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Abstract
Air pollution due to the presence of small particles and gases in the atmosphere is a major cause of health problems. In urban 
areas, where most of the population is concentrated, traffic is a major source of air pollutants (such as nitrogen oxides or NO

x
 

and carbon monoxide or CO). Therefore, for smart cities, carrying out an adequate traffic monitoring is a key issue, since it 
can help citizens to make better decisions and public administrations to define appropriate policies. Thus, citizens could use 
these data to make appropriate mobility decisions. In the same way, a city council can exploit the collected data for traffic 
management and for the establishment of suitable traffic policies throughout the city, such as restricting the traffic flow in 
certain areas. For this purpose, a suitable modelling approach that provides the estimated/predicted values of pollutants at 
each location is needed. In this paper, an approach followed to model traffic flow and air pollution dispersion in the city of 
Zaragoza (Spain) is described. Our goal is to estimate the air quality in different areas of the city, to raise awareness and help 
citizens to make better decisions; for this purpose, traffic data play an important role. In more detail, the proposal presented 
includes a traffic modelling approach to estimate and predict the amount of traffic at each road segment and hour, by com-
bining historical measurements of real traffic of vehicles and the use of the SUMO traffic simulator on real city roadmaps, 
along with the application of a trajectory generation strategy that complements the functionalities of SUMO (for example, 
SUMO’s calibrators). Furthermore, a pollution modelling approach is also provided, to estimate the impact of traffic flows 
in terms of pollutants in the atmosphere: an R package called Vehicular Emissions INventories (VEIN) is used to estimate 
the amount of NO

x
 generated by the traffic flows by taking into account the vehicular fleet composition (i.e., the types of 

vehicles, their size and the type of fuel they use) of the studied area. Finally, considering this estimation of NO
x
 , a service 

capable of offering maps with the prediction of the dispersion of these atmospheric pollutants in the air has been established, 
which uses the Graz Lagrangian Model (GRAL) and takes into account the meteorological conditions and morphology of the 
city. The results obtained in the experimental evaluation of the proposal indicate a good accuracy in the modelling of traffic 
flows, whereas the comparison of the prediction of air pollutants with real measurements shows a general underestimation, 
due to some limitations of the input data considered. In any case, the results indicate that this first approach can be used for 
forecasting the air pollution within the city.

Keywords  Data management · Sensor data · Traffic flow modelling · Pollution modelling · SUMO · VEIN · GRAL

Introduction

Nowadays, digital data management is more important 
than ever. Modern citizens face a variety of challenges 
(e.g., environmental hazards and health-related issues like 
the spread of the COVID-19) and the availability of good-
quality data can help them make better decisions. Among 
the existing problems, it is known that pollution is a major 
source of health problems [3, 12]. Moreover, there seems to 
be a worrying correlation between air pollution and the dis-
semination of respiratory infections [11, 26, 40, 59]. More 
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specifically, it appears that more pollution entails a higher 
risk of a respiratory illness, so minimizing exposure to air 
pollution (e.g., by reducing the time invested in parking) 
may help to reduce the spread of these diseases. In the case 
of cities, traffic is one of the main causes of the release of 
urban pollutants into the atmosphere [39, 42, 50]. Motivated 
by this fact, we are interested in providing real-time informa-
tion and predictions for the next 48 h related to air quality 
in a city, which involves several activities: (1) the deploy-
ment of a low-cost air quality sensor network to collect air 
quality data about the concentration of several pollutants, 
such as NO, NO2 , CO and O3 ; (2) the modelling of traffic 
flows throughout the city to have estimations of the amount 
of traffic per road segment and hour during the day; (3) the 
estimation of pollution due to these traffic flows; (4) the pre-
diction of how these pollutants are going to disperse in the 
atmosphere, by considering the weather forecast (mainly the 
wind’s speed and direction) for the next 48-h and the shape 
of the city (buildings that affect the dispersion of particles in 
the air); (5) the publication of open data; and (6) the devel-
opment of mobile applications to exploit the collected data, 
considering both the available real-time information and the 
forecast of atmospheric dispersion. For all these purposes, 
different types of data must be collected and integrated, but 
among them traffic data can be highlighted due to the high 
impact of traffic on air pollution.

For smart cities, modelling and managing traffic flow is, 
in fact, a critical topic [2, 14, 51]. However, it is generally 
not possible to accurately monitor the flow of cars in every 
road segment of a city, as this would require an expensive 
sensor infrastructure that must be deployed and maintained. 
Instead, the traffic is measured only at a few key points of 
the city, by deploying suitable sensors, and other techniques 
can be applied to extrapolate the traffic measurements to 
other areas of the city. To do this, a traffic flow model can be 
defined to attempt to estimate traffic flows in the whole city 
that are compatible with the few real observations available. 
Simulation tools, fed with the traffic measurements collected 
by real traffic sensors, can be used to obtain the potential 
traffic flows.

In addition to traffic simulation, there are two other key 
missing pieces to consider. On the one hand, we need to 
estimate the emission of pollutants from vehicles trave-
ling in the city. For this purpose, we can use tools such as 
VEIN [31–33], as well as a variety of input data to drive the 
estimations. On the other hand, we need to estimate how 
those pollutants are going to disseminate in the atmosphere. 
For this, several tools can be considered, such as the Graz 
Lagrangian Model (GRAL) [25].

In this work, we describe our experience with the devel-
opment of a traffic flow and pollution modelling approach 
for the city of Zaragoza (Spain). Even though Zaragoza is 
currently not facing serious pollution issues, atmospheric 

pollution is a cause of great and growing concern around the 
world, due to the impact on health. Moreover, pollution due 
to road traffic within urban areas is a growing concern [5]. 
If the problem of pollution continues and the consequent 
health issues raise, the regulations may be more strict and 
new traffic policies would need to be adopted. Therefore, 
the definition and deployment of approaches such as the 
one presented in this paper are highly valuable. The city of 
Zaragoza has a well-equipped network of air quality moni-
toring stations, and therefore it is an ideal city for testing 
these approaches.

With a population of around 700,000 inhabitants, 
Zaragoza is the fifth most populous city in Spain. It is 
located in the northeast side of the country, on the banks 
of the mighty Ebro River. Zaragoza has a cool semi-arid 
climate; specifically, it has warm dry summers (with daily 
mean around 25 ◦ C and possible high temperature over 40 ◦

C), and dry cold-to-moderate winters (daily mean tempera-
ture around 8 ◦C). It has very little rainfall throughout the 
year, with an annual precipitation of about 320 mm. The 
number of vehicles registered in the city is about 630,000 
and the fleet is mainly composed by Light Duty Vehicles 
(LDV). Another source of air pollutants that can be consid-
ered within the city is domestic heating which, in the case 
of Zaragoza, mainly use natural gas as fuel.

The present work significantly extends our previous con-
ference paper [35], focused only on traffic, by including all 
the aspects related to pollution modelling, a description of 
the relevant data sources, a variety of new experiments, and 
more detailed and refined descriptions and explanations. 
The structure of the rest of this paper is as follows (see 
Fig. 1 for an overview). In the “Input Data Sources” sec-
tion, we describe the input data sources that we consider. In 
the “Traffic Modelling Approach” section, we present our 
approach for traffic modelling. In the “Pollution Modelling 
Approach” section, we focus on the pollution modelling 
approach, i.e., how pollutant emissions due to traffic are esti-
mated and how they are dispersed in the urban atmosphere. 
In the “Experimental Evaluation” section, we present the 
experimental evaluation that we have performed to assess 
the validity and benefits of our modelling approach. Finally, 
in the “Conclusions and Future Work” section, we present 
our conclusions and some future research directions.

Input Data Sources

In this section, we describe the different input data sources 
considered in this work (see Fig. 2 for an overview). First, 
in the “Traffic Data” section, we focus on traffic data. Road 
network data are explained in the “Road Network” section. 
Then, in  the “Vehicle Fleet Composition Data” section, 
available data about the vehicle fleet composition for the 
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city of Zaragoza are described. After that, in the “Meteoro-
logical Data” section, we focus on meteorological data, that 
play an important role in atmospheric pollutant dispersion. 
For the forecast of the dispersion within the urban area, it is 

also crucial to create a 3D representation of the city build-
ings, which is the focus of the “City Building Data” section. 
In the “Air Quality Data” section, we tackle air quality data. 
Finally,  the “Additional Non-traffic Emissions” section is 

Fig. 1   Overview of the structure of the paper

Fig. 2   Overview of the data sources considered
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dedicated to describing other sources of emissions produced 
within an urban area, beyond the traffic of vehicles. We inte-
grate the data provided by all these data sources in a data-
base, to facilitate their exploitation for traffic and pollution 
modelling; as a Database Management System (DBMS) we 
use PostgreSQL [54] with the PostGIS [48] extension to 
handle spatial data.

