
Vol.:(0123456789)

SN Computer Science (2022) 3:239
https://doi.org/10.1007/s42979-022-01121-0

SN Computer Science

ORIGINAL RESEARCH

Combining Forward Compression with PPM

Rachel Mustakis Avrunin1 · Shmuel T. Klein2 · Dana Shapira1

Received: 10 November 2021 / Accepted: 30 March 2022 / Published online: 23 April 2022
© The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2022

Abstract
A new Forward Looking variant of dynamic Huffman or arithmetic encoding has been recently proposed, that provably
always performs better than the corresponding general static encoding schemes, as far as the net compressed file, without
the necessary header, is concerned. The current paper suggests to integrate the Forward Looking paradigm with the well-
known adaptive PPM—Prediction by Partial Matching algorithm. This combination, that attempts to predict the following
character based on the context that has already occurred in past, but uses its knowledge of the exact frequencies in the future,
is empirically shown to enhance the prediction capability, and therefore to improve the compression efficiency.

Keywords Lossless compression · Arithmetic coding · PPM

Introduction

Data compression techniques are often partitioned into static
and adaptive algorithms. Alternatively, they can be classi-
fied by whether being statistical or dictionary-based meth-
ods. In this research, we combine the well-known adaptive
Prediction by Partial Matching (PPM) [1] algorithm with a
recently introduced compression paradigm named Forward
Looking, which is based on statistical coding such as Huff-
man [2] and arithmetic coding.

Huffman coding is one of the foundations of data
compression algorithms, used in both lossless and lossy

techniques, and is well known for its optimality under cer-
tain constraints, while still being simple. Given is a text

T of size n over some alphabet Σ = {�1,… , �m} with a
corresponding probability distribution P = {p1,… , pm} ,
such that the probability of the occurrence of �i in T is pi .
The problem is to assign binary codewords of lengths �i
bits to the characters �i , such that the set of codewords is
uniquely decipherable, and such that the expected codeword
length

∑m

i=1
pi�i , given in bits, is minimized.

If the restriction that all the codeword lengths �i have to be
integers is removed, then an optimal assignment of lengths
would be the information content �i = − log pi , and the aver-
age codeword length would then be H = −

∑m

i=1
pi log pi ,

called the entropy. This average can be reached by applying
arithmetic coding [3]. Note that the term alphabet should
be understood in a broader sense, as its elements are not
restricted to merely standard characters and may consist of
strings or words, as long as there is a well-defined way to
break T into a sequence of elements of Σ.

Static compressors encode a character using the same
codeword throughout the text. Static codes can be of fixed
lengths, such as the American Standard Code for Informa-
tion Interchange ASCII code, or variable length codes, such
as Huffman [2], Elias [4], and Fibonacci coding [5]. Though
many compression methods are based on the use of vari-
able length codes, there are also certain methods in which
the lengths of the codewords are more restricted, which can
be useful for fast decoding and compressed searches [6, 7].

This article is part of the topical collection “String Processing and
Combinatorial Algorithms” guest edited by Simone Faro.

Rachel Mustakis Avrunin and Shmuel T. Klein are contributing
authors.

 * Dana Shapira
 shapird@g.ariel.ac.il

 Rachel Mustakis Avrunin
 r.avrunin@gmail.com

 Shmuel T. Klein
 tomi@cs.biu.ac.il

1 Department of Computer Science, Ariel University, Ramat
HaGolan St. 65, 40700 Ariel, Israel

2 Department of Computer Science, Bar Ilan University,
52900 Ramat-Gan, Israel

http://orcid.org/0000-0002-2320-9064
http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-022-01121-0&domain=pdf

 SN Computer Science (2022) 3:239239 Page 2 of 10

SN Computer Science

Adaptive compressors allow the model to be constructed
dynamically by both the encoder and the decoder during the
course of the transmission, and have been shown to incur a
smaller coding overhead than explicit transmission of the
model’s statistics. A family of adaptive dictionary methods
was introduced by Ziv and Lempel, in particular, LZ77 [8]
and LZ78 [9]. Storer and Szymanski [10] proposed LZSS
a practical variant of the LZ77 compressor, which is based
on the principle of finding redundant strings or patterns
and replacing them by pointers to a common copy. LZW
[11] is an implementation of LZ78, in which the dictionary
is initialized by the single characters of the alphabet, and
then is updated dynamically by adding newly encountered
substrings that have not been seen previously in the parsing
of the underlying text.

PPM is yet another adaptive coding method, proposed by
Cleary et al. [1] as a combination of statistical coding with
a Markov model, and it is known as one of the best lossless
compression algorithms to date. Their experimental results
show that English texts can be coded using 2.2 bits per char-
acter on average with no prior knowledge of the source [12].
Despite its space efficiency, the technique suffers from slow
processing time, and therefore, the use of this method is not
as common as expected.

Forward looking adaptive compression is a variant
of dynamic statistical encoding, and has been proven
to be better than static Huffman compression [13]. This
is achieved by redefining the reference pointers of the
encoded elements to those forming the model of the encod-
ing; the new definition reverses the direction of the pointers
from pointing backwards into the past to looking forward
into the future.

The lower bound shown for Forward looking on the size
of its compressed file is smaller than the lower bound of
other dynamic statistical coding methods. An extension of
the Forward looking algorithm to bidirectional adaptive
compression was proposed in Ref. [14], taking both past and
future into account, and its net encoding is provably at least
as good as the variant based solely on the future.

