the knowledge graph.

SN Computer Science (2023) 4:16	 Page 3 of 16  16

SN Computer Science

Running Example

As a running example to demonstrate different steps of
our methodology, we use a subset of the German Tourism
Knowledge Graph (GTKG). A detailed description of the
knowledge graph will be given in Section 7.

Figure 2 shows two named graphs identified with URIs
dzt-graph:5890432 and dzt-graph:3694323,4 The first graph
contains a schema:Hotel instance (dzt-entity:166417787)
that is described with the properties schema:description,
schema:name and schema:geo. The second named
graph contains a schema:Restaurant instance (dzt-
entity:40878907) that is described with the same proper-
ties as the schema:Hotel instance, and additionally with the
schema:telephone property. In the remainder of the paper,

we will refer to this running example to explain the various
processes in the knowledge graph lifecycle.

Knowledge Creation

Knowledge creation refers to semantically annotating con-
tent, data, and services from heterogeneous sources with an
ontology. This step can be split into two major tasks, given
the nature of knowledge graphs:

•	 Bottom-up A lightweight ontology engineering task
called domain specification that creates domain-specific
patterns.

•	 Top-down: A large scale instance generation task as an
application of the domain-specific patterns.

In the following, we will explain these two tasks and our
approach to knowledge creation (Fig. 3).

Fig. 2   An excerpt from the GTKG

3  Assume dzt-graph is the namespace of the GTKG.
4  The rectangular boxes show literal values. Empty circles repre-
sent entities without identifiers. The edges represent the relationship
between two entities.

	 SN Computer Science (2023) 4:1616  Page 4 of 16

SN Computer Science

Bottom‑Up: Domain Specification Modeling

We take Schema.org as a reference ontology for knowledge
graphs as it is a de-facto industrial standard for annotations
on the web. These annotations are natural building blocks for
knowledge graphs and usage of such a widespread ontology
would increase the impact of a knowledge graph. Before
the knowledge generation process starts, the domain(s) the
knowledge graph is supposed to describe must be analyzed
to figure out the domain entities and their relationships and
then mapped to Schema.org. This process is quite challeng-
ing due to the nature of the vocabulary. Schema.org covers
many domains with hundreds of types and properties, how-
ever, its coverage for specific domains is very shallow. This
situation calls for an adaptation of Schema.org for specific
domains and tasks. We call this adaptation process domain
specification [5].

The domain specification process consists of two major
operations. The reduction operation aims to eliminate
the types and properties that are not relevant to a specific
domain. Afterward, the ranges of the remaining properties
can be also restricted when necessary. The extension opera-
tion aims to extend the remaining part of the vocabulary
with domain-specific types and properties. The result of this
process is a set of SHACL shapes that are called domain
specifications. These operators are then used to guide the
instance generation task.

Top‑Down: Application of Domain Specifications

This task involves instance generation via the application
of the generated domain-specific patterns to heterogene-
ous sources. The instance generation process can be done
manually, semi-automatically via supervised methods and
declarative mappings, or fully automated. The manual crea-
tion of knowledge is typically suitable for annotation of

content (e.g. text, images) on a small scale. For this task,
we adopt form-based editors that are generated based on
domain-specific patterns. Similarly, content can be annotated
semi-automatically by applying a supervised NLP pipeline,
particularly for Named Entity Recognition and Relation
Extraction where the domain-specific patterns provide the
template to be filled. Finally, content can be also automati-
cally annotated in an unsupervised manner. The research on
this direction mostly deals with the open-domain informa-
tion extraction (e.g. OpenIE [6]). Most of the useful applica-
tions however require some sort of human intervention at the
end (e.g., NELL [7]) to improve the precision.

Alongside unstructured content, the majority of the data
comes in a semi-structured format (e.g. JSON, XML, CSV)
typically through third-party APIs. The semantic annota-
tion of such data can be done programmatically, however,
this approach does not scale as the number of different data
sources increase. We benefit from declarative mapping
approaches. There are many approaches; like SPARQL-Gen-
erate which extends SPARQL language as a mapping lan-
guage, and R2RML5-based languages such as RDF Mapping
Language (RML) [8] and its derivations. Our knowledge
creation approach makes use of RML due to its rather wide-
spread adoption and continuous development. We developed
a mapping engine for RML called RocketRML. It is imple-
mented in NodeJS and shows particularly high performance
with data in JSON format (see [9] for performance details
for populating a large knowledge graph). Being an exten-
sion to R2RML, RML also works with multiple sources via
JOIN operations that are done on a set of fields on each
source that serve as primary and foreign keys.6 RocketRML

Fig. 3   Knowledge creation approach

5  https://​www.​w3.​org/​TR/​r2rml/.
6  RML now also has extension like RML Fields in works to support
nested objects without JOIN fields [10].

https://www.w3.org/TR/r2rml/

SN Computer Science (2023) 4:16	 Page 5 of 16  16

SN Computer Science

implements some optimization via memoization of JOIN
operations and can handle nested objects without any fields
to JOIN. RocketRML is open-source and being maintained
actively by the community.7 The details of the implementa-
tion of our knowledge creation approach can be found in [9].

In our running example, the knowledge creation process
is conducted in a distributed manner. The domain-specific
patterns for hotels and restaurants are created and published
by tourism domain experts and the technology providers cre-
ate mappings from their metadata to the domain-specific pat-
terns. The mappings and data are then processed by Rock-
etRML and instances in the RDF data model are produced.

Knowledge Hosting

The previous section presented different methodologies for
generating knowledge for knowledge graphs. Hosting those
knowledge graphs raises various challenges (Section “Chal-
lenges”). Those challenges significantly affect the decision
for a database paradigm to host knowledge graphs. In Sec-
tion “Database Paradigms for Hosting Knowledge Graphs”,
we will discuss different ways of hosting knowledge graphs
using different kinds of databases and the ones we adopt in
our use cases.

Challenges

Hosting knowledge graphs brings several challenges with
it. We identified the following challenges that need to be
considered:

Size
A major characteristic of a knowledge graph that distin-

guishes it from traditional knowledge bases is its massive
size which can reach billions of facts. The database must be
able to support operations of such a large size.

Data model
Knowledge graphs have conceptually a graph structure.

From a storage perspective, the TBox and ABox are not
strictly separated, they are all just nodes and edges of a
graph. The database paradigm must support the graph data
structure properly.

Heterogeneity of sources
Typically, knowledge graphs are built from heterogene-

ous sources where each source uses a different format for
representing its knowledge. Related to the challenge above,
the database paradigm must support the flexible expansion

of the knowledge graph when a new type, property, or asser-
tion is added.

Points of view
Knowledge graphs are typically not built for a particu-

lar use-case but are used for several use-cases coming from
various applications. The different use-cases will likely have
other requirements concerning the usage of a knowledge
graph. Those requirements can also be conflicting, e.g., one
use-case requires that local businesses have a single address
only, whereas another use-case allows multiple addresses.

Database Paradigms for Hosting Knowledge Graphs

Knowledge graphs can be hosted using various database
paradigms, such as relational databases, document stores,
and graph databases.

