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Abstract
Despite the recent progress in genome sequencing and assembly, many of the currently available assembled genomes come 
in a draft form. Such draft genomes consist of a large number of genomic fragments (scaffolds), whose order and/or orienta-
tion (i.e., strand) in the genome are unknown. There exist various scaffold assembly methods, which attempt to determine 
the order and orientation of scaffolds along the genome chromosomes. Some of these methods (e.g., based on FISH physical 
mapping, chromatin conformation capture, etc.) can infer the order of scaffolds, but not necessarily their orientation. This 
leads to a special case of the scaffold orientation problem (i.e., deducing the orientation of each scaffold) with a known 
order of the scaffolds. We address the problem of orientating ordered scaffolds as an optimization problem based on given 
weighted orientations of scaffolds and their pairs (e.g., coming from pair-end sequencing reads, long reads, or homolo-
gous relations). We formalize this problem using notion of a scaffold graph (i.e., a graph, where vertices correspond to the 
assembled contigs or scaffolds and edges represent connections between them). We prove that this problem is ��-hard, and 
present a polynomial-time algorithm for solving its special case, where orientation of each scaffold is imposed relatively to 
at most two other scaffolds. We further develop a fixed-parameter tractable algorithm for the general case of the orientation 
of ordered scaffolds problem.
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Introduction

While genome sequencing technologies are constantly evolv-
ing, they are still unable to read at once complete genomic 
sequences from organisms of interest. Instead, they produce 
a large number of rather short genomic fragments, called 
reads, originating from unknown locations and strands of the 
genome. The problem then becomes to assemble the reads 
into the complete genome. Existing genome assemblers 

usually assemble reads based on their overlap patterns and 
produce longer genomic fragments, called contigs, which 
are typically interweaved with highly polymorphic and/or 
repetitive regions in the genome. Contigs are further assem-
bled into scaffolds, i.e., sequences of contigs interspaced 
with gaps.1 Assembling scaffolds into larger scaffolds (ide-
ally representing complete chromosomes) is called the scaf-
fold assembly problem.

The scaffold assembly problem is known to be ��-hard 
[14, 17, 23, 29, 35], but there still exists a number of meth-
ods that use heuristic and/or exact algorithmic approaches 
to address it. The scaffold assembly problem consists of two 
subproblems: 

1.	 determine the order of scaffolds (scaffold order prob-
lem); and

2.	 determine the orientation (i.e., strand of origin) of scaf-
folds (scaffold orientation problem).
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Some methods attempt to solve these subproblems jointly 
by using various types of additional data including jumping 
libraries [11, 15, 20, 21, 25, 27, 32], long error-prone reads 
[6, 7, 12, 26, 34], homology relationships between genomes 
[1, 3–5, 24], etc. Other methods (typically based on wet-
lab experiments [13, 22, 28, 30, 31, 33]) can often reliably 
reconstruct the order of scaffolds, but may fail to impose 
their orientation.

The scaffold orientation problem is also known to be ��
-hard [10, 23]. Since the scaffold order problem can often 
be reliably solved with wet-lab based methods, this inspires 
us to consider the special case of the scaffold orientation 
problem with the given order of scaffolds, which we refer 
to as the orientation of ordered scaffolds (OOS) problem. 
We formulate the OOS as an optimization problem based 
on given weighted orientations of scaffolds and their pairs 
(e.g., coming from pair-end sequencing reads, long reads, 
or homologous relations). We prove that the OOS is ��-
hard both in the case of linear genomes and in the case of 
circular genomes. We present a polynomial-time algorithm 
for solving the special case of the OOS, where the orienta-
tion of each scaffold is imposed relatively to at most two 
other scaffolds, and further generalize it to an ��� algorithm 
for the general OOS problem. The proposed algorithms are 
implemented in the CAMSA [2] software that have been 
developed for comparative analysis and merging of scaffold 
assemblies.

Background

We start with a brief description of the notation which have 
been used in CAMSA framework. The notation provides a 
unifying way to represent scaffold assemblies obtained by 
different methods.

Let � = {si}
n
i=1

 be the set of scaffolds. We represent an 
assembly of scaffolds as a set of assembly points. Each 
assembly point is formed by an adjacency between two 
scaffolds. Namely, an assembly point p = (si, sj) tells that 
the scaffolds si and sj are adjacent in the assembly, where 
si, sj ∈ � . Additionally, we may know the orientation of 
either or both of the scaffolds and thus distinguish between 
three types of assembly points: 

1.	 p is oriented if the orientation of both scaffolds si and sj 
is known;

2.	 p is semi-oriented if the orientation of only one scaffold 
among si and sj is known;

3.	 p is unoriented if the orientation of neither of si and sj is 
known.

We denote the known orientation of scaffolds in assembly 
points by overhead arrows. While the right arrow 

corresponds to the original genomic sequence, the left arrow 
corresponds to the reverse complement of this sequence. For 
example, ( �⃗si, �⃖sj) , ( �⃗si, sj) , and (si, sj) are oriented, semi-ori-
ented, and unoriented assembly points, respectively. We 
remark that assembly points ( �⃗si, �⃗sj) and ( �⃖sj, �⃖si) represent the 
same adjacency between oriented scaffolds; to make this 
representation unique we will require that in all assembly 
points (si, sj) we have i < j . Another way to represent the 
orientation of the scaffolds in an assembly point is by using 
superscripts h and t denoting the head and tail extremities of 
the scaffold’s genomic sequence, e.g., ( �⃗si, �⃗sj) can also be 
written as (sh

i
, st

j
).

