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Abstract
Hyperspectral image comprise of a three dimensional image cube. Two dimension represents the regular image collected on a 
specific band of frequency. There are hundreds of such correlated bands present in this three dimensional cube. To effectively 
process and extract significant information from the hyper-spectral image there is a need to eliminate some of the bands which 
carry repetitive information, sometimes noisy in nature. In IEEE iSES 2021 symposium, a binary multi-objective CLONAL 
algorithm is reported by the same author to address the band selection problem. In this paper, a modified version of the same 
algorithm is introduced by considering chaotic sequence based initialization instead of the random number based initiali-
zation. Entropy and Pearson correlation are used as the fitness function for multi-objective optimization. Simulation have 
been performed on hyperspectral images of Pavia University, Kennedy Space Centre. On the obtained band reduced images 
image segmentation is carried out using K-modes clustering. Comparison is carried out with the results obtained with ran-
dom number based same algorithm, binary social spider algorithm, NSGA-II algorithm and principal component algorithm.
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Introduction

Hyperspectral images are captured by the hyperspectral 
sensors example NASA’s Airborne Visible/Infrared Imag-
ing Spectrometer (AVIRIS). These images are captured over 
continuous ranges of wavelengths. Each image comprise of 
100–200 bands and possess high volume of information for 
analysis. They find potential applications in fire detection 
inside forest, glacier detection, water detection, landscape 
monitoring. The challenge is to effectively process the 3D 
image cube and extract meaningful information [1, 2]. Band 
reduction in hyperspectral imaging is a problem to remove/
filter out the undesired bands (those bands which mostly 
contain similar information) and keep smaller number of 
bands which can easily be processed [3, 4].

In last decade several remote sensing and machine 
learning researchers have reported many statistical tech-
niques, neural networks based approaches, deep learning 
based approaches, nature-inspired optimization tech-
niques, multi-objective optimization techniques to find 
out potential solutions for effective band reduction. The 
statistical approaches include use of Principal Component 
Analysis (PCA) [5], noise adjusted principal components 
[6], kernel PCA [7], nonlinear PCA [8], graph-regularized 
fast and robust PCA [9], independent component analysis 
[10, 11], linear discriminant analysis [12, 13], Boltzmann 
entropy [14]. The real time hardware implementation of 
PCA based band reduction technique on FPGA is reported 
in [15].

Several neural networks and deep learning based 
approaches have been employed for band reduction in 
hyper-spectral images: Deep feature extraction based on 
convolutional neural networks (CNN) [16], Attention-
based CNN [17] which use CNN along with anomaly 
detection technique to select effective bands, a band-
adaptive spectral-spatial feature learning neural network 
(BASS net) [18], BS-Nets framework [19], 3-D deep 
neural network with adaptive band selection mecha-
nism [20], auto encoder for band reduction and CNN for 
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classification [21], cascaded two layers Recurrent Neural 
Network (RNN) for band reduction [22], attention-based 
bidirectional long short-term memory network (LSTM) 
[23].

The nature-inspired meta-heuristics are popular for solv-
ing multi-modal optimization problem. Several research-
ers have formulated the band selection in hyper-spectral 
image as an optimization problem. Recently Zhao et al. 
[24] proposed a spectral-spatial genetic algorithm (GA) 
for effective band selection based on unsupervised learn-
ing. The GA has been used along with Support Vector 
Machine [25], autoencoders [26] and other neural networks 
for efficient band selection. A modified form of GA using 
Levy-Flight is employed for band reduction in [27]. The 
particle swarm optimization (PSO) another popular swarm 
intelligence based algorithm is also used for band reduc-
tion [28, 29]. Zhang et al. [30] combined PSO with Fuzzy 
Clustering for unsupervised band selection. Other popular 
nature inspired algorithms employed are: ant colony opti-
mization [31, 32], grey wolf optimizer [33], social spider 
optimization [34], artificial bee colony algorithm [35], 
whale optimization [36].

The multi-objective optimization is most of the time a 
preferred candidate than single objective optimization as 
it provides the end-user flexibility to select the required 
solution among a set of solution (Pareto Optimal Set). In 
recent past multi-objective artificial bee colony [37], multi-
objective immune algorithm [38] have been employed for 
band reduction. The problems which use simultaneously 
more than three contradictory objectives to optimize are 
popularly known as the many-objective optimization 
problem. Prof. Kalyanmoy Deb reported a many objec-
tive genetic algorithm popularly known as Non-dominate 
Sorted Genetic Algorithm (NSGA-III) [39]. In Gupta and 
Nanda [40] reported a binary version of NSGA-III for 
effective band selection.