We examine three major paradigms that are widely
adopted in practice to see how well they are suitable for
the knowledge hosting task. Relational databases can host
knowledge graphs via different approaches such as the
statement table approach where triples are stored in a single
table, the class-table approach where each type corresponds
to a table and the property-table approach where each prop-
erty corresponds to a table. Each of these approaches has
various drawbacks such as requiring expensive self-joins
or recompilation of the schema anytime a type or property
is introduced to the knowledge graph. Alternatively, ontol-
ogy-based access to relational databases (i.e., Virtual RDF
Graphs) can be used, however, they also need complex map-
pings and middle layers to support querying and reasoning.

Document stores are more flexible in terms of schema
compared to relational databases. However, they suffer
from the mismatch between the graph nature of knowledge
graphs and the document-based paradigm as they require
either joins between different collections or nested storage
of instances which make it cumbersome to delete and update
the data. Moreover, like relational databases, they lack native
reasoning support.

Given the limitations above, an obvious choice for host-
ing knowledge graphs is graph databases. Many enterprise
graph database solutions can manage the large size of knowl-
edge graphs. A graph in a graph database is represented
by nodes and edges. Nodes represent entities and edge
the relationships between those entities. This provides the
flexibility needed for accommodating expanding nature of
knowledge graphs. Two data models are currently dominat-
ing the knowledge graph scene: Property Graphs and native
RDF Graphs.

Nodes in Property Graphs represent entities in the graph
and hold any number of property assertions. A label can be
used to describe the node’s role within the graph. Relation-
ships represent a connection between two nodes, specifying 7  https://​github.​com/​seman​tifyit/​Rocke​tRML.

https://github.com/semantifyit/RocketRML

	 SN Computer Science (2023) 4:1616  Page 6 of 16

SN Computer Science

the relationship between those. A relationship always con-
tains a direction given by a start and end node. Besides,
relationships in Property Graphs can have property value
assertions assigned.

Native RDF Graph databases or Triplestores support
the RDF data model. RDF is triple-based and by default
supports only binary relationships. This normally gives an
advantage to Property Graphs as they can natively store
statements about statements by attaching property-value
pairs to the relationships between two entities. This capa-
bility allows seamless attachment of provenance information
to the statements in a knowledge graph. There are, how-
ever, several methods used to reify RDF statements to miti-
gate this shortcoming of the RDF model. Two of them are
Named Graphs [11] and a recent extension called RDF-Star
[12]. Named Graphs extend the standard RDF triple model
with a fourth element called “context” and make it a quad
model. This context element can be the subject of other tri-
ples, which allows making statements about statements. The
statements that share the same context URI are grouped into
the same conceptual subgraph. RDF-Star provides a mecha-
nism to create nested triples. A triple can be embedded into
another triple as a subject which allows again making state-
ments about statements.

In the end, from the modeling point of view, there is not
much difference between RDF triplestores and property-
graph databases. Triplestores are built on solid recommenda-
tions from W3C which leads them to have a standard query
language and reasoning support via RDFS and OWL2. Prop-
erty graphs are still quite vendor-specifically implemented.
Therefore, we make use of RDF Graph Databases to host
our knowledge graphs.

As a reification technique, we use Named Graphs as it
is built into the SPARQL standard and supported by many
industrial Triplestores out-of-the-box. We use named graphs
to group statements into subgraphs based on their prove-
nance and attach license information, tempo-spatial scope,
and more. In our running example, we have two named
graphs. These named graphs contain knowledge created
based on the data coming from different providers. Addi-
tional provenance information is attached to these named
graphs via using the named graph URIs as subjects and

describing them with properties from ontologies like PROV-
O8 and Schema.org. In Fig. 4 we demonstrate provenance
information attached to dzt-graph:5890432.

Although graph databases address many challenges of
hosting knowledge graphs, they are still not the end of the
story. Named graphs are still part of a knowledge graph
physically. This makes it quite challenging to support dif-
ferent points of view that may involve possibly conflicting
constraints and inference rules. Moreover, the curation
operations explained in the following section are still done
over a large knowledge graph which may not be as efficient
as applications need. These challenges and our solution are
discussed further in Section “Knowledge Deployment”.

Knowledge Curation

Due to its large size and heterogeneity, a knowledge graph
may have quality issues to be solved to become a useful
resource for applications. Therefore, knowledge graphs must
go under a series of operations that together comprise the
knowledge curation process. In the following we will intro-
duce these three major processes for assessing an improving
the quality of knowledge graphs.

Knowledge Assessment

Knowledge assessment aims to evaluate the quality of
knowledge graphs. The literature on quality assessment
can be traced back to data quality research. Data quality
is often defined as fitness for use and evaluated from vari-
ous dimensions. In the 2000s these definitions have been
adapted and updated across the Linked Open Data commu-
nity, particularly with dimensions specific to the nature of
linked data on the web (e.g., how well the data is interlinked,
are the sources verifiable, is the dataset logically consistent)
[13–15].

For assessing knowledge quality, there are already sev-
eral frameworks with a specific degree of mechanization

Fig. 4   Provenance information
attached to a named graph

8  https://​www.​w3.​org/​TR/​prov-o/.

https://www.w3.org/TR/prov-o/

SN Computer Science (2023) 4:16	 Page 7 of 16  16

SN Computer Science

and dimension focus. For instance, some frameworks can
assess the quality of knowledge graphs manually (e.g.,
Sieve [16]), by crowdsourcing (e.g., TripleCheckMate
[17]), via external knowledge (e.g., RDFUnit [18]) and
semi-automatically (e.g., Luzzu [19]). Most of the frame-
works have their source code available, however, they
are no longer maintained, except for Luzzu and RDFU-
nit, which are distributed with GPL-3.0 and Apache-2.0
licence, respectively. More recently approaches that tar-
get the assessment of declerative mappings instead of
the entire knowledge graph appeared [20, 21]. These
approaches bring significant performance advantages;
however, they can only be used to evaluate certain dimen-
sions and metrics.

In the remainder of the section, we will first introduce the
dimensions, metrics and their calculation functions, which
are cornerstones of defining different aspects of quality and
operationalizing the quality assessment process. Then, we
dive deeper into two selected dimensions and their metrics,
namely correctness and completeness as they are the aspects
of knowledge graphs we are mainly improving with the cura-
tion process. Finally, we will present how we calculate an
aggregated quality score for a knowledge graph.

Quality Dimensions, Metrics and their Calculation Functions
for Knowledge Graphs

A quality dimension speficies a criterion for which the
knowledge graph quality can be assessed. Based on the data
quality literature, we can identify 23 dimensions that can
be applied on knowledge graphs [3]. These dimensions are
Accessibility, Accuracy (Correctness), Appropriate amount,
Believability, Completeness, Concise representation, Con-
sistent representation, Cost-effectiveness, Ease of manipula-
tion, Ease of operation, Ease of understanding, Flexibility,
Free-of-error, Interoperability, Objectivity, Relevancy, Rep-
utation, Security, Timeliness, Tracability, Understandabil-
ity, Value-addedness and Variety. For example, Accessbility
dimension specifies the criterion that “data or part of it must
be available and retrievable.”

Each dimension has a certain number of metrics that
amount to 42 metrics in total. The metrics of a dimension
formalize the criterion and enable the assessment of the
extent a knowledge graph fulfills the criterion of that dimen-
sion. For example, Accessibility dimension has a metric
called “Availability of a knowledge graph” which evaluates
the ability of derefencing URIs in a knowledge graph.

