
Vol.:(0123456789)

SN Computer Science (2022) 3:510 
https://doi.org/10.1007/s42979-022-01424-2

SN Computer Science

ORIGINAL RESEARCH

Towards the Use of Hypermedia MAS and Microservices for Web Scale 
Agent‑Based Simulation

Rem Collier1   · Seán Russell1 · Saeedeh Ghanadbashi1 · Fatemeh Golpayegani1

Received: 25 March 2022 / Accepted: 16 September 2022 / Published online: 6 October 2022 
© The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2022

Abstract
This paper presents a vision for a new breed of Agent-Based Simulations that are based on the principles of the current gen-
eration web technologies. We propose a novel approach to implementing complex agent-based simulations built from loosely-
coupled reusable components in a manner that ensures scalability. This vision is inspired by the emergence of the recently 
proposed hypermedia multi-agent systems concept, which combines hypermedia systems, semantic web and affordances.

Keywords  Semantic web · Hypermedia systems · Agent-based modelling · Microservices

Introduction

Agent-Based Modelling (ABM) has been successfully 
applied in many domains, including: logistics [1], intelligent 
transportation systems [2] and Power Systems [3]. ABM is 
a bottom-up approach to studying the behaviour of com-
plex systems [4]. These systems are modelled as collections 
of agents where each agent encapsulates private state and 
behaviour. The global behaviour of the system then emerges 
through interactions between the constituent agents.

As the complexity of these systems increases, modelling 
them accurately presents a challenge. Kitova et al. [5] high-
lighted that such systems are becoming too complex to be 
captured in a single model. One solution is to use Hybrid 
Simulation (HS)  [6]. Broadly, HS combines multiple 

interconnected sub-simulations, potentially implemented 
using a diverse set of modelling techniques [7]. It is increas-
ingly used in Operational Research [8] and Socio-Environ-
mental Systems [9].

The development of HS tools and methodologies is still 
an open research problem. In [4], the authors highlight the 
lack of suitable tools and frameworks for integrating ABM 
with other techniques. Interoperability is a particular issue 
leading to many existing HS being built using a single tool 
[6].

This paper argues that HS should not be built on mono-
lithic architectures and homogeneous technology stacks, 
but should instead be implemented as loosely-coupled col-
lections of reusable components, written using diverse pro-
gramming languages and frameworks, that are designed to 
be deployed at scale. In essence, it argues that HS should be 
implemented using a microservices architecture [10].

To support this view, this paper presents a vision of a 
new framework for implementing HS based on ABM, that 
are constructed as a set of microservices that inter-operate 
by using REpresentational State Transfer (REST) to serve 
semantically enriched state representations. The agent layer, 
which consumes this state, is implemented as a Hypermedia 
Multi-Agent System (MAS) [11], and accordingly, we name 
our approach Hypermedia MAS Simulation.

The remainder of the paper is organised as follows. “The 
current state of play” reviews the state of the art in three 
related areas. The first part focuses on simulating at scale, 
considering both cluster and cloud based approaches to sim-
ulation. The remaining two parts focus on how intelligence 

This article is part of the topical collection “Web Information 
Systems and Technologies 2021” guest edited by Joaquim Filipe, 
Francisco Domínguez Mayo and Massimo Marchiori.

 *	 Rem Collier 
	 rem.collier@ucd.ie

	 Seán Russell 
	 sean.russell@ucd.ie

	 Saeedeh Ghanadbashi 
	 saeedeh.ghanadbashi@ucdconnect.ie

	 Fatemeh Golpayegani 
	 fatemeh.golpayegani@ucd.ie

1	 School of Computer Science, University College Dublin, 
Dublin, Ireland

http://orcid.org/0000-0003-0319-0797
http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-022-01424-2&domain=pdf


	 SN Computer Science (2022) 3:510510  Page 2 of 19

SN Computer Science

can be incorporated into the design of the agents and on the 
use of affordances in simulation. Following on from this “A 
new vision for simulation at scale” outlines our proposed 
framework and illustrates it through a traffic simulation sce-
nario. “Building hypermedia MAS simulations” explores a 
possible approach to implementing the framework, focusing 
on the relationship between agents and their environments 
and the role of affordances. Finally, “Challenges and oppor-
tunities” outlines challenges and opportunities for further 
research, and “Concluding remarks” presents some conclud-
ing remarks.

The Current State of Play

There are a range of approaches to implementing ABMs, and 
[12] provides an excellent review of them. What is clear from 
the review is that ABM has traditionally been viewed as a 
desktop computer style of exercise where tools are provided 
to support the creation and execution of models on a single 
machine. Such tools typically consist of some mechanism 
to specify agent types and behaviours, the environment(s) 
that the agent inhabits, any constraints on interaction, and 
any rules for adaptation of behaviour. The main constraint 
on the use of such tools to create simulations is often the 
time taken for the simulation to be executed, which can lead 
to repeated simplifications of the model until the execution 
time is acceptable [13].

Simulating at Scale

Within the simulation community, two main approaches have 
emerged to overcoming the limits of desktop simulation. The 
Distributed Simulation (DS) community [14] focuses on the 
development of techniques that can be deployed on high-
performance computing clusters. This has led to the devel-
opment of tools, such as: RePAST HPC [15] and MATSim 
[16]. Taylor [17] reviews DS through the lens of Operational 
Research, highlighting the prevalence of bespoke implemen-
tations tailored to specific scenarios, the lack of model reuse 
and the need for well-designed frameworks.

A criticism of DS is the cost and availability of comput-
ing clusters. This led to the emergence of Cloud Based Sim-
ulation (CBS) [17] which is concerned with the deployment 
of simulations in the cloud. Example ABM tools include: 
CloudSME [18], RISE [19] and Distributed Mason [20], a 
port of Mason [21] for the cloud.

In [22], the authors describe MARS, a cloud-based ABM 
tool that uses a layered model adapted from Geographical 
Information Systems, where each layer represents a distinct 
feature of the simulation. It supports the distribution of mod-
els; each layer is deployed as a separate node and individual 
layers can be distributed across multiple nodes.

More recently, the CBS community has started exploring 
the intersection of microservices and simulation. Microser-
vices are an architectural style that promote the decomposi-
tion of complex systems into distributed applications com-
posed of simple services that are designed to scale [10, 23]. 
In [13], the authors introduce a microservices framework for 
the creation of deadline based simulations. Their prototype 
implemented an auto-scaling mechanism that runs multiple 
REPAST simulations in parallel to meet deadlines [24]. This 
is achieved by modelling each simulation as a microservice.

Finally, [25] describes the only known project that has 
used microservices to create a HS from heterogeneous 
models. However, as the authors state, the developed model 
was bespoke and tailored to the specific problem they were 
addressing.

The adoption of microservices in the design of simulators 
is appealing for a number of reasons:

•	 they promote the development of small, loosely-coupled 
systems that maintain their own independent state [26];

•	 they are deployed within an ecosystem of tools and 
components that facilitate rapid and agile development 
techniques, are easy to extend and support automated 
management of fault tolerance and scaling [27]; and

•	 they support the integration of heterogeneous systems 
built using diverse technology stacks [28].

This is especially true of Hybrid Simulations, where 
bounded context, isolation and loose coupling [23] promotes 
the decomposition of simulators into discrete components 
that can be developed and deployed independently.

The decomposition of simulators into components offers 
the potential for their reuse across multiple scenarios. 
Microservices facilitate this through the requirement that all 
the components adhere to a uniform interface, engendering 
the use of diverse technology stacks. This presents a route 
towards the development of hybrid simulations that combine 
not only different programming languages and tool sets, but 
also integrate different simulation techniques.

Simulating Intelligence

A recent survey on the use of the Belief-Desire-Intention 
(BDI) architecture [29] in social simulation [30] highlights 
the potential quality improvements that cognitive architec-
tures bring to simulation. They outline an emerging trend in 
social simulation that argues for the application of the ”Keep 
It Descriptive, Stupid” (KIDS) principle over the ”Keep It 
Simple, Stupid” (KISS) principle. Their argument is that, 
with increased computing resources there is less need to 
use simplistic agent models in an effort to maximise the 
performance of the simulation. A better solution is to use 



SN Computer Science (2022) 3:510	 Page 3 of 19  510

SN Computer Science

richer cognitive agent architectures to facilitate the creation 
of more nuanced models.

Agent-Oriented Programming (AOP) languages [31] offer 
such rich architectures through logic based programming 
constructs that are both verifiable and explainable [32]. 
Recently, there has been a resurgence of interest in using 
AOP for simulation [33–36]. Other work has explored how 
to support discrete event simulation using AOP. For exam-
ple, in [37] the authors describe a simulator tool based on 
GAMA [38] that is applied to Hospital staff planning [39]. In 
[40] a Socio-Ecological Systems approach to modelling the 
agricultural economy of the Rancherina River Basin using 
the BESA [41] agent toolkit is presented.

Finally, [42] presents an emerging simulation platform 
based on JaCaMo [43] and [44, 45] presents work exploring 
the creation of PanSim, a pandemic simulator based on the 
2APL language [46].

Affordances in Simulation

Recent research suggests that affordances may provide a 
more flexible approach to ABM [47]. The concept of an 
affordance originates in ecological psychology as a means of 
representing the relationship between environmental objects 
and the potential actions that an agent (human or otherwise) 
may perform with those objects [48].

Affordances are information perceived from the environ-
ment that signifies that a particular action may be performed. 
They present a higher level of abstraction in agent-environ-
ment interactions, allowing an agent to reason about the 
actions it can perform instead of having hard coded actions 
in plans.

The use of affordances in ABM parallels the changing 
perception of agent-environment interaction where the envi-
ronment now viewed as an explicit part of the MAS [49]. 
This view is being realised through systems such as EIS [50] 
and CArtAgO [51], which provide an abstraction of the envi-
ronment that can be used across agent platforms. CArtAgO 
has already been used in simulations systems, JaCaMo-sim 
platform [42] is based on its use, and also in combination 
with affordances in a Web of Things environment [52].