We will need an auxiliary function sn (p, i) defined on 
an assembly point p and an index i ∈ {1, 2} that returns 
the scaffold corresponding to the component i of p (e.g., 
sn (( �⃗si, �⃗sj), 2) = sj ). We define a realization of an assembly 
point p as any oriented assembly point that can be obtained 
from p by orienting the unoriented scaffolds. We denote the 
set of realizations of p by R (p) . When p is oriented, it has 
a single realization equal p itself (i.e., R (p) = {p} ); when p 
is semi-oriented, it has two realizations (i.e., |R (p)| = 2 ); 
and when p is unoriented, it has four realizations (i.e., 
|R (p)| = 4 ). For example,

An assembly point p is called a refinement of an assem-
bly point q if R (p) ⊂ R (q) . From now on, we assume that 
no assembly point in a given assembly is a refinement of 
another assembly point (otherwise we simply discard the 
latter assembly point as less informative). We further assume 
that in a given assembly there are no two assembly points 
( �⃗si, sj) and (si, �⃗sj) such that si or sj belongs to yet another 
assembly point (otherwise2 we simply replace ( �⃗si, sj) and 
(si, �⃗sj) with ( �⃗si, �⃗sj) ). Similarly, we assume that no assembly 
points ( �⃗si, �⃖sj), ( �⃖si, �⃗sj), ( �⃖si, �⃖sj) can be present in a given assem-
bly at the same time. We refer to an assembly satisfying 
these assumptions as a proper assembly.

For a given assembly � we will use subscripts u/s/o to 
denote the sets of unoriented/semi-oriented/oriented assem-
bly points in � (e.g., �u ⊂ � is the set of all unoriented 
assembly points from � ). We also denote by �(�) the set of 
scaffolds appearing in the assembly points from �.

We call two assembly points overlapping if they involve 
the same scaffold, and further call them conflicting if they 
involve the same extremity of this scaffold. We general-
ize this notion for semi-oriented and unoriented assembly 
points: two assembly points p and q are conflicting if all 
pairs of their realizations (p�, q�) ∈ R (p) × R (p) are con-
flicting. If some, but not all, pairs of the realizations are 

(1)R ((si, sj)) =
{
( �⃗si, �⃗sj), ( �⃗si, �⃖sj), ( �⃖si, �⃗sj), ( �⃖si, �⃖sj)

}
.

2  It can will be seen later that any assembly realization in this case is 
conflicting.
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conflicting, p and q are called semi-conflicting. Otherwise, 
p and q are called non-conflicting.

We extend the notion of non-/semi- conflictedness to 
entire assemblies as follows. A scaffold assembly � is non-
conflicting if all pairs of assembly points in it are non-con-
flicting, and � is semi-conflicting if all pairs of assembly 
points are non-conflicting or semi-conflicting with at least 
one pair being semi-conflicting.

Methods

Assembly Realizations

For an assembly � = {pi}
k
i=1

 , an assembly �� = {qi}
k
i=1

 is 
called a realization3 of � if there exists a permutation � 
of order k such that q�i ∈ R (pi) for all i = 1, 2,… , k . We 
denote by R (�) the set of realizations of assembly � , and by 
NR (�) the set of non-conflicting realizations among them.

We define the scaffold assembly graph ���(�) on the 
set of vertices {sh, st ∶ s ∈ �(�)} and edges of two types: 
directed edges (st, sh) that encode scaffolds from �(�) , and 
undirected edges that encode all possible realizations of all 
assembly points in � (Fig. 1a). We further define the order 
(multi)graph �� (�) formed by the set of vertices �(�) and 
the set of undirected edges {{ sn (p, 1), sn (p, 2)} ∶ p ∈ �} 
(Fig. 1b). The order graph can also be obtained from ���(�) 
by first contracting the directed edges, and then by substitut-
ing all edges that encode realizations of the same assembly 
point with a single edge (Fig. 1b). We define the contracted 
order graph ��� (�) obtained from �� (�) by replacing all 
multi-edges edges with single edges (Fig. 1c).

Let deg(v) be the degree of a vertex v in �� (�) , i.e., the 
number of edges (counted with multiplicity) incident to v. 
We call the order graph �� (�) non-branching if deg(v) ≤ 2 
for all vertices v of �� (�).

Lemma 1  For a non-conflicting realization �′ of an assem-
bly � , �� (��) is non-branching.

Proof  Each vertex v in �� (��) represents a scaffold, which 
has two extremities and thus can participate in at most two non-
conflicting assembly points in �′ . Hence, deg(v) ≤ 2 . 	�  ◻

We notice that any non-conflicting realization �′ of an 
assembly � provides orientation for all scaffolds involved 
in each connected component of ���(��) (as well as of 
�� (��) and ��� (��) ) relatively to each other.

Theorem 1  An assembly � has at least one non-conflicting 
realization (i.e., |NR (�)| ≥ 1 ) if and only if � is non-con-
flicting or semi-conflicting and �� (�) is non-branching.

Proof  Suppose that |NR (�)| ≥ 1 and pick any �� ∈ NR (�) . 
Then for every pair of assembly points p, q ∈ � , their reali-
zations in �′ are non-conflicting, implying that p and q are 
either non-conflicting or semi-conflicting. Hence, � is non-
conflicting or semi-conflicting. Since � is a proper assem-
bly, we have �� (�) = �� (��) . Taking into the account 
that �′ is non-conflicting, Lemma 1 implies that �� (�) is 
non-branching.