Each metric has a measurement function that allows to
calculate a value for the metric. A measurement function
returns a value between 0 and 1. For example, “Availability
of a knowledge graph” metric ( mavailability ) can be calculated
with the following function, given a knowledge graph k

where rsucc is the number of successful requests sent to a
sample of URIs in the knowledge graph in a time frame and
rall is the number of all requests sent.

The impact of the each metric for the assessment of a
dimension, and each dimension to the assessment of the
overall quality of a knowledge graph may be different
based on the domain an application. For instance, in case
of a knowledge graph for financial and medical applications
correctness and reliability may be more important than com-
pleteness. Therefore, we propose a weighted approach that
allows defining weight coefficients for individual dimensions
and metrics per domain. This allows stakeholders to deter-
mine what dimension and metric are important for a given
domain (e.g. events, POIs, accommodation).

Selected Dimensions: Correctness and Completeness

Among the 23 dimensions, we select correctness and com-
pleteness to explain in more detail, as they are the core
dimensions targeted by the knowledge curation process. We
will introduce both dimensions including the metrics they
consist of the calculation functions for those metrics.

Correctness
The correctness dimension (may also be known as Accu-

racy) assesses the degree of which the knowledge graph is
syntactically and semantically correct. The dimension con-
sists of four metrics:

Metric: Syntactic correctness with regards to RDF
evaluates whether the RDF dumps of a knowledge graph
have valid RDF syntax. The calculation function of this
metric is returns the ratio of valid RDF dump documents
exported from a knowledge graph to all RDF dump docu-
ments exported from a knowledge graph. This function can
be implemented rather straightforwardly via an RDF syntax
verifier.

Metric: Syntactic correctness of literal values evaluates
whether the literal property values in a knowledge graph
obey certain syntactical rules. The calculation function of
this metric returns the ratio of triples whose literal-valued
objects obey to certain syntactical rules among all triples
with literal-valued objects. The calculation function can be
implemented via regular expressions, via checking against
the lexical space of their datatypes and known reference
sources via string similarity measurements.

Metric: Syntactic correctness of resource identifiersevalu-
ates whether the resource identifiers used in a knowledge
graph are syntactically correct. The calculation function of
this metric returns the ratio of syntactically valid resource
identifiers to the all resource identifiers used in the knowl-
edge graph. The metric can be implemented by checking

(1)mavailability(k) = rsucc∕rall,

	 SN Computer Science (2023) 4:1616  Page 8 of 16

SN Computer Science

URIs against vocabularies used in the knowledge graphs via
string similarity measures.

Metric: Semantic correctness of statementsevaluates
whether the statements (assertions in the ABox) in a knowl-
edge graph are correct in terms of a formal specification or
the domain they describe. The calculation function of this
metric returns the ratio of semantically correct statements to
the all statements in a knowledge graph. The implementation
of this metric can be done in various ways such as statistical
methods like outlier detection for seeing if an instance asser-
tion is correct based on property distributions (e.g. [22]),
checking against formal constraints (e.g., domain-specifi-
cations in the form of SHACL constraints) or crowdsourc-
ing (e.g. collecting feedback from people whether the phone
number of a business is correct).

Completeness
The completeness dimension asseses the degree of which

a knowledge graph contains the sufficient and necessary
statements for a domain and application in hand. This defi-
nition already makes assessing the completeness of a knowl-
edge graph subjective and to automate the measurement of
metrics a formal description of what complete means must
be available. In the data quality literature (including LOD)
completeness is typically assessed in terms of an ontology
or a gold standard dataset [14]. This approach is problem-
atic because it ignores the use case and application context
aspect of the dimension. For example, not all properties of a
type defined in an ontology may be relevant for an applica-
tion or finding a golden standard dataset may be challeng-
ing for domain-specific knowledge graphs. We propose the
following metrics:

 Metric: Coverage of a domain by a knowledge graph
evaluates whether a knowledge graph is complete in terms
of the requirements of a given domain. The calculation
function returns the ratio of average number of properties
used on the instances of a type to all properties of that type
defined by a domain expert. This metric can be implemented
with the help of the domain specific patterns introduced in
the Knowledge Creation process. These patterns generated
by domain experts specify an extend subset of schema.org
which can be used to determine the properties of a type that
is required to consider an instance complete.

Metric: Completeness of a knowledge graph for an appli-
cation evaluates whether a knowledge graph is complete in
terms of the requirements of an application. The calculation
function returns the ratio of successful queries to a knowl-
edge graph to all queries by an application. The metric can
be implemented with the help of examining the query logs
of the knowledge graph.

Weighted Aggregate Quality Score Calculation

After the scores for all metrics for all dimensions are calcu-
lated via their functions, a weighted aggregate quality score
is obtained. Given a knowledge graph k the formula below
is used to calculate the weighted aggregate quality score of
the ith dimension for k, di(k) ∈ [0, 1] , where pi is the number
of metrics in the ith dimension, mi,j(k) ∈ [0, 1] is the score
of the jth metric of the ith dimension for k, and �i,j is the
weight of the jth metric of the ith dimension and

∑pi
j=1

�i,j = 1

.

Once the scores for all dimensions are calculated, the
weighted aggregated quality score for a knowledge graph
T(k) is calculated with the following formula, where n is the
total number of dimensions, and �i is the weight of the ith
dimension and

∑n

i=1
�i = 1.

Assume we have both instances in our running example in
the same sample. We want to calculate the syntactic cor-
rectness of literal values. We realize that one of the geoco-
ordinates (4926178) does not fit the syntactic structure of
WGS84 format9 as it is missing a decimal point. If these two
instances are only instances in the sample, then there are 9
literal values in total. The ratio of correct literal values to all
literal values would amount to 0.89.

An important thing to keep in mind about knowledge
assessment is that its main purpose is to indicate the over-
all quality of a knowledge graph. For example, assessing
the correctness of a knowledge graph is not about identify-
ing individual errors, but assessing a representative sample
whose evaluation gives an idea whether the correctness is
at the desired level. In the next two chapters, we will par-
ticularly focus on what to do, when the quality is low in
completeness and correctness dimensions.

Knowledge Cleaning

Knowledge Cleaning is a part of Knowledge Curation that
aims to improve the correctness of knowledge graphs.
Knowledge cleaning consists of two subtasks, namely error
detection, and error correction. In the following, we define
the types and sources of errors in a knowledge graph, the

(2)di(k) =

pi
∑

j=1

mi,j(k).�i,j

(3)T(k) =

n
∑

i=1

di(k).�i

9  https://​en.​wikip​edia.​org/​wiki/​World_​Geode​tic_​System.

https://en.wikipedia.org/wiki/World_Geodetic_System

SN Computer Science (2023) 4:16	 Page 9 of 16  16

SN Computer Science

approaches, and tools that tackle the knowledge cleaning
task from the literature, and our approach to the task.

Like any other knowledge curation task, the cleaning task
is targeting the assertions in the ABox. Errors may therefore
stem from wrong instance assertions, wrong equality asser-
tions, and wrong property-value assertions. The knowledge
cleaning task deals with two types of errors namely syntactic
and semantic errors. Aligned with the definitions made for
the correctness dimension in the knowledge assessment task,
syntactic errors occur due to identifiers or literal values not
following certain structure and syntax rules. Semantic errors
occur either due to violation of formal specifications or the
domain the knowledge graph is describing.