Affordances-effect pairs have been utilised in modelling 
of human behaviour in complex environments [53]. Affor-
dance fields have been used to represent the suitability of 
potential actions available to an agent at a given time in path 
planning simulations [54]. Affordances have also been used 
in traffic simulation [55] and simulating the behaviour of 
tanks in a capture the flag exercise [56].

Each of these examples represents a bespoke implemen-
tation of the concept of affordances in ABM, each choos-
ing how to represent affordances, how to fit them into the 
execution of the agent, and how to represent them in the 
language. The benefits of using affordances in ABM can be 

greatly enhanced, or the cost of implementation diminished, 
by the development of a standard representation. This would 
enable greater interoperability between agents and simula-
tion systems, between agents and environments, and between 
simulation systems.

A New Vision for Simulation at Scale

We believe there is a need for Hybrid Simulations that can 
scale while being built from reusable components that are 
designed for interoperability. The combination of techniques 
introduced in this paper represent a potential pathway to 
achieving this. Our approach is inspired by the successes 
achieved by leading technology companies, such as Netflix 
and Amazon, who have met the challenge of deploying their 
infrastructures at Web Scale.

Underpinning their success is their adoption of the 
microservices architecture [10]. As is highlighted in “Simu-
lating at scale”, little research has been carried out into the 
use of microservices in simulation. While the approach we 
propose is focused on the application of microservices to 
ABM, we believe that it can be used to support the creation 
of simulations that combine diverse modelling approaches.

Microservices and Simulation

In our view, microservices are ideally suited to the imple-
mentation of Hybrid Simulations (HS). The mapping of 
microservices to sub-simulations is in keeping with the ethos 
of the approach. In fact, as is discussed in “Simulating at 
scale”, adopting a microservices perspective brings a range 
of additional benefits including mature tool ecosystems and 
polyglot computing.

The notion of polyglot computing sits well with HS as it 
is expected that such systems will be composed of multiple 
sub-simulations implemented using heterogeneous model-
ling techniques and languages. However, it does not address 
how to engender interoperability between those sub-simu-
lations. It is our view that this can be achieved through the 
adaptation of the way that Linked Data is currently used in 
the Web of Things (WoT) [57]. Broadly speaking, Linked 
Data is an approach to realising Tim Berners Lee’s vision of 
the Semantic Web [58] through the creation of typed links. 
These links are embedded within documents that represent 
data from different Web sources. Critically, Linked Data 
supports machine readability through the use of ontologies, 
encoded and interpreted using Semantic Web technologies 
[59].

Within the WoT, Linked Data has been used to help 
develop a set of standards, known as Thing Descriptions 
[60]. These are machine readable documents that describe 
the “things” that have been deployed. They describe the 



	 SN Computer Science (2022) 3:510510  Page 4 of 19

SN Computer Science

capabilities of the devices, allowing clients to reason about 
how (or whether) to use them. The availability of such 
descriptions is driving research into a range of “thing” com-
position techniques, including: thing discovery [61], Web 
Mashups [62], automated composition tools [63] and even 
agent-based approaches [64]. Such descriptions are also 
compatible with manual composition tools.

Our vision is inspired by this view. We believe that a 
Simulation Description that is analogous to Thing Descrip-
tions would promote interoperability and reuse of sub-simu-
lations. Such a description could be used both to specify the 
nature of the environment as well as the inputs and outputs 
associated with it. The application of semantic meaning to 
all data inputs and outputs related to each simulation would 
allow for their integration into data processing pipelines for 
tasks such as transforming data between representations or 
handling (time) scaling issues.

Microservices and Agent‑Based Simulation

In our view, there are two main ways in which ABM can be 
integrated with the Hybrid Simulation framework proposed 
above. One approach is to view them simply as self-con-
tained sub-simulations that are integrated into larger simula-
tions that are not agent-based. While there are a number of 
challenges in achieving this, it is not the focus of the vision 
we present in this paper. In our view, such an approach can 
be realised through existing simulation frameworks.

Instead, our vision is oriented towards a second approach 
where ABM plays a key role in the overall simulation. Here, 
the ABM acts as a central component in which agents are 
linked with multiple sub-simulations, developed using 
diverse simulation techniques, whose state is consumed 
by the agents so that they may more accurately model the 
behaviour of the population they are simulating. Due to 
the potential complexity arising from processing multiple 
state data streams, we believe that the simple agent mod-
els traditionally used in ABM will be inadequate and more 
nuanced models are required. In our view, such an approach 
is congruent with the “Keep It Descriptive, Stupid” principle 
described in [30]. The authors use this principle to argue that 
the social simulation community needs to adopt BDI style 
models, tools and programming languages.

We agree with this sentiment and argue that it is essential 
for managing the complexity emerging from agents interact-
ing with multiple sub-simulations as is proposed within our 
vision. In our view, the best way to deliver this is through 
the use of Hypermedia MAS.

In [65], the authors introduce the concept of Hypermedia 
MAS as an approach to building dynamic, open and long-
lived MAS [66] that are designed to inter-operate seamlessly 
with the World Wide Web. In [11], this approach is expanded 
by outlining a vision in which agents are integrated into the 

hypermedia fabric of the web, and that by doing so, enter 
into a shared hypermedia environment that is based on the 
open standards of the Web. In such an environment, devices 
and physical services can be exposed as first class entities. 
Hyperlinks and hypermedia controls can be used to discover 
and interact with those entities or even other agents regard-
less of their location. Such controls can be published through 
hypermedia documents that are adapted based on the state 
of the underlying entities.

Through these hypermedia documents, agents are able to 
discover at run-time the capabilities of the entities in their 
environment. Presented appropriately, such a document 
could be linked to the concept of affordances as described 
in “Affordances in simulation” enabling them to understand 
not just what the state of the entity is, but also what they are 
currently able to do to that entity. It is important to under-
stand that the concept of Thing Descriptions, as discussed in 
“Microservices and simulation” is an example of just such 
a document.

As described earlier, our vision views ABM as the inte-
gration point for multiple sub-simulations. This is achieved 
by viewing the sub-simulations as being part of the environ-
ment. The agents would then interact with the sub-systems 
through an agent-environment interface. In our approach, 
the environment would be decomposed into a set of micros-
ervices and the agents would interact via the APIs exposed 
by these microservices. There are two possible integration 
strategies to achieve this: the use of a single microservice 
that acts as the intermediary between the agents and the 
subsystems - in the microservices world, this would be con-
sidered an API Gateway [67]; and the direct integration of 
the agents with multiple linked microservices.

We are especially interested in the latter approach as 
we believe that it offers a more decentralised and scalable 
solution. The view also has many parallels with the recent 
work done on applying Hypermedia MAS to the Web of 
Things [68]. In their approach, the highlight the use of 
Thing Descriptions as a means for describing interaction 
affordances that can be used by the agent to understand its 
options. We aim to mirror this approach through the intro-
duction of an Entity Description that describes the interface 
between each sub-simulation and the environment. Agents 
would use this to configure themselves as they connect to a 
sub-simulation. We term the interface defined by the entity 
description to be an Affordance API. Finally, the entity 
descriptions should be linked to corresponding Simulation 
Descriptions as defined in “Microservices and simulation”.

Mirroring the decomposition of the environment into 
a set of microservices, we believe that the agents should 
also be deployed across a set of microservices. A possible 
solution for achieving this is Multi-Agent MicroServices 
(MAMS) approach [69, 70], which has been demonstrated 
in the ASTRA agent programming language [71, 72].



SN Computer Science (2022) 3:510	 Page 5 of 19  510

SN Computer Science

In summary, this section expands our vision for a Hybrid 
Simulation framework to require the use of Hyperme-
dia MAS to implement the agent component of an ABM. 
Inspired by recent work in the area of WoT, the agents would 
interact with sub-simulations, modelled as environment 
microservices, using REST and Linked Data. As with the 
WoT, agent-environment interactions are governed through 
the use of interaction affordances.

Illustrating the Vision

To illustrate our vision, we present a sketch of a traffic simu-
lation based on a small road network which is presented in 
Fig. 1. The road network is shown as a graph with nodes 
representing junctions and edges representing streets. Vehi-
cles in transit are shown superimposed over the edges/nodes.

While the example is not really a hybrid simulation, it 
can be considered to be hybrid because it is composed of 
multiple sub-simulations that are linked together to form 
a simulation web. In our example, each street and junc-
tion is an individual simulation that is hosted on a specific 
simulation service. The simulation service hosts multiple 
simulations that are executed in parallel. Each simulation is 
customisable based on the overall design of the simulation 
service. For example, a street simulation service could be 
customised based on the number of lanes, speed limits and 
the junctions that the street is connected to. The Junction 
simulation services are similarly customisable.

A key feature of our approach is the use of Linked 
Data concepts. Specifically, the individual simulations are 
uniquely identified by a URL and are linked to one another 
based on those URLs. As a result, multiple street simulation 
services can be used in a single traffic simulation. This can 
offer benefits not only in terms of distribution of compu-
tation, but also in terms of the ability to support different 
kinds of simulation. For example, some street simulations 
could be implemented using continuous models, while oth-
ers could be implemented using discrete or even statistical 
models. Assuming there is some agreement about the basic 
format of each simulation service, the linked nature of the 
framework allows for these diverse simulation models to be 
connected seamlessly.

Another benefit of the approach is that other simulations 
or components that have no direct link to the agents can also 
be integrated. These external simulations may be entirely 
different in nature, either using heterogeneous technologies 

or alternative forms of intelligence. In effect, these external 
simulations could be providing input in the form of agents/
entities injected in to or removed from the simulation or 
they may be supplying data that effects the execution of 
the simulation. For example, a weather simulation could 
feed information into the sub-simulations within the sys-
tem to measure the change in traffic patterns. Alternatively, 
these simulations could represent a source for the network 
being simulated, introducing agents at a rate that simulates 
commuters travelling into the city, or they could be a sink, 
providing a destination for a large number of agents (like a 
sports stadium) that is also rate limited. These simulations 
could be monolithic in nature, using diverse technologies, 
but as long as the output can be processed and feed into the 
simulation they should be compatible.