The current paper suggests to integrate the Forward
Looking paradigm with PPM. This combination, that
attempts to predict the following character based on the
context that has already occurred in past, but uses its knowl-
edge of the exact frequencies in the future, enhances the
prediction capability on our tests, and therefore improves
the compression efficiency. Our paper is organized as fol-
lows. “Forward Looking Dynamic Huffman Coding” and
“PPM Compression” sections recall the details of Forward
looking and PPM, respectively. “PPM + Forward Com-
pression” section combines the two algorithms, and pre-
sents a new implementation of the PPM algorithm that is
based on Forward.

Forward Looking Dynamic Huffman Coding

A model consists of two main components, the alphabet ele-
ments and their corresponding statistics. For fixed length
codes, the model is quite primitive and assumes a uniform
distribution over the given alphabet. The model for static
codes may be more advanced and assigns a fixed, not neces-
sarily uniform, distribution to the alphabet symbols through-
out the encoding of the entire file, whereas the model for
adaptive codes may update both the alphabet and the distri-
bution of the involved elements while processing the input
file.

The standard way for updating the model of adaptive
codes is according to what has already been seen in the
input file processed so far. The distribution of the following
element to be encoded at some current location in the file
is determined according to the distribution of the elements
that have occurred up to (and not including) that position.
In case the exact number of occurrences of each element
in the entire file is known, e.g., when this information can
be obtained by a preprocessing scan of the file, a different,
Forward looking adaptive approach can be applied [13].
In this approach, the dynamic model gets adjusted accord-
ing to the information of what is still to come, i.e., it looks
into the future, as opposed to what is done by traditional
dynamic methods, which base their current model on what
has already been seen in the past.

Utilizing the knowledge of what is still to come has also
been proposed in Ref. [15] for performing streaming pattern
matching in LZSS compressed files, where the locations of
the references to reoccurring strings have been moved and
their direction has been reversed to point forwards, rather
than letting the Ziv–Lempel type (������, ������) ordered
pairs to point backwards, as in the original encoding.

Traditional encoding algorithms concentrate on the
present element that is being processed and increment its
frequency, implying a decrease in its information content.
However, consequently, the information content of certain
other elements may increase, and thus also the entropy of the
entire text. The forward looking paradigm provides a more
“social” approach that takes all the elements into account,
rather than only the one that is currently being processed:
the frequency of the processed element is decreased, even at
the price of the corresponding information content becom-
ing larger. However, this operation may reduce the over-
all entropy, yielding better space savings. To distinguish
between the backward and forward approaches, we use the
notations b-freq to refer to the (backward) frequencies of
individual characters up to (and not including) the current
point, and f-freq to refer to (forward) frequencies—the fre-
quencies of each character from (and including) the current
point onward, up to the end of the file.

SN Computer Science (2022) 3:239 Page 3 of 10 239

SN Computer Science

The Forward looking coding can be applied to any sta-
tistical coding such as Huffman or arithmetic coding. It has
been proven to be more effective than the original static
Huffman coding and thus theoretically to be more efficient
than the dynamic Huffman algorithm of Vitter [16], since it
relies on known statistics instead of learning them “on the
fly”. This proof can be easily extended to show the advantage
of Forward over static arithmetic coding, which surprisingly
implies a provably better than zero-order entropy encoding
(see for example [17]). The Forward looking approach has
been extended to weighted forward coding in Ref. [17], and
to a backward weighted heuristic in Ref. [18].

Arithmetic coding represents the text T by a real num-
ber a in the range 0 ≤ a < 1 . An interval [�, h) is initialized
by [0, 1), and is partitioned into sub-intervals according to
the probability distribution of the characters. The procedure
continues with the sub-interval selected according to the cur-
rently processed symbol of T. Therefore, the interval gradu-
ally gets narrowed as more characters from T are processed.
The real number a is then chosen from the final interval,
preferably being a number with economical representation
size.

The general Forward algorithm initializes its model iden-
tically to the standard static version. That is, the Huffman
implementation of Forward starts with the same Huffman
tree as the static variant, where each leaf refers to a certain
element of the alphabet and contains its frequency in the
entire text. If the Forward arithmetic variant is used, each
interval is partitioned into sub-intervals whose sizes are
proportional to the probabilities in the distribution of the
alphabet, as in the static arithmetic coding. Once the model
is initialized, the general step of Forward consists of the two
following commands:

1. encode the next element based on the current model;
2. update the model by decrementing the (forward) fre-

quency f-freq of the current element and adjusting the
distribution accordingly.

Example

Forward

As example, consider the text T = lossless. The alphabet
Σ is {�, �, �, �} with frequencies {1, 2, 1, 4} , respectively. We
denote the distribution of the forward, static and adaptive
encodings after having processed the first i characters of the
text by P�

i
 , P�

i
 and P�

i
 , respectively, so that the initial distribu-

tion for forward is given by

and the character l at position 0 is encoded with probability
1

4
 , having information content of 2 bits. The frequency for
l, f-freq(l), is then decremented by 1 reflecting the fact
that only a single l remains in the text, and the updated
distribution is

The symbol � is then encoded with probability 1
7
 , and it is

eliminated from the alphabet, since this is the last occur-
rence of o. The distribution gets updated to

The character s is then encoded with probability 2
3
 , and the

distribution is updated to

and so on. Note that when only a single symbol remains in
the text to be processed, no additional encoding is needed,
because the decoder also realizes this case. Therefore, the
last two symbols s are not encoded.