Traffic Data

In this section, we describe the types of available traffic data 
that are collected in the city of Zaragoza. First, in the “Travel 
Time and Average Speed Data” section, we focus on travel 
time and average speed data of some city routes, which can 
be obtained thanks to a system based on the capture of data 
from Bluetooth devices. Then, in the “Traffic Counts Data” 
section, historical traffic data provided by other types of 
detectors (inductive coils and pneumatic tubes connected to 
traffic counters) are considered.

Travel Time and Average Speed Data

The Zaragoza City Council provides a map with traffic 
information (see Fig. 3) for some road segments (https://​
www.​zarag​oza.​es/​ciudad/​viapu​blica/​movil​idad/​trafi​co/​trafi​
co.​htm), distinguishing among fluid, dense, and congested 
traffic. It is built considering the measurements obtained by 
several Bluetooth antennas distributed throughout the city, 
which use Worldsensing’s Bitcarrier Traffic Flow Manage-
ment technology [57, 58]. Furthermore, specific routes from 
one antenna to another antenna, denoted as “links”, are also 

defined (see Fig. 4 for an example). The average speed of the 
vehicles that went through a link within a specific time inter-
val (5 min) is computed by considering the distance between 
the antennas and the time needed by the vehicles to traverse 
that link. Moreover, real-time traffic information containing 
the travel time of certain routes (origin-destination, usually 
represented as an intersection of two roads and/or popular 
points of interest in the city) is published as open data (at 
https://​www.​zarag​oza.​es/​sede/​portal/​datos-​abier​tos/​servi​cio/​
catal​ogo/​291) and in JSON format (http://​www.​zarag​oza.​es/​
trafi​co/​estado/​tiemp​os.​json).

With these data, it would be possible to define a partially-
filled origin-destination matrix with several travel times, 
which is insufficient for the purposes of this work since, as 
stated before, only some routes of the city are covered (for 
example, a query submitted on March 25, 2020, returned 
only 24 routes). Moreover, only data about travel time are 
available and we need specific data of the number of vehicles 
in as many road segments of the city as possible.

As a potential alternative data source, Google Maps [24] 
offers an overall view of the traffic density in different areas 
of a city (a green color is used to represent no traffic delays, 
orange is used for a medium amount of traffic, and red indi-
cates traffic delays—the darker the red, the slower the traf-
fic—) as well as information related to several types of traffic 
incidents (accidents, constructions, road closures, and other 
incidents). Besides, there is an option to visualize either the 
live traffic or the typical (expected) traffic. It covers many 
streets in the city of Zaragoza (although some secondary 
streets are not currently considered, according to what we 
have observed on March 11, 2020). Besides, it does not 

Fig. 3   Snapshot of a portion of the real-time traffic map provided by the website of the City Council of Zaragoza (data as of March 27, 2020, at 
12:40); figure extracted from [35]

https://www.zaragoza.es/ciudad/viapublica/movilidad/trafico/trafico.htm
https://www.zaragoza.es/ciudad/viapublica/movilidad/trafico/trafico.htm
https://www.zaragoza.es/ciudad/viapublica/movilidad/trafico/trafico.htm
https://www.zaragoza.es/sede/portal/datos-abiertos/servicio/catalogo/291
https://www.zaragoza.es/sede/portal/datos-abiertos/servicio/catalogo/291
http://www.zaragoza.es/trafico/estado/tiempos.json
http://www.zaragoza.es/trafico/estado/tiempos.json
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provide fine-grained traffic information such as the counts 
of vehicles on different road segments.

As we need more fine-grained data, covering as much of 
the city as possible, instead of using these travel time and 
average speed data we will use historical traffic counts data 
provided by static traffic sensors, as described in the “Traf-
fic Counts Data” section; thus, with the historical traffic 
counts data we have precise traffic counts for 46 road seg-
ments. Nevertheless, the types of data described in this 
section could potentially be used to feed our SUMO traf-
fic model (described in the “Traffic Modelling Approach” 
section) with real-time travel data, to refine it. However, 
including these data is not direct and an in-depth analysis 
of the required strategy would be required, since we need 
data about the number of vehicles on the road segments as 
an input to SUMO.

Traffic Counts Data

Fortunately, the Zaragoza Traffic Control Center also pro-
vided us with some historical data obtained from both static 
traffic devices and mobile traffic devices that measure the 
traffic flow in the different road segments of the city:

–	 Static traffic devices (called “permanent stations”) are 
46 devices installed in different positions of the city of 
Zaragoza, as shown in Fig. 5, generated using QGIS [49], 
where the static traffic devices are highlighted in red. 

These devices are inductive coils located under the 
asphalt that provide traffic data 24 h a day for every day 
of the year, which is why they are said to be “permanent”. 
Usually, there are two devices in the same road, one for 
each direction of circulation. However, there are two road 
segments where there is only one device measuring the 
traffic in just one direction (see Fig. 6).

–	 Mobile traffic devices (termed “annual stations”) are 
mobile devices installed in different points of the city 
along the year (e.g., in a total of 546 different locations 
in 2019 and 652 in 2020). More specifically, they are 
pneumatic tubes on the roads connected to traffic counter 
devices. As in the case of static devices, there are usually 
two devices on the same road (one for each direction of 
circulation), but there are also exceptions. There is a set 
of predefined locations where these mobile devices can 
be located; however, in each location there is a device 
measuring traffic only for a few days (e.g., in 2019 an 
average of 3 days with a standard deviation of 0.63), as 
the static devices are moved around these defined loca-
tions from time to time. The predefined locations are 
called “annual stations” because the devices installed 
there try to predict the average annual traffic density in 
work days or “Intensidad Media Laborable” (IML) in 
Spanish.

Fig. 4   Example of a route whose average travel speed is measured using Bluetooth devices (City Council of Zaragoza); figure extracted 
from [35]
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Using these historical traffic data, we can feed SUMO 
with the information needed to build our traffic model, which 
is able to estimate the traffic flow for each road segment of 
the city at any time instant, as we describe in the “Traffic 
Modelling Approach” section.

Road Network

The roadmap of the city of Zaragoza, obtained from Open-
StreetMap [47] in OSM (OpenStreetMap) format, allows 
to retrieve the different road segments where traffic flows 
should be considered as a source of pollution emissions. It 
includes, besides the road graph, information such as the 
number of lanes and speed limit of each road section, turn 
restrictions, and the presence of traffic lights. The roadmap 
is stored in our database to facilitate its use.

In Fig. 7, we show the workflow defined for the crea-
tion of a roadmap in the format required by SUMO. First, 
a Python script queries the database, to obtain information 
about the roadmap of Zaragoza, and generates a file with the 

roadmap in OSM format. Then, another Python script takes 
the OSM file and transforms it into a roadmap file compat-
ible with SUMO, by using the SUMO tool netconvert [21].

Vehicle Fleet Composition Data

To estimate the emissions of pollutants in the city of 
Zaragoza, not only information about the traffic flows is 
needed, but also data about the types of vehicles, the type 
of fuel they use, their year of registration, number of cylin-
ders, and maximum load. This information is what we call 
vehicle fleet composition, and has been obtained from the 
General Direction of Traffic of the Spanish Government. 
These data have been directly downloaded from the official 
website (https://​sedea​pl.​dgt.​gob.​es/​WEB_​IEST_​CONSU​
LTA/​categ​oria.​faces) and stored in the database. For this 
purpose, a suitable Extract, Transform and Load (ETL) pro-
cess has been defined to load the data in the database. As the 
download of data from the website is protected by a captcha, 
the downloading step has to be performed manually.

Fig. 5   Static traffic devices in the city of Zaragoza (snapshot of QGIS); figure extracted from [35]

https://sedeapl.dgt.gob.es/WEB_IEST_CONSULTA/categoria.faces
https://sedeapl.dgt.gob.es/WEB_IEST_CONSULTA/categoria.faces
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Meteorological Data

To perform the dispersion simulations, information about 
weather forecasts is required. The data used in this work 
have been provided by MeteoGalicia, which is the Gali-
cian Regional Weather Service (DX de Calidade Ambien-
tal e Cambio Climático, Xunta de Galicia). The Weather 
Research Forecast (WRF) from MeteoGalicia provides 
hourly data with a 12 × 12 km2 grid resolution for the city of 
Zaragoza. This meteorological information mainly includes 

wind data (speed and direction), vertical temperature vari-
ation, and solar radiation data, to compute the Stability 
Class (SC) according to the US-EPA SRDT method [16]. 
The stability class represents a simple way to classify the 
atmospheric conditions that are critical for the dispersion 
of pollutants.