As is discussed in “Microservices and agent-based simu-
lation”, the agent components of the simulation are modelled 
as a Hypermedia MAS. This means that the agents view 
the environment as a collection of hypermedia resources 
and that all interaction between the agent and the environ-
ment is based on REST. One key constraint on the approach 
advocated here is that this interaction is stateful in that an 
agent becomes associated with a simulation instance and 
that association must me maintained as long as is necessary. 
To achieve this, we propose that an agent body be created 
in the simulation instance. Further, as the agent migrates 
across simulation instances (e.g. as it moves from a street 
to a junction or vice versa), the agent body should transfer 
from the old simulation service to the new one.

In the transportation example, the agents are embodied 
within the simulation as the vehicles traversing the network. 
This connection between the agent and the entity being sim-
ulated provides a context for the actions of the agent and fur-
ther allows the simulation to take advantage of affordances 
by presenting a list of possible actions to the agent for con-
sideration. This facilitates the programming of the agent at 
a higher level, or potentially, for the behaviour of the agent 
to be evolved rather than programmed.

Figure 2 illustrates the simulation web that emerges from 
the example traffic simulation. Each node on the graph is 
a hypermedia resource that has an associated URL. Each 
resource is a unique simulation instance. Querying any of 
these URLs returns a representation of the current state of 
the simulation instance. This representation includes the 
URLs of other connected resources. When underpinned by 
a Linked Data format, such as JSON-LD or a Semantic Web 

Fig. 1   Representation of road 
network being simulated



	 SN Computer Science (2022) 3:510510  Page 6 of 19

SN Computer Science

format, such as turtle, the resulting simulation web becomes 
a knowledge graph that can easily be consumed, stored and 
queried. This has the ability to provide the agents with a 
wealth of knowledge that can be used to improve their deci-
sion making. For example, an agent could explore the knowl-
edge graph of the road network to discover routes between 
different locations of interest, or could access a job descrip-
tion to understand what tasks must be completed at work.

The use of a Linked Data approach is highlighted in Fig. 3 
which presents a simplified view of the contents that these 
hypermedia documents may contain. The vehicle descrip-
tion gives us a unique endpoint for this vehicle as well as 
the address of the agent that is coordinating the actions of 
the vehicle.

Together, these descriptions provide all the information 
necessary to enable interactions between individual micros-
ervices. It gives scope for simulations to communicate and 
for agents to interact with and within these simulations.

A nice feature of the approach is that, with suitable 
mechanisms in place, the integration of other simulations 
can be as simple as connecting two simulation services. In 
the example, home and work simulations are connected to 
street simulations allowing, in the correct context, for the 
agents to exit the street simulation and enter a home or work 
simulation. We believe that this flexibility is a very powerful 
feature of the approach as it allows the system to be easily 
reused or even extended.

This capability to compose simulations from multiple 
simulation services has implications beyond agent-based 
modelling simulations. For example, it is possible to enhance 

our traffic simulation through the integration of a weather 
simulation service based on numerical weather prediction 
models. Such a service could be linked to each of the traffic 
simulation services, providing weather information that can 
be used to customise the behaviour of the traffic simulation. 
For example, wet weather could result in stopping distances 
being increased, while fog could reduce the visibility range 
of drivers. In this way, the state of the weather simulation 
would be observed only indirectly though its impact on 
the connected services (e.g. increased stopping distances 
or reduced visibility). In our view, the traffic and weather 
simulators together represent a hybrid simulation as they 
combine agent-based and numerical simulators. While this 
combination is quite obvious and natural, we believe that the 
approach can be generalised and applied to other scenarios.

While not the focus of this paper, it is clear that the 
approach will also require some form of governing entity 
(agent or otherwise) to manage the set-up and execution of 
the simulations. We leave discussion of such issues to future 
work.

Building Hypermedia MAS Simulations

This section builds on the vision presented in “A new vision 
for simulation at scale” by exploring how it can be realised 
in practice. The scope of the vision and the emergent nature 
of the work makes a comprehensive discussion impossible. 
Instead, this section focuses primarily on the relationship 
between the agents and the environment. The objective is to 

Fig. 2   Representation of hyper-
media in MAS simulation

Fig. 3   Internal representation of 
hypermedia documents in MAS 
Simulation



SN Computer Science (2022) 3:510	 Page 7 of 19  510

SN Computer Science

provide some clarity around how Hypermedia MAS Simula-
tions can be implemented.

Central to our vision is the recasting of Agent-Based 
Models as a collection of interacting microservices. The 
resultant microservices fall into one of two categories: 
agent-oriented microservices, which host the agent part of 
the simulation and environment microservices, which host 
pieces of the simulation environment. For the agent-oriented 
microservices, it is expected that the underlying platform 
will be largely homogeneous, in the sense that all the agents 
will be deployed using the same agent platform (although we 
do not require this) and, critically, the location of each agent 
has no effect on its behaviour. Conversely, it is expected that 
the environment microservices will be heterogeneous, in the 
sense that different microservices will implement different 
aspects of the simulation environment.

An example of this can be seen in Fig. 4 which presents 
a simplified view of how microservices might be used to 
realise the traffic simulation scenario highlighted in “Illus-
trating the vision”. As can be seen, the example simulation 
consists of two main environment microservices and one 
agent-oriented microservice. The environment microservices 
provide simulations of streets and junctions respectively. The 
agent-oriented microservice provides the agents that drive 
the simulated vehicles. A fourth microservice also exists. 
Technically, this is also an environment microservice, but 
it is more informational in purpose; it provides abstract 
descriptions of the vehicles used in the simulation that can 
be used by the agent understand the capabilities of the vehi-
cle they are driving.

The existence of the vehicle service illustrates how 
we anticipate Linked Data concepts to be applied. At a 
high level, agents receive periodic state updates from the 

environment microservice that they are currently connected 
to. This update includes the URLs of both the body of the 
agent (see “Agent–environment interactions”) and the spe-
cific environment simulation that the agent inhabits. The 
body URL can be used to access general information about 
the body of the agent (in this case a car), and the environ-
ment URL can be used to access general information about 
the specific environment simulation (in this case, a specific 
street), which in turn can contain other environment URLs 
or other relevant information. As was explained in “A new 
vision for simulation at scale”, once integrated with ontolo-
gies, this is in effect a Knowledge Graph that spans the entire 
simulation and which can be used as additional context by 
the agents.

The example presented offers a fairly homogeneous view 
of the traffic simulation as there is only one junction micros-
ervice and one street microservice. In practice, it is envis-
aged that there may be multiple variations of each type of 
environment microservice. For example, street microservices 
could be created to model different types of road, such as: 
one way roads, two way roads, or dual-carriageways. A sin-
gle simulation could then combine these diverse approaches, 
for example a single lane road could be simulated using con-
tinuous models, discrete models, or even statistical models. 
The value of this is that different parts of the environment 
can be modelled at different levels of detail depending of the 
requirements of the simulation.

The remainder of this section focuses on the relationship 
between the agent-oriented microservices and the environ-
ment microservices. “Agent–environment interactions” 
focuses on how an agent connects to and interacts with an 
environment microservice. Following this, “The role of 
affordances” focuses on the role of affordances in supporting 

Fig. 4   Microservices view of a traffic simulation



	 SN Computer Science (2022) 3:510510  Page 8 of 19

SN Computer Science

that interaction. Finally, Section Transitioning Between Sim-
ulation Components describes how agents transition between 
environment microservices. The relationship between these 
techniques and the use of Semantic Web technologies is dis-
cussed separately in Folding in semantics.

Agent‑Environment Interactions

The relationship between agent-oriented microservices and 
environment microservices is central to the realisation of 
Hypermedia MAS Simulations. In traditional ABM simula-
tions, agents are viewed as embodied entities that are situ-
ated in some environment. Agent-environment interaction 
takes the form of a push of relevant environment state from 
the environment to each agent. The expectation is that the 
response will contain the next action of the agent which is 
subsequently executed within the environment.

The approach proposed in this paper mirrors this through 
the use of a webhook1. Webhooks are a callback mechanisms 
for web-based services. They allow services acting as clients 
in some interaction to receive data asynchronously from an 
associated server service. This is achieved by exposing a 
HTTP endpoint on the client side and passing the associated 
URL to the server. Once received, the server is able to pass 
data back to the client by submitting HTTP requests via the 
specified URL. This approach fits well with our vision, as 
described in Section Microservices and Agent-Based Simu-
lation, because it is based on the assumption that both the 
agent and the environment microservices are built on the 
principles of REST.

In order to setup a webhook, the client service must con-
tact the server service by submitting a HTTP request that 
includes the webhook URL. This URL is then stored in the 
server service. In some cases, webhook URLs are stored 
in a simple list with the server service unaware of which 
client it connects to. However, where relevant, the associa-
tion between the URL and the client service can also be 
maintained.

Webhooks are a natural fit for Hypermedia MAS Simu-
lation, where the design of environment microservices can 
be standardised to include the concept of an agent body. 
In our approach, each agent has an associated body that is 
maintained by the environment microservice that the agent 
is currently interacting with. This body contains, as a mini-
mum, the webhook URL. However, it may also include other 
properties, such as the URL of the body that has been cre-
ated for the agent, should it be required. The agent creates a 
body by registering with an environment microservice. Once 
registered, the agent begins to receive representations of the 
relevant simulation state from that microservice via the web-
hook. For simplicity, the discussion below assumes that the 
simulation state can be adequately represented by a JSON 
document. For the purposes of illustrating our approach, we 
assume that the agent is able to transform this state represen-
tation into knowledge that can be used in the decision mak-
ing process. Later, Section Folding in Semantics explores 
how the use of Semantic Web technologies can enrich such 
representations and simplify the transformation of the state 
into actionable knowledge.

Figure 5 illustrates our approach through a simple exam-
ple based on a Room Simulation that contains a light and 
a light switch. As can be seen, the agent creates a body in 
the simulation by submitting a HTTP POST request to the 
/bodies endpoint. The body of the request contains the 
webhook URL of the agent (here modelled by the prop-
erty callback). The simulation microservice responds 
by creating a body for the agent and returning the URL of 
the newly created body in the HTTP Response. The 201 
response code highlights that a new resource has been cre-
ated, and the URL of the resource is encoded within the 
Location: header field of the response.