There are many approaches and their implementations
in the literature targeting the knowledge cleaning task. For
error detection, most popular approach is to use integrity
constraints (e.g., RDFUnit [18]) for detection of semantic
errors. Traditionally these constraints were represented by
SPARQL queries, but in the last 5 years, SHACL is the most
popular one as it is a W3C recommendation and supported
by many triple store implementations. Additional approaches
for detection include statistical analysis of the distribution of
types and properties to identify semantically wrong instance
assertions and domain range violations (e.g., [23]) and using
logic to detect semantically wrong equality assertions (e.g.,
[24]). Once errors are detected, they can be corrected by
either removing wrong assertions or adding new assertions
to make the wrong statements fit the formal specifications.
LOD Laundromat [25] and more recently RDFDoc is a
tool that fixes syntactic errors in RDF data by using vari-
ous heuristics. Other approaches like HoloClean [26] and
KATARA [27] combine external knowledge sources, crowd-
sourcing, and statistical methods. In the recent years, rule-
based approaches (e.g., [28]) and machine learning-based
approaches that benefit from knowledge graph embeddings
(e.g., [29]) also emerged.

Our approach to knowledge cleaning focuses on the
detection task. We developed VeriGraph, a tool to verify
instances in knowledge graphs based on domain-specific pat-
terns encoded as SHACL shapes. From a functionality point
of view, VeriGraph adopts an integrity constraint checking
approach. It can work directly on SPARQL endpoints. It
contains certain optimizations that allow scalable operation
on a knowledge graph. The major improvement is that the
knowledge graph is not verified by checking each constraint
in the shape one by one but on instances that are cached
locally. This reduced the number of SPARQL queries run
on the triple store the knowledge graph is stored, therefore
decreasing the overhead significantly. The details about the
performance can be found in [30].

We can demonstrate how error detection and correction
work with our running example as follows: The error detec-
tion tool finds out that the value of schema:latitude property

attached to dzt-entity:166417787 does not fit the structure
of the WGS84 format based on a regular expression defined
on a SHACL shape, as it is missing a decimal point. Once
the error is detected, the correction process tries to place a
decimal point by following a predefined heuristic for geoco-
ordinates. Given that the latitude value can be between – 90
and 90, there are only two places the decimal point can go. A
decimal point after the first digit would lead to 4.926178 and
after the second digit to 49.26178. Given the heuristic that
the knowledge graph contains hotels within Europe, the first
option would be eliminated as combined with the longitude
it refers to a point around Nigeria.

It is not a surprise that most of the approaches for knowl-
edge cleaning focus on the detection task rather than the
correction task. This is related to various challenges of cor-
rection. It is typically very challenging to correct semantic
errors as there are not many ways to automate finding out
the real phone number of a business and correct the wrong
one, without actually calling the business. Therefore, many
approaches have to work with external sources that are
assumed to be reliable. This is not particularly easy, espe-
cially for domain-specific knowledge graphs. Another option
is to go with a crowdsourcing approach where the users of
the knowledge graph have the opportunity to detect errors
in assertions and suggest fixes. Nevertheless, the knowledge
cleaning task, particularly automated correction remains an
interesting research topic.

Knowledge Enrichment

Knowledge Enrichment (KE) is the task of adding missing
knowledge to KGs to improve their completeness. Complete-
ness can be increased by adding missing instance asser-
tions, identity assertions (so-called sameAs links), or other
property value assertions that connect arbitrary instances
to instances and literals. Increasing the completeness of a
knowledge graph mainly implies the integration of exter-
nal sources into a knowledge graph. Once the sources to
integrate are identified, the enrichment process continues
with three major steps [31]: (1) Merging of different sche-
mata. This implies the mapping of the schema of an external
source to the schema of the knowledge graph. (2) Identifying
and resolving the missing assertions (e.g. identifying a hotel
is also a restaurant, connecting two Points of Interest that
have a containment relationship). (3) Resolving any conflicts
that were introduced after new assertions (e.g. violation of
disjointness between types after instance assertions, having
multiple distinct values for a property with singular cardinal-
ity after identity assertions between two instances).

In our work, we currently focus on identity assertions.
The creation of identity assertions is commonly referred to
as the Duplicate Detection (DD) task. Identity assertions

	 SN Computer Science (2023) 4:1616  Page 10 of 16

SN Computer Science

declare that two instances of a knowledge graph describe
the same object of discourse.

Knowledge enrichment, especially duplicate detection
is a challenge that is at least as old as computer science
itself, therefore many approaches have been developed. In
the context of knowledge graphs and traditionally Linked
Open Data there have been approaches like Duke [32], SILK
[33], LIMES [34] that use similarity functions supported by
user-created heuristics such as identification of important
properties, like EAGER [35] that benefit from pre-trained
vector models of knowledge graphs and approaches that
benefit from knowledge graph embeddings (e.g., [36, 37]).

Our approach currently focuses on the first two steps of a
typical enrichment process and follows a simple workflow
that is frequently used in research for this area. The work-
flow is roughly divided into five steps:

1.	 Mapping schemata.
2.	 Indexing instances.
3.	 Applying pre-filtering.
4.	 Comparing instances.
5.	 Applying decision model.

In the following we will briefly explain our methodology for
duplicate detection. The details about the implementation
can be found in [38].

Mapping schemata The schemata mapping process cor-
responds to the ontology alignment task which is already
heavily researched and it is another beast by itself. Since we
assume Schema.org as the reference ontology for knowledge
graphs, such an alignment is only done when an external
knowledge source is being integrated, and even then only
partially for the relevant part of the ontology.

Indexing instances
After the schemata are mapped, the knowledge graphs

whose instances are going to be linked must be indexed. For
our knowledge graphs, we use Elasticsearch as an indexing
technology. Triplestores like GraphDB provide connectors
to indexing services like Elasticsearch which automatically
index instances for a given set of types and specified set
of properties and/or property paths. This enables our DD
process to quickly search for similar instances among the
graph data.

Applying pre-filtering
Pre-filtering approaches are used to remove the most

obvious non-duplicate instances for a given sample
instance from the list of candidate duplicates as fast as
possible. This is done to counteract the quadratic com-
plexity of DD tasks. For this purpose, we make use of
the more_like_this query function that is provided

by Elasticsearch. Other indexing solutions also provide
similar functionalities. It allows for vastly different grades
of strictness when creating candidate lists for an instance.

Comparing instances
After the candidate list for an instance was created, we

dedicate more resources to the comparison of each can-
didate to the instance. We compare instances, property
by property where we have to differentiate between three
types of property value comparisons:

1.	 Literal to literal we defined multiple comparisons and
standardization functions for a subset of data types in the
XML Schema Language. Comparison functions assign a
value in the range of 0–1 to a pair of literals. This value
could stem from the ratio of two numbers (e.g., literals
of datatype xsd:unsignedInt) or the Levenshtein
distance between to words. Optional standardization
functions aim to make literal values more comparable
(e.g., date standardizer which translates months in their
alphanumerical form to the respective numerical form).

2.	 Instance to literal Property values that can be repre-
sented by literals and instances usually provide the same
information in both forms. For the instance form, the
information is likely distributed across multiple proper-
ties. To make these comparable, we apply a recursive
serialization function that constructs a literal value rep-
resentation for an instance to make them comparable
with the functions for literal to literal comparison.