Fig. 6   Example of two static devices measuring traffic on two road segments in just one direction (maps provided by OpenStreetMap; screen-
shots of the spatial data viewer of the DBeaver tool, available at https://​dbeav​er.​io); figure extracted from [35]

Fig. 7   Workflow used to create a roadmap in the format required by SUMO; figure extracted from [35]

https://dbeaver.io
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City Building Data

A 3D representation of the city buildings is needed for a cor-
rect estimation of the dispersion of pollutants in the atmos-
phere. This information has been obtained from the Spanish 
cadastre (http://​www.​catas​tro.​minhap.​es), where a database 
of urban cadastre is available, from which geometric rep-
resentations of buildings of urban areas can be obtained. 
Each building, among other attributes, is characterized by a 
geometric polygon that defines its shape and a textual attrib-
ute that encodes the type of construction and the number of 
floors. The data model of the dataset corresponds with the 
INSPIRE Directive for the spatial theme Buildings [36]. The 
downloaded dataset contains two features types: Building 
and BuildingPart. In BuildingPart, there is an attribute that 
is particularly relevant to our purposes: numberOfFloors-
AboveGround, which contains the number of floors above 
ground, from which the height of the building can be esti-
mated by considering an approximate height of 3 meters 
for each floor. In this way, it is possible to construct a 3D 
representation of each building. Once the height has been 
estimated, shapefiles containing this information are pro-
vided to GRAL as input data.

Air Quality Data

In this work, two sources of air quality data can be distin-
guished: Air Quality Monitoring (AQM) stations (described 
in the “Air Quality Monitoring Stations (AQM)” section) 
and low-cost sensors (described in the “Low-Cost Sensors” 
section).

Air Quality Monitoring Stations (AQM)

The Zaragoza City Council has installed 8 air quality regula-
tory stations throughout the town, well equipped to monitor 
the concentrations of several air pollutants in representative 

locations of the city with different traffic characteristics. 
The names/locations, official identifiers, and site types of 
the AQM stations (the site type depends on the environ-
ment where the station is located, which can be an industrial 
zone, an urban traffic zone —close to urban roads with traffic 
activity—, or a background zone) are reported in Table 1. 
The main purposes of the data provided by these stations are 
to calibrate low-cost air quality sensors (as briefly described 
in the “Low-Cost Sensors” section), to create real-time urban 
air-quality maps, and to test and validate pollution dispersion 
forecasts obtained.

Data about the concentration of several atmospheric 
pollutants (e.g., NO2 , CO, particulate matter, and O3 ) are 
published every hour at the city council’s official website 
(https://​www.​zarag​oza.​es/​sede/​portal/​medio​ambie​nte/​calid​
ad-​aire/). We obtain those data from the Open Data Portal of 
the city council (by querying a SPARQL endpoint, available 
at https://​www.​zarag​oza.​es/​sede/​portal/​datos-​abier​tos/​servi​
cio/​sparql); besides, data obtained with a higher frequency 
are provided to us by email for the calibration of the low-
cost air quality sensors described in the “Low-Cost Sensors” 
section.

Low‑Cost Sensors

We have deployed 10 low-cost air quality sensors (manufac-
tured by Decentlab GmbH, Duebendorf, Switzerland) across 
the city of Zaragoza, covering areas with different urban 
traffic conditions (intense or moderate traffic). Each unit 
consists of several Alphasense electrochemical cells to esti-
mate NO, NO2 , CO and O3 pollutants, along with the relative 
humidity and temperature. The units are calibrated by co-
location at the AQM stations and subsequently installed at 
a specific location of the city. For each sensor, the raw read-
ings (i.e., the mV measured by the electrochemical cells) are 
collected, and a regression model using a random forest [7] 
is applied to obtain a calibration function and translate the 
raw data into concentration values, exploiting the data from 
the regulatory stations during co-location periods.

Additional Non‑traffic Emissions

In an urban environment, in addition to road traffic, there are 
other sources of pollutant emissions that must be taken into 
account for a good forecast of pollutant dispersion within 
an urban area. In our work, we have also considered the 
following ones:

–	 Domestic heating emissions. During winter time, emis-
sions from domestic heating within the city are not neg-
ligible. Therefore, they have also been considered in our 

Table 1   Names/locations, identifiers, and site type for air quality 
monitoring (AQM) stations in the city of Zaragoza

Name/location Identifier Site type

Actur 40 Urban background
Avda. de Soria 39 Urban traffic (intense traffic)
Centro 38 Urban traffic (moderate traffic)
El Picarral 26 Urban traffic (moderate traffic)
Jaime Ferrán 32 Suburban traffic (moderate traffic)
Las Fuentes 37 Urban traffic (intense traffic)
Renovales 36 Urban background
Roger de Flor 29 Urban traffic (intense traffic)

http://www.catastro.minhap.es
https://www.zaragoza.es/sede/portal/medioambiente/calidad-aire/
https://www.zaragoza.es/sede/portal/medioambiente/calidad-aire/
https://www.zaragoza.es/sede/portal/datos-abiertos/servicio/sparql
https://www.zaragoza.es/sede/portal/datos-abiertos/servicio/sparql
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pollution modelling approach. The NO
x
 annual total 

(ton/year), estimated by the Environmental Agency of 
Zaragoza Council for the year 2015 [4], has been distrib-
uted throughout the city of Zaragoza taking into account 
the distribution of population in the different neighbor-
hoods of the city. Moreover, the external air temperature 
is also considered to estimate the need of using domestic 
heating. So, by forecasting the external air temperature, 
it is possible to have an estimate of the expected non-
industrial combustion emissions for the following days.

–	 Waste management emissions. Within the spatial domain 
considered for the city of Zaragoza, there are some waste 
management plants whose emissions have also been 
considered as input data for our pollution modelling 
approach. Specifically, these plants are: the municipal-
ity cemetery located in the “Torrero” neighborhood and a 
Wastewater Treatment Plant (WWTP) located in the “La 
Almozara” neighborhood. The same source described 
above [4] has been used to estimate emissions from waste 
management treatments.

–	 Main industrial combustion emissions. NO
x
 emissions 

from the three main industrial activities within the spatial 
domain considered for the city of Zaragoza have been 
used, taking into account the height of their chimneys, 
where pollutants are emitted. They operate 24 h a day 

with an almost constant rhythm, which has been reflected 
in the estimation of pollutant emissions.

All these additional data sources are considered in our pollu-
tion modelling approach, by using them as input to the soft-
ware GRAL [25], which is used to estimate the dispersion 
of pollutants (for more details, see the “Graz Lagrangian 
Model (GRAL)” section).

Fig. 8   Traffic flow simulation for an expected special event; figure extracted from [35]

Fig. 9   Data shown for a position clicked on the map of the GUI
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Traffic Modelling Approach

As explained in the “Input Data Source” section, we have 
historical real traffic data measurements for some road seg-
ments in the city, but we need to estimate the traffic at a cer-
tain time instant in all the road segments. For this purpose, 
we need to develop a traffic model.

For an easy exploitation and testing of the traffic model 
by end users, we have developed a Graphical User Interface 
(GUI), which supports basic interaction and visualization 
of the traffic flows in a user-friendly way. The user selects 
the input data and can also indicate optional information in 
case there is some special event in the city that can affect the 
expected traffic flows. As an example, in Fig. 8, we show a 
snapshot of the traffic flow map computed for a day with a 
special event that implies traffic higher than usual. The map 
is interactive, and so, for example, the user can move around 
the map, zoom in or out, or click on a specific location to 
obtain details (an example is shown in Fig. 9).

In this section, first we provide an overview of the traf-
fic modelling approach (“Overview of the Traffic Modelling 
Approach” section), and then we describe the components 
developed (“Components Developed for Traffic Modelling” 
section).

Overview of the Traffic Modelling Approach

A possible approach to obtain a traffic model is to use a 
traffic simulator. For example, VanetMobiSim [28, 29] is 
a Java-based simulator focused on vehicular ad-hoc net-
works (VANETS) [34], and MAVSIM [56] is a simulator 
specifically designed to test applications for VANETS that 

are based on the use of mobile agent technology [55] for 
distributed data management. With these types of simula-
tors, that offer functionalities for vehicle mobility simula-
tion, different types of vehicle mobility models [8, 27] could 
be applied, such as the Random Waypoint Model (RWM), 
the Graph-Based Mobility Model (GBMM), the Constant 
Speed Motion (CSM) model, and the Smooth Motion Model 
(SMM). These mobility models allow a simulation of traffic 
at the individual vehicle level (microscopic simulations), 
but unfortunately they do not support the combination of 
those mobility models with real input traffic data, which is 
needed in our case to exploit the real traffic data available 
(see the “Traffic Counts Data” section).

We are rather interested in obtaining realistic simulations 
that are consistent with real traffic observations. To achieve 
this goal, it is essential to be able to feed real traffic data 
as input for a traffic simulation. The Simulation of Urban 
MObility (SUMO) simulator is a popular simulation tool, 
which supports the definition of calibrators [23] to regulate 
the traffic in specific segments according to the expected 
traffic values. There are also simulators that consider com-
munication network aspects, such as Vehicles in Network 
Simulator (VEINS) [52, 53], which is an open source soft-
ware that supports the re-routing of vehicles based on net-
work messages received, and it is based on SUMO for the 
simulation of traffic and OMNeT++ [46] for the simula-
tion of network communications. However, in our case, we 
are interested in the mobility of vehicles and simulating 
network communication aspects is not among our needs. 
Therefore, in this work, we use and evaluate SUMO, con-
sidering both microscopic and mesoscopic simulations and 
complementing SUMO’s built-in capabilities (such as the 

Fig. 10   Overview of the traffic 
modelling approach; figure 
extracted from [35]
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use of calibrators) with other simulation strategies for traffic 
regulation. Regarding the type of traffic flow model consid-
ered, it should be noted that SUMO provides two of the three 
(only macroscopic models are not supported) main types of 
traffic flow models identified in the literature [38]:

–	 Microscopic simulations [10, 41], where the dynamics of 
each vehicle are modeled individually. This is the default 
simulation model of SUMO.