Vice versa, suppose that � is non-conflicting or semi-
conflicting and �� (�) is non-branching. To prove that 
|NR (�)| ≥ 1 , we will orient unoriented scaffolds in all 
assembly points in � without creating conflicts. Every scaf-
fold s corresponds to a vertex v in �� (�) of degree at most 
2. If deg(v) = 1 , then s participates in one assembly point p, 
and s is either already oriented in p or we pick an arbitrary 

Fig. 1   For an assembly A = {(s1, ��⃗s2), ( ��⃗s1, ��⃗s2), ( ��⃗s2, ��⃗s3), ( ��⃗s3, s4), ( �⃖�s1, �⃖�s4), ( ��⃗s5, s6) , 
( �⃖�s6, ��⃗s7), ( ��⃗s6, s7)} , (a) the scaffold assembly graph ���(A) , where semi-
oriented assembly points, oriented assembly points, and scaffolds are 

represented by dashed red edges, solid red edges, and directed black 
edges, respectively. (b) The order graph �� (A) . (c) The contracted 
order graph ��� (A)

3  It can be easily seen that a realization of � may exist only if � is 
proper.
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orientation for it. If deg(v) = 2 , then s participates in two 
overlapping assembly points p and q. If s is not oriented in 
either of p, q, we pick an arbitrary orientation for it consist-
ently across p and q (i.e., keeping them non-conflicting). If 
s is oriented in exactly one assembly point, we orient the 
unoriented instance of s consistently with its orientation in 
the other assembly point. Since conflicts may appear only 
between assembly points that share a vertex in �� (�) , the 
constructed orientations produce no new conflicts. On other 
hand, the scaffolds that are already oriented in � impose 
no conflicts since � is non-conflicting or semi-conflicting. 
Hence, the resulting oriented assembly points form a non-
conflicting assembly from NR (�) , i.e., |NR (�)| ≥ 1 . 	
� ◻

We remark that if �� (�) is branching, the assembly � 
may be semi-conflicting but have |NR (�)| = 0 . An example 
is given by � = {(s1, si+1)}

k
i=1

 with k > 2 , which contains no 
conflicting assembly points (in fact, all assembly points in � 
are semi-conflicting), but |NR (�)| = 0.

From now on, we will always assume that assembly � has 
at least one non-conflicting realization (i.e., |NR (�)| ≥ 1 ). 
For an assembly � , the orientation of some scaffolds from 
�(�) does not depend on the choice of a realization from 
NR (�) (we denote the set of such scaffolds by �o(�) ), while 
the orientation of other scaffolds within some assembly 
points varies across realizations from NR (�) (we denote 
the set of such scaffolds by �u(�) ). Trivially, we have 
�u(�) ∪ �o(�) = �(�) . It can be easily seen that the set 
�u(�) is formed by the scaffolds for which the orientation 
in the proof of Theorem 1 was chosen arbitrarily, implying 
the following statement.

Corollary 1  For a given assembly � with |NR (�)| ≥ 1 , we 
have |NR (�)| = 2|�u(�)|.

We label scaffolds from �(�) with integers 
{1,… , |�(�)|} . From computational perspective, we assume 
that we can get a scaffold from its name and vice verca in 
O(1) time.

Lemma 2  Testing whether a given assembly � has a non-
conflicting realization can be done in O(k) time, where 
k = |�(�)|.

Proof  To test whether � has a non-conflicting realization, 
we first create a hash table indexed by �(�) that for every 
scaffold s ∈ �(�) will contain a list of assembly points that 
involve s. We iterate over all assembly points p ∈ � and 
add p to two lists in the hash table indexed by the scaffolds 
participating in p. If the length of some list becomes greater 
than 2, then � is conflicting and we stop. If we success-
fully complete the iterations, then every scaffold from �(�) 

participates in at most two assembly points in � , and thus 
we made O(k) steps of O(1) time each.

Next, for every scaffold whose list in the hash table has 
length 2, we check whether the corresponding assembly 
points are either non-conflicting or semi-conflicting. If not, 
then � is conflicting and we stop. If the check completes 
successfully, then � has a non-conflicting realization by 
Theorem 1. The check takes O(k) steps of O(1) time each, 
and thus the total running time comes to O(k) . 	�  ◻

A pseudocode for the test described in the proof of 
Lemma 2 is given in Algorithm 3 in the Appendix.

Lemma 3  For a given assembly � with |NR (�)| ≥ 1 , the 
set �u(�) can be computed in O(k) time, where k = |�(�)|.

Proof  We will construct the set S = �u(�) iteratively. Ini-
tially we let S = � . Following the algorithm described in the 
proof for Lemma 2, we construct a hash table that for every 
scaffold i ∈ �(�) contains a list of assembly points that 
involve i (which takes O(k) time). Then for every i ∈ �(�) , 
we check if either of the corresponding assembly points pro-
vides an orientation for i; if not, we add i to S. This check 
for each scaffolds takes O(1) time, bringing the total running 
time to O(k). 	�  ◻

A pseudocode for the computation of �u(�) described 
in the proof of Lemma 3 is given in Algorithm 4 in the 
Appendix.

Problem Formulations

For a non-conflicting assembly � composed only of ori-
ented assembly points, an assembly point p on scaffolds 
si, sj ∈ �(�) has a consistent orientation with � if for some 
p� ∈ R (p) there exists a path connecting edges si and sj in 
���(�) such that direction of edges si and sj at the path ends 
is consistent with p′ (e.g., in Fig. 1a, the assembly point 
(��⃗s1, ��⃗s3) has a consistent orientation with the assembly � ). 
Furthermore, for a non-conflicting assembly � that has at 
least one non-conflicting realization, an assembly point p 
has a consistent orientation with � if p′ has a consistent 
orientation with �′ for some p� ∈ R (p) and �� ∈ NR (�).

We formulate the orientation of ordered scaffolds prob-
lem as follows.

Orientation of Ordered Scaffolds  (OOS) Let � be an assem-
bly and � be a set4 of assembly points such that |NR (�)| ≥ 1 
and �(�) ⊂ �(�) . Find a non-conflicting realization 

4  More generally, � may be a multiset whose elements have real pos-
itive multiplicities (weights).
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�
� ∈ NR (�) that maximizes the number (total weight) of 

assembly points from � having consistent orientations with 
�

′.

From the biological perspective, the OOS can be viewed 
as a formalization of the case where (sub)orders of scaf-
folds have been determined (which defines � ), while there 
exists some information (possibly coming from different 
sources and conflicting) about their relative orientation 
(which defines � ). The OOS asks to orient unoriented 
scaffolds in the given scaffold orders in a way that is most 
consistent with the given orientation information.