3.	 Instance to instance We have multiple options for this
type of comparison: (a) We could compare the URIs
that are used to identify the instances. This would make
this type of comparison a literal to literal comparison.
(b) We can apply the recursive serialization function,
we already described in comparison type 2 and apply
it to both instances. (c) Their properties are compared
individually, and their similarities are aggregated. This
is the most precise way of comparing instances but also
requires the most effort in run-time, configuring, and
understanding.

This differentiation is necessary since properties can have
multiple disjunctive types for their range as it is the case
with schema.org.

Applying decision model
After the instance comparison is complete, we apply

a decision model that decides whether two compared
instances are duplicates. A weighted aggregation of the
properties’ similarities is used to compute an overall
similarity score. A weight describes the ability of a prop-
erty to contribute to identifying an identity link between
two instances. We simply use a similarity threshold to

SN Computer Science (2023) 4:16	 Page 11 of 16  16

SN Computer Science

determine whether a pair of instances should be consid-
ered for identity link creation.

In our running example, there are two instances of
schema:Hotel and schema:Restaurant respectively. Given
that schema:Hotel and schema:Restaurant are both subtypes
of schema:LocalBusiness, the duplicate detection approach
selects them as candidates after pre-filtering. Assuming
the configuration for local businesses consider the prop-
erties schema:description, schema:geo, schema:name and
schema:telephone. These properties have different weights
for influencing duplicate detection (e.g. geo coordinates
have a higher effect while description has a lower one). For
schema:geo, a similarity metric based on Haversine dis-
tance, and for other properties string similarity metrics can
be adopted. Due to a high similarity (i.e., same name, same
geo-coordinates), these two instances are identified as dupli-
cates and an identity link between dzt-entity:166417787
and dzt-entity:40878907 is created. This link improves
completeness from different perspectives. For example,
now we know that both are instances of schema:Hotel and
schema:Restaurant, and the phone number of the hotel is
completed with the property value from the restaurant. The
next step would then be finding a strategy for resolving
conflicting properties. Here there will be multiple descrip-
tions for both instances. The enrichment process can select
one of them or keep both, depending on the constraints of
the domain and task. An important consideration here is
how knowledge cleaning and enrichment interplay. On one
hand, the enrichment process may not perform very well, if
the geocoordinate is not corrected beforehand; on the other
hand, the conflicting property values may be caught by the
cleaning process.

Knowledge Deployment

Knowledge graphs can power a variety of applications like
web search, Intelligent Personal Assistants, and autonomous
agents. When deploying a knowledge graph there can be
challenges due to its nature. These challenges are mainly
related to the size of knowledge graphs and various points
of view of applications. The curation tasks may take too
long on large knowledge graphs, and the applications that
give real-time responses may not afford to wait until the
curation tasks are complete. Even with a simple formalism
like RDFS, tasks like reasoning with domain and ranges and
query answering run into problems operating on a knowl-
edge graph with around 130 million triples.10 In addition,
different use cases might have different (contradictory) rules
and constraints for the underlying data. Representing those
in a single knowledge graph is impossible.

The state of the art approaches typically focus on the opti-
mization of query performance when it comes to knowl-
edge deployment. There are approaches that aim to balance
SPARQL query processing between clients and servers (e.g.,
WiseKG [39]) and approaches that benefit from optimization
techniques of relational databases for graph querying [40].

We propose introducing an intermediate layer between
the knowledge graph and applications called Knowledge
Access and Representation Layer (see Fig. 5) to tackle the
challenges above. The knowledge graph as the basis for the
layer is treated as a data lake allowing it to be erroneous
and incomplete. With Knowledge Activators at its core, the
layer on top operates on use-case-specific subgraphs (called

Fig. 5   Knowledge Access & Representation Layer Overview

10  See the benchmark results at https://​github.​com/​kev-​ang/​mskr.

https://github.com/kev-ang/mskr

	 SN Computer Science (2023) 4:1616  Page 12 of 16

SN Computer Science

views) of the knowledge graph. Each view is attached to
a knowledge activator, which contains a specific TBox
that serves the needs of specific application contexts. The
Knowledge Access and Representation Layer addresses both
size and point of view issues: the former is addressed via the
small size of views that allow efficient knowledge curation,
and the latter is addressed via the Knowledge Activators
that can support different constraints and inference rules for
the same data. At the same time, the newly introduced layer
allows the integration of external data on the fly. Working
on materialized subgraphs of knowledge graphs has been
investigated [41], however not significantly implemented
in paractice. We developed a GraphQL based interface that
can be used for view extraction [42]. In the next steps, this
interface will be extended with RML mapping capabilities to
enable mapping between the TBox of the knowledge graph
and the use case specific TBox in the knowledge activators.

In our running example, different applications may have
different requirements in terms of the format of geocoor-
dinates. One application may work with coordinates in
WGS84 format, another one British Nation Grid (BNG)11
system. Accommodating the needs of both applications is
only possible if we can define custom syntactic and seman-
tic constraints for different applications via Knowledge
Activators.

A control and data flow component based on Abstract
State Machines handle the data flow between Knowledge
Activators. Finally, an API allows various applications to
access the Knowledge Access and Representation Layer. The
implementation of the layer is currently still in progress.

Building the German Tourism Knowledge
Graph

The German Tourism Knowledge Graph (GTKG) is at the
core of the Open Data Germany12 initiative led by the Ger-
man National Tourism Board. The main goal of the project
is to integrate and curate data from all regional tourism mar-
keting organizations in Germany to provide a high-quality
knowledge source for intelligent applications and improve
the positioning of German tourism in Europe and beyond.

The knowledge graph is built around several main con-
cepts that are particularly important for German tourism
such as POIs, Tours, Events, Accommodation, Gastronomy,
and Holiday Offers. It integrates data from more than 16
heterogeneous sources.

The initial deployment of GTKG contains more than 20K
Event, more than 20K POI and more than 5K Tour instances.

These instances amount a total of 7.5M statements. The
schema used to describe these instances are aligned with
the schemas developed by the Open Data Tourism Alliance
(ODTA). ODTA is an initiative that brings tourism domain
experts from the German-speaking area of Europe (DACH
region), namely Austria, Germany, Italy (South Tyrol), and
Switzerland. These domain experts together with semantic
technology experts create domain-specific patterns for the
DACH region as a de facto standardized data model. ODTA
also provides tutorials and supporting material for IT solu-
tion providers for the usage of domain-specific patterns for
knowledge creation.

Different aspects of building knowledge graphs presented
in this paper are being implemented in a toolkit by Onlim,
a company that deals with knowledge graphs and applica-
tions powered by knowledge graphs. This toolkit is called
Knowledge Graph Management Platform (KGMP) and is
currently primarily used for building the GTKG. The KGMP
provides tooling for knowledge creation based on domain-
specific patterns created by ODTA, hosting with provenance
tracking via named graphs powered by GraphDB, curation
that focuses on correctness and completeness dimensions
for assessment, and error detection for cleaning and asser-
tion of identity links for enrichment. For deployment, the
platform provides query interfaces and APIs for various
applications and a web application for browsing the knowl-
edge graph. The platform is under ongoing development and
tooling for the remaining tasks mentioned in the paper is
being implemented.