–	 Mesoscopic simulations [15]. A mesoscopic model com-
bines features of microscopic simulations and macro-
scopic simulations (that focus on average vehicle dynam-
ics like the traffic density). Specifically, the mesoscopic 
model of SUMO, which is based on the work presented 
in [15], “computes vehicle movements with queues and 
runs up to 100 times faster than the microscopic model 
of SUMO” [19].

We have evaluated and compared both types of models in 
our experiments (see the “Microscopic Versus Mesoscopic 
Simulations” section). We concluded that a mesoscopic 
model minimizes the number of errors, and therefore we 
integrated that type of model in our prototype.

In Fig. 10, an overview of the traffic modelling approach 
proposed is shown. The goal of the traffic model is to esti-
mate traffic data on each road segment of the city (i.e., the 
number of vehicles passing through that road segment dur-
ing each hour of the day and their average speed) based on 
a limited set of observed data. More specifically, we exploit 
historical real traffic observations that are available only for 
some road segments (the segments where there is a static 
traffic device, as explained in the “Traffic Counts Data” 
section). In this way, we can obtain an overall picture of 
the traffic in any part of the city without the need to install 
sensors along all the road segments, which would be very 
expensive. Instead, we only exploit the data captured by the 
already-existing sensors installed in the city. Two parameters 
are considered as an input to the proposed traffic modelling 
approach:

1.	 A date parameter, which represents the date for which 
an estimation of the traffic flows throughout the city is 
required. It could be a past day (past traffic data esti-
mation) or a future date (traffic prediction). When the 
input is a past day for which real traffic observations are 
available, the traffic model will estimate the traffic in all 
the road segments of the city based on the available real 
observations. If the input is a future date, then the traffic 
model will try to predict the traffic in the city during that 
day based on the historical data available for some of the 
city road segments.

2.	 Information about special events, which could require 
fine-tuning some parameters of the generated models. 

For example, strict forced transportation constraints 
(e.g., due to environmental protection or emergencies 
like the one caused by the COVID-19) can impose 
strong limitations on the existing traffic in a city. This 
situation could be temporary, only produced due to some 
special event. For example, traffic was considerably 
reduced at the beginning of the COVID-19 pandem-
ics (e.g., according to TomTom’s data, Madrid’s traffic 
decreased by 96% during the first weeks of the state of 
alarm/emergency decreed in March 2020 in Spain due 
to the COVID-19 [13]), but this situation changed later 
as the constraints started to be relaxed; indeed, with a 
spreading disease like the COVID-19, existing traffic 
may aggravate due to the potential preference for sin-
gle-occupancy vehicles as opposed to public transpor-
tation [30]. Overall, as these are unexpected situations, 
the impact of these events may lead to traffic following 
trends quite different from the ones observed in the past. 
Therefore, this input to the traffic model is used to adjust 
the models based on this information, for example, by 
automatically reducing the expected traffic in Zaragoza 
by a certain percentage.

The workflow defined for the generation of traffic data for 
a given date is shown in Fig. 11. A Python script handles 
the input parameters described above, interacts with SUMO, 
and retrieves SUMO results in CSV format, which contains 
a row for each road segment and hour during the day. Each 
row includes different fields such as the edge identifier (a 
road segment/edge is a street or a part of a street, as defined 
by the edges in OSM), the hour of the day, the number of 
vehicles passing through that segment at that hour, and their 
average speed.

Components Developed for Traffic Modelling

Our traffic modelling approach is based on the use of a traffic 
predictor, a route generator, a route allocator, and SUMO’s 
calibrators. More specifically, for the simulation of traf-
fic with SUMO, three components have been defined and 
implemented: 

1.	 A traffic predictor, whose goal is to predict the expected 
traffic flow that will be measured by the traffic stations 
on a (future) date for which no actual data are (yet) avail-
able. For this purpose, a multiple linear regression [1] 
is applied on the real historical observations provided 
by the traffic stations for all the dates in our historical 
dataset. As predictors, we use the id of the traffic station, 
the real traffic data observed by that traffic station, and 
the month, hour, and type of day (weekday, Saturday, or 
holiday) for that observation.
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2.	 A route generator, which computes routes that can be 
used by the vehicles within the SUMO simulation (see 
Fig. 12). It should be noticed that the historical routes 
actually followed by the vehicles are not available input 
data, as we only have information about the traffic flows 

at specific locations in the city. The strategy used for the 
generation of routes is as follows:

–	 For each traffic monitoring device, all the possible 
routes passing through the road segment attached to 
that device (which we call the target road segment) 
are computed. A maximum route length is consid-
ered (in our prototype, 30 edges), to avoid lengthy 
computations, such that only the routes passing 
through the considered road segment and smaller 
than the maximum route length are actually com-
puted.

–	 Besides, the route latency, which is the minimum 
amount of time needed to reach the target road seg-
ment by following that route, is computed. This 
minimum latency can be estimated by considering 
that the car moves through each road segment at its 
maximum allowed speed and that all the traffic lights 
along the route are green.

	   The output of this process is, for each traffic monitor-
ing station, a list of possible eligible routes passing by 
that station.

Fig. 11   Workflow used to estimate traffic for a given date; figure extracted from [35]

Fig. 12   Workflow followed to generate possible routes to be used by 
vehicles in SUMO; figure extracted from [35]
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3.	 A route allocator per traffic monitoring station, which 
randomly assigns routes pre-calculated by the route 
generator to vehicles during a simulation with SUMO. 
The assignment of routes should be compatible with the 
traffic observations at each traffic monitoring station. 
For example, if during the hour of the day that is being 
simulated at the moment there are 200 vehicles that 
should pass by traffic monitoring station EP2.1, then we 
have to generate 200 vehicles and assign to each of them 
a route that passes by that station (randomly selected 
among the pre-computed routes for that station). In our 
current prototype, all the pre-computed routes whose 
route latency is smaller than 1 h are eligible, but the 
probability that a specific route is selected increases 
with the number of road segments it contains (to mini-
mize the number of short routes generated) and with the 
presence of major city roads such as avenues or main 
roads along the city (as routes traversing those popular 
roads are more likely). Furthermore, the route allocator 
tries to distribute the passage of vehicles by each station 
as uniformly as possible during the hour that is being 
simulated. The motivation for doing this is that it is usu-
ally more realistic than having large peaks of traffic at 
specific moments within the hour. For this purpose, for 
each traffic monitoring station, each hour is divided into 
3600/numVehicles intervals (seconds per vehicle), where 
numVehicles is the total flow of vehicles expected to be 
detected by that station during that hour; then, during 
each of those intervals one vehicle is scheduled to pass 
by that station (the moment when each vehicle should 

start its trajectory is estimated based on the origin of its 
route and the time when it is scheduled to pass by the 
traffic monitoring station).

Besides, the use of the previous components are com-
bined with the use of SUMO calibrators [23], which are 
devices that try to regulate the amount of traffic passing 
through the edge where they are located according to the 
expected traffic flow specified for that calibrator (through an 
input XML file). In our case, we attach one calibrator to each 
edge where a static traffic monitoring station is located; then, 
we assign to the calibrator a target traffic flow equals to the 
expected traffic flow on that road segment (i.e., the real traf-
fic observation, if available, or otherwise, the predicted traf-
fic flow). SUMO calibrators apply an algorithm, described 
in Ref. [17], to insert or remove vehicles, as needed, when 
it is expected that the target traffic flow will not be reached. 
We have decided to use random routes for the additional 
vehicles that may be inserted by SUMO, although SUMO 
also supports assigning fixed routes.

The use of calibrators represents a complementary strat-
egy to the use of our defined route allocator. Thus, notice 
that the route allocator operates under uncertainty, which 
may lead to sub-optimal results. On the one hand, as route 
allocators act independently for each traffic station, the 
impact of the allocations performed by one route allocator 
are not considered by the other route allocators when per-
forming their allocations: as a route passing by one station 
may also pass by other stations, this may lead to an increased 
number of vehicles for some stations. On the other hand, the 

Fig. 13   Use of VEIN to compute the emissions
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real route latency can actually be larger than the one esti-
mated (e.g., due to traffic jams), which could decrease the 
final number of vehicles passing by a given station. These 
effects can be minimized thanks to the use of calibrators. 
Although it is possible to use only calibrators and the ran-
domTrips.py script of SUMO to generate routes randomly, 
the use of our own route trajectory generator and route allo-
cators gives us more control over the final trajectories fol-
lowed by the individual vehicles.