We also remark that the OOS can be viewed as a fine-
grained variant of the scaffold orientation problem studied 
in [10]. In our terminology, the latter problem concerns an 
artificial circular genome � formed by the given scaffolds 
in an arbitrary order (so that there is a path connecting any 
scaffold or its reverse complement to any other scaffold 
in �� (�) ), and � formed by unordered pairs of scaffolds 
supplemented with the binary information on whether each 
such pair come from the same or different strands of the 
genome. In contrast, in the OOS, the assembly � is given 
and �� (�) does not have to be connected or non-branch-
ing, while � may provide a pair of scaffolds with up to four 
options (as in (1)) of their relative orientation.

At the latest stages of genome assembly, the constructed 
scaffolds are usually of significant length. If (sub)orders 
for these scaffolds are known, it is rather rare to have ori-
entation-imposing information that would involve non-
neighboring scaffolds. Or, more generally, it is rather rare 
to have orientation imposing information for one scaffold 
with respect to more than two other scaffolds. This inspires 
us to consider a special case of the OOS problem:

Non‑branching Orientation of Ordered Scaffolds  (NOOS) 
Given an OOS instance (�,�) such that the graph ��� (�) 
is non-branching. Find �� ∈ NR (�) that maximizes the 
number of assembly points from � having consistent ori-
entations with �′.

��‑Hardness of the OOS

We consider two important partial cases of the OOS, 
where the assembly � represents a linear or circular 
genome up to unknown orientations of the scaffolds. In 
these cases, the graph �� (�) forms a collection of paths 
or cycles, respectively. Below we prove that the OOS in 
both these cases is ��-hard.

Lemma 4  The OOS for linear genomes is ��-hard.

Proof  We will construct a polynomial-time reduction from 
the MAX 2-DNF problem, which is known to be ��-hard 
[8, 16]. An instance of MAX 2-DNF consists of clauses 
C = {ci}

k
i=1

 each formed by either a single variable or a con-
junction of two variables from X = {xi}

n
i=1

 , each of which 
may or may not be negated. The goal is to determine the 
maximum number of clauses that can be simultaneously 
satisfied by a 0/1 assignment to the variables from X. For 
a given instance I = (C,X) of MAX 2-DNF , we construct 
an assembly

Then we construct a set of assembly points � from the 
clauses in C as follows. For each conjunction c ∈ C of vari-
ables xi and xj ( i < j ), we add an oriented assembly point on 
scaffolds xi, xj to � with the orientation depending on the 
presence of negation of these variables in c (e.g., a conjunc-
tion xi ∧ xj is translated into an assembly point (��⃗xi, �⃖�xj) ). For 
each clause c ∈ C with a single variable x, we add an assem-
bly point ( �⃗0, �⃗x) or ( �⃗0, �⃖x) depending whether x is negated in c.

It is easy to see that the constructed assembly � is semi-
conflicting and �� (�) is a path, and thus by Theorem 1 � 
has a non-conflicting realization. Hence, � and � form an 
instance of the OOS for linear genomes. A solution �′ to this 
OOS provides an orientation for each x ∈ � that maximizes 
the number of assembly points from � having consistent 
orientations with �′ . A solution to I is obtained from �′ 
as the assignment of 0 or 1 to each variable x depending 
on whether the orientation of scaffold x in �′ is forward or 
reverse. Indeed, since each assembly point in � having con-
sistent orientation with �′ corresponds to a truthful clause 
in I, the number of such clauses is maximized.

Since the OOS instance and the solution to I can be com-
puted in polynomial time, the above construction represents 
a polynomial-time reduction from the MAX 2-DNF to the 
OOS for linear genomes. 	�  ◻

Lemma 5  The OOS for circular genomes is ��-hard.

Proof  We construct a polynomial-time reduction from the 
MAX-CUT problem, which is known to be ��-hard [18, 19]. 
An instance I of MAX-CUT for a given a graph (V, E) asks 
to partition the set of vertices V = {vi}

n
i=1

 into two disjoint 
subsets V1 and V2 such that the number of edges {u, v} ∈ E 
with u ∈ V1 and v ∈ V2 is maximized. For a given instance I 
of MAX-CUT problem, we define the assembly

and the set of assembly points

� = {(0, x1)} ∪ {(xi, xi+1) ∶ i = 1, 2,… , n − 1}.

� =
{
(vi, vi+1) ∶ i = 1, 2,… , n − 1

}
∪
{
(v1, vn)

}

� =
{
(��⃗vi, �⃖�vj) ∶ {vi, vj} ∈ E

}
.
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It is easy to see that � has a non-conflicting realization and 
�� (�) is a cycle, i.e., � and � form an instance of the OOS 
for circular genomes. A solution �′ to this OOS instance pro-
vides orientations for all elements �(�) = V  that maximizes 
the number of assembly points from � having consistent ori-
entations with �′ . A solution to I is obtained as the partition 
of V into two disjoint subsets, depending on the orientation 
of scaffolds in �′ (forward vs reverse). Indeed, since each 
assembly point in � having a consistent orientation with �′ 
corresponds to an edge from E whose endpoints belong to 
distinct subsets in the partition, the number of such edges 
is maximized.

It is easy to see that the OOS instance and the solution to 
I can be computed in polynomial time, thus we constructed a 
polynomial-time reduction from the MAX-CUT to the OOS 
for circular genomes. 	�  ◻

As a trivial consequence of Lemmas 4 and 5, we obtain 
that the general OOS problem is ��-hard.

Theorem 2  The OOS is ��-hard.

Properties of the OOS

In this subsection, we formulate and prove some important 
properties of the OOS.

Connected Components of �� (�)

Below we show that an OOS instance can also be solved 
independently for each connected component of �� (�) . We 
start with the following lemma that trivially follows from the 
definition of consistent orientation.