The knowledge graph is currently in the pre-production
phase (Fig. 6) and will be publicly available with an open
license in May 2022. The current number of 7.5M state-
ments is rapidly increasing as more regional marketing
organizations join the knowledge creation process. The pro-
gress can be tracked on the Open Data Germany website.13

Related Work

The knowledge graph building process can be compared
with the traditional knowledge engineering in the core of
which ontology engineering lies. There are many ontology
engineering methods with various nuances between them.
For example, some focus on collaboration and distributed
development while others focus on iterative development
and modularization. A recent survey covers many of these
approaches in detail [43]. Despite their nuances, the tra-
ditional knowledge engineering methodologies typically
follow a create-develop-evaluate-update-deploy approach.
This is comparable with our process model for building

13  https://​open-​data-​germa​ny.​org/​daten​besta​nd/.

11  https://​en.​wikip​edia.​org/​wiki/​Ordna​nce_​Survey_​Natio​nal_​Grid.
12  https://​open-​data-​germa​ny.​org/.

https://open-data-germany.org/datenbestand/
https://en.wikipedia.org/wiki/Ordnance_Survey_National_Grid
https://open-data-germany.org/

SN Computer Science (2023) 4:16	 Page 13 of 16  16

SN Computer Science

knowledge graphs as it also consists of processes like crea-
tion, assessment, cleaning, enrichment, and deployment.
The major difference however is that traditional knowledge
engineering focuses on large and complex TBoxes while
building knowledge graphs would need efficient and effec-
tive methods for ABox heavy knowledge engineering due to
the reasons discussed in the paper.

The individual aspects of building knowledge graphs and
more traditionally linked open datasets have been the focus
of both researchers and practitioners for many years. We
already covered the state of the art on each aspect to some
extent in the Sections “Knowledge Creation”, “Knowledge
Hosting”, “Knowledge Curation” and “Knowledge Deploy-
ment”. There are also various recent surveys studying

different aspects of knowledge graph building. For example,
the survey from Paulheim [44] covers various approaches for
knowledge cleaning and enrichment. Another survey covers
entity alignment approaches for knowledge enrichment [45].
A quick look at the literature shows that a significant amount
of effort is put into the creative aspect of building knowledge
graphs, which is also evident from the plethora of declara-
tive mapping languages and tools, as well as the activities
of the W3C Knowledge Graph Construction Community
Group.14 Although the individual aspects are important,
knowledge graphs have a lifecycle that goes beyond one-
shot knowledge creation activities. As also pointed out in a
recent survey [46], the maintanance step is as crucial as the
creation step. In this paper, we present a holistic approach

Fig. 6   A screenshot from the pre-production deployment of the knowledge graph

14  https://​github.​com/​kg-​const​ruct/.

https://github.com/kg-construct/

	 SN Computer Science (2023) 4:1616  Page 14 of 16

SN Computer Science

to building knowledge graphs that cover the process from
creation to deployment.

A relevant methodology was proposed by Sequeda et al.
[47]. The methodology follows the principle of applying
small iterations of simple TBox modeling and a popula-
tion of relatively larger ABoxes based on this TBox. The
produced knowledge graph is then evaluated and iteratively
expanded until the requirements of the use case are satisfied.
The methodology is however mainly focused on knowledge
creation and also comparable with our knowledge creation
approach and presented bottom-up and top-down models.
However, we see the knowledge graph building process as
more than just creating as its quality and maintenance are
also fundamental for applications to work properly with it.

Conclusion and Future Work

Acquisition and representation of domain and task knowl-
edge have been a crucial goal for AI, especially since Feigen-
baum’s knowledge principle. This goal led to various works
such as knowledge-based systems. The increasing complex-
ity of knowledge-based systems led to the development of
knowledge engineering methodologies for the systematic
development and maintenance of such systems. Knowledge
graphs are the latest answer to this search. Although on the
surface knowledge graphs may look like “yet another knowl-
edge base in graph form”, there are fundamental differences.
Unlike traditional knowledge bases, knowledge graphs are
ABox heavy, meaning that knowledge is more explicitly
represented than hidden in complex TBoxes. There are also
inherently larger and their flexible data model allows rather
seamless integration of heterogeneous data sources.

The fundamental differences in the size and heterogeneity
of knowledge graphs call for a different knowledge engineer-
ing paradigm that is more focused on the creation, hosting,
and curation of ABox than TBox. We presented different
aspects of building a knowledge graph and explained how it
is being implemented in a significant project in the tourism
domain.

In future work, we will continue with the refinement of
the aspects such as assessment to make them more suitable
for knowledge graphs and work on the missing parts of our
approach such as semi-automated knowledge correction and
link detection beyond identity links.

Funding  Open access funding provided by University of Innsbruck and
Medical University of Innsbruck.

Declarations 

 Conflict of interest  Author U.S. declares that he has no conflict of
interest. Author E.K. declares that he has no conflict of interest. Author

K.A. declares that he has no conflict of interest. Author E.H. declares
that he has no conflict of interest. Author J.O. declares that she has
no conflict of interest. Author D.S. declares that he has no conflict of
interest. Author J.U. declares that he has no conflict of interest. Author
D.F. declares that he has no conflict of interest.

Ethical approval  This article does not contain any studies with human
participants or animals performed by any of the authors.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

	 1.	 Newell A, Shaw JC, Simon HA. Report on a general problem solv-
ing program. In: IFIP Congress, 1959; vol. 256, p. 64. Pittsburgh,
PA.

	 2.	 Feigenbaum EA. How the “what” becomes the “how”. Commun
ACM. 1996;39(5):97–104.

	 3.	 Fensel D, Simsek U, Angele K, Huaman E, Kärle E, Panasiuk O,
Toma I, Umbrich J, Wahler A. Knowledge graphs—methodology,
tools and selected use cases. Cham, Switzerland: Springer; 2020.

	 4.	 Şimşek U, Angele K, Kärle E, Opdenplatz J, Sommer D, Umbrich
J, Fensel D. Knowledge graph lifecycle: Building and maintain-
ing knowledge graphs. In: Proceedings of the 2nd International
Workshop on Knowledge Graph Construction Co-located with
18th Extended Semantic Web Conference (ESWC 2021), 2021;
vol. 2873. CEUR Workshop Proceedings. http://​ceur-​ws.​org/​Vol-​
2873/​paper​12.​pdf. Accessed 30 Mar 2022.

	 5.	 Şimşek U, Angele K, Kärle E, Panasiuk O, Fensel D. Domain-
specific customization of schema.org based on SHACL. In: The
Proceedings of the 19th International Semantic Web Conference.
LNCS, vol 12507. Springer, Athens, Greece, pp 585–600 (2020)

	 6.	 Mausam M. Open information extraction systems and downstream
applications. In: Proceedings of the Twenty-fifth International
Joint Conference on Artificial Intelligence, 2016; p. 4074–77.
https://​www.​ijcai.​org/​proce​edings/​2016

	 7.	 Mitchell T, Cohen W, Hruschka E, Talukdar P, Yang B, Betteridge
J, Carlson A, Dalvi B, Gardner M, Kisiel B, et al. Never-ending
learning. Commun ACM. 2018;61(5):103–15.

	 8.	 Dimou A, Vander Sande M, Colpaert P, Verborgh R, Mannens
E, Van de Walle R. RML: a generic language for integrated RDF
mappings of heterogeneous data. In: Proceedings of the Workshop
on linked data on the web (LDOW2014) co-located with the 23rd
International World Wide Web Conference (WWW2014), April
8. CEUR Workshop Proceedings, 2014; Vol-1184, Seoul, South
Korea. http://​ceur-​ws.​org/​Vol-​1184/​ldow2​014_​paper_​01.​pdf.
Accessed 30 Mar 2022.