Table 1 is a comparative chart to highlight the differ-
ences between static, adaptive, and forward arithmetic
coding, showing for each character ti of T the currently used

P�
0
=
{
p�
0
(�) =

1

8
, p�

0
(�) =

1

4
, p�

0
(�) =

1

8
, p�

0
(�) =

1

2

}
,

P�
1
=
{
p�
1
(�) =

1

7
, p�

1
(�) =

1

7
, p�

1
(�) =

1

7
, p�

1
(�) =

4

7

}
.

P�
2
=
{
p�
2
(�) =

1

6
, p�

2
(�) =

1

6
, p�

2
(�) =

2

3

}
.

P�
3
=
{
p�
3
(�) =

1

5
, p�

3
(�) =

1

5
, p�

3
(�) =

3

5

}
,

Table 1 The information
content of Forward Looking
as compared to static and
adaptive on T = lossless

i ti static adaptive Forward

p(ti) − log(p(ti)) p(ti) − log(p(ti)) p(ti) − log(p(ti))

0 l 1/4 2.000 1/4 2.000 1/4 2.000
1 o 1/8 3.000 1/5 2.322 1/7 2.807
2 s 1/2 1.000 1/6 2.585 2/3 0.585
3 s 1/2 1.000 2/7 1.807 3/5 0.737
4 l 1/4 2.000 1/4 2.000 1/4 2.000
5 e 1/8 3.000 1/9 3.170 1/3 1.585
6 s 1/2 1.000 3/10 1.737 1.0 0.000
7 s 1/2 1.000 4/11 1.459 1.0 0.000
Total 14.000 17.080 9.714

 SN Computer Science (2022) 3:239239 Page 4 of 10

SN Computer Science

probability p(ti) and the corresponding information content
− log(p(ti)) . The last line of the table shows the total number
of bits used by each method. This is in fact the information
content of choosing a real number in the final interval.

static

Continuing with our running example, the initial interval
[0, 1) for the static variant is partitioned, like for the for-
ward case, according to

for example, choosing lexicographic order. This yields the
partition of [0, 1) into sub-intervals [0, 1

8
), [

1

8
,
3

8
), [

3

8
,
1

2
) and

[
1

2
, 1) for e, l, o and s, respectively. The first step is then to

select the sub-interval [1
8
,
3

8
) referring to l, which is the first

character of T. The size of this interval is 1
4
 , corresponding to

an information content of 2 bits. The current interval is nar-
rowed by a factor of 1/8 which is the probability of the next
character � and adds 3 bits to the size of the encoded file.
Generally, the number of bits added to the encoded file by
each processed character is exactly its information content.

adaptive

Unlike the static coding, in which the partition of [0, 1) into
sub-intervals for arithmetic coding, or the tree for Huffman
coding, is fixed throughout the process, the dynamic vari-
ants update this partition or the tree adaptively, according to
the probability distribution of the alphabet within the prefix
of the text that has already been processed. The frequency
of the currently processed character is incremented and the
relative sizes of all the intervals in the partition for arithme-
tic, or the weights of all the leaves for Huffman, are adjusted
accordingly.

For the adaptive variant, the initial partition of the inter-
val [0, 1) for our running example is divided into four sub-
intervals of equal size 1

4
 , suiting the uniform distribution, and

the first character l is encoded by 2 bits. The (backward)
frequency of l, b-freq(l), is then incremented by 1, and the
distribution is updated to

and the next character � is encoded with probability 1
5
 . The

frequency of o, b-freq(o), is then incremented, and the dis-
tribution is updated to

P�
0
=
{
p�
0
(�) =

1

8
, p�

0
(�) =

1

4
, p�

0
(�) =

1

8
, p�

0
(�) =

1

2

}
,

P�
1
=
{
p�
1
(�) =

1

5
, p�

1
(�) =

2

5
, p�

1
(�) =

1

5
, p�

1
(�) =

1

5

}
,

The character s is encoded with probability 1
6
 , and so on.

Adaptive arithmetic coding applied on our running example
is presented in the second set of columns of Table 1 headed
by adaptive.

PPM Compression

Prediction by Partial Matching (PPM) is an adaptive com-
pression algorithm which is based on statistical encoding.
The main idea is to encode each symbol in the sequence
in the framework of its context. It is based on the known
inequality that for any random variables X and Y, the condi-
tional entropy of X given Y, H(X|Y) , is at most the entropy
of X, H(X), that is

The entropy H =
∑m

i=1
−pi log pi is the expected number of

bits to encode the following character; therefore, there is a
gain when we take a context into account. The parameter
kmax is defined as the maximum allowed context size, that
is, the number of examined previous characters ti−kmax

⋯ ti−1 ,
that are used to predict and encode the current character ti .
kmax is also named the order of PPM, and is typically less or
equal to 8; otherwise, the space for storing all the details of
the model becomes too large to be handled in RAM.

The process for encoding each symbol ti , 0 ≤ i < n , is
initialized by assigning k = kmax . If no prediction for ti can be
made based on its k preceding symbols ti−k ⋯ ti−1 , because ti
did not yet occur previously in the text immediately follow-
ing the context ti−k ⋯ ti−1 , a new prediction is attempted with
only k − 1 symbols ti−(k−1) ⋯ ti−1 . This process is repeated
until a context that already appeared previously in the text
has been found, or no more symbols remain in the context,
that is, k = 0 in case the character already appeared in the
first i − 1 symbols of T, or k = −1 in case the character is
encountered in T for the first time.

An escape codeword, denoted by $, is used to inform the
decoder to switch to a smaller context. The escape codeword
is treated as a special character, and is assigned a probability
within the distribution of the context it is sent. Different
variants of PPM use different heuristics for its probability.
In this paper, we follow PPMC that sets the frequency of
the escape codeword to the number of different characters
seen in the given context.