Lemma 6  Let � be an assembly such that |NR (�)| ≥ 1 . An 
assembly point on scaffolds si, sj ∈ �(�) may have a con-
sistent orientation with � only if both si and sj belong to the 
same connected component in �� (�).

Theorem 3  Let (�,�) be an OOS instance, and � = �1 ∪⋯ ∪ �k
 

be the partition such that �� (�1),… , �� (�k) represent the 
connected components of �� (�) . For each i = 1, 2,… , k , 
def ine �i = {p ∈ � ∶ sn (p, 1), sn (p, 2) ∈ �(�i)} and 
let �′

i
 be a solution to the OOS instance (�i,�i) . Then 

�
�
1
∪⋯ ∪�

�
k
 is a solution to the OOS instance (�,�).

Proof  Lemma 6 implies that we can discard from � all 
assembly points that are formed by scaffolds from different 
connected components in �� (�) . Hence, we may assume 
that � = �1 ∪⋯ ∪�k}.

Lemma 6 further implies that an assembly point from 
�i may have a consistent orientation with �j only if i = j . 
Therefore, any solution to the OOS instance (�,�) is formed 
by the union of solutions to the OOS instances (�i,�i) . 	
� ◻

Theorem 3 allows us focus on instances of the OOS, 
where �� (�) is connected and thus forms a path or a cycle 
(by Theorem 1).

Connected Components of �� (�)

Below we show that an OOS instance can also be solved 
independently for each connected component of �� (�) . We 
need the following lemma that trivially holds.

Lemma 7  Let � be an assembly such that |NR (�)| ≥ 1 , and 
si, sj be scaffolds from the same connected component C in 
�� (�) . Then an unoriented assembly point (si, sj) has a con-
sistent orientation with � . Furthermore, if C is a cycle, then 
any semi-oriented assembly point on si, sj has a consistent 
orientation with �.

By Lemma 7, we can assume that � does not contain any 
unoriented assembly points (i.e., � = �o ∪�s ). Further-
more, if �� (�) is a cycle, we can assume that � = �o (i.e., 
� consists of oriented assembly points only). We consider 
two cases depending on whether �� (�) forms a path or a 
cycle.

�� (�) is a path.  Suppose that �� (�) = (s1, s2,… , sn) 
is a path and � = �o ∪�s . Let C be the set of connected 
components of �� (�).

Consider any C ∈ C . Let (sj1 ,… , sjm ) be a vertex sequence 
of C such that j1 < j2 < ⋯ < jm , where m is the number of 
vertices in C. We define an assembly �C such that �� (�C) 
is the path (x, sj1 ,… , sjm , y) , where x and y are artificial ver-
tices, and the assembly points in �C (corresponding to the 
edges in �� (�C) ) are oriented or semi-oriented as follows.

–	 The edges {x, sj1} and {sjm , y} correspond to semi-oriented 
assembly points (�⃗x, sj1 ) and (sjm , �⃗y) , respectively;

–	 For each l ∈ {1,… ,m − 1} , orientation of the assembly 
point corresponding to the edge {sjl , sjl+1} is imposed from 
the orientations of sjl and sjl+1 in the assembly points in � 
corresponding to the edges {sjl , sjl+1} and {sjl+1−1, sjl+1} at 
the ends of a path connecting sjl and sjl+1 in ���(�) . For 
example, assembly points (s⃗jl , s⃗jl+1) and (s⃗jl+1−1, s⃖jl+1) in � 
impose the assembly point (s⃗jl , s⃖jl+1) in �C.

We further define �C as a set formed by the assembly 
points from C and the following assembly points. For each 
semi-oriented assembly point p ∈ � formed by scaffolds si 
and sj ( i < j ), �C contains:
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–	 an oriented point p′ formed by si and �⃗y whenever si is 
oriented in p and belongs to C (and its orientation in p′ 
is inherited from p);

–	 an oriented point p′′ formed by �⃗x and sj whenever sj is 
oriented in p and belongs to C (and its orientation in p′′ 
is inherited from p) (Fig. 2).

Now, for each C ∈ C , we assume that �C and �C are 
defined as above and let �′

C
 be a solution to the OOS 

instance (�C,�C) . We construct a non-conflicting realiza-
tion �� ∈ NR (�) as follows:

–	 for a scaffold s present in some �′
C
 , �′ inherits the orien-

tation of s from �′
C
;

–	 for a scaffold s not present in any �′
C
 , if s is oriented in 

any assembly point of � , then �′ inherits that orientation 
of s; otherwise s is arbitrarily oriented in �′.

The following theorem shows that constructed �′ is a 
solution to the OOS instance (�,�).

Theorem 4  Let (�,�) be an OOS instance, and �� ∈ NR (�) 
be defined as above. Then �′ is a solution to the OOS 
instance (�,�).

Proof  The graph ���(��) can be viewed as an ordered 
sequence of directed scaffold edges (interweaved with 

undirected edges encoding assembly points). Then each 
���(��

i
) , with the exception of scaffold edges xi and yi , cor-

responds to a subsequence of this sequence.
Each oriented assembly point p ∈ � is formed by scaf-

folds u, v from Ci for some i ∈ {1,… , k} . Then p ∈ � ∩�i 
and there exist a unique path in ���(��

i
) and a unique path 

in ���(��) having the same directed edges u, v at the ends. 
Hence, if p has a consistent orientation with one of assem-
blies �′ or �′

i
 , then it has a consistent orientation with the 

other.
Each semi-oriented assembly point p ∈ � formed by scaf-

fold u, v corresponds to an oriented assembly point q ∈ �i 
(for some i) formed by u and yi (in which case u ∈ Ci and u 
is oriented in p), or by xi and v (in which case v ∈ Ci and v 
is oriented in p). Without loss of generality, we assume the 
former case. Then there exists a unique path Q in ���(��

i
) 