	 9.	 Şimşek U, Umbrich J, Fensel D. Towards a knowledge graph
lifecycle: a pipeline for the population of a commercial knowl-
edge graph. In: Proceedings of Conference on Digital Curation
Technologies (Qurator 2020). CEUR-WS, Berlin, Germany 2020.

http://creativecommons.org/licenses/by/4.0/
http://ceur-ws.org/Vol-2873/paper12.pdf
http://ceur-ws.org/Vol-2873/paper12.pdf
https://www.ijcai.org/proceedings/2016
http://ceur-ws.org/Vol-1184/ldow2014_paper_01.pdf

SN Computer Science (2023) 4:16	 Page 15 of 16  16

SN Computer Science

http://​ceur-​ws.​org/​Vol-​2535/​paper_​10.​pdf. Accessed 30 Mar
2022.

	10.	 Delva T, Van Assche D, Heyvaert P, De Meester B, Dimou A.
Integrating nested data into knowledge graphs with RML fields.
In: KGWC2021, the Knowledge Graph Construction, 2021; vol.
2873, pp. 1–16.

	11.	 Carroll JJ, Bizer C, Hayes P, Stickler P. Named graphs. Web
Semant. 2005;3(4):247–67. https://​doi.​org/​10.​1016/j.​websem.​
2005.​09.​001.

	12.	 Hartig O, Champin P-A. Metadata for rdf statements: the rdf-star
approach. In: Lotico Talk 2021. https://​w3c.​github.​io/​rdf-​star/​
prese​ntati​ons/​RDF-​star_​Lotico.​pdf

	13.	 Bizer C. Quality-driven information filtering in the context of
web-based information systems. PhD thesis, Free University of
Berlin 2007.

	14.	 Färber M, Bartscherer F, Menne C, Rettinger A. Linked data qual-
ity of dbpedia, freebase, opencyc, wikidata, and YAGO. Semant
Web. 2018;9(1):77–129. https://​doi.​org/​10.​3233/​SW-​170275.

	15.	 Zaveri A, Rula A, Maurino A, Pietrobon R, Lehmann J, Auer
S. Quality assessment for linked data: A survey. Semant Web.
2016;7(1):63–93. https://​doi.​org/​10.​3233/​SW-​150175.

	16.	 Mendes PN, Mühleisen H, Bizer C. Sieve: linked data quality
assessment and fusion. In: Srivastava D, Ari I. editors. Proceed-
ings of the 2012 Joint EDBT/ICDT Workshops, Berlin, Germany,
March 30, 2012; pp. 116–123. ACM, 2012. https://​doi.​org/​10.​
1145/​23207​65.​23208​03.

	17.	 Kontokostas D, Zaveri A, Auer S, Lehmann J. Triplecheckmate: a
tool for crowdsourcing the quality assessment of linked data. In:
Klinov P, Mouromtsev D. editors. Knowledge Engineering and the
Semantic Web—4th International Conference, KESW 2013, St.
Petersburg, Russia, October 7–9, 2013. Proceedings. Communica-
tions in Computer and Information Science, 2013; vol. 394, pp.
265–272. Springer. https://​doi.​org/​10.​1007/​978-3-​642-​41360-5_​
22.

	18.	 Kontokostas D, Westphal P, Auer S, Hellmann S, Lehmann J,
Cornelissen R, Zaveri A. Test-driven evaluation of linked data
quality. In: Chung C, Broder AZ, Shim K, Suel T. editors. 23rd
International World Wide Web Conference, WWW ’14, Seoul,
Republic of Korea, April 7–11, 2014; pp. 747–758. ACM, 2014.
https://​doi.​org/​10.​1145/​25664​86.​25680​02.

	19.	 Debattista J, Auer S, Lange C. Luzzu—a methodology and frame-
work for linked data quality assessment. ACM J Data Inf Qual.
2016;8(1):4–1432. https://​doi.​org/​10.​1145/​29927​86.

	20.	 Dimou A, Kontokostas D, Freudenberg M, Verborgh R, Lehmann
J, Mannens E, Hellmann S, Van de Walle R. Test-driven assess-
ment of [R2]RML mappings to improve dataset quality. In: Pro-
ceedings of the 14th International Semantic Web Conference:
Posters and Demos. CEUR Workshop Proceedings, 2015; vol.
1486. http://​ceur-​ws.​org/​Vol-​1486/​paper_​108.​pdf. Accessed 30
Mar 2022.

	21.	 Randles A, O’Sullivan D. Evaluating Quality Improvement tech-
niques within the Linked Data Generation Process. In: Proceed-
ings of the 18th International Conference on Semantic Systems.
Vienna, Austria, 2022. CEUR-WS proceedings, Vol 1162.

	22.	 Paulheim H, Bizer C. Type inference on noisy rdf data. In: Inter-
national Semantic Web Conference, LNCS. 2013; vol. 8218, pp.
510–525. Springer.

	23.	 Paulheim H. Identifying wrong links between datasets by multi-
dimensional outlier detection. In: WoDOOM, CEUR-WS proceed-
ings, 2014; Vol 1162, pp. 27–38.

	24.	 Papaleo L, Pernelle N, Saïs F, Dumont C. Logical detection of
invalid Sameas statements in rdf data. In: International Confer-
ence on knowledge engineering and knowledge management,
LNAI, 2014; vol. 8876, pp. 373–84. Springer.

	25.	 Beek W, Rietveld L, Bazoobandi H.R, Wielemaker J, Schlobach
S. Lod laundromat: a uniform way of publishing other people’s

dirty data. In: International Semantic Web Conference, LNCS,
2014; vol. 8796, pp. 213–28. Springer.

	26.	 Rekatsinas T, Chu X, Ilyas IF, Ré C. Holoclean: Holistic data
repairs with probabilistic inference. 2017. arXiv preprint arXiv:​
1702.​00820.

	27.	 Chu X, Morcos J, Ilyas IF, Ouzzani M, Papotti P, Tang N, Ye Y.
Katara: reliable data cleaning with knowledge bases and crowd-
sourcing. Proc VLDB Endow. 2015;8(12):1952–5.

	28.	 De Meester B, Heyvaert P, Arndt D, Dimou A, Verborgh R.
Rdf graph validation using rule-based reasoning. Semant Web.
2021;12(1):117–42.

	29.	 Ge C, Gao Y, Weng H, Zhang C, Miao X, Zheng B. Kgclean: an
embedding powered knowledge graph cleaning framework. 2020.
arXiv preprint arXiv:​2004.​14478.

	30.	 Fensel D, Şimşek U, Angele K, Huaman E, Kärle E, Panasiuk
O, Omar H. Verigraph: a verification framework for knowledge
integrity. Report, MindLab; 2020.

	31.	 Bleiholder J, Naumann F. Data fusion. ACM Comput Surv. 2009.
https://​doi.​org/​10.​1145/​14566​50.​14566​51.

	32.	 Garshol LM, Borge A. Hafslund Sesam—an archive on semantics.
In: Proceedings of the 10th Extending Semantic Web Conference
(ESWC2013): semantics and big data, Montpellier, France, May
26–30, 2013. Lecture Notes in Computer Science, 2013; vol.
7882, pp. 578–92. Springer. https://​doi.​org/​10.​1007/​978-3-​642-​
38288-8_​39.