P�
2
=
{
p�
2
(�) =

1

6
, p�

2
(�) =

1

3
, p�

2
(�) =

1

3
, p�

2
(�) =

1

6

}
.

H(X|Y) ≤ H(X).

SN Computer Science (2022) 3:239 Page 5 of 10 239

SN Computer Science

We continue with our running example T = t0 ⋯ t7

i 0 1 2 3 4 5 6 7

t
i

l o s s l e s s

with kmax = 2 , where the small numbers above the text
are the position indices. At position 7 of T, when encoding
the character s, we first consider its context of size kmax = 2 ,
that is, the context es starting at position 5. This context
has not occurred before position 7; therefore, the encoder
outputs an escape symbol $, informing the decoder that no
context of length 2 has been found. Note that the probability
for $ is 1, as also the decoder realizes that the context es
occurs at position 7 for the first time, and therefore, no bits
are needed for the encoding of $ in this case. The context is
then shortened to size 1, which is the single character s at
position 6. The context s appears before for the characters s
and l at positions 3 and 4 with a single occurrence for each.
As noted above, the PPMC variant sets the frequency of $ to
the number of different characters seen in the given context,
which is 2 in our case. The distribution in the context t6 = � ,
after having processed the 7 first characters lossles, is
therefore

The character s at position 7 is thus encoded in the context
s with probability 1

4
 , using 2 bits. The Prediction Frequency

Table (PFT) is updated to include the contexts for s:

– for es: s and $ with frequency 1;
– for s: s with frequency 2, l with frequency 1, and $ with

frequency 2;

Significant additional savings of the PPM encoding are
achieved using the Exclusion Principle (EP). The idea is
that in case k < kmax , one can exclude all characters that
appear in longer contexts than k, from appearing in the con-
text of k. The reason for the exclusion of a character � is
that if � does appear in a higher context than that indexed
k, and � is the following character to be encoded, it would
have already been used at that higher context, and the con-
text length would not have been shortened. As the encoder
switched down to a shorter context, � is not the following
character to be encoded, and can therefore be removed from
the current context. The EP enhancement increases the
probabilities of the characters in the context of size k, and
thus, the encoding may become more efficient.

p���
7

(�) =
1

4
, p���

7
(�) =

1

4
, p���

7
($) =

1

2
.

Assume our running example is extended by ly to the
text losslessly indexed 0 to 9, and the encoder is
about to encode the character y at position 9. The context
of length kmax = 2 is sl, which occurs also at position 3 as
the context for e. As y does not appear in the context of
sl, the character $ is encoded with probability 1

2
 (e and $

are both with frequency 1). Shortening the context to only
the character l, the decoder already rules out the charac-
ter e for being the following character to be decoded. The
characters that appear with context l are o and e and occur
once in this context. Thus, PPMC assigns the (backward)
frequency 2 to $. After applying the EP, e is already ruled
out by its appearance in a higher context; thus, the original
distribution

is changed to

p���
9

(�) =
1

4
, p���

9
(�) =

1

4
, p���

9
($) =

1

2

p���+��
9

(�) =
1

3
, p���+��

9
(�) = 0, p���+��

9
($) =

2

3
.

 SN Computer Science (2022) 3:239239 Page 6 of 10

SN Computer Science

The character $ is encoded and the context is shortened by
1. The empty context, k = 0 , contains all characters that have
already occurred in T, that is, l, o, s and e. By EP,
characters e and o are ruled out, leaving only l, s and $
with frequencies 3, 4 and 4, respectively. $ is then encoded
with probability 4

11
 , and the context index changes to k = −1

where y is given the probability 1
2
 , because all characters

other than $ are excluded. Note that the $ is needed in con-
text k = −1 for encoding EOF. The character y is encoded
by $$$y with probabilities 1

2
 , 2
3
 , 4
11

 and 1
2
 , instead of with

probabilities 1
2
 , 1
2
 , 4
13

 and 1
6
 in case EP is not used. The entropy

is reduced by 2.24 bits using EP.
The encoding algorithm with PPMC is given for self-

containment. The PPMC decoding is symmetrical. Algo-
rithm 1 presents the way each individual character ti of T
gets processed assuming a maximal size context of kmax . It
uses a local list L to store the characters on which the EP
applies. At a prefix T[1, kmax − 1] of T when ti gets processed
for i < kmax , the parameter kmax of PPM_Encode is initial-
ized by i − 1 , the number of the already processed characters.
Otherwise, kmax is the order of PPMC. The local variable
str stores the current context, starting with the maximal
sized context and progressively shortening it when ti has
never been seen in that context. If ti has already been seen
in the context of str, it is encoded according to that prob-
ability distribution and the PFT is updated by increment-
ing the frequency, b-freq, of ti in the str context, denoted
by b-freq(ti | str) . Otherwise, the $ sign is encoded in the
context of str, the prediction frequency table is updated and
the length of str is shortened by eliminating its leftmost
character. The EP is implemented by eliminating all other
characters that appear in context str from shorter contexts for
ti . For more details, we refer the reader to [12].

PPM + Forward Compression

As mentioned above, the Forward looking paradigm “looks
into the future”, and uses the information of what is still to
come. At first sight, it seems worthwhile to use as much
knowledge as possible about the text, that is, the frequencies
of all characters for each possible context of length ≤ kmax .
However, encoding this information implies a storage over-
head on the compressed form that might be prohibitive in
terms of the amount of RAM that can still be handled effi-
ciently. The extra information needed for merely pairs of
characters is already a factor of |Σ| larger than that needed
for single characters, which is too expensive to justify the
forward looking approach. The idea is thus to use only the
information about the global frequencies of the individual
symbols (context of size 0), similarly to Forward, that may

imply only a negligible overhead for large files and fixed size
alphabets, typically up to size 256.