Once the body has been created, it is the responsibility of 
the environment microservice to push any new simulation 
states to the agent via the webhook URL. Based on the prin-
ciples of REST, this can be achieved in one of three ways, 
via a HTTP POST, PUT or PATCH request. In the figure, 
we illustrate the use of a PUT request which has the effect 
of replacing the hypermedia entity referenced by the web-
hook URL through the submission of a new representation 
of the environment state. This means that the previous state 

Fig. 5   Illustration of the steps 
involved in the creation of an 
agent body

1  https://​webho​ok.​net/.

https://webhook.net/


SN Computer Science (2022) 3:510	 Page 9 of 19  510

SN Computer Science

representation is replaced by a new state representation. For 
simplicity, the example uses a JSON representation of the 
environment state. In practice, we expect this state to use a 
Linked Data format as is described in Section Microservices 
and Agent-Based Simulation. This would enable the state to 
be automatically converted into actionable knowledge that 
can be used by the agent. However, this requires the adoption 
or creation of appropriate ontologies, which is an ongoing 
piece of work. There is some discussion of this later in Sec-
tion Folding in Semantics.

In cases where it is desirable for the agent to be able 
to maintain previous state representations, a POST request 
could be used instead. This has the effect of creating a new 
resource each time the environment microservice sends a 
new simulation state. In this second approach, it would be 
left as the responsibility of the agent to decide when (or 
whether) to destroy historical simulation states. A third 
approach is the use of a PATCH request, which may be 
appropriate for scenarios where the simulation state is large, 
but where only a few properties change at a time. In this 
scenario, the environment microservice would only need to 
send the properties of the simulation state that have changed 
since the last update. As with PUT requests, the objective 
is to replace the previous state with the new state, but this 
is achieved by only transmitting the changes between the 
previous and current state. Given the three approaches have 
advantages and disadvantages, our view is that a Hyper-
media MAS Simulation should ultimately support all 
three options, however, in our initial prototypes, only PUT 
requests have been implemented.

In our view, the selection of a particular method should 
be done through some form of negotiation based around the 
requirements of the agent (is a state history required) and the 
characteristics of the environment (level of dynamism). It is 
worth noting here that the idea of partial state updates is also 
compatible with the use of POST requests as REST does 
not require that the the newly created entity be solely based 
on the state representation contained in the request body. 
However, additional context would need to be provided in 
advance of the use of the webhook to clarify whether the 
incoming POST requests contain full or partial information.

In addition to providing support for receiving simulation 
state the environment microservices must also use a stand-
ard approach to handling the submission of the agents next 
action. Given the agents body is hosted remotely in the envi-
ronment microservices, any actions executed by the agent 
must be executed in that same microservice. This requires 
that the agent select the next action to be performed based on 
the current (and possibly previous) state of environment, and 
transmit a representation of that action to the environment 
microservice. This can be achieved in one of four ways: in 
the HTTP response associated with the webhook request, 

or via a HTTP POST, PUT or PATCH request to the URL 
identifying the body of the agent.

The use of the HTTP response associated with the request 
that is sent to the agents webhook is not a good solution for 
two reasons: it is not consistent with the principles of REST 
and synchronous interaction between the environment and 
the agents has the potential to limit the scalability of the sim-
ulation. The first issue relates the requirement that all REST 
APIs adhere to the HTTP specifications2 which state that 
the expected response of a POST, PUT or PATCH should 
be either a ”201 Created:” response, which should have no 
body; or a ”200 OK” response whose body should contain 
the representation of the resource that has just been cre-
ated or updated. This means that the response must contain 
the simulation state representation, not an associated action 
representation. The second issue relates to the realities of 
network programming each agent microservice maintains 
a single server socket for all the webhooks. This socket can 
only maintain a limited number of concurrent connections. 
When this limit is reached, the socket starts rejecting incom-
ing connection requests (this is the basis on which Denial 
of Service attacks work). This severely restricts the number 
of agents that can be deployed in each agent microservice, 
restricting the ability of the simulation to scale.

The remaining three approaches all satisfy the REST 
requirement and either create resources or update an exist-
ing resource that is associated with the agent body hosted 
by the environment microservice. The HTTP specification 
states that POST requests create new resources. This means 
that the environment microservice would need to create a 
resource for each action request that it receives. Further, it is 
expected that a representation of each resource created will 
be accessible via an associated URL. This would apply to 
all actions submitted by all agents interacting with a given 
environment microservice, even if the leave that micros-
ervice, for the entire simulation run. Unless some sort of 
garbage collection strategy is introduced, this would have 
a significant impact on the resource utilisation of the envi-
ronment microservices, potentially inhibiting its scalability. 
Conversely, PUT and PATCH requests do not result in the 
creation of additional resources, but the full or partial update 
of an existing resource. PATCH requests should be preferred 
to PUT requests when the size of the associated represen-
tation is large, but where it does not change significantly 
between requests. In theory, our approach could support both 
request types, with the environment microservice automati-
cally switching from PUT to PATCH when there is a benefit. 
However, for simplicity, our current preference is to employ 
only PUT requests.

2  https://​datat​racker.​ietf.​org/​doc/​html/​rfc26​16.​html.

https://datatracker.ietf.org/doc/html/rfc2616.html


	 SN Computer Science (2022) 3:510510  Page 10 of 19

SN Computer Science

An example of how an agent submits an action is illus-
trated in Fig. 6. As with the environment state representa-
tions described earlier, for simplicity our illustration uses 
a JSON representation of the action that is submitted by 
the agent. This representation takes the form of a unique 
identifier and a list of parameters which is a widely used 
representation of actions in the literature.

The Role of Affordances

One of the issues that arises from the approach described in 
the previous section is the selection of the action to be sub-
mitted by the agent. In the example presented in Fig. 6, the 
agent submits a switch(”on”) action. But the question 
to be asked is how it made the decision to do this? Answer-
ing this question requires three issues to be resolved: (1) 
identification of the actions that can be performed in the 
environment that the agent is connected to, (2) filtering out 
of actions that cannot be performed based on the current 
environment state, and (3) selecting which of the available 
actions it should perform.

Traditionally, all of these issues are resolved through the 
hard coded implementation of specific agent behaviours 
that define what the agent should do in a range of prede-
fined situations. This works in scenarios where the agent 
interacts with an environment that is fixed in the sense that 
all possible environment states and actions are known in 
advance but is somewhat less useful in scenarios where the 
agent starts with limited knowledge of the environment. Full 
prior knowledge of the environment is not always possible 
or desirable. This is especially the case when the goal is 
to build simulation components that can be reused across 
simulations. The alternative solution is to try to reduce the 
degree of hard coding and to enable some level of adapta-
tion. Perhaps the easiest way to do this is by introducing 
some form of mechanism to expose the actions associated 
with the environment to the agent. The value of this is that 
the agent at least has an awareness of the actions that it could 
perform even if it ends up it a scenario where it does not 
know which action to perform next. In such a scenario, the 

agent could simply select a random action, attempt to learn 
a new behaviour through trial and error, or simply recognise 
that the action it intended to perform is invalid.

In our view, there are two ways to expose the list of 
possible actions to each agent. The first is to create a list 
of all possible actions for each environment microservice 
that can be accessed either when the agent connects to the 
environment or as part of the simulation state. Given such 
a list would be static (for the environment), and potentially 
quite long, the single download model would seem to be 
more efficient. The second approach is to use affordances 
as described in Section The Role of Affordances. While the 
literature describes are a number of approaches to imple-
menting the concept of affordances, the basic idea is that the 
identification of the list of possible actions is a function of 
the agents perception of its environment rather than being 
part of the decision making process. As such, affordances are 
commonly passed as part of the simulation state. The benefit 
of the latter approach is that it addresses the identification 
and filtering issues highlighted above. The agent must still 
select the action it wishes to perform from this list, but it is 
at least guaranteed that the action it chooses will succeed. If 
the former approach is used, then the agent is responsible for 
both filtering and selecting. The filtering process typically 
involves analysis of the agent’s simulation state. Such analy-
sis tends to increase the complexity of processing to be done 
by the agent without offering any benefit to the simulation.

Selection of what action the agent should perform next is 
typically a function of the current state of the environment, 
the goals of the agent and the available actions. Depending 
on the design of the agent framework, the internal state of 
the agent may also influence the decision. How the agent 
makes this decision depends on the simulation requirements. 
However, offering both the current state and the possible 
actions, opens the possibility for reinforcement learning 
techniques to be employed. It also allows for the use of plan-
ners or other symbolic reasoning models. Where symbolic 
approaches are used, there may be a requirement for addi-
tional information to be provided. Possible mechanisms for 
delivering this additional information include the association 

Fig. 6   Illustration of how an 
agent submits actions to the 
environment microservice



SN Computer Science (2022) 3:510	 Page 11 of 19  510

SN Computer Science

of additional resources, such as manuals, with the environ-
ment simulations, potentially encoded using ontologies to 
for ease of ingestion by the agent.

Figure 7 illustrates our approach through a revision to 
Figure 6 that includes the affordances within the simulation 
state. As can be seen, the simulation state now includes the 
affordances of the environment and the affordances change 
as the state of the environment changes.

Transitioning Between Simulation Components

The final issue discussed in this paper is how to implement 
the transition of agents between environment microservices. 
As was seen in Fig. 4 each simulation in an environment 
microservice can be linked to other environment microser-
vices through the use of a simulation URL. The idea here is 
that, given a specific exit state, an agent is able to move its 
body from one environment microservice to another linked 
service. For example, in the figure /agent/24 is driving a 
vehicle along street /street/12. When it reaches the end 
of this street, it must transition from the street to junction 
/junction/23. A similar scenario arises as the vehicle 
departs the junction and enters another street. In these sce-
narios, the transition of the agent body is mandatory. From 
a technical perspective, the objective is to migrate the agent 
body from the current microservice to the new microservice. 
The natural solution to this is to simply copy the agent body 
to the new microservice and on confirmation destroy the 
body on the old service. The most natural way to do this is 
to use a POST request.