	33.	 Volz J, Bizer C, Gaedke M, Kobilarov G. Silk-a link discovery
framework for the web of data. In: Proceedings of theWWW2009
Workshop on linked data on the Web, LDOW 2009, Madrid,
Spain, 2009. CEUR WorkshopProceedings vol. 538, CEUR-WS.
org 2009.

	34.	 Ngomo AN, Auer S. LIMES—a time-efficient approach for
large-scale link discovery on the web of data. In: Proceedings of
the 22nd international joint conference on artificial intelligence
(IJCAI2011), Barcelona, Spain, July 16–22, 2011; pp. 2312–317.
AAAI Press, 2011. https://​doi.​org/​10.​5591/​978-1-​57735-​516-8/​
IJCAI​11-​385.

	35.	 Obraczka D, Schuchart J, Rahm E. Embedding-assisted entity
resolution for knowledge graphs. In: Proceedingsof the 2nd
International Workshop on Knowledge Graph Construction co-
located with 18th Extended Semantic WebConference (ESWC
2021), Online, June 6, 2021. CEUR Workshop Proceedings 2873,
CEUR-WS.org 2021

	36.	 Lu G, Zhang L, Jin M, Li P, Huang X. Entity alignment via knowl-
edge embedding and type matching constraints for knowledge
graph inference. J Ambient Intell Humaniz Comput, 2021; pp.
1–11. https://​doi.​org/​10.​1007/​s12652-​020-​02821-2.

	37.	 Rossi A, Barbosa D, Firmani D, Matinata A, Merialdo P. Knowl-
edge graph embedding for link prediction: a comparative analysis.
ACM Trans Knowl Discov Data (TKDD). 2021;15(2):1–49.

	38.	 Opdenplatz J, Şimşek U, Fensel D. Duplicate detection as a ser-
vice. 2022. https://​doi.​org/​10.​48550/​ARXIV.​2207.​09672, arXiv:​
arxiv.​org/​2207.​09672

	39.	 Azzam A, Aebeloe C, Montoya G, Keles I, Polleres A, Hose K.
Wisekg: balanced access to web knowledge graphs. In: Proceed-
ings of the Web Conference 2021, 2021; pp. 1422–34. https://​doi.​
org/​10.​1145/​34423​81

	40.	 Zouaghi I, Mesmoudi A, Galicia J, Bellatreche L, Aguili T. Query
optimization for large scale clustered rdf data. In: DOLAP, CEUR-
WS Proceedings, 2020; vol 2572, pp. 56–65.

	41.	 Troullinou G, Kondylakis H, Lissandrini M, Mottin D. Sofos:
demonstrating the challenges of materialized view selection on
knowledge graphs. In: Proceedings of the 2021 International Con-
ference on management of data, 2021; pp. 2789–93. https://​doi.​
org/​10.​1145/​34480​16.

	42.	 Angele K, Meitinger M, Bußjäger M, Föhl S, Fensel A. Graph-
sparql: A graphql interface for linked data. In: Proceedings of the

http://ceur-ws.org/Vol-2535/paper_10.pdf
https://doi.org/10.1016/j.websem.2005.09.001
https://doi.org/10.1016/j.websem.2005.09.001
https://w3c.github.io/rdf-star/presentations/RDF-star_Lotico.pdf
https://w3c.github.io/rdf-star/presentations/RDF-star_Lotico.pdf
https://doi.org/10.3233/SW-170275
https://doi.org/10.3233/SW-150175
https://doi.org/10.1145/2320765.2320803
https://doi.org/10.1145/2320765.2320803
https://doi.org/10.1007/978-3-642-41360-5_22
https://doi.org/10.1007/978-3-642-41360-5_22
https://doi.org/10.1145/2566486.2568002
https://doi.org/10.1145/2992786
http://ceur-ws.org/Vol-1486/paper_108.pdf
http://arxiv.org/abs/1702.00820
http://arxiv.org/abs/1702.00820
http://arxiv.org/abs/2004.14478
https://doi.org/10.1145/1456650.1456651
https://doi.org/10.1007/978-3-642-38288-8_39
https://doi.org/10.1007/978-3-642-38288-8_39
https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-385
https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-385
https://doi.org/10.1007/s12652-020-02821-2
https://doi.org/10.48550/ARXIV.2207.09672
http://arxiv.org/abs/2207.09672
http://arxiv.org/abs/2207.09672
https://doi.org/10.1145/3442381
https://doi.org/10.1145/3442381
https://doi.org/10.1145/3448016
https://doi.org/10.1145/3448016

	 SN Computer Science (2023) 4:1616  Page 16 of 16

SN Computer Science

37th ACM/SIGAPP Symposium on applied computing. SAC ’22,
pp. 778–85. Association for Computing Machinery, New York,
NY, USA, 2022. https://​doi.​org/​10.​1145/​34773​14.​35076​55.

	43.	 Kotis KI, Vouros GA, Spiliotopoulos D. Ontology engineering
methodologies for the evolution of living and reused ontologies:
status, trends, findings and recommendations. Knowl Eng Rev.
2020;35:4. https://​doi.​org/​10.​1017/​S0269​88892​00000​65.

	44.	 Paulheim H. Knowledge graph refinement: a survey of approaches
and evaluation methods. Semant web. 2017;8(3):489–508.

	45.	 Zeng K, Li C, Hou L, Li J, Feng L. A comprehensive survey of
entity alignment for knowledge graphs. AI Open. 2021;2:1–13.

	46.	 Tamašauskaitundefined G, Groth P. Defining a knowledge graph
development process through a systematic review. ACM Trans

Softw Eng Methodol. 2022. https://​doi.​org/​10.​1145/​35225​86
(Just Accepted).

	47.	 Sequeda JF, Briggs WJ, Miranker DP, Heideman WP. A pay-as-
you-go methodology to design and build enterprise knowledge
graphs from relational databases. In: The Semantic WebISWC
2019. LNCS, vol. 11779. Springer, 2019. https://​doi.​org/​10.​1007/​
978-3-​030-​30796-7_​32. Collection-title: Lecture Notes in Com-
puter Science.

Publisher's Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1145/3477314.3507655
https://doi.org/10.1017/S0269888920000065
https://doi.org/10.1145/3522586
https://doi.org/10.1007/978-3-030-30796-7_32
https://doi.org/10.1007/978-3-030-30796-7_32

	A Knowledge Graph Perspective on Knowledge Engineering
	Abstract
	Introduction
	Running Example
	Knowledge Creation
	Bottom-Up: Domain Specification Modeling
	Top-Down: Application of Domain Specifications

	Knowledge Hosting
	Challenges
	Database Paradigms for Hosting Knowledge Graphs

	Knowledge Curation
	Knowledge Assessment
	Quality Dimensions, Metrics and their Calculation Functions for Knowledge Graphs
	Selected Dimensions: Correctness and Completeness
	Weighted Aggregate Quality Score Calculation

	Knowledge Cleaning
	Knowledge Enrichment

	Knowledge Deployment
	Building the German Tourism Knowledge Graph
	Related Work
	Conclusion and Future Work
	References