Pollution Modelling Approach

In this section, we discuss the pollution modelling approach 
followed. First, in  the “Emissions  Model” section, we 
describe the emissions model, and then, in the “Disper-
sion Model” section, we describe the dispersion model.

Emissions Model

The goal of the emissions model is to compute the amount of 
NO

x
 emissions ( NO2 and NO) per distance traveled (kg/km) 

produced by the traffic flow on each of the street segments 
of the city (see Fig. 13). So, we map traffic flows into the 
emission of pollutants. Two types of emissions are consid-
ered: hot and cold emissions. The former occurs when the 
vehicle’s engine is at its normal operating temperature, while 
the latter occurs in the engine’s starting phase.

To achieve this objective, we have used VEIN [31–33], 
which applies hot and cold emission factors based on the 
Emission Inventory Guidebook by the European Environ-
ment Agency (EEA)  [43]. It is an R package that allows 

estimating the emissions produced by a vehicle based on 
the type of vehicle, the speed at which it circulates, and the 
ambient temperature.

More specifically, we have developed a calculate_
emissions.R script, that uses the VEIN library. The script 
mainly uses the following functions defined in VEIN:

–	 ef_hdv_speed, which computes the emission factors for 
Heavy Duty Vehicles (HDV) based on the average speed.

–	 ef_ldv_speed, which computes the emission factors for 
Light Duty Vehicles (LDV) and motorcycles based on the 
average speed.

–	 ef_ldv_cold, which computes the cold start emissions for 
LDV.

The core algorithm that computes the emissions for a given 
flow of vehicles is shown in Algorithm 1. The overall pro-
cess is as follows. First, we read a CSV file that contains the 
information about the traffic fleet (types of vehicles and their 
proportions). Then, we read from our database the predicted 
traffic flows in each segment of the city for the data desired. 
For each segment, we calculate the pollutants released by 
calling the previous calculate_emissions function (Algo-
rithm 1). Finally, we store the predictions of pollutants in 
the database and, if needed, also in an output CSV file for 
further processing. A number of parameters allow configur-
ing the required behavior of the main R script; for example, 
we can compute the pollutants only for the rush hour (i.e., 
the hour with the highest number of vehicles) or for each 
hour of the day. As we do not compute the emissions in real-
time, we estimate the ambient temperature based on average 
historical values for the corresponding month.
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To apply VEIN on the data stored in our database, we had 
to perform a number of conversions between the historical 
vehicle fleet data available in our database and the types 

of parameters required by VEIN (see Tables 2, 3, 4 and 5). 
In our database, we have a total of 354293 vehicles; about 
49.24% of them use diesel as fuel, 50.59% use petrol, and 
0.07% use liquefied petroleum gas (lpg).

For performance purposes, values of emissions for a num-
ber of combinations of type of car, temperature (month), and 
speed, can be precomputed. In this way, when the value of 
the emissions for a given combination of values is needed, 
the already-precomputed value can be reused.

Dispersion Model

Once we have estimated the traffic flows in the city (“Traffic 
Modelling Approach” section) and the pollutants released by 
those vehicles in each road segment of the city (“Emissions 
Model” section), we need to estimate how the pollutants will 
move and disperse in the atmosphere. This depends on fac-
tors like the weather conditions (e.g., the presence of wind is 
a clear factor affecting the movements of pollutants) and the 
shape of the city (shapes of buildings and their distribution). 
The goal is to provide a forecast, for the next 48 h, of the air 
quality (i.e., to supply an estimation of the concentration of 
pollutants) within the spatial domain considered.

Graz Lagrangian Model (GRAL)

For the estimation of atmospheric pollutant dispersion, we 
use a Lagrangian particle dispersion model. Specifically, we 
use the Graz Lagrangian Model, GRAL [25], which com-
bines a Lagrangian model and a microscale flow field model 
for predicting particles dispersion in the urban atmosphere. 
As a result of the simulations, values of the concentration of 
the different pollutants considered are obtained.

As described in the documentation [45], the key idea 
behind Lagrangian models is the tracing of many fictitious 
particles moving on trajectories within a 3D wind field. 
The microscale wind field model is used to compute the 
flow around obstacles. It is based on the Reynolds-average 
Navier-Stokes equations and uses a standard k-� turbulence 
model [44]. GRAL provides two alternatives for the compu-
tation of pollutant concentration time series:

–	 Steady-state mode (standard). In this case, particles are 
tracked until they leave the model domain independently 
of the time they need to do so.

–	 Transient mode. In this case, particles are only tracked 
until a predefined dispersion time is elapsed. Moreover, 
the 3D concentration fields obtained considering the pre-
vious weather situation (simulation for the previous hour) 
are stored and reused as starting point for the following 
weather situation (simulation for the next hour).

Table 2   VEIN: conversions for the v parameter

Class (database) v (VEIN)

passenger_car PC
Motorcycle Motorcycle
Moped Moped
light_commercial_vehicle LCV
bus Coach /Ubus
heavy_duty_truck Trucks

Table 3   VEIN: conversions for 
the f parameter

Fuel (database) f (VEIN)

lpg LPG
diesel D
petrol G
cng N/A

Table 4   VEIN: conversions for 
the cc parameter

engine_size (data-
base)

cc (VEIN)

0.05 < = 50

0.125 > = 50

0.25 < = 250

0.5 250_750

0.75 250_750

1 > = 750

1.2 < = 1400

1.6 > 1400

2 1400_2000

2.5 > 2000

Table 5   VEIN: conversions for the eu parameter

emission_standard (database) eu (VEIN)

conventional PRE
ece 15/04 PRE
euro 1 I
euro 2 II
euro 3 III
euro 4 IV
euro 5 V
euro 6 VI
euro 6 up to 2016 VIc
euro 6 up to 2017 VIc
euro 6 2017-2019 VIc
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The input of pollutant emissions is specified in GRAL by 
defining different source groups. Each source group corre-
sponds to an aggregation of pollutant emissions that follow 
the same pattern and can be modulated during the different 
hours of the day, indicating peak hours with high emissions 
and off-peak hours with low emissions. Moreover, several 
types of emissions can be distinguished in GRAL. For 
example, emissions due to road traffic are defined as line 
sources, emissions in delimited city areas (e.g., domestic 
heating emissions) are area sources, and emissions that are 
produced at a specific location (e.g., in an industrial plant) 
are denoted as point sources.

In each simulation (that is, for each hour), GRAL first 
computes the wind flow field represented by the meteor-
ological conditions specified in the corresponding input 
file and stores the result in the so-called gff file. Subse-
quently, and considering this wind field, the dispersion of 

the corresponding pollutant emissions, also specified in the 
input files, is calculated.

To be able to provide a daily forecast of the atmospheric 
pollutant dispersion in the city of Zaragoza for the next 48 
h, a speed-up strategy has been adopted: a library of gff files 
has been precomputed for the most frequent weather condi-
tions, which avoids the need to recompute these files, which 
represents approximately 2/3 of the total GRAL execution 
time.

GRAL Simulation Settings

In this section, some specifications of our GRAL simula-
tion set-up are provided. We consider a spatial domain of 
8 km × 8 km (see Fig. 14), which covers most of the urban 
area of Zaragoza. For the calculations, we have considered a 
horizontal grid of 4 m (square cells), thus dividing the whole 

Fig. 14   GRAL model domain in the city of Zaragoza and position of the different air quality monitoring stations
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simulation domain into about 690,000 cells. The smaller the 
cell, the higher the accuracy, but the computation demands 
also increase; therefore, a compromise has to be made.

In our case, the simulations are performed in transient 
mode, since it is possible to start considering the previous 
weather situation (i.e., the one corresponding to the previ-
ous hour of the day) and the emissions can be modulated for 
each weather situation. A predefined simulation time step of 
3600 s has been set.

Besides, to cover the whole domain considered for the 
calculations, 5000 particles are released per second, which 
according to GRAL developers seems to be enough. The 
input data required to perform simulations mainly includes 
meteorological information (“Meteorological Data” section), 
sufficient data to build a 3D representation of the buildings 
of the city (“City Building Data” section), and pollutant 
emission details from urban traffic and other sources such as 
domestic heating or industrial processes (“Additional Non-
traffic Emissions” section).

For each simulation day, from the output of SUMO, the 
rush hour (i.e., the hour with the highest number of running 
vehicles) is identified and VEIN is applied to calculate pol-
lutant emissions. For this hour, the active streets are selected 
and used as line emissions for the corresponding day. Traffic 
modulation for the rest of the day is estimated with respect 
to this rush hour. Moreover, traffic emissions are subdivided 
into different source groups according to the SUMO traffic 

cluster analysis and included within GRAL simulations as 
line sources; the number of source groups changes accord-
ing to the day of the week and the month of the year. After 
computation, GRAL returns as output a map of the city indi-
cating the NO

x
 concentration in all of the cells defined (as 

an example, see Fig. 15).
GRAL is a complex software that requires significant 

resources for the spatial domain considered for the city of 
Zaragoza. In our production environment (see the “Hard-
ware Resources” section), it requires 10–12 h to perform a 
24-h forecast of the dispersion of pollutants. Two individual 
calculations are released every day: a forecast for the next 24 
h and a forecast for the following 24 h (thus globally cover-
ing a forecast window of 48 h).