The only issue with this is that the URL of the agent 
body changes as the agent moves around the environment. 
The agent needs to know the URL of its body so that it can 

submit the next action to be executed. This can be solved 
in three ways: (1) by including the agent body URL in 
the simulation state, (2) by adding a special webhook to 
update the agent body URL, or (3) by using a ”301 Moved 
Permanently” response to redirect the requester to the new 
body URL when the old body URL is queried.

The first approach is nice in that it ensures that the agent 
is always aware of its URL, but it places an additional bur-
den on the design of the simulation state. It is also wasting 
bandwidth by transmitting redundant information because, 
once the agent knows its body has moved, it can cache 
the URL until the next time it moves. While the second 
approach gets around the wastage of bandwidth, it does 
so by requiring an additional HTTP request be performed 
on transition to the new environment microservice. Again, 
this is adding unnecessary complexity to the design of the 
environment services.

The third option seems less appealing at first, but actually 
turns out to be quite nice. This option is known as a server-
side redirect. The idea is that the server tells the client when 
the resource it is trying to access has moved. The server 
also provides the new URL or the resource. Supporting a 
server-side redirect minimises the requirements on both the 
environment microservice and the agent. The agent sim-
ply continues to use the URL is has until it receives a 301 
response. At that point, the agent simply updates the URL 
and uses it into the future. This third approach is illustrated 
in Fig. 8 where, in step 1, the agent sends a PUT request 
to the old agent body and the body responds with a 301 
response. In step 2, the agent updates the agent body URL 
to reflect the address given in the Location: header of 
the 301 response. Finally, in step 3, the agent uses the new 
URL to submit its next action.

Fig. 7   Introducing affordances 
into the simulation state



	 SN Computer Science (2022) 3:510510  Page 12 of 19

SN Computer Science

Finally, while the transition in the above example is 
mandatory, there will also be cases where the transition is 
optional. For example, an agent that is currently in a home 
simulation may decide to go to work by car. To achieve this, 
the agent must choose to leave the home simulator and enter 
the traffic simulator. Upon reaching work, the agent must 
leave the traffic simulator and enter the work simulator. Such 
transitions are driven by the agent rather than the simula-
tor. To support them, it is important to introduce a specific 
action (e.g. transition(url)) that can be executed by 
the agent to initiate the transfer process. In the context of 
the discussion around affordances in Section The Role of 
Affordances, supporting such an action would be trivial. The 
parameter should be the URL of the destination simulation.

Folding in Semantics

Agent-based simulations are often ad-hoc and based on a 
subjective understanding of the agent-based concept [73]. 
Standard agent frameworks are typically not designed to 
address simulation-specific issues, such as the non-deter-
ministic nature of user behaviour [74]. There are many deci-
sions and actions to be taken by users at any given time, 
affected by their purpose and context simultaneously, so it 
is impossible to predict future user behaviour during the 
design process [74]. While a large amount of knowledge pro-
vided by different disciplines/sources (such as psychology, 
sociology, ergonomics, philosophy, and cognitive science) 
could be useful hypotheses for an agent-based simulation, 
able to predict future user behaviour, their lack of integration 
and formalisation into a reliable framework makes it almost 
impossible to use them in actual design [74]. To solve this 
problem, researchers have combined an agent-based simula-
tion with a knowledge base that can formalise and manage 
data and information [74]. A knowledge base consists of an 
ontology and individual instances of classes. Although user 
behaviour is essentially complex and non-deterministic, it 

can be modelled with a set of behavioural rules, hierarchi-
cally structured on multiple levels and linked to each other 
[74].

Ontologies for Modelling and Simulation

An ontology defines representational primitives to model 
specific domain knowledge and provides a foundation for 
reasoning about objects, behaviour, and knowledge as a for-
mal methodology [75]. Ontologies can be classified based 
on abstraction level and field of application, upper ontol-
ogy formalising, ontology development concepts, domain 
ontology including concepts relevant to a particular domain, 
interface ontology to represent the concepts relevant to the 
intersection of two disciplines and process ontology describ-
ing inputs, outputs, constraints, and sequence of information 
in a particular process [76]. There are two main classes of 
ontologies for modelling and simulation: methodological, 
which describes methods, and referential, which represents 
real-world systems [77]. The Ontology for Simulation, Mod-
elling, and Optimization (OSMO) is a metadata standard 
for modelling and simulation workflows in computational 
engineering [78]. In the literature, various ontology-based 
templates (i.e., general and domain-specific ontologies) have 
been defined to represent, formalise, manage, and organise 
the knowledge about the agent, its behaviour within the envi-
ronment, and its interaction with other entities [73–75, 79]. 
In [80], the authors propose a new transformation method to 
construct a complete and executable agent-based simulation 
model from an ontology-based model.

Ontologies allow simulation developers to specify envi-
ronments based on the semantic relationships between 
the objects of the environment. The representational 
primitives are classes or sets, properties or attributes, 
and relationships between concepts or class members of 
a particular domain [73, 74]. To represent the real-world 
behaviour in the simulated environments, multi-agent sys-
tems’ ontology represent agent, resource, action, reaction, 

Fig. 8   Updating the agent body URL via a server side redirect



SN Computer Science (2022) 3:510	 Page 13 of 19  510

SN Computer Science

and perception [74, 79], and offer the following advan-
tages. By providing unambiguous and machine-accessible 
interpretations of terms ontologies act as a middle-ware 
between the physical layer and the information layer ena-
bling interconnectivity, interoperability and coordination 
of activities between intelligent heterogeneous systems 
in an environment. For example, network routing might 
require a distributed decision making process involving 
several entities from different systems that can have access 
to data and behaviour from their local perspectives [81].

Furthermore, ontologies allow a simulation engine to 
gather and combine information from various sources, to 
be used as a set of initial hypotheses to tackle the cold start 
challenge, as well as making assumption about how inter-
actions and behaviour from different systems and domains 
can be linked to one another [74, 82].

Any change in the environment, assumptions and run-
ning scenarios might require change in the models, which 
is time-consuming and can delay decision-making [80]. By 
formalising the knowledge base through ontologies, it is 
possible to perform automated reasoning on the process of 
modelling and simulation and reuse abstract concepts, and 
automatically compose agent-based models to form new 
and scalable simulations for complex domains. Also, it is 
possible to automate the design and execution of experi-
ments, and the generation of validation tests [73, 74, 83]. 
Furthermore, Ontology can be used as a benchmark or as a 
formal framework to understand the compatibility of mod-
els expressed in different languages or disciplines, and to 
evaluate the similarities and differences between different 
models and objects [75], when more than one model exist 
for representing a real-world phenomenon.

A unified ontology reduces uncertainty in the decision-
making process, ensures compatibility and consistency 
between different perspectives, and resolves semantic con-
flicts when operating in a domain with multiple sources 
of information and behaviour [84, 85], and the implied 
assumptions and implicit presuppositions [75] can be iden-
tified using reasoning techniques [73].

In ontology-driven simulation modelling, the ontology 
quality strongly impacts the overall quality of the model. 
The construction of a taxonomy tree and its flexibility is 
crucial to explaining how agent properties, their values, 
and rules are inherited. The accuracy and correctness of a 
conceptualisation can be assessed using factors including 
effectiveness of the ontology on the achievement of the 
goals, and its reliability and safety to address the changes 
in the domain [74, 82]. Also, the simulation tool should 
keep the agents’ ontology up-to-date by sending messages 
to those agents that should react to newly created facts in 
the environment [81].

Ontologies for Hypermedia MAS Simulation

According to the ontologies associated with a specific 
domain, various environment microservices can be devel-
oped to model different aspects of the simulation environ-
ment and to collect information about them. Ontologies 
define the conceptual structure at which different aspects 
of the environment can be modelled at different levels of 
detail. Concept weighting [86] is a method used in data 
analysis to determine the importance of concepts based on 
their weight. Ontologies that relate actions to concepts are 
called action ontologies [87], which help to determine which 
concepts are relevant to the action. When dealing with large 
simulation states, the environment microservice only needs 
to send to the agents the properties of important concepts 
identified based on weighting methods or relevant concepts 
identified based on action ontologies. Ontologies can pro-
vide unambiguous interpretations of state representations, 
thereby reducing the uncertainty in agents’ decision-making 
processes. The ontology-based model proposed in [88] can 
also be used to augment the representation of the state of 
an environment and enhance the agents’ decision making, 
particularly when the environment is dynamic and partially 
observable.

Ontologies for Transportation

In Intelligent Transportation Systems (ITS), the ontology 
can give a semantic interpretation to information collected 
by the sensors (located into vehicles, bridges, roads, or traffic 
signal controllers), facilitating safe driving and improving 
traffic performance. Adaptive and situation-aware intelligent 
traffic signal control systems require semantic knowledge 
about the driver, vehicle, and current driving situation. It 
is highly beneficial to collaborate in such an environment 
[89]. Activity-based micro-simulation using agent-based 
models allows researchers to predict traffic demands by ana-
lysing individual trip patterns derived from human behav-
iours. However, in transportation simulation, data handling 
can be challenging since several types of data from vari-
ous domains are generally required as inputs. Furthermore, 
because activity-based approaches consider non-determinis-
tic and highly context-dependent human behaviour, it is dif-
ficult to build agents’ behavioural rules. In [85], the authors 
propose using ontology as a solution to these difficulties. 
In multi-modal transportation, users use at least two dif-
ferent modes of transportation to reach their destination. It 
is, therefore, necessary to provide and manage a variety of 
real-time information on departure times, routes, and traf-
fic conditions before and during travel. Ontologies can be 
used to integrate all this various information, manage their 
semantic conflicts, and ensure interoperability, which results 
in sharing of knowledge and communications between 



	 SN Computer Science (2022) 3:510510  Page 14 of 19

SN Computer Science

the different agents involved in the multi-modal transport 
network [84]. In [90], the authors present a survey of cur-
rent mobility-related ontologies developed across multiple 
domains including transportation, smart cities, goods mobil-
ity, and sensors. Also, in [91], the authors review the avail-
able transportation ontologies and a summary of their scope. 
The common high-level concepts include location, space, 
geometry, time, unit of measure, activity (i.e., emergency, 
entertainment, education, trip, disruptive event), agent (i.e., 
person, organisation), resource, plan, objective, precondi-
tion, effect, transportation network (i.e., road, railway), 
mode (i.e., vehicle, transit, walking, bicycle, segway), and 
parking. In [83] the authors introduce the multi-agent-based 
simulation system which provides reusable and extendable 
ontological models in different levels including top-level 
domain ontology (i.e., the ontology for physical objects and 
abstract services), and transport specific ontologies (e.g., 
ontologies for multi-modal transportation, logistics, com-
munication, and goods). The environment is perceived by 
autonomous vehicles using a variety of sensors. To gener-
ate the suitable actions that can be implemented by these 
vehicles, it is helpful to utilise static and mobile concepts 
defined in the context of three ontologies, including weather, 
highway, and vehicle, and using the relationships between 
these concepts [92, 93].