connecting directed edges u and yi , and there exists a unique 
path P in ���(��) connecting directed edges u and v, where 
the orientation of u is the same in the two paths. By con-
struction, the orientation of yi in q matches that in Q. Hence, 
q has a consistent orientation with �′

i
 if and only if the ori-

entation of u in q matches that in Q, which happens if and 
only if the orientation of u in p matches its orientation in 
P, i.e., p has a consistent orientation with �′ . We proved 
that the number of assembly points from � having consist-
ent orientation with �′ equals the total number of assem-
bly points from �i having consistent orientation with �′

i
 for 

Fig. 2   Decomposition of an OOS problem instance (�,�) based 
on the connected components of �� (�o) . (a) The superposition of 
�� (�) (red edges) and �� (�) (green edges), where arrows (if pre-
sent) at the ends of green edges encode the orientation of the scaf-
folds in the corresponding assembly points. (b) The superposition 

of five graphs �� (�i) (red edges) and three graphs �� (�j) (green 
edges) constructed based on the connected components of �� (�o) . 
Unless �� (�i) is formed by an isolated vertex, it contains artificial 
vertices xi and yi , which coincide if �� (�i) is a cycle
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all i = 1, 2,… , k . It remains to notice that this number is 
maximum possible, i.e., �′ is indeed a solution to the OOS 
instance (�,�) (if it is not, then the sets �i constructed from 
� being an actual solution to the OOS will give a better solu-
tion to at least one of the subproblems). 	�  ◻

�� (�) is a cycle.  In this case, we can construct sub-
problems based on the connected components of �� (�) 
similarly to Case 1, with the following differences. First, 
by Lemma 7, we assume that � = �o (discarding all unori-
ented and semi-oriented assembly points from � ). Second, 
we assume that xi = yi and thus �� (�i) forms a cycle. Theo-
rem 4 still holds in this case.

Articulation Vertices in �� (�)

While Theorem 4 allows us to divide the OOS problems into 
subproblems based on the connected components of �� (�) , 
we show below that similar division is possible when �� (�) 
is connected but contains an articulation vertex.5

A vertex v in �� (�) (or in ��� (�) ) is called oriented 
if v ∈ �o(�) . Otherwise, v is called unoriented. Let (�,�) 
be an instance of the OOS problem such that both �� (�) 
and �� (�) are connected. Let v be an oriented articulation 
vertex in �� (�) , defining a partition of �(�) into disjoint 
subsets:

where k > 1 and the Vi represent the vertex sets of the con-
nected components resulted from removal of v from �� (�) . 
To divide the OOS instance (�,�) into subinstances, we 
construct a new OOS instance (�̂, �̂) as follows.

We introduce copies v1,… , vk of v, and construct �̂ 
from � by replacing a path (u, v, w) in �� (�) with a path 
(u, v1, v2,… , vk,w) where all vi inherit the orientation from v. 
Then we construct �̂ from � by replacing in each assembly 
point p formed by v and u ∈ Vi (for some i ∈ {1, 2,… , k}) 
with an assembly point formed by vi and u (keeping their 
orientations intact).

The OOS instance (�̂, �̂) enables application of Theo-
rem  4. Indeed, by construction, the vertex sets of the 
connected components of �� (�̂) are {vi} ∪ Vi , where 
i ∈ {1, 2,… , k} . Hence, by Theorem 4 the OOS instance 
(�̂, �̂) can solved by dividing into OOS subinstances cor-
responding to the connected components of �� (�̂).

Now, we assume that we have a solution to the OOS 
instance (�̂, �̂) . We construct a non-conflicting realization 
�

� ∈ NR (�) from a solution to the OOS instance (�̂, �̂) by 
replacing every scaffold vi with v.

(2)�(�) = {v} ∪ V1 ∪ V2 ∪⋯ ∪ Vk,

The following theorem shows that the constructed �′ is a 
solution to the OOS instance (�,�).

Theorem 5  Let (�,�) be an OOS instance such that both 
�� (�) and �� (�) are connected, and �′ be defined as 
above. Then �′ is a solution to the OOS instance (�,�).

Proof  Let �̂′ be a solution to the OOS instance (�̂, �̂) , and �′ 
be obtained from �̂′ by replacing every vi with v. We remark 
that � can be obtained from �̂ by similar replacement.

This establishes an one-to-one correspondence between 
the assembly points in �̂′ and �′ , as well as between the 
assembly points in �̂′ and �′ . It remains to show that con-
sistent orientations are invariant under this correspondence.

We remark that ���(��) can be obtained from ���(�̂�) by 
replacing a sequence of edges (r1, v1, r2, v2,… , rk, vk, rk+1) , 
where ri are assembly edges, with a sequence of edges 
(r1, v, r2) . Therefore, if there exists a path in one graph prov-
ing existence of consistent orientation for some assembly 
point, then there exists a corresponding path in the other 
graph (having the same orientations of the end edges). 	
� ◻

Algorithms for the NOOS and the OOS

In this section, by Theorems 3 and 4, we can assume that 
both �� (�) and �� (�) are connected.

A Polynomial‑Time Algorithm for NOOS

Theorem 6  The NOOS is in �.

Proof  Since ��� (�) is non-branching, we consider two 
cases depending on whether it is a path or a cycle.

If ��� (�) is a path, then every vertex in it is an articula-
tion vertex in both ��� (�) and �� (�) . Our algorithm will 
process this path in a divide-and-conquer manner. Namely, 
for a path of length greater than 2, we pick a vertex v closest 
to the path middle. If v is oriented, we proceed as in Theo-
rem 5. If v is unoriented, we fix each of the two possible ori-
entations, proceed as in Theorem 5 to obtain two candidate 
solutions, from which we pick one with the larger number 
of assembly points with consistent orientations.

A path of length at most 2 can be solved in O(|�|) time 
by brute-forcing all possible orientations of the scaffolds in 
the path and counting how many assembly points in � get 
consistent orientations.