Experimental Evaluation

In this section, we present the experimental evaluation 
that we have performed to assess our approach. Firstly, 
in the “Hardware Resources” section, we briefly describe 
the hardware resources that we have used. Secondly, in the  
“ Experiments with the Traffic Model” section, we evaluate 
the traffic model. Finally, in the “Experiments with the Pol-
lution Modelling Approach” section, we focus on the pol-
lution model.

Fig. 15   Output of GRAL for 
July 19, 2020 at 07:00 UTC​
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Hardware Resources

For our experiments, and also to develop an infrastructure 
that supports the prediction of pollutants on a continu-
ous basis, we have mainly used the following hardware 
resources:

–	 The I3A-UZ HERMES supercomputing cluster is the 
Scientific Linux 5.5-based infrastructure provided by 
the Aragón Research Institute (I3A) of the University of 
Zaragoza (UZ). I3A-UZ HERMES, or just HERMES, 
has more than 1500 parallel processing cores, 6.5 TB 
of RAM and 175 TB of Luster-based storage, all con-
nected by a 10 Gbps backbone network (second level of 
connectivity). The queue system used in HERMES is 
CONDOR.

	   For the continuous estimation of pollutants, a machine 
of 256 GB of RAM and 32 cores with Scientific Linux 
5.5 was initially used. In our final production environ-
ment, to improve the performance of GRAL, we finally 
use two different nodes available in HERMES, with the 
following common configuration: Ubuntu 18.04.4 LTS 
(GNU/Linux 4.15.0-88-generic x86_64), 64GB RAM, 22 
cores, and 1TB of disk capacity. More information about 
the I3A-UZ-HERMES Cluster is available at https://​i3a.​
unizar.​es/​en/​labor​atory/​hermes-​high-​perfo​rmance-​compu​
ting-​clust​er.

–	 A server computer called Atila, with a CPU Intel Xeon 
Bronze 3204 CPU @ 1.90 GHz, 6 cores, and 192 GB 
RAM; it includes different useful support services in the 
context of our work and other components used to esti-
mate traffic and emissions in a Linux virtual machine 
within VirtualBox, as well as the database server that 
stores all the input data.

Besides, other machines have been used for testing and also 
to hold a previous version of the database.

Experiments with the Traffic Model

In this section, we perform some experiments to evaluate 
our traffic modelling approach. First, in the “Evaluation 
Metrics for SUMO” section, we explain the metrics that 
we use for the evaluation of the modelling approach. Then, 
in the “Microscopic Versus Mesoscopic Simulations” sec-
tion, we compare microscopic and mesoscopic simulations 
in SUMO. In the “Analysis of Typical Traffic Simulated” 
section, we analyze typical traffic patterns simulated based 
on historical data. Finally, in the “Comparison of Traffic 
Results with Real Values” section, we compare simulated 
values with real ones.

Evaluation Metrics for SUMO

Two main evaluation metrics have been considered:

–	 The simulation error. As commented in the “Traffic 
Modelling Approach” section, we have some real traffic 
data measured/expected in some specific streets of the 
city and our traffic model must estimate the traffic in all 
the streets of the city by simulating the flow of vehicles 
along the roads. Therefore, a key evaluation metric to 
consider is the absolute hourly simulation error, which 
is the difference between the real traffic measured in the 
streets that are being monitored (i.e., covered by one of 
the 46 static traffic devices) and the traffic generated in 
the simulation with SUMO, for each hour. As an exam-
ple, if a static traffic device has measured 700 cars in an 
hour but in the simulation only 620 cars pass by that sta-
tion, then the simulation error for that hour and location 
is 80 cars.

	   Ideally, the simulation error should be 0. However, 
as the amount of real observations is small, we have to 
artificially generate realistic trajectories throughout the 
whole city based on the real observations, which will 
lead to some errors in the streets where the traffic is being 
monitored.

	   A simulation error of n vehicles could be considered 
large, medium, or small depending on how big this num-
ber is in comparison with the real number of vehicles 
that have been observed. It is therefore convenient to be 
able to interpret the absolute simulation error in relative 
terms. Specifically, the simulation error rate for a given 
hour and static traffic device can be computed by divid-
ing the absolute simulation error for that device and hour 
by the real observation (i.e., the real traffic at that station 
and time).

–	 The number of teleports. SUMO avoids potential simu-
lation deadlocks and undesirable situations by auto-
matically teleporting vehicles that have been waiting 
(without moving) for a while in front of an intersection 
(by default, 5 min) or that suffer a collision [20]. As an 
example, a deadlock between two vehicles is shown on 
the left part of Fig. 16 (the vehicles are represented as 
triangles in the GUI of SUMO): the green vehicle wants 
to enter the roundabout and the red vehicle wants to exit 
it, but each vehicle waits for the other one to move to 
avoid a potential collision, which leads to a deadlock that 
will only be solved by teleporting one of the vehicles. 
We can consider teleports as a simulation hack used to 
guarantee that the simulation will keep progressing in a 
suitable way, but obviously automatic displacements of 
vehicles along the roads are not desirable, even though 
SUMO considers the average speed of the edges when 
performing the teleporting and the vehicle is reinserted 

https://i3a.unizar.es/en/laboratory/hermes-high-performance-computing-cluster
https://i3a.unizar.es/en/laboratory/hermes-high-performance-computing-cluster
https://i3a.unizar.es/en/laboratory/hermes-high-performance-computing-cluster
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into the network as soon as this becomes possible (i.e., 
when there is enough space on the target lane). There-
fore, the number of teleports should be as small as pos-
sible.

	   It should be noted that many of those deadlocks can 
be solved by manually editing the road network (file .net.
xml) by using the graphical network editing tool nete-
dit [22] provided by SUMO (e.g., to change the priority 
of the lanes, add lanes, etc.). However, this leads to a 
solution which is prone to errors (the real layout must not 
be changed, even if that change avoids the deadlocks), 
time-consuming (each problematic point must be care-
fully edited by a human), and difficult to maintain (as the 
process cannot be automated, if we download an updated 
roadmap then all the changes have to be re-applied manu-
ally over the new up-to-date map).

To compute the simulation error, we need real data to 
compare with the simulated data. As described in the “Com-
ponents Developed for Traffic Modelling” section, a traffic 
predictor component is in charge of predicting the expected 
traffic flow that will be measured by the traffic stations on 
a (future) date for which no actual data is (yet) available, in 
case this is necessary (i.e., if we want to simulate traffic for 

future dates, rather than for past dates for which real histori-
cal data is available). Based on historical data corresponding 
to the dates between January 1, 2018 and March 24, 2019, 
the linear traffic prediction model described in the “Com-
ponents Developed for Traffic Modelling” section leads to 
an adjusted R2 of 0.7736 (more than 75% of the variance is 
explained by the model).

Concerning teleports, through experimentation, we have 
observed that the number of teleports is particularly high in 
the case of microscopic simulations. We have also observed 
that the trends regarding the number of teleports vary along 
the day: as expected, peak hours (when the number of vehi-
cles circulating is high) lead to higher numbers of deadlocks 
and therefore to more teleports. The likelihood of teleports 
can be reduced by manually editing the maps through a 
trial-and-error procedure: when a simulation bottleneck is 
observed, causing teleports, we can try to fix it by editing 
the map. For example, by manually editing 71 intersections 
in the city of Zaragoza, we could reduce the number of tel-
eports in a typical day from a total of 1860 to 81. However, 
as commented before, a manual editing of the map has sev-
eral disadvantages.

Fig. 16   Deadlock between two vehicles at the entrance of a roundabout in Zaragoza during a SUMO simulation; figure extracted from [35]
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Microscopic Versus Mesoscopic Simulations

In this section, we compare mesoscopic simulations with 
microscopic simulations and notice that mesoscopic simu-
lations lead to a smaller number of errors in terms of the 
final traffic flows obtained when compared with the expected 
traffic flows at the locations with traffic monitoring stations. 
As an example, the maximum hourly error (maximum value 
of the differences between the expected traffic flows and the 
simulated traffic flows during each hour of the day at the 
edges with monitoring stations) for the 21st of June, 2020, 
was 300 with the mesoscopic simulation and 2638.4 with the 
microscopic simulation; the corresponding average relative 
error rate (average values of those differences computed as 
percentages over the expected traffic flow at each edge) was 
1.34% with the mesoscopic simulation and 10.55% with the 
microscopic simulation. The simulation errors along that 
day can be seen in Fig. 17, which shows how the simula-
tion error rates increase with the number of vehicles (i.e., 
during the peak hours) when a microscopic model is used; 
however, with the mesoscopic model there are variations but 
the error rate keeps quite stable along the day. Only in the 
cases of a very low flow of vehicles the microscopic simula-
tion has low errors comparable to those obtained with the 
mesoscopic simulation (even slightly lower in some cases, 
like at 6:00 and at 22:00).