The proposed algorithm integrates both strategies: it uses
the past, like PPM, to predict the current symbol, and uti-
lizes its limited knowledge of the future, as in Forward,
to enhance the prediction. As the alphabet and the exact
frequencies of the characters in the underlying text are
known in advance, there is no need in the context referring
to k = −1.

Consequently, the escape symbol $ is not required for
k = 0 . The frequencies in a context of size 0 are updated
to reflect the number of occurrences f-freq of each symbol
in the remaining portion of the file, while the frequencies
b-freq of characters in higher contexts correspond to the
number of occurrences seen in the already processed por-
tion of the file up to the current point. After processing ti of
T, f-freq(ti) in a context of size 0 is reduced by 1 accord-
ing to the forward looking paradigm. In case f-freq(ti) = 0 ,
we wish to remove ti from all entries in the PFT that con-
tain ti , either in their context or as the predicted character.
This elimination must be performed gradually, and only at
position i + kmax , all relevant entries would effectively be
removed.

More precisely, in the special case when f-freq(ti) in con-
text 0 becomes 0 after processing position i, ti is removed
from being the next predicted character in the columns
headed � in the PFT. After processing position i + 1 , the
entries of the PFT that have ti as the rightmost character of
their context can be removed. Generally, an entry referring
to context str can be deleted from PFT after processing posi-
tion i + j , in case ti occurs at the jth position from the right
of str, 1 ≤ j ≤ min(|str|, kmax).

Using our running example, Table 2 presents the contexts
up to size kmax after the prefix lossle of T has been pro-
cessed. The upper part of the table is the prediction made
by PPM, while the lower part is the prediction frequency
table for PPM+F. Each main column corresponds to a dif-
ferent context size starting from k = kmax = 2 and ending
with k = −1 , which is not applicable for PPM+F. Each col-
umn is internally divided into sub-columns presenting the
context, headed by con, a symbol � ∈ Σ , and the frequency
of � within that context (headed by b-freq, except for context
of size 0 of PPM+F that corresponds to f-freq). As can be
seen, the prediction for PPM+F is more accurate on this
example, resulting in lower average information content.

Discussion

For an input file T to be encoded, let T��� and T���+� denote
the actual symbols that are produced by PPM and PPM+F,
respectively, i.e., including the escape codewords denoted by

SN Computer Science (2022) 3:239 Page 7 of 10 239

SN Computer Science

$, which have been adjoined to T. In fact, T��� and T���+�
differ only for the following two cases:

1. there is a missing $ in T���+� whenever T��� uses the
context of size −1;

2. the last appearance of a symbol is not coded in T���+� ,
and in particular, the last symbol of T, or a run of identi-
cal last symbols, is not coded.

For 0 < k ≤ kmax , the distribution of the symbols in the con-
text of size k for PPM+F is the same as for PPM, except for
when symbols start to disappear. We consider the distribu-
tion at position i of T���+� , and partition the characters that
occur in the context of size k into two subsets:

– Xi is the set of characters that do not occur in the remain-
ing portion of T���+�;

– Yi is the set of characters that will still occur in the
remaining portion of T���+�;

At position i of T���+� = s
1
s
2
⋯ , the current character si is

encoded using the probability for si according to the distri-
bution of the maximum possible current context of size k,
following the escape code for longer contexts, if any. The
probability of an occurrence of si according to PPM is

where the denominator sums the frequencies of all the char-
acters of Σ , and |X

i
| and |Y

i
| are added as the frequency of

p1 =
b-freq (si)∑

x∈Xi
b-freq (x) +

∑
y∈Yi

b-freq (y) + �Xi� + �Yi�
,

the escape symbol, while the probability of an occurrence
of si according to PPM+F for context k > 0 is

as above, but including only the characters in Yi that will
still appear. Obviously, p1 ≤ p2 , implying that for contexts
of size k > 0

The additional symbols that only occur in T��� and not in
T���+� may only increase the size of the compressed file by
PPM.

Imagine an intermediate algorithm, inter-Algo, that for
context k = 0 , uses the backward frequencies as done by
PPM+F for contexts k > 0 , instead of the forward frequen-
cies. That is, inter-Algo operates just as PPM, except that
it is also given the exact frequencies f-freq of the characters
of the input file, and it removes irrelevant entries from PFT
when possible, similarly to PPM+F.

Obviously, the claim in (1) for k > 0 can be extended to
k = 0 , resulting in

where, here and below, the net size refers to the compressed
file only, excluding the header with the frequencies. Our
motivation for the PPM+F algorithm is the theorem proved
in Ref. [19] that for a given input file and adaptive coding

p2 =
b-freq (si)∑

y∈Y b-freq (y) + �Yi�
,

(1)
the information content of si by ���

cannot be smaller than that for ��� + �.