The evolutionary multi-tasking algorithms are introduced 
by Gupta et al. [41, 42] in which one evolutionary optimiza-
tion algorithm can able to simultaneously optimize two or 
more different function by effectively transferring/exchang-
ing the good solutions. Recently Shi et al. [43] used the 
evolutionary multi-tasking optimization for hyperspectral 
band selection in semi-supervised manner.

CLONAL algorithm [44] is a nature inspired algorithm 
based on the principle of operation of biological immune 
system. The immune cells of a human body provide protec-
tion against outside entities like bacteria, virus (termed as 
antigens). The algorithm imitates the behavior of immune 
cells. Book by Castro et al. [45], Dasgupta [46] describe 
the principle of operation and advancements in CLONAL 
algorithm. Nanda et. al. used CLONAL algorithm for com-
plex Haammerstein system identification [47]. Yin et al. [48] 

reported a band selection algorithm based on single objec-
tive immune clonal strategy.

Inspired by the recent trend of research work in the band 
selection problem the author recently reported a binary 
multi-objective CLONAL algorithm in [49]. This manu-
script is an extended version of the paper [49]. The key con-
tributions of this paper are:

•	 Band selection in hyper-spectral images is dealt as a two 
contradictory-objectives simultaneous optimization prob-
lem.

•	 Introduced a Chaotic sequence based binary number gen-
eration for multi-objective CLONAL algorithm.

•	 Simulation is carried out on two benchmark hyper-
spectral images of Pavia University, Kennedy Space 
Centre.

•	 Comparative results are analyzed with same binary multi-
objective CLONAL algorithm with random number ini-
tialization [49], Principal Component Analysis (PCA) , 
Binary Social Spider Optimization Algorithm (BSSO) 
[34], Non-dominated Sorted Genetic Algorithm (NSGA-
II) [50].

The reminder of this paper is outlined as follows. The 
following section begins with backgrounds of Clonal 
selection principle, CLONAL algorithm, band selection 
problem in hyperspectral image. Proposed chaotic binary 
multi-objective CLONAL algorithm for band selection is 
reported in the subsequent. The simulation platform, com-
parative algorithms, images used for analysis and obtained 
results are given in “Simulation and Result Discussions”. 
The nexy section concludes the important findings of the 
paper.

Backgrounds

CLONAL Selection Principle

The CLONAL selection principle is an integral part of 
immunology [46]. Whenever a human body is invaded by an 
antigen (outside elements like bacteria, viruses) the immune 
system responds to it as shown in Fig. 1. The immune sys-
tem comprise of several antibodies (human body immune 
cells which protect it from antigen). Here the structure of 
antigen matches to a portion of antibody y. In order to pre-
vent from further attack by the antigen the antibody y is 
selected and allowed to proliferate. Here clones of antibody 
y is produced several times. Then these cloned antibodies 
undergo hyper-mutation (change in characteristics to deal 
with new environments). They are then segregated into two 
categories : Memory cells and Plasma cells. The memory 
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cells have a longer life span, thus in future when the same 
antigen attack it will be allowed to clone. The Plasma cell 
immediately capture the antigen and try to destroy it. This 
is the overall principle of human body protection against 
any disease.

CLONAL Selection Algorithm

The CLONAL selection algorithm reported by Castro and 
Zuben [44] has received more than 3185 citations till date as 
per the Google Scholar reports which justifies the popularity 
of the algorithm. A pseudo code of the algorithm is included 
here in Algorithm 1 for easier understanding.

Algorithm 1 CLONAL selection algorithm for optimization
Require: Function for optimization f(z),Given range ∀z ∈ [Rmin,Rmax]
Ensure: Optimized function value in the given input range
1: Initialize : immune cell population size N ⇐ Nmax, Iteration G ⇐ Gmax

2: Initialize cell population C = [c1, c2, . . . ci . . . , cN ],∀ci ∈ [Rmin,Rmax]
3: while G �= 0 do
4: for i = 1 to N do
5: Calculate fitness of each immune cell:f(ci)
6: i ⇐ i+ 1
7: end for
8: Perform : Sorting and select best fit immune cells
9: Clone : best fit immune cells

10: for i = 1 to N do
11: Perform : Hypermutation on each cloned immune cells
12: i ⇐ i+ 1
13: end for
14: Select best immune cells for next generation
15: G ⇐ G− 1
16: end while

Band Selection in Hyperspectral Images 
as a Multi‑objective Problem

In recently reported article by the author [49] the selection 
of optimal number of bands in a Hyperspectral Image is 
formulated as a multi-objective optimization problem. A 
multi-objective optimization problem is mathematically 
represented as

where F =
[
f1, f1,… , fk

]
 represents k number of fitness func-

tions to be optimized simultaneously. The functions should 
be contradictory in nature. Simpler way if one function is 
increasing other one should be decreasing in nature. In [49] 
two statistical contradictory functions are taken in order to 
achieve maximum non-similar information among bands 
(noisy as well as similar information content bands to be 
rejected).