Regarding the number of teleports, we have also noticed 
that the percentage of teleported vehicles with a microscopic 
simulation is considerably higher than with a mesoscopic 

simulation. Besides, we have observed that the microscopic 
model is quite more sensitive to small changes in the road 
layout (e.g., the presence or absence of traffic lights in a 
roundabout can lead to deadlocks that are solved by SUMO 
through teleporting). Figure 18 shows the percentage of 
vehicles teleported along the day when a microscopic simu-
lation is used. Again, we can observe that the number of 
errors increases with the number of vehicles (i.e., the error 
is higher during the peak hours).

Analysis of Typical Traffic Simulated

First of all, we show some results concerning SUMO’s daily 
simulations of a year based on historical traffic data provided 
by the City Council of Zaragoza. Specifically, our goal is to 
determine how traffic behaves throughout the day, week and 
year. In Fig. 19, the average hourly traffic flow (total number 
of vehicles) for each day is shown. We can notice that the 
lowest traffic flow is reached at night, between 0 AM and 5 
AM. Besides, there are some traffic peaks, at 8 AM, at 1 PM 
and 6 PM; these are the typical hours of entry and exit from 
work in the city of Zaragoza. In the figure, it might seem that 
the lines for some days of the week are missing, but actually 
what happens is that some lines overlap significantly, spe-
cifically in the case of the lines corresponding to Monday, 
Tuesday, Wednesday and Thursday; the reason is that the 
traffic flow is very similar on these weekdays.

Furthermore, in Fig. 20, we show the average traffic flow 
for each day of the week. As shown in the figure, the traffic 

Fig. 17   Hourly traffic simulation errors along a day; figure extracted from [35]
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flow is very similar on any weekday, and clearly lower on 
weekends. The day with less average traffic is Sunday.

Figure 21 shows a comparison of the traffic flow in the 
different months of the year. It can be seen that the average 

traffic flow is quite similar from January to June. Then, a 
significant reduction in traffic can be seen in the months of 
July and August, especially in August. This was expected, 
as these months are usually the period when many people 

Fig. 18   Hourly vehicle teleports along the day with a microscopic traffic simulation; figure extracted from [35]

Fig. 19   Average hourly traffic 
flow year
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take their holidays and leave the city for several weeks. After 
August, the rest of the months until the end of the year (Sep-
tember, October, November, and December) behave like the 

initial months of the year. In fact, it can be stated that the 
average traffic flow is almost the same every month, except 
for July and August. We also show in Fig. 22 the average 

Fig. 20   Average daily traffic 
flow in a week: boxplot

Fig. 21   Average daily traffic 
flow per month: boxplot
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traffic flow per hour and week of the year, where we can see 
that the traffic is quite similar along the year except for the 
weeks that correspond to July and August.

To sum up, several expected results have been observed. 
Thus, the traffic flow is higher on weekdays. Moreover, the 
traffic flow is lower at night. There are also some traffic 
peaks along the day that match with the typical hours of 
entry and exit from work. Finally, it has been seen that the 
traffic flow is almost the same in every month, except in the 
case of July and August due to usual holidays.

Comparison of Traffic Results with Real Values

In this section, we evaluate how the traffic modelling 
approach proposed is able to reproduce real values. As the 
experimental results presented in the “Microscopic Versus 
Mesoscopic Simulations” section advise the use of meso-
scopic simulations rather than microscopic simulations, we 
use the former in our current prototype and in the experi-
ments presented in this section. As an example, Fig. 23 
shows the relative error rate and the rate of teleports for 
the simulation of one week of traffic, since Monday (June 
15, 2020) until Sunday (June 21, 2020); we can see that 
the error rates are quite small. Besides, they both decrease 
significantly during the weekends, which are the periods of 
less traffic during the week (about 28, 58% less traffic for 
the week simulated). Other experimental results show for 

example that, when repeating each experiment 10 times, the 
95% confidence intervals of the relative error rates are quite 
small (e.g., [1.38%, 1.87%] for Monday and [0.53%, 0.72%] 
for Sunday).

In the following experiments, we simulate a week of 2019 
(based on historical data for 2018), from 2019–12–16 (Mon-
day) until 2019–12–22 (Sunday), and compare the simula-
tion results with the real traffic flow data for that week of 
2019. More specifically, we focus on the 46 locations where 
the city council has traffic monitoring stations (see the “Traf-
fic Counts Data” section), as those are the locations where 
we have real data for comparison. Therefore, we compare 
the number of vehicles simulated at those points with the 
real number of vehicles that cross those key points according 
to the real data available. As explained in the “Evaluation 
Metrics for SUMO” section, we measure the error as the 
absolute difference between the traffic flow expected (real 
data values) and the traffic flow obtained in the simulation 
(predicted data values), and the relative error is defined as 
the ratio of the absolute error to the real value (e.g., if the 
expected traffic flow according to our traffic model at a spe-
cific location is 10 vehicles and the error is 15 vehicles, then 
the relative error would be 50%).

Firstly, we have performed an analysis of the traffic flow 
and the error. The mean traffic flow in 1 h in each of the 46 
locations of the city considered (key points, where there is a 
traffic station) is 643.45 vehicles; the asymptotic confidence 

Fig. 22   Average hourly traffic 
flow per week
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interval of this mean (with a significance level of 0.05) is 
[627.31, 659.60]. On the other hand, the mean error in 1 h in 
each of the 46 key points of the city is 2.31; the asymptotic 
confidence interval of this mean is [1.82, 2.81]. Secondly, 
we consider each key point at each hour during the week 
and plot the associated histograms: as we can see in Fig. 24, 
the histograms of both the traffic flow and the traffic flow 
error are asymmetric. It can be noted that the error is small 
compared with the expected traffic flow.

On the left of Fig. 25, we show the mean relative traffic 
flow error per hour for each day of the week (averaged over 
all the locations), on the right of Fig. 25 we show the real 
mean traffic flow, and in Fig. 26 we show the corresponding 
relative traffic flow errors. According to these results, the 
error rates are very low (never higher that 2% ) independently 
of the day and hour, though it can be observed that this error 
rate is slightly smaller in the hours where the traffic flow 
is lower. We can observe some peaks on 2019-12-19, but 

Fig. 23   Relative error rate and percentage of teleported vehicles along a week using mesoscopic simulations; figure extracted from [35]

Fig. 24   Histogram of traffic flows: real traffic flows (left) and traffic flow errors (right)
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these kinds of peaks are expected, due to the random nature 
of the traffic model. In conclusion, the traffic flow given by 
the traffic model is almost identical to the real traffic flow in 
the 46 key points.

Experiments with the Pollution Modelling Approach

In this section, we evaluate the pollution modelling 
approach, described in the “Pollution Modelling Approach” 

Fig. 25   Mean traffic flow per hour and day: relative error (left) and real flow (right)

Fig. 26   Mean relative traffic 
flow error per day
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section. More specifically, the modelled NO
x
 concentrations 

(i.e., the outputs of GRAL) are compared with real observa-
tions at the 8 urban Air Quality Monitoring (AQM) stations 
described in the “Air Quality Monitoring Stations (AQM)” 
section, which are located in 8 different location in the city. 
This evaluation give us information on how far our traffic 
modelling approach (and the associated emissions) is from 
the actual pollutant emission values. Similar experiments 
have been performed to compare the pollution modelling 
results with the measurements performed by the low-cost 
quality sensors described in the “Low-Cost Sensors” sec-
tion, but for brevity we omit the results here because the 
data provided by the AQM stations are enough to validate 
the pollution model.

The period considered to perform the comparison is 21 
September 2020–1 March 2021. During this period, GRAL 
simulations have been performed taking into account the 
whole set of emissions (traffic, domestic heating, industrial 
combustion and waste management sources) and it cor-
responds to the period during which the highest pollutant 

emissions are expected, due to the extra pollution caused by 
domestic heating during the winter season.

To perform an evaluation of the pollution modelling 
approach implemented in this work, the European Envi-
ronment Agency (EEA) recommendations are followed. 
Specifically, we apply the statistics, graphs and assessment 
criteria defined in a guidance document [37] elaborated in 
the context of the Forum for Air quality Modelling in Europe 
(FAIRMODE) community and the Air Quality Directive 
(AQD) 2008/50/EC. Therefore, several statistical indica-
tors are computed with the aim of identifying the level of 
agreement between the results of the model and the observa-
tions (real measurements). Further insight can also be given 
by specific plots, such as the Taylor Diagram. On the other 
hand, the fulfillment of the standard assessment Model Qual-
ity Objectives (MQO), whose goal is the definition of the 
minimum level of quality to be achieved by a model (to be 
usable), is analyzed.