An Example in Traffic Domain

The change in traffic flow condition is often due to the 
change in drivers’ behaviour. Researchers have found that 
weather conditions, events, and time affect drivers’ behav-
iour significantly [90, 94, 95]. To determine how these 
parameters affect traffic flow characteristics (i.e., average 
speed, traffic volume, and road capacity), we can use a com-
bination of a driving simulator and a traffic simulator. The 
driving simulator can collect drivers’ behaviour by simulat-
ing the effects of different parameter values (e.g., different 
weather conditions), while traffic simulation can evaluate 

changes in traffic flow characteristics by using collected 
drivers’ behaviour (see Fig. 9).

To design scenarios for driving simulation experiments, 
one can use foundation/basic ontologies that are common 
across different domains, for example, the ontologies of 
time, event, and weather. They help in finding the combina-
tion of parameters (or concepts) and their different values 
that make a simulation model match as close to reality as 
possible. For example, based on the foundation ontologies 
shown in Fig. 10, fog, rain, snow, and wind should be con-
sidered as adverse weather conditions. Additionally, the 
scenario design should incorporate various planned spe-
cial events (e.g., sports games or festivals). The relation-
ship between concepts of time of day and visual cues of the 
driver makes it apparent that time of day effects need to be 
considered when simulating driving behaviour.

Challenges and Opportunities

Realising the vision presented in this paper raises a number 
of challenges that also present opportunities for the Multi-
Agent Systems community. Some of the key challenges are 
described below:

•	 Tools for building Hypermedia MAS: Suitable tools for 
building Hypermedia MAS do not currently exist [11]. 
Such tools would need to be hypermedia friendly and 
provide mechanisms to allow agents to reason with and 
act on semantic knowledge.

•	 Defining ontologies for describing simulations: The 
effective description of simulation components is criti-
cal to enable their composition and reuse. Development 
of a standardised suite of ontologies to support this is an 
essential community activity.

•	 Exploring the methods and protocols needed to 
deliver hybrid simulation: Before effective standards 
can emerge, there is a need to explore how to combine 

Fig. 9   Use of ontology in the 
agent-based simulation—an 
example in the traffic



SN Computer Science (2022) 3:510	 Page 15 of 19  510

SN Computer Science

simulation components: how component connections 
should be presented to agents and how an agent should 
migrate from one component to another. It is concerned 
with the creation of the methods and protocols needed to 
allow agents to operate seamlessly across them.

•	 Building simulations that can scale: Being able to 
decompose a simulation into constituent microservice 
is not enough. There is a need to understand how to do 
this in a way that enables scalability. This challenge is 

further complicated by the need to consider multiple 
sub-simulations and the need for mechanisms that can 
knit the individual sub-simulations into a larger whole.

•	 Reusability across simulation domains: Understand-
ing how to make sub-simulations reusable across prob-
lem domains is another key challenge. This requires the 
development of standards for defining simulations and 
techniques for composing them. Some discussion on 

Fig. 10   Ontologies can be used in traffic domain (the OntoGraf plug-in in Protégé is used to create a graph representation of our ontologies)



	 SN Computer Science (2022) 3:510510  Page 16 of 19

SN Computer Science

potential approaches is presented in section Microser-
vices and Simulation.

Concluding Remarks

This paper presents a vision of a microservices-based 
approach to implementing Hybrid Simulations that include 
an ABM component that is underpinned by the recently pro-
posed notion of Hypermedia MAS. Section Illustrating the 
Vision motivates our approach and illustrates the vision from 
a simple traffic simulation example. Following this, in Sec-
tion Building Hypermedia MAS Simulations, we propose a 
number of the basic techniques for realising the core of our 
vision. Specifically, we focus on the relationship between the 
agents and the environment. Following this, Section Folding 
in Semantics further explores the role of ontologies in realis-
ing the vision and explores how ontologies could be applied 
to the traffic simulation scenario. Finally, Section Challenges 
and Opportunities outlines a number of challenges and 
opportunities for future research.

While the approach is still largely theoretical, we believe 
that it is quite novel. There has been little research into the 
use of microservices for simulation. What they offer is an 
approach to constructing decentralised simulations that can 
leverage the infrastructure of the web to function at scale. 
Through the use of microservices, developers are able to 
decompose complex systems into small suites of services 
that can be designed to be reusable, and which are (poten-
tially) implemented using a diverse range of tools, languages 
and frameworks. A key feature or our approach, is the pro-
posed use of Simulation Descriptions, a simulation equiva-
lent of Thing Descriptions that are used to describe sensors 
in the Web of Things. By providing these descriptions, we 
believe that it will be possible to simplify the composition 
and integration of different simulator services, allowing the 
construction of complex simulations from reusable com-
ponents. We believe that this will provide a powerful tool 
to help in addressing the increasingly complex challenges 
around the modelling of large socio-economic and socio-
environmental systems.

Declarations 

Conflict of Interest  On behalf of all authors, the corresponding author 
states that there is no conflict of interest.

References

	 1.	 Du, J., Jing, H., Choo, K.-K.R., Sugumaran, V., Castro-Lacou-
ture, D.: An ontology and multi-agent based decision support 

framework for prefabricated component supply chain. Informa-
tion Systems Frontiers, 1–19 (2019)

	 2.	 Golpayegani, F., et al.: Co-ride: Collaborative preference-based 
taxi-sharing and taxi-dispatch. In: 2018 IEEE 30th International 
Conference on Tools with Artificial Intelligence (ICTAI), pp. 
864–871 (2018). IEEE

	 3.	 Teixeira B, Santos G, Pinto T, Vale Z, Corchado JM. Applica-
tion ontology for multi-agent and web-services’ co-simulation in 
power and energy systems. IEEE Access. 2020;8:81129–41.

	 4.	 Polhill JG, Ge J, Hare MP, Matthews KB, Gimona A, Salt D, 
Yeluripati J. Crossing the chasm: a ‘tube-map’for agent-based 
social simulation of policy scenarios in spatially-distributed sys-
tems. GeoInformatica. 2019;23(2):169–99.

	 5.	 Kitova OV, Kolmakov IB, Dyakonova LP, Grishina OA, Danko 
TP, Sekerin VD. Hybrid intelligent system of forecasting of the 
socio-economic development of the country. Int J Appl Bus Econ 
Res. 2016;14(9):5755–66.

	 6.	 Eldabi, T., Brailsford, S., Djanatliev, A., Kunc, M., Mustafee, N., 
Osorio, A.F.: Hybrid simulation challenges and opportunities: 
a life-cycle approach. In: 2018 Winter Simulation Conference 
(WSC), pp. 1500–1514 (2018). IEEE

	 7.	 Mustafee, N., Brailsford, S., Djanatliev, A., Eldabi, T., Kunc, M., 
Tolk, A.: Purpose and benefits of hybrid simulation: contributing 
to the convergence of its definition. In: 2017 Winter Simulation 
Conference (WSC), pp. 1631–1645 (2017). IEEE

	 8.	 Brailsford SC, Eldabi T, Kunc M, Mustafee N, Osorio AF: Hybrid 
simulation modelling in operational research: A state-of-the-art 
review. European Journal of Operational Research 278(3) (2019)

	 9.	 Turner B II, Esler KJ, Bridgewater P, Tewksbury J, Sitas N, Abra-
hams B, Chapin FS III, Chowdhury RR, Christie P, Diaz S, et al. 
Socio-environmental systems (ses) research: what have we learned 
and how can we use this information in future research programs. 
Current opinion in environmental sustainability. 2016;19:160–8.

	10.	 Fowler M. MicroServices: A definition of this new architectural 
term (2014). https://​marti​nfowl​er.​com/​artic​les/​micro​servi​ces.​html

	11.	 Ciortea A, Mayer S, Gandon F, Boissier O, Ricci A, Zimmermann 
A. A decade in hindsight: the missing bridge between multi-agent 
systems and the world wide web. In: Proceedings of the Interna-
tional Conference on Autonomous Agents and Multiagent Sys-
tems (2019)

	12.	 Abar S, Theodoropoulos GK, Lemarinier P, O’Hare GM. Agent 
based modelling and simulation tools: A review of the state-of-art 
software. Computer Science Review. 2017;24:13–33.

	13.	 Taylor S, Anagnostou A, Abubakar N, Kiss T, Deslauriers J, Ter-
styanszky G, Kacsuk P, Kovacs J, Kite S, Pattison G, et al. Inno-
vations in simulation: Experiences with cloud-based simulation 
experimentation. In: Winter Simulation Conference 2020 (2020)

	14.	 Rashid ZN, Zebari SR, Sharif KH, Jacksi K. Distributed cloud 
computing and distributed parallel computing: A review. In: 2018 
International Conference on Advanced Science and Engineering 
(ICOASE), pp. 167–172 (2018). IEEE

	15.	 Collier N, North M. Repast hpc: A platform for large-scale agent-
based modeling. Large-Scale Computing. 2012;10:81–109.