(2)
the net size of the inter-Algo encoded file

is no more than that of PPM encoding,

Table 2 PFT: Prediction
frequencies after having
processed the prefix lossle
of T = lossle ssly for PPM
and for PPM+F

For each context con of size k, −1 ≤ k ≤ 2 , the possible characters � and their (backward) frequencies are
listed

SIze k = −1 k = 0 k = 1 k = kmax = 2

con � con � b-freq con � b-freq con � b-freq

PPM – Σ ∪ $ 1 � l 2 l o 1 lo s 1
e 1 e 1 $ 1
s 2 $ 2 os s 1
o 1 o s 1 $ 1
$ 4 $ 1 ss l 1

s s 1 $ 1
l 1 sl e 1
$ 2 $ 1

con � con � f-freq con � b-freq con � b-freq

PPM+F – – – � l 1 s s 1 ss l 1
s 2 l 1 $ 1
y 1 $ 2

 SN Computer Science (2022) 3:239239 Page 8 of 10

SN Computer Science

Therefore, we replace the backward frequencies of context
k = 0 with the forward ones to enhance the compression effi-
ciency. We do not know if claim 3 can be extended to show-
ing that PPM+F is always better than PPM, even though
our empirical results support this claim, as can be seen in
“Conclusion” section.

In any case, even if the claim holds for the entire file, it is
not necessarily true that each codeword of PPM+F, at every
position, is of equal length or shorter than the corresponding
codeword of the PPM code, as illustrated in the following
subsection.

Examples

Consider as example the file T = ��
1023 . The traditional

PPM uses log2 3 bits to encode the first a, as the probability
for the context corresponding to k = −1 is 1/3 for the alpha-
bet of size 2 and the adjoined escape symbol. On the other
hand, PPM+F uses the context 0 with frequencies 1 and
1023 for a and b, respectively, encoding the a by 10 bits, for
its probability at the first point of the file is 1/1024. This gap
vanishes when the bs are encoded, no matter what parameter
kmax is used. While PPM+F has all the information needed
to encode the run of 1023 bs without any additional bits, the
traditional PPM only then starts learning the distribution.
As example assume that kmax = 1 . In this case, the encoding
of two $s follow the encoding of the a, with probabilities
1 and 1/2 for context sizes 1 and 0, respectively, because in
context 0, a appears in addition to the $ symbol. The first b
then uses the probability 1/3 with log2 3 bits. The second b
is encoded by an escape code for context 1 with probability
1, as it is the first time that b appears in the context of b.
The b is then encoded with probability 1/4 as the distribu-
tion for context 0 is

From this point onward, only the context of size 1 is used for
the encoding of the following bs with probabilities 1/2, 2/3,
3/4,..., 1021/1022 while increasingly more bs are encoun-
tered in the context of b. The final EOF then uses three $
signs with probabilities 1/1023, 2/1026, and 1/3, in which
the first two are used to escape from context of size 1 and
from context of size 0.

Interestingly, if T is the text ��1022� , the bs must be
encoded by PPM+F. Both algorithms operate identically for
encoding the bs in context 1, starting from the third appear-
ance of b with probabilities 1/2, 2/3, 3/4,… , 1020/1021.
While PPM starts as in the previous example, PPM+F
encodes $ and a in contexts of sizes 1 and 0 with

(3)
the net size of the Forward encoded file

is less than that of the backward encoding .

p���
1

(�) =
1

4
, p���

1
(�) =

1

4
, p���

1
($) =

2

4
.

probabilities 1 and 2/1024, the latter with occurrences a=2
and b=1022 (as $ does not occur in the empty context).
Next, $, b, $ and b are encoded in contexts of sizes 1, 0,
1, and 0 with probabilities 1, 1022/1023, 1, and 1021/1022,
respectively. The last a is not encoded by PPM+F, but is
encoded by PPM as $ and a in contexts of sizes 1 and 0
and probabilities 1/1022 and 1/1025. The EOF is encoded
again by three $ signs and probabilities 1/1022, 2/1026, and
1/3, for contexts of sizes 1, 0, and −1 . Obviously, the 10 bits
for the encoding the first a by PPM+F and the encodings
of the bs in context of size 1 are approximately balanced by
the encoding of the two escape symbols for the EOF and the
encodings of the bs in context of size 1 by PPM. Neverthe-
less, the remaining encodings only belong to PPM, implying
a larger compressed file.

Next, we propose a hybrid approach that combines PPM
and Forward Looking, but tries to overcome the expensive
overhead of transmitting the entire set of character frequen-
cies. We consider a sequence of subsets S of Σ of increasing
size, starting with the empty set, and ending with the entire
alphabet Σ . Thus, the traditional PPM corresponds to the
alphabet of size 0, and PPM+F corresponds to the alphabet
of size Σ . The hybrid approach requires the context corre-
sponding to k = −1 , used when a character is encountered
for the first time, because only a partial alphabet is known.
We then use the uniform distribution, as in the traditional
PPM, over the alphabet of size |Σ| − |S|.

It turns out that the compression efficiency is not cor-
related with the number of individual characters used in the
PPM+F algorithm. That is, for a given subset S of Σ , the
compression efficiency of PPM+F given the knowledge of
the frequencies of the characters in S does not necessarily
improve as S becomes larger. One could have expected that
as the size of the subset S of Σ increases, the better the com-
pression efficiency gets. However, the following example
shows that this is not true.

Let T be a text over the alphabet Σ = {�, �, �, �} with fre-
quencies 1, 5, 16, and 2, respectively, and assume a prefix
cd of T. We encode T using PPM+F with kmax = 1 , and we
assume that we start with S = � and that the characters �, �, �
and � are adjoined to S in this (lexicographic) order.