Proposed Chaotic Binary Multi‑objective 
CLONAL Algorithm for Band Selection

The flowchart of the proposed chaotic binary multi-objective 
CLONAL algorithm for effective band selection is shown 
in Fig. 2. The detailed steps are discussed in the following 
subsections.

Chaotic Sequence Generator

Chaotic sequence generator used in nature inspired opti-
mization algorithms at times provide better exploration 

(1)F
(
→

z
)
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[
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z ),… fk(
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]

Fig. 1   Schematic diagram of CLONAL selection principle of immu-
nology for antigen detection and response
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of search space compared to random number generators. 
Based on chaotic sequence use single objective optimiza-
tion algorithms are Fast CLONAL algorithm [51], Social 
Spider Optimization algorithm [52], Sailfish Optimization 
algorithm [53]. The logistic map is taken here to generate 
Chaotic number in range [0, 1]. The equation is given by

where TG+1 is the Chaotic number value at (G + 1) th genera-
tion, a is a parameter whose value is taken as 4. The T0 initial 
value is taken as 0.4.

Immune Cells Population Initialization

The population of immune cells are initialized as

(2)TG+1 = a × TG × (1 − TG)

where N is the number of immune cells. Each immune cell 
represent a solution of this problem and is given by � size 
of 1/0 sequence. This 1/0 sequence is taken with Chaotic 
numbers. Digit 1 reveals band is chosen and 0 reveals band 
is rejected.

Fitness Functions for Multi‑objective Optimization

The spectral entropy Hb
i
 and Pearson correlation coefficient 

RN
i,j

 defined in [49] are used as fitness functions for 
optimization.

Non‑Dominated Sorting and Crowding Distance 
Operator

The non-dominated sorting is performed to determine the 
best fit solutions based on convergence. The aim is to bring 
as many solutions to rank 1. The crowding distance operator 
take care of the diversity among the solutions. Both these 
tasks are carried out following the procedure of them given 
in NSGA-II algorithm [50].

Cloning

The best fit solutions (Rank 1) obtained from 3.4 are allowed 
to undergo cloning operation following the Algorithm 1 of 
[49].
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Fig. 2   Flowchart of proposed Chaotic binary MOCLONAL algorithm 
for band selection in hyperspectral imaging

Table 1   Hyperspectral images used for analysis

Parameters Pavia University Kennedy 
Space 
Centre

Number of spectral bands 103 176
Pixels in each band 1096 × 715 512 × 614
Number of classes 9 12
Geometric resolution 1.3 m 18 m
Wavelength range ( μm) 0.43–0.86 0.4–2.5
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Hyper‑mutation

In the cloned solutions diversity is maintained by incorpo-
rating hyper-mutation operation. It is carried out using the 
Algorithm 2 of [49].

Termination Condition

The algorithm is allowed to run for fixed number of itera-
tions. After the convergence is achieved the best immune 
cell which represent the � bands is reported.

Simulation and Result Discussions

The simulation work of the proposed algorithm is carried 
out in a HP LAPTOP with 8GB RAM, intel Core-i7 proces-
sor with 2.3 GHz frequency. The other algorithms taken for 
comparison are: binary multi-objective CLONAL algorithm 
with random number initialization [49], Principal Compo-
nent Analysis (PCA) , Binary Social Spider Optimization 
Algorithm (BSSO) [34], Non-dominated Sorted Genetic 
Algorithm (NSGA-II) [50]. In all the four nature inspired 
algorithms the population size is kept 50, the generation 
number is taken as 10. Hyper mutation rate is fixed at 0.4. 
The details of the Hyperspectral images used for analysis is 
included in Table 1.

The true colour hyperspectral image of Pavia Univer-
sity and Kennedy Space Center are given in Figs. 3a and 
4a respectively. The segmented image using K-modes 

clustering after band reduction with proposed MOCLONAL 
(Chaotic) is shown for Pavia University and Kennedy Space 
Center in Figs. 3b and 4b. The number of retained bands, run 
time and accuracy of clustering (with K-modes algorithm) 
for both Pavia University and Kennedy Space Center are 
reported in Tables 2 and 3 respectively. The better results 
are highlighted in bold letters. From both the tables it is 
observed that the MOCLONAL algorithm has lower run 
time than NSGAII and Social Spider Algorithm. The num-
ber of bands finally selected is also lower in the proposed 
algorithm compared to the other four algorithms. The final 
selected bands by each algorithm for Pavia University is 
reported in Table 4 and for Kennedy Space Centre is given 
in Table 5. Close observation in both these tables reveal that 

Fig. 3   Hyperspectral image analysis of Pavia University a true col-
our image, b segmented image using K-modes clustering after band 
reduction using proposed Chaotic binary MOCLONAL algorithm

Fig. 4   Hyperspectral image analysis of Kennedy Space Centre a 
true image, b segmented image using K-modes clustering after band 
reduction using proposed Chaotic binary MOCLONAL algorithm
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most of the bands selected by these algorithms are disjoint 
(not-continuous) in nature.