	16.	 Wshhsh Axhausen K, Horni A, Nagel K. The Multi-agent Trans-
port Simulation MATSim. NY: Ubiquity Press; 2016.

	17.	 Taylor SJ. Distributed simulation: state-of-the-art and potential 
for operational research. Eur J Oper Res. 2019;273(1):1–19.

	18.	 Taylor SJE, Kiss T, Anagnostou A, Terstyanszky G, Kacsuk P, 
Costes J, Fantini N. The CloudSME simulation platform and its 
applications: A generic multi-cloud platform for developing and 
executing commercial cloud-based simulations. Futur Gener Com-
put Syst. 2018;88:524–39. https://​doi.​org/​10.​1016/j.​future.​2018.​
06.​006.

	19.	 Al-Zoubi, K., Wainer, G.: Rise: A general simulation interoper-
ability middleware container. Journal of Parallel and Distributed 
Computing 73(5) (2013)

https://martinfowler.com/articles/microservices.html
https://doi.org/10.1016/j.future.2018.06.006
https://doi.org/10.1016/j.future.2018.06.006


SN Computer Science (2022) 3:510	 Page 17 of 19  510

SN Computer Science

	20.	 Cordasco G, Scarano V, Spagnuolo C. Distributed mason: A 
scalable distributed multi-agent simulation environment. Simul 
Model Pract Theory. 2018;89:15–34.

	21.	 Luke S, Cioffi-Revilla C, Panait L, Sullivan K. Mason: A new 
multi-agent simulation toolkit. In: Proceedings of the 2004 
Swarmfest Workshop, vol. 8, pp. 316–327 (2004). Michigan, 
USA

	22.	 Hüning C, Adebahr M, Thiel-Clemen T, Dalski J, Lenfers U, 
Grundmann L. Modeling & simulation as a service with the 
massive multi-agent system mars. In: Proceedings of the Agent-
Directed Simulation Symposium, pp. 1–8 (2016)

	23.	 Zimmermann, O.: Microservices tenets. Computer Science-
Research and Development 32(3-4) (2017)

	24.	 Anagnostou, A., Taylor, S.J., Abubakar, N.T., Kiss, T., DesLau-
riers, J., Gesmier, G., Terstyanszky, G., Kacsuk, P., Kovacs, J.: 
Towards a deadline-based simulation experimentation framework 
using micro-services auto-scaling approach. In: 2019 Winter Sim-
ulation Conference (WSC), pp. 2749–2758 (2019)

	25.	 Pump, R., Koschel, A., Ahlers, V.: Applying microservices prin-
ciples to simulation tools. In: Service Computation, 11th Interna-
tional Conference on Advanced Service Computing (2019)

	26.	 Dragoni, N., Lanese, I., Larsen, S.T., Mazzara, M., Mustafin, R., 
Safina, L.: Microservices: How to make your application scale. In: 
Lecture Notes in Computer Science (including Subseries Lecture 
Notes in Artificial Intelligence and Lecture Notes in Bioinformat-
ics) (2018). doi 10.1007/978-3-319-74313-4_8

	27.	 Richards, M.: Microservices Vs. Service-oriented Architecture. 
O’Reilly Media, (2015)

	28.	 Thönes J. Microservices. IEEE Softw. 2015;32(1):116–116.
	29.	 Rao, A.S., Georgeff, M.P., et al.: Bdi agents: from theory to prac-

tice. In: Icmas, vol. 95 (1995)
	30.	 Adam C, Gaudou B. Bdi agents in social simulations: a survey. 

The Knowledge Engineering Review. 2016;31(3):207–38.
	31.	 Shoham Y. Agent-oriented programming. Artif Intell. 

1993;60(1):51–92.
	32.	 Kravari K, Bassiliades N. A survey of agent platforms. J Artif Soc 

Soc Simul. 2015;18(1):11.
	33.	 Bădică A, Bădică C, Ivanović M, Dănciulescu D. Multi-agent 

modelling and simulation of graph-based predator-prey dynamic 
systems: A bdi approach. Expert Syst. 2018;35(5):12263.

	34.	 Lawlor, F., Collier, R., Nallur, V.: Towards a programmable frame-
work for agent game playing. arXiv preprint arXiv:​1807.​08545 
(2018)

	35.	 Bădică, A., Bădică, C., Buligiu, I., Ciora, L.: Devs modeling and 
simulation using bdi agents: Preliminary considerations. In: Pro-
ceedings of the 8th International Conference on Web Intelligence, 
Mining and Semantics, pp. 1–8 (2018)

	36.	 Balabanov K, Cejrowski T, Logofătu D, Bădică C. Study on popu-
lation dynamics for triple-linked food chain using a simulation-
based approach. Evol Syst. 2020;11(2):215–26.

	37.	 Larsen JB. Going beyond bdi for agent-based simulation. Journal 
of Information and Telecommunication. 2019;3(4):446–64.

	38.	 Taillandier, P., Bourgais, M., Caillou, P., Adam, C., Gaudou, B.: 
A bdi agent architecture for the gama modeling and simulation 
platform. In: International Workshop on Multi-Agent Systems and 
Agent-Based Simulation, pp. 3–23 (2016). Springer

	39.	 Larsen, J.B.: Hospital staff planning with multi-agent goals. PhD 
thesis, Department of Applied Mathematics and Computer Sci-
ence, Technical University of Denmark (2019)

	40.	 Muto, T.J., Bolivar, E.B., González, E.: Bdi multi-agent based 
simulation model for social ecological systems. In: International 
Conference on Practical Applications of Agents and Multi-Agent 
Systems, pp. 279–288 (2020). Springer

	41.	 González, E., Avila, J., Bustacara, C.: Besa: Behavior-oriented, 
event-driven, social-based agent framework. In: PDPTA, vol. 3, 
pp. 1033–1039 (2003)

	42.	 Ricci, A., Croatti, A., Bordini, R., Hübner, J., Boissier, O.: 
Exploiting simulation for mas programming and engineering-
the jacamo-sim platform. In: 8th International Workshop on 
Engineering Multi-Agent Systems (EMAS 2020) (2020)

	43.	 Boissier O, Bordini RH, Hübner JF, Ricci A, Santi A. Multi-
agent oriented programming with jacamo. Sci Comput Program. 
2013;78(6):747–61.

	44.	 Bhattacharya, P., Mooij, A., Dell’Anna, D., Dastani, M., Logan, 
B., Swarup, S.: Pansim+ sim-2apl: a framework for large-scale 
distributed simulation with complex agents. In: International 
Workshop on Engineering Multi-Agent Systems, pp. 1–21 
(2021). Springer

	45.	 Mooij, J.d., Dell’Anna, D., Bhattacharya, P., Dastani, M., Logan, 
B., Swarup, S.: Quantifying the effects of norms on covid-19 
cases using an agent-based simulation. In: International Work-
shop on Multi-Agent Systems and Agent-Based Simulation, pp. 
99–112 (2021). Springer

	46.	 Dastani M. 2apl: a practical agent programming language. 
Auton Agent Multi-Agent Syst. 2008;16(3):214–48.

	47.	 Klügl F. Affordance-Based Interaction Design for Agent-Based 
Simulation Models. In: Bulling N, editor. Multi-Agent Systems. 
Cham: Springer; 2015. p. 51–66.

	48.	 Gibson, J.J.: The Ecological Approach to Visual Perception. 
Houghton-Mifflin, (1979)

	49.	 Weyns, D., Omicini, A., Odell, J.: Environment as a first class 
abstraction in multiagent systems. Autonomous Agents and 
Multi-Agent Systems 14(1) (2007). 10.1007/s10458-006-0012-0

	50.	 Behrens, T., Hindriks, K.V., Bordini, R.H., Braubach, L., 
Dastani, M., Dix, J., Hübner, J., Pokahr, A.: An Interface for 
Agent-Environment Interaction. In: Collier, R., Dix, J., Novák, 
P. (eds.) Programming Multi-Agent Systems. Lecture Notes in 
Computer Science, vol. 6599, pp. 139–158. Springer, (2012). 
10.1007/978-3-642-28939-2_8

	51.	 Ricci, A., Viroli, M., Omicini, A.: CArtAgO: A Frame-
work for Prototyping Artifact-Based Environments in MAS. 
In: Weyns, D., Parunak, H.V., Michel, F. (eds.) Environ-
ments for Multi-Agent Systems III. Lecture Notes in Com-
puter Science, vol. 4389, pp. 67–86. Springer, (2007). 
10.1007/978-3-540-71103-2_4

	52.	 Ciortea, A., Mayer, S., Michahelles, F.: Repurposing Manufac-
turing Lines on the Fly with Multi-Agent Systems for the Web 
of Things. In: Proceedings of the 17th International Conference 
on Autonomous Agents and MultiAgent Systems. AAMAS ’18, 
pp. 813–822. International Foundation for Autonomous Agents 
and Multiagent Systems, Richland, SC (2018)

	53.	 Jooa J, Kimb N, Wyskc RA, Rothrockd L, Sone Y-J, Ohb Y-G, 
Leef S. Agent-based simulation of affordance-based human 
behaviors in emergency evacuation. Simul Model Pract Theory. 
2013;32:99–115.

	54.	 Kapadia, M., Singh, S., Hewlett, W., Faloutsos, P.: Egocentric 
Affordance Fields in Pedestrian Steering. In: Proceedings of the 
2009 Symposium on Interactive 3D Graphics and Games. I3D 
’09, pp. 215–223. Association for Computing Machinery, New 
York, NY, USA (2009). 10.1145/1507149.1507185.

	55.	 Ksontini F, Mandiau R, Guessoum Z, Espié S. Affordance-
based agent model for road traffic simulation. Auton Agent 
Multi-Agent Syst. 2015;29(5):821–49. https://​doi.​org/​10.​1007/​
s10458-​014-​9269-x.

	56.	 Papasimeon M. Modelling agent-environment interaction in 
multi-agent simulations with affordances. Defence Science and 
Technology Organisation, Air Operations Division: Phd; 2010.