For S = {�} , only the frequency for a is known. When c, the
first character of T, is processed, the distribution according to the
current knowledge is P���+�

0
=

{
p
���+�
0

(�) =
1

2
, p

���+�
0

($) =
1

2

}
 ,

and the character c at position 0 is encoded by two $s with proba-
bilities 1 and 1

2
 , respectively, since c does not occur in the context of

length k = 1 , nor in the context of length k = 0 . These two $s are
followed by the encoding of c, with probability 1

4
 in the context of

size −1 . The information content is 0, 1, and 2 bits for $, $ and c,
respectively, for a total of 3 bits. The distribution for the empty con-
text is updated to P���+�

1
=

{
p
���+�
1

(�) =
1

4
, p

���+�
1

(�) =
1

4
,

p
���+�
1

($) =
1

2

}
 , and the character d at position 1 is encoded again

SN Computer Science (2022) 3:239 Page 9 of 10 239

SN Computer Science

by two $s followed by d, with the same probabilities and, conse-
quently, the same information content of 3 bits.

For S = {�, �} , the frequency for b is also known in addi-
tion to the frequency for a. When c is processed, the known
d i s t r ibu t ion fo r t he con tex t o f s i ze 0 i s
P
���+�
0

=

{
p
���+�
0

(�) =
1

8
, p

���+�
0

(�) =
5

8
, p

���+�
0

($) =
1

4

}
 , and

the character c at position 0 is encoded by two $s with prob-
abilities 1 and 1

4
 , as c does not occur in the contexts of length

k = 1 and k = 0 , followed by the encoding for c, with prob-
ability 1

4
 . The information content is 0, 2, and 2 bits for both

$s and c, respectively, for a total of 4 bits, which is one bit
more than for the case S = {�} . The next character d at posi-
tion 1 is encoded by two $s followed by d, with probabili-
ties, 1, 3

10
 , and 1

3
 , with information content 0, 1.736 and

1.585, as the distribution for the empty context is revised to

The total information content, 3.321, is again larger than the
information content for the case of S = {�} . Table 3 sum-
marizes this example, showing that for S = {�, �} , we need
6.906 bits, while for S = {�} , we need 6 bits. The example
illustrates that more information does not necessarily reduce
the size of the encoding.

Experimental Results

To evaluate the compression savings of the suggested
PPM+F method relative to the original PPM compression
algorithm, we have considered severaldatasets of different
sizes and nature, and using different alphabets. The last six
datasets have been downloaded from the Pizza & Chili
Corpus1.

{

p���+�
1 (�) = 1

10
, p���+�

1 (�) = 1
2
, p���+�

1 (�) = 1
10
, p���+�

1 ($) = 3
10

}

.

– ftxt is the French version of the European Union’s JOC
corpus, a collection of pairs of questions and answers on
various topics used in the ArCAde evaluation project [20];

– etxt is the translation of ftxt into English;
– fe/ef are the concatenations of ftxt and etxt, fe for ftxt

before etxt, and ef in the other order;
– XML provides bibliographic information on major com-

puter science publications, obtained from dblp.uni-trier.
de;

– dna is a sequence of gene DNA sequences obtained from
the Gutenberg Project;

– english is the concatenation of English text files selected
from the Gutenberg Project;

– pitches is a sequence of pitch values (bytes in 0-127, plus
a few extra special values) obtained from a myriad of
MIDI files freely available on Internet;

– proteins is a sequence of protein sequences obtained from
the Swissprot database; and

Table 3 Example of the hybrid
PPM + Forward Looking for
T = ��⋯ , comparing alphabet
subsets S = {�} and S = {�, �}

The leftmost column shows the coded characters, the other columns give the probability distributions, the
probability of the encoded character, and the corresponding information content in bits

S = {�} S = {�, �}

(p
�
, p

�
, p

�
, p

�
, p$) p − log(p) (p

�
, p

�
, p

�
, p

�
, p$) p − log(p)

$ (0,0,0,0,1) 1 0.000 (0,0,0,0,1) 1 0.000
$ (

1

2
, 0, 0, 0,

1

2
) 1/2 1.000 (

1

8
,
5

8
, 0, 0,

1

4
) 1/4 2.000

c (−,
1

4
,
1

4
,
1

4
,
1

4
) 1/4 2.000 (−,−,

1

3
,
1

3
,
1

3
) 1/3 1.585

$ (0, 0, 0, 0, 1) 1 0.000 (0,0,0,0,1) 1 0.000
$ (

1

4
, 0,

1

4
, 0,

1

2
) 1/2 1.000 (

1

10
,
1

2
,

1

10
, 0,

3

10
) 3/10 1.736

d (−,
1

4
,
1

4
,
1

4
,
1

4
) 1/4 2.000 (−,−,

1

3
,
1

3
,
1

3
) 1/3 1.585

Total 6.000 6.906

Table 4 Compression performance with kmax = 3

For every test file, the best performance is emphasized

File Size of Encoded file
(bytes)

Size |Σ| PPM PPM-Forward

net-encoding total

ftxt 7,648,930 132 1,973,912 1,973,801 1,974,049
etxt 6,611,031 125 1,628,998 1,628,596 1,628,870
ef 14,259,961 134 3,880,801 3,880,232 3,880,500
fe 14,259,961 134 3,881,723 3,881,429 3,881,697
XML 4,194,304 91 666,194 665,985 666,215
dna 52,428,800 16 12,581,286 12,581,235 12,581,275
english 52,428,800 176 15,858,858 15,856,738 15,857,114
pitches 4,194,304 125 2,118,754 2,117,892 2,118,185
proteins 52,428,800 25 26,643,210 26,643,105 26,643,199
sources 4,194,304 99 1,105,969 1,105,560 1,105,839

1 http:// pizza chili. dcc. uchile. cl.

http://pizzachili.dcc.uchile.cl

 SN Computer Science (2022) 3:239239 Page 10 of 10

SN Computer Science

– sources is a C/Java source code file formed by the con-
catenation of .c, .h, .C and .java files of the linux-2.6.11.6
and gcc-4.0.0 distributions.