The running time T(l) for recursive part of the algorithm 
satisfies the formula:

5  We remind that a vertex is articulation if its removal from the 
graph increases the number of connected components.
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From the Master theorem [9], we conclude that the total run-
ning time for the proposed recursive algorithm is O

(
|�|2

)
 

(or O
(
|�(�)|2

)
 since ��� (�) is a path).

If ��� (�) is a cycle, we can reduce the correspond-
ing NOOS instance to the case of a path as follows. First, 
we pick a random vertex w in ��� (�) and replace it with 
new vertices w1 and w2 such that the edges {u,w} , {w, v} in 
��� (�) are replaced with {u,w1} , {w2, v} . Then we solve 
the NOOS for the resulting path one or two times (depending 
on whether w ∈ �o(�) ): once for each of possible orienta-
tions of scaffold w (inherited by w1 and w2 ), and then select 
the orientation for w that produces the largest number of 
assembly points having consistent orientations with the input 
assembly. 	�  ◻

A pseudocode for the algorithm described in the proof of 
Theorem 6 is given in Algorithm 1 in the Appendix.

An Exact Algorithm for the OOS

Below we show how to solve OOS instance (�,�) in general 
case, i.e., when ��� (�) is neither a path or a cycle.

First we assume that there are no articulation vertices 
in the �� (�) , while the case when articulation vertices 
are present is addressed in the next section. Let BV (�) be 
the set of unoriented branching vertices (i.e., unoriented 
vertices of degree greater than 2) in ��� (�) . We define 
a non-branching path as a path for which the endpoints 
are in BV (�) , and all internal vertices have degree 2 (e.g., 
{s18, s23, s24, s25} is a non-branching path in Fig. 3a). Simi-
larly, we define a non-branching cycle as a cycle in which 
all vertices have degree 2, except for one vertex (called end-
point) that belongs to BV (�) and thus has degree greater 
than 2 (e.g., {s7, s4, s3, s1, s2, s6, s5, s7} is a non-branching 
cycle in Fig. 3a).

Each OOS instance induced by a non-branching path 
and a non-branching cycle in ��� (�) represents an NOOS 
instance, and thus can be solved in polynomial time. We 
iterate over all possible orientations for the endpoints of 
the underlying paths/cycles in the corresponding NOOS 
instances and solve them. A solution to the OOS instance 
is obtained by iterating over all possible orientations of the 
scaffolds represented by branching vertices in ��� (�) 
(i.e., BV (�) ) and merging the solutions to the correspond-
ing NOOS instances, and picking the best result. Then, the 
following lemma trivially holds:

Lemma 8  The running time for the proposed algorithm is 
bounded by O

(
2|BV (�)|

⋅ |�(�)|2
)
.

T(l) =

{
4 ⋅ T

(
l

2

)
+O(1), if |�| > 2;

O(|�|), if |�| ≤ 2.

An ��� Algorithm for the OOS

Thanks to Theorem 5, we can partition a given OOS instance 
(�,�) into subinstances using the oriented articulation ver-
tices. By Theorem 6, we also know how to efficiently orient 
scaffolds that correspond to unoriented articulation vertices 
of degree 2. In this section, we address the remaining type of 
articulation vertices, namely unoriented articulation vertices 
of degree at least 3.

Let AV (�) ⊆ BV (�) be the set of unoriented articulation 
vertices of degree at least 3. A straightforward solution to 
this problem is to iterate over all possible 2|AV(�)| orienta-
tions of the scaffolds in AV (�) , and then use Theorem 5 to 
partition the OOS instance (�,�) into subinstances. Each 
such subinstance, in turn, can be solved using Theorem 6 
or Lemma 8. Below we show how one can orient the scaf-
folds in AV (�) more efficiently based on the dependencies 
between the connected subgraphs flanked by the correspond-
ing vertices.

The set AV (�) defines a set C (�) of connected subgraphs 
(components) of ��� (�) by breaking it at the vertices from 
AV (�) , introducing copies of each articulation vertex in the 
resulting components (Fig. 3a). We distinguish between two 
types of components in C (�):

–	 path bridges forming the set PB (�) ⊆ C (�) , i.e., com-
ponents that do not contain cycles (e.g., pb1 in Fig. 1a);

–	 complex components forming the set CC (�) ⊆ C (�) , 
i.e., components that contain at least one cycle (e.g., cc2 
in Fig. 3a).

Trivially we have CC (�) ∪ PB (�) = C (�) . We denote by 
V(c) the set of vertices in a component c ∈ C (�) . Now, we 
show how to solve the OOS instances induced by elements 
of C (�):

Case c ∈ PB (�) The OOS instance induced by c can be 
solved as follows. We iterate over all possible orientations of 
the unoriented articulation vertices in c (i.e., we need solve 
the OOS instance induced by c at most 4 times). For each 
fixed orientation, since c is non-branching, the OOS instance 
induced by c is an instance of NOOS and can be solved as 
in Theorem 6.

Case c ∈ CC (�) The OOS instance induced by c can be 
solved as follows. We iterate over all possible orientations 
of the vertices in AV (�) ∩ V(c) . For each fixed orientation, 
a solution to the OOS instance induced by c can be obtained 
as in Theorem 8 by iterating over all possible orientations of 
the scaffolds represented by the unoriented branching verti-
ces in c (i.e., (BV (�) ⧵ AV (�)) ∩ V(c)).

Now, we outline how we iterate over the orientations 
of scaffolds in AV (�) . Our algorithm constructs a sub-
problem tree ST (�) = (V ,E) (Fig. 3b), where V = C (�) is 
the set of vertices corresponding to the set of components 



	 SN Computer Science (2022) 3:308308  Page 10 of 14

SN Computer Science

induced by AV (�) , and E is the set of edges constructed 
iteratively. We start with E = � and populate E as follows: 
for each vertex v ∈ V  and all vertices u ∈ V  , add an edge 
{v, u} if the following two conditions hold: 

1.	 v and u share an articulation vertex in ��� (�) (e.g., cc2 
and pb1 in Fig. 1a); and

2.	 u is not an endpoint of any edge in E.