In Figs. 27 and 28, the Taylor Diagrams, for the first 
and the second day of forecast (first 24 h and next 24 h), 
respectively, are reported. These specific plots enable the 

Fig. 27   Taylor Diagram displaying the performance of GRAL in reproducing observed concentrations at the eight AQM stations available in the 
city of Zaragoza for the first day of forecast
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visualization of three different statistical indicators in a sin-
gle diagram: the Pearson correlation coefficient (r), the Cen-
tered Root Mean Square Error (CRMSE), and the Standard 
Deviation of Model (SDM). The results obtained for both 
days are quite similar; therefore, from now on, for simplic-
ity, we focus only on results for the first day of forecast. 
The dashed concentric lines originating from the “observed” 
point show the CRMSE value; therefore, the points which 
are located the furthest from the “observed” point are the 
ones with the highest CRMSE values, i.e., where the highest 
discrepancies can be found. The black dashed line indicates 
the variability of the measured data; models above that line 
exhibit greater variability than the actual measurements. 
Finally, it is also possible to evaluate the linear relationship 
between the model results and the measurements: points 
closer to the X-axis will have a higher correlation. Accord-
ing to the figures, the best results are obtained at three AQM 
stations: Centro, El Picarral and Las Fuentes. There are two 
AQM where the largest variability can be found: Actur and 
Jaime Ferrán; although they are not classified as urban traf-
fic sites, their locations are relatively close to intense traffic 

streets, including a highway; moreover, Zaragoza is a windy 
city, which could explain the high variability of the results 
found for those two AQM.

A quantitative estimation of the agreement between simu-
lated and observed concentrations was also assessed follow-
ing several statistical metrics proposed for urban dispersion 
model evaluation. More specifically, the fraction of predicted 
values within a factor of two of observations (FAC2), Mean 
Bias (MB), Mean Gross Error (MGE), Normalized Mean 
Bias (NMB), Normalized Mean Gross Error (NMGE), Root 
Mean Square Error (RMSE), Pearson correlation coefficient 
(r), and Index Of Agreement (IOA) were computed using 
Openair [9], which is an open source R package for air qual-
ity data analysis. Table 6 summarizes all these metrics for 
the eight AQM stations, for modelled and observed NO

x
 

concentrations between September 21st 2020 and March 1st 
2021, for the first day of forecast. The Mean Bias (MB) is 
reported as µg/m3. Values of the IOA close to 1 represent a 
better model performance. Negative values of metrics such 
as MB or NMB indicate that the predicted concentrations are 
below the real observations. In other words, in general, our 

Fig. 28   Taylor Diagram displaying the performance of GRAL in reproducing observed concentrations at the eight AQM stations available in the 
city of Zaragoza for the second day of forecast
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model is underestimating the emissions of pollutants. This 
can be explained by the fact that we are considering only the 
main sources of pollutants; moreover, in the case of domes-
tic heating and industrial activities, we are working with 
data that are not up-to-date, more specifically with estima-
tions of the Environmental Agency of the Zaragoza Council 
for the year 2015, since these are the latest data publicly 
available (see the “Input Data Sources” section). Moreo-
ver, we have considered a spatial square domain of the city 
without considering inputs from the outside of that domain, 
which are difficult to be estimated and included. However, 
despite the variability seen in the data shown in the Taylor 

Diagrams, there are some promising results. For example, in 
the AQM Jaime Ferrán, 45% of the predicted data are within 
the interval of 0.5–2 of the observations and, according to 
the calculated MB, in the same AQM, the predicted values 
are only 2.59 µg/m3 on average below the observed pol-
lutant concentrations. To contextualize this value, a yearly 
mean concentration of 27 µg/m3 can be attributed to the city 
of Zaragoza (calculated considering data from the official 
website of the Spanish Ministry for Ecological Transition 
(https://​www.​miteco.​gob.​es/​en/).

More statistical metrics for the eight AQM stations are 
also represented in Fig. 29 for the first day of forecast, 

Table 6   Statistical metrics for predicted NO
x
 hourly concentrations for the first day of forecast

Station Actur Avda. Soria Centro El Picarral Jaime Ferrán Las Fuentes Renovales Roger de Flor

Records 2971 2930 3004 2712 2862 2945 2793 2886
FAC2 0.26 0.20 0.13 0.17 0.45 0.12 0.07 0.06
MB − 3.83 − 13.59 − 18.64 − 16.67 − 2.59 − 20.67 − 17.73 − 27.79
MGE 16.20 14.62 20.22 18.44 15.29 21.92 18.20 28.14
NMB − 0.21 − 0.67 − 0.74 − 0.68 − 0.12 − 0.74 − 0.82 − 0.85
NMGE 0.88 0.73 0.81 0.75 0.70 0.79 0.84 0.86
RMSE 21.16 18.63 23.73 23.15 20.78 27.12 21.62 33.24
r 0.19 0.37 0.21 0.24 0.20 0.27 0.19 0.30
IOA 0.04 0.25 − 0.03 0.20 0.12 0.17 0.05 0.05

Fig. 29   FAIRMODE statistical metrics diagram displaying the performance of GRAL in reproducing observed concentrations at the eight AQM 
stations in the city of Zaragoza, for the first day of forecast

https://www.miteco.gob.es/en/
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including the FAIRMODE [18] validation ranges for those 
statistical metrics. The first two rows provide the averages of 
the measurements/observations calculated from the hourly 
values and the number of times a fixed value of 200 µg/m3 
is surpassed (air quality violations); 200 µg/m3 represents 
a limit value for NO

x
 above which air quality is considered 

not good. For the period considered, no air quality violations 
have been detected. Rows 3–6 give information about the 
bias, correlation, ability of the model to capture the highest 
value, and standard deviation. If the requirements are met, 
the values fall within the green and orange zone. There is 
only one AQM that does not meet all the requirements, but 
only in the case of the first item. Finally, rows 7–8 indicate 
information of spatial statistics of correlation and standard 
deviation considering all the AQM stations.

Finally, the fulfillment of the Model Quality Objectives 
(MQO) are analyzed. For this purpose, in the guidance 

document named previously [37], a Model Quality Indicator 
(MQI) was defined, which is a statistical indicator calculated 
based on measurements and model results. It is defined as 
the ratio between the RMSE and a quantity proportional ( � ) 
to the measurement uncertainty (U95). The MQO is consid-
ered fulfilled when the MQI is not greater than 1. This value 
can be easily calculated and evaluated by generating the so-
called Target Diagram, which can be done using Dartle [6], 
which is an open source R package for air quality model 
benchmarking. An example of the results obtained for the 
period between September 21st 2020 and March 1st 2021 
at the AQM sites is shown in Fig. 30. In the figure, a green 
circle indicates the area where the MQO is reached, that is, 
where the MQI is less than or equal to 1; the smaller circle 
indicates the region where the MQI is less than or equal to 
0.5. The results indicate an average MQI of 1.15, which is 
close to full compliance with the MQO.

Fig. 30   NO
x
 Target plot for modelled and observed concentrations between September 21st 2020 and March 1st 2021 at the AQM sites, for the 

first day of forecast
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Conclusions and Future Work

In this paper, we have presented an approach that we have 
applied in the city of Zaragoza (Spain) for the estimation of 
pollutants in each area of the city. Our modelling approach is 
based on the use of three key pieces: (1) the traffic simulator 
SUMO with real roadmaps of the city and using, as input 
data, real traffic observations collected by the city’s munici-
pality; (2) the R library VEIN, used to estimate the pollut-
ants produced by the fleet of vehicles; and (3) the particle 
simulator GRAL, to estimate how the pollutants spread in 
the atmosphere. Moreover, we have experimentally evalu-
ated our proposal. The results indicate a good accuracy of 
our traffic model in estimating real traffic flows, whereas 
the prediction of the dispersion in the atmosphere of the 
subsequent pollutant emissions is underestimated when 
compared with real measurements. This is expected since 
only the main pollutant sources have been considered and 
some of the data used for the estimations are not up-to-date. 
Furthermore, the domain selected for calculations has been 
treated as an isolated square and, in reality, pollution coming 
from outside that square would actually have also an effect 
and should be considered to obtain precise results. In any 
case, the results indicate that the model is close to meet the 
quality criteria required to be used in practice ( MQI ≤ 1 ) 
and, despite the variability of the data in some locations, 
the predictions are not far from real measurements. As a 
first approach, we can conclude that the results are promis-
ing and the methodology applied could be relevant to study 
other scenarios. The approach followed can help to easily 
analyze the effect of changes in the vehicle fleet (such as, 
for example, the impact of decreasing the number of diesel/
petrol vehicles in favor of electric ones), or the behavior of 
vehicles, on urban air pollution.

As future work, we would like to integrate this proposal 
within a more generic data management framework that 
tries to encourage citizens to take suitable decisions in face 
of challenges such as the air pollution. Besides, we could 
improve the current models by considering additional data 
sources.
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