Conclusion

The CLONAL algorithm is popular due to its faster con-
vergence. In this manuscript a chaotic binary multi-objec-
tive CLONAL algorithm is introduced for band selection 
in hyperspectral image. Due to the involvement of chaotic 

sequence the algorithm performance is better compare to the 
random number sequence. Simulation on Pavia University 
and Kennedy Space Center image reveal the effective perfor-
mance of the proposed algorithm in the form of lower num-
ber of band retention, higher clustering accuracy and lower 
computational time compared to the four already reported 
algorithms. The author is working on use of proposed Binary 
MOCLONAL algorithm to solve real-life multi-objective 
problems.

Table 2   Comparative analysis 
of performance on band 
reduction of Pavia University 
hyperspectral image

Bold letters represent the best results achieved

Performance parameters PCA NSGA-II BSSO MO-CLONAL 
(Random)

MO-
CLONAL 
(Chaotic)

Retained bands 30 25 47 24 23
Run time 34.9900 38.1820 39.8724 30.3706 28.7502
Accuracy of clustering 64.25% 76.63% 75.36% 79.87% 81.52%

Table 3   Comparative analysis 
of performance on band 
reduction of Kennedy Space 
Centre hyperspectral image

Bold letters represent the best results achieved

Performance parameters PCA NSGA-II BSSO MO-CLONAL 
(Random)

MO-
CLONAL 
(Chaotic)

Retained bands 75 64 62 57 55
Run time 75.2520 70.1140 77.2624 65.0028 57.1045

Table 4   Selected bands by proposed MOCLONAL(Chaotic) along with comparative algorithms in Pavia University

Algorithm Bands selected

MOCLONAL (Chaotic) [2 5 8 12 15 18 24 30 32 39 43 47 53 55 62 63 64 70 74 77 84 86 97 ]
MO-CLONAL (Random) [5 7 10 12 15 17 18 22 28 29 32 37 41 45 51 56 62 70 76 78 84 85 87 90]
BSSO [1 2 3 6 8 11 13 17 19 24 27 29 34 37 39 50 52 60 64 66 68 72 73 74 75 76 77 83 84 87 94 96]
NSGA-II [2 5 8 12 15 18 24 25 30 32 39 43 47 53 55 62 63 64 70 74 77 84 86 97 101]
PCA [1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30]

Table 5   Selected bands by proposed MOCLONAL(Chaotic) along with comparative algorithms in Kennedy Space Centre

Algorithm Bands selected

MOCLONAL (Chaotic) [1 3 5 7 10 12 14 17 19 22 27 28 32 36 39 43 45 49 51 53 57 58 60 62 67 70 72 73 78 79 80 83 89 90 91 97 102 107 
111 113 117 121 125 129 132 135 138 142 144 147 151 158 162 168 170 175]

MO-CLONAL (Random) [1 3 5 7 9 12 14 17 19 22 27 28 32 35 39 43 45 49 51 53 57 58 60 62 67 70 72 73 78 79 80 83 89 90 91 97 100 102 
107 111 113 117 121 125 129 132 135 137 138 142 144 147 151 158 162 167 170]

BSSO [1 3 5 7 11 15 22 24 28 32 33 36 39 45 47 49 51 53 60 73 78 80 86 93 99 100 102 103 105 107 108 115 118 120 121 
124 127 129 132 133 134 136 138 141 143 146 147 150 151 153 157 161 164 167 169 170 174]

NSGA-II [1 2 4 5 7 8 9 11 12 13 14 16 22 24 26 27 28 29 31 47 50 51 52 55 58 60 61 62 66 69 70 71 72 73 77 79 80 82 83 84 
87 88 94 95 97 101 107 111 116 117 119 122 124 127 132 133 138 139 143 146 148 158 162 168 175]

PCA [1 3 5 7 11 15 17 22 24 26 28 32 33 36 39 45 47 49 51 53 57 60 73 78 80 83 86 93 97 99 100 102 103 105 107 108 
115 118 120 121 124 127 129 132 133 134 136 138 141 143 146 147 150 151 153 157 159 161 164 167 169 170 
173 175]
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