	57.	 Guinard, D.D., Trifa, V.M.: Building the Web of Things vol. 3. 
Manning Publications Shelter Island, (2016)

	58.	 Berners-Lee T, Hendler J, Lassila O. The semantic web. Sci 
Am. 2001;284(5):34–43.

http://arxiv.org/abs/1807.08545
https://doi.org/10.1007/s10458-014-9269-x
https://doi.org/10.1007/s10458-014-9269-x


	 SN Computer Science (2022) 3:510510  Page 18 of 19

SN Computer Science

	59.	 Bizer, C., Heath, T., Berners-Lee, T.: Linked data: The story so 
far. In: Semantic Services, Interoperability and Web Applica-
tions: Emerging Concepts, pp. 205–227. IGI Global, (2011)

	60.	 Charpenay, V., Käbisch, S.: On modeling the physical world 
as a collection of things: The w3c thing description ontology. 
In: European Semantic Web Conference, pp. 599–615 (2020). 
Springer

	61.	 Zhou Y, De S, Wang W, Moessner K. Search techniques 
for the web of things: A taxonomy and survey. Sensors. 
2016;16(5):600.

	62.	 Guinard, D., Trifa, V.: Towards the web of things: Web mashups 
for embedded devices. In: Workshop on Mashups, Enterprise 
Mashups and Lightweight Composition on the Web (MEM 
2009), in Proceedings of WWW (International World Wide Web 
Conferences), Madrid, Spain, vol. 15, p. 8 (2009)

	63.	 Noura, M., Gaedke, M.: Wotdl: web of things description lan-
guage for automatic composition. In: 2019 IEEE/WIC/ACM 
International Conference on Web Intelligence (WI), pp. 413–
417 (2019). IEEE

	64.	 Savaglio C, Ganzha M, Paprzycki M, Bădică C, Ivanović 
M, Fortino G. Agent-based internet of things: State-of-
the-art and research challenges. Futur Gener Comput Syst. 
2020;102:1038–53.

	65.	 Ciortea, A., Boissier, O., Ricci, A.: Engineering world-wide 
multi-agent systems with hypermedia. In: International Work-
shop on Engineering Multi-Agent Systems, pp. 285–301 (2018). 
Springer

	66.	 Vachtsevanou, D., Junker, P., Ciortea, A., Mizutani, I., Mayer, 
S.: Long-lived agents on the web: Continuous acquisition of 
behaviors in hypermedia environments. In: Companion Proceed-
ings of the Web Conference 2020, pp. 185–189 (2020)

	67.	 Montesi, F., Weber, J.: Circuit breakers, discovery, and api gate-
ways in microservices. arXiv preprint arXiv:​1609.​05830 (2016)

	68.	 Ciortea, A., Mayer, S., Boissier, O., Gandon, F.: Exploiting 
interaction affordances: On engineering autonomous systems 
for the web of things. In: Second W3C Workshop on the Web 
of Things The Open Web to Challenge IoT Fragmentation, 
Munich, Germany (2019)

	69.	 Collier, R.W., O’Neill, E., Lillis, D., O’Hare, G.: Mams: Multi-
agent microservices. In: Companion Proceedings of The 2019 
World Wide Web Conference, pp. 655–662 (2019)

	70.	 O’Neill, E., Lillis, D., O’Hare, G.M., Collier, R.W.: Explicit 
modelling of resources for multi-agent microservices using the 
cartago framework. In: Proceedings of the 19th International 
Conference on Autonomous Agents and MultiAgent Systems 
(2020)

	71.	 Collier, R.W., Russell, S., Lillis, D.: Reflecting on agent pro-
gramming with agentspeak (l). In: International Conference on 
Principles and Practice of Multi-Agent Systems, pp. 351–366 
(2015). Springer

	72.	 Dhaon, A., Collier, R.W.: Multiple inheritance in agentspeak (l)-
style programming languages. In: Proceedings of the 4th Inter-
national Workshop on Programming Based on Actors Agents 
& Decentralized Control, pp. 109–120 (2014)

	73.	 Christley, S., Xiang, X., Madey, G.: An ontology for agent-
based modeling and simulation. In: Proceedings of the Agent 
2004 Conference (2004). Citeseer

	74.	 Simeone D, Fioravanti A. An ontology-based system to support 
agent-based simulation of building use. Journal of Information 
Technology in Construction (ITcon). 2012;17(16):258–70.

	75.	 Livet, P., Müller, J.P., Phan, D., Sanders, L., Auatabu, T.: Ontol-
ogy, a mediator for agent-based modeling in social science 
(2010)

	76.	 Petrov, V.: Process ontology in the context of applied philoso-
phy. Ontological Landscapes: Recent Thought on Conceptual 
Interfaces between Science and Philosophy, 137 (2011)

	77.	 Hofmann, M.: Ontologies in modeling and simulation: An 
epistemological perspective. In: Ontology, Epistemology, and 
Teleology for Modeling and Simulation, pp. 59–87. Springer, 
(2013)

	78.	 Horsch, M.T., Toti, D., Chiacchiera, S., Seaton, M.A., Gold-
beck, G., Todorov, I.T.: Osmo: Ontology for simulation, model-
ling, and optimization (2021)

	79.	 Okuyama, F.Y., Vieira, R., Bordini, R.H., da Rocha Costa, A.C.: 
An ontology for defining environments within multi-agent simu-
lations. In: Workshop on Ontologies and Metamodeling in Soft-
ware and Data Engineering (2006). Citeseer

	80.	 Kang, D., Bing, Z.C., Song, W., Hu, Z., Chen, S., Zhang, J., 
Xi, H.: Automatic construction of agent-based simulation using 
business process diagrams and ontology-based models. In: Pro-
ceedings of the 16th Conference on Autonomous Agents and 
MultiAgent Systems, pp. 1793–1795 (2017)

	81.	 Merdan, M., Vittori, L., Koppensteiner, G., Vrba, P., Favre-
Bulle, B.: Simulation of an ontology-based multi-agent trans-
port system. In: 2008 SICE Annual Conference, pp. 3339–3343 
(2008). IEEE

	82.	 Gorshkov, S.: Building ontologies for agent-based simulation. 
In: International Conference in Swarm Intelligence, pp. 185–
193 (2015). Springer

	83.	 Warden, T., Porzel, R., Gehrke, J.D., Herzog, O., Langer, H., 
Malaka, R.: Towards ontology-based multiagent simulations: 
The PlaSMA approach. In: ECMS, pp. 50–56 (2010)

	84.	 Larioui, J., Byed, E.: Towards a semantic layer design for an 
advanced intelligent multimodal transportation system. Inter-
national Journal of Advanced Trends in Computer Science and 
Engineering 2018 (2020)

	85.	 Cho S, Kang J-Y, Knapen L, Bellemans T, Janssens D, Wets G, 
Hwang C-S, et al. An activity-based carpooling microsimulation 
using ontology. Procedia Computer Science. 2013;19:48–55.

	86.	 Belohlavek, R., Macko, J.: Selecting important concepts using 
weights. In: International Conference on Formal Concept Anal-
ysis (ICFCA), pp. 65–80. Springer, (2011)

	87.	 Vitkute-Adzgauskiene, D., Markievicz, I., Krilavicius, T., 
Tamosiunaite, M.: Learning and execution of Action Cat-
egories (ACAT). https://if.vdu.lt/en/research/projects/
project-learning-and-execution-of-action-categories-acat

	88.	 Ghanadbashi, S., Golpayegani, F.: An ontology-based intelligent 
traffic signal control model. (2021). International Intelligent 
Transportation Systems Conference (ITSC)

	89.	 Feld, M., Müller, C.: The automotive ontology: Managing 
knowledge inside the vehicle and sharing it between cars. In: 
Proceedings of the 3rd International Conference on Automo-
tive User Interfaces and Interactive Vehicular Applications, pp. 
79–86 (2011)

	90.	 Yazdizadeh, A., Farooq, B.: Smart mobility ontology: Current 
trends and future directions. Handbook of Smart Cities, 1–36 
(2020)

	91.	 Katsumi M, Fox M. Ontologies for transportation research: A 
survey. Transportation Research Part C: Emerging Technolo-
gies. 2018;89:53–82.

	92.	 Chen, W., Kloul, L.: An advanced driver assistance test cases 
generation methodology based on highway traffic situation 
description ontologies. In: International Joint Conference on 
Knowledge Discovery, Knowledge Engineering, and Knowledge 
Management, pp. 93–113 (2018). Springer

	93.	 Viktorović, M., Yang, D., Vries, B.d.: Connected Traffic Data 
Ontology (CTDO) for intelligent urban traffic systems focused 
on connected (Semi) autonomous vehicles. Sensors 20(10), 
2961 (2020)

	94.	 Fernando, R.: The impact of Planned Special Events (PSEs) on 
urban traffic congestion. EAI Endorsed Transactions on Scalable 
Information Systems 6(23) (2019)

http://arxiv.org/abs/1609.05830


SN Computer Science (2022) 3:510	 Page 19 of 19  510

SN Computer Science

	95.	 Chen C, Zhao X, Liu H, Ren G, Zhang Y, Liu X. Assessing 
the influence of adverse weather on traffic flow character-
istics using a driving simulator and VISSIM. Sustainability. 
2019;11(3):830.

Publisher's Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor holds exclusive rights to this article under 
a publishing agreement with the author(s) or other rightsholder(s); 
author self-archiving of the accepted manuscript version of this article 
is solely governed by the terms of such publishing agreement and 
applicable law.


	Towards the Use of Hypermedia MAS and Microservices for Web Scale Agent-Based Simulation
	Abstract
	Introduction
	The Current State of Play
	Simulating at Scale
	Simulating Intelligence
	Affordances in Simulation

	A New Vision for Simulation at Scale
	Microservices and Simulation
	Microservices and Agent-Based Simulation
	Illustrating the Vision

	Building Hypermedia MAS Simulations
	Agent-Environment Interactions
	The Role of Affordances
	Transitioning Between Simulation Components

	Folding in Semantics
	Ontologies for Modelling and Simulation
	Ontologies for Hypermedia MAS Simulation
	Ontologies for Transportation
	An Example in Traffic Domain

	Challenges and Opportunities
	Concluding Remarks
	References