Fig. 3   (a) Contracted ordered graph ��� (�) of a set of assembly 
points � . Branching articulation vertices AV (�) = {s7, s10, s12, s14, s21, s40} 
are shown as filled with gray. Branching vertices that are not 
articulation vertices BV (�) ⧵ AV (�) = {s33, s26, s27} are shown 

as filled with line pattern. Yellow areas highlight elements of 
CC (�) = {cc1, cc2, cc3, cc4, cc5} . Blue areas highlights elements of 
PB (�) = {pb1, pb2, pb3, pb4} . (b) The subproblem tree ST (�)
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A subproblem tree ST (�) allows us to solve the original 
OOS instance in the bottom-up fashion. Indeed, the OOS 
instance corresponding to any disjoint subtrees of ST (�) 
can be solved independently. We start with solving OOS 
instances that correspond to the leaves, producing solutions 
corresponding to different orientations of the scaffolds cor-
responding to articulation vertices. When the OOS instances 
for all children of an internal vertex c in ST (�) are solved, 
we iterate over the orientations for the scaffolds that corre-
spond to articulation vertices in c (i.e., AV (�) ∩ V(c) ) and 
merge the OOS solutions for c with the corresponding solu-
tions for its children. Eventually, we obtain the OOS solution 
for the root of ST (�) and thus for the original OOS problem.

The following theorem states the running time of the pro-
posed algorithm.

Theorem 7  The running time for the proposed algorithm for 
solving OOS instance (�,�) is bounded by

where � = maxc∈CC (�) |BV (�) ∩ V(c)|.

Proof  The construction time of ���(�) , AV (�) , BV (�) , 
�� (�) , ��� (�) , ST (�) , and C (�) is bounded by 
O
(
|�(�)|2

)
.

The OOS instances induced by each non-branching path 
or cycle in ��� (�) are solved at most 4 times for different 
orientations of the endpoints. By Theorem 6, the total run-
ning time for processing all non-branching paths/cycles in 
��� (�) is bounded by O

(
|�(�)|2

)
.

By Lemma 8, each OOS instance induced by a complex 
component c ∈ CC (�) can be solved in O

(
2m ⋅ |�(�)|2

)
 

time, where m = |(BV (�) ⧵ AV (�)) ∩ V(c)| . The running 
time of the bottom-up algorithm is bounded by |C (�)| (i.e., 
the number of vertices in ST (�) ) times the running time of 
the merging procedure bounded by O

(
2|AV (�)∩V(c)|

⋅ deg(c)
)
 , 

where deg(c) is the degree of c in ST (�).
T h u s ,  t h e  p r o p o s e d  a l g o r i t h m  c a n  b e 

b o u n d e d  b y  O
(
2� ⋅ |�(�)|2 ⋅ |CC (�)|

)
 ,  w h e r e 

� = maxc∈CC (�) |BV (�) ∩ V(c)| . 	�  ◻

The proposed algorithm is an ��� algorithm. Indeed, 
instead of finding the best orientation by iterating over all 
possible orientations of the scaffolds in �u(�) , we iterate 
over all possible orientations of the scaffolds that corre-
spond to branching vertices in ��� (�) . Furthermore, we 
reduced running time of an ��� algorithm by partitioning 
the problem into connected components and solving them 
independently.

(3)O
(
2� ⋅ |�(�)|2 ⋅ |CC (�)|

)
,

The exponential term in (3) accounts for the number 
of articulation vertices in the complex components of 
��� (�) . For real data, the exponent can become large 
only if many scaffolds have relative orientation with 
respect to three or more other scaffolds, which we expect 
to be a rare situation, especially when the scaffolds are 
long (e.g., produced by scaffolders combining paired-end 
and long-read data, a popular approach for the genome 
assembly).

Conclusions

In the present study, we posed the orientation of ordered 
scaffolds (OOS) problem as an optimization problem 
based on given weighted orientations of scaffolds and their 
pairs. We further addressed it within the earlier introduced 
CAMSA framework [2], taking advantage of the simple yet 
powerful concept of assembly points describing (semi-/
un-) oriented adjacencies between scaffolds. This approach 
allows one to uniformly represent both orders of oriented 
and/or unoriented scaffolds and orientation-imposing data.

We proved that the OOS problem is ��-hard when the 
given scaffold order represents a linear or circular genome. 
We also described a polynomial-time algorithm for the 
special case of non-branching OOS (NOOS), where the 
orientation of each scaffold is imposed relatively to at most 
two other scaffolds. Our algorithm for the NOOS problem 
and Theorems 3, 4, and 5 further enabled us to develop an 
��� algorithm for the general OOS problem. The proposed 
algorithms are implemented in the CAMSA software ver-
sion 2 (https://​github.​com/​compb​iol/​CAMSA).

Appendix: Pseudocodes

In the algorithms below we do not explicitly describe the 
function OrConsCount, which takes 4 arguments: 

1.	 a subgraph c from ��� (�) with 1 or 2 vertices;
2.	 a hash table so with scaffolds as keys and their orienta-

tions as values;
3.	 a set of orientation imposing assembly points �;
4.	 an assembly �

and counts the assembly points from � that have consist-
ent orientation with � in the case where scaffold(s) cor-
responding to vertices from c were to have orientation 
from so in � . With simple hash-table based preprocess-
ing of � and � this function runs in O(n) time, where n 
is a number of assembly points in � involving scaffolds 

https://github.com/compbiol/CAMSA
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that correspond to vertices in c. So, total running time 
for all invocations of this function will be O(|�|) (i.e., 
O
(
|�(�)|2

)
 ). 
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