The first three columns of Table 4 summarize the infor-
mation regarding the used datasets. The last three columns
present the compression results given in bytes for kmax = 3 .
The fourth column presents the size of the compressed file
using the original PPM algorithm. The compression perfor-
mance of our proposed method PPM+F is shown in the last
two columns, where the net size of the encoding is depicted
in the fifth column and the total size, including the header,
whose size is bounded by O(|Σ| log n) , is given in the last
column, headed net-encoding and total, respectively.

On the shown examples the net encoding for PPM+F
slightly improves on PPM. For ftxt and XML, while the com-
pressed file itself is smaller for PPM+F than for PPM alone,
the addition of the header increases the size over that of pure
PPM, so for these cases, it would not be worthwhile to apply
the newly suggested combination of PPM with Forward.

We wish to emphasize that the purpose of the chosen
experiments was not to show significant improvements by
our newly suggested method. The difference between the
classical PPM and the new method combining it with some
features of the Forward looking paradigm relates only to the
first appearances of each of the characters (context k = −1
in PPM), generally quite close to the beginning of a file, as
well as to their disappearance towards the end of the files.
We therefore expect the corresponding encoding sizes to
differ only at the beginning and ending of the compressed
files, and these differences will become less significant for
increasingly larger test files. On the other hand, restricting
the tests only to very small files would not allow us to show
the full power of PPM, whose good performance depends
on the availability of significant statistics for ever-growing
contexts.

Conclusion

In this paper, we integrate the Forward Looking variant
of dynamic Huffman or arithmetic encoding with the PPM
algorithm, and provide empirical evidence for the improve-
ment of the compression efficiency. The main idea of the
combined algorithm is to predict the following character
based on the symbols that have already been processed as
well as using the knowledge of the exact frequencies in the
text that are still to come.

Aiming at improving PPM, which is known as one of the
best lossless compression schemes, was pretentious to begin
with. However, with a limited knowledge of the text, we

were able to present an enhancement, even though a minor
one, for certain types of files.

Declarations

Conflict of interest The authors declare that they have no conflict of
interest.

References

 1. Cleary JG, Witten IH. Data compression using adaptive
coding and partial string matching. IEEE Trans Commun.
1984;32(4):396–402.

 2. Huffman DA. A method for the construction of minimum-redun-
dancy codes. Proc IRE. 1952;40(9):1098–101.

 3. Witten IH, Neal RM, Cleary JG. Arithmetic coding for data com-
pression. Commun ACM. 1987;30(6):520–40.

 4. Elias P. Universal codeword sets and representations of the inte-
gers. IEEE Trans Inf Theory. 1975;21(2):194–203.

 5. Klein ST, Shapira D. Random access to Fibonacci encoded files.
Discrete Appl Math. 2016;212:115–28.

 6. Tunstall BP. Synthesis of noiseless compression codes. PhD the-
sis, Georgia Institute of Technology. 1967.

 7. Klein ST, Shapira D. On improving Tunstall codes. Inf Process
Manage. 2011;47(5):777–85.

 8. Ziv J, Lempel A. A universal algorithm for sequential data com-
pression. IEEE Trans Inf Theory. 1977;23(3):337–43.

 9. Ziv J, Lempel A. Compression of individual sequences via varia-
ble-rate coding. IEEE Trans Inf Theory. 1978;24(5):530–6.

 10. Storer JA, Szymanski TG. Data compression via textual substitu-
tion. J ACM. 1982;29(4):928–51.

 11. Welch TA. A technique for high-performance data compression.
IEEE Comput. 1984;17(6):8–19.

 12. Moffat A, Turpin A. Compression and Coding Algorithms. In:
The international series in engineering and computer science, 1st
ed., vol. 669. Kluwer, Springer, English; 2002

 13. Klein ST, Saadia S, Shapira D. Forward looking Huffman coding.
Theory Comput Syst. 2021;65(3):593–612.

 14. Fruchtman A, Klein ST, Shapira D. Bidirectional adaptive com-
pression. In: Proceedings of the Prague Stringology Conference
2019; 2019. pp. 92–101.

 15. Klein ST, Shapira D. A new compression method for compressed
matching. In: Data compression conference, DCC 2000, Snow-
bird; 2000. pp. 400–409.

 16. Vitter JS. Algorithm 673: Dynamic Huffman coding. ACM Trans
Math Softw. 1989;15(2):158–67.

 17. Fruchtman A, Gross Y, Klein ST, Shapira D. Weighted adaptive
coding. CoRR abs/2005.08232; 2020.

 18. Fruchtman A, Gross Y, Klein ST, Shapira D. Backward weighted
coding. In: Data compression conference, DCC 2000, Snowbird;
2021. pp. 93–102

 19. Fruchtman A, Gross Y, Klein ST, Shapira D. Weighted Burrows-
Wheeler compression. CoRR abs/2105.10327; 2021.

 20. Véronis J, Langlais P. Evaluation of parallel text alignment sys-
tems: the ArCAde project. In: Véronis J, editor. Parallel text pro-
cessing, Chapter 19. Dordrecht: Kluwer Academic Publishers;
2000. pp. 369–388.

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

	Combining Forward Compression with PPM
	Abstract
	Introduction
	Forward Looking Dynamic Huffman Coding
	Example
	Forward
	static
	adaptive

	PPM Compression
	PPM + Forward Compression
	Discussion
	Examples

	Experimental Results
	Conclusion
	References

