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Abstract
Mobile sensors are increasingly used to monitor air quality to accurately quantify human exposure to air pollution. These 
sensors are subject to various issues (misuse, malfunctions, battery problems, etc) that are likely to cause data quality prob-
lems. These quality problems may have a considerable impact on the reliability of analytical studies. In this work, we address 
the problem of data quality evaluation and improvement in mobile crowd-sensing environments. Our work is focused on 
the data completeness quality dimension. We introduce a multi-dimensional model to represent the data coming from the 
sensors in this context, and then present the different facets of data completeness inspired by the model. We propose quality 
indicators capturing different facets of completeness along with their corresponding quality metrics. We also propose an 
approach to improve data completeness by extending two existing data imputation techniques, SVDImpute and KNNImpute, 
with information about the sensor quality. Our experiments show that our quality-aware imputation approach improves the 
accuracy of the imputation achieved by the original techniques.

Keywords Data quality · Data completeness · Sensor data · Mobile sensors · Air quality · Data completeness improvement

Introduction

Air pollution is a global concern because of its major envi-
ronmental risk and its negative effects on health. According 
to several World Health Organization1 (WHO) reports, air 
pollution is a factor in the deterioration and worsening of 
people’s health. It is responsible for an increasing number of 
deaths and a myriad of damages to ecological and economic 
systems, especially in dense urban cities. Air quality is often 

described by the WHO as an invisible killer which has been 
the main driver for many research projects in the recent years 
aiming at the quantification of human exposure to pollution 
[13, 26, 38, 40]. The goal is to better assess air pollution and 
its impact on health. This is the context of the Polluscope2 
research project [5]. The main objective of this project is to 
employ the emerging technologies of micro-sensors and the 
development of an innovative infrastructure for the acquisi-
tion and exploitation of data to assess air pollution on very 
fine scales. This multi-disciplinary project aims to character-
ize the effects of air pollutants on health, both in indoor and 
outdoor environments in the region of Île-de-France.

One of the main problems that arise in the Polluscope 
project is the reliability of the chain of acquisition and pro-
cessing of spatio-temporal data. Mobile sensors and micro-
detection units are well known to be less robust and more 
sensitive to various events including points-of-failure. By 
the time issues are fixed, the sensors may lose significant 
chunks of data. Data analysis based on poor quality data 
leads to ill-defined indicators and bad decisions. Hence, it 
is crucial to monitor data quality along the entire data work-
flow to provide accurate air quality indicators. This raises 
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the question of how credible the knowledge induced by the 
measurements generated by these micro-sensors is. Which 
leads to other questions such as: how to ensure the quality of 
the data from micro-sensors? How to manage the imperfec-
tions of these data? How to deal with missing data?

This work is a contribution towards data quality monitor-
ing and improving in mobile crowd-sensing environments 
(MCS). We focus on completeness issues raised in this 
context. We first propose a multi-dimensional model repre-
senting pollution measurement data along with the relevant 
analysis dimensions. We then discuss the use of this model 
to capture the different understandings of the completeness 
of data coming from mobile sensors. We introduce and 
define three completeness facets: sensor completeness, spa-
tial completeness, and temporal completeness. We also pro-
pose metrics for the evaluation of the aforementioned com-
pleteness facets. These contributions were first introduced in 
[22]. In this paper, we extend our completeness evaluation 
work. We propose an approach to improve data complete-
ness by extending existing data imputation techniques with 
information about the quality of the measuring sensors. This 
approach aims to show that the quality of the measuring 
sensor is a crucial indicator that helps improve processing 
data coming from sensors. We first define sensor quality in 
the context of mobile crowdsensing and propose suitable 
evaluation metrics. Then, we propose a quality-based data 
imputation approach that enriches existing techniques with 
sensor quality. We extend SVDImpute and KNNImpute [36] 
by taking into account the quality of the sensors during data 
imputation. We compare the results of our extended tech-
niques with their original approaches to show the usefulness 
of our approach.

The rest of this paper is organized as follows. “Moti-
vating Example” presents a motivating example. “Mutli-
Dimensional Data Model” introduces the proposed multi-
dimensional model to represent data in MCS environments. 
“Sensor Completeness” introduces the sensor complete-
ness indicator and proposes an evaluation metric. “Spatial 
Completeness” and “Temporal Completeness” present the 
spatial completeness indicator and the temporal complete-
ness indicator respectively. “Improving Completeness: A 

Quality-Based Approach” describes data imputation tech-
niques and the proposed quality-based approach for the 
improvement of data completeness. “Evaluations” presents 
our experiments and the results achieved by the proposed 
approaches. “Related Works” discusses the related works, 
and finally, “Conclusion” concludes the paper.

Motivating Example

In this paper, we focus on completeness issues in MCS envi-
ronments. According to [2], data completeness has been 
defined as “the extent to which data are of sufficient breadth, 
depth and scope for the task at hand”. The authors propose 
several metrics to evaluate data completeness in the context 
of relational databases. One of them is the presence of null 
values in a given table or column. Another metric is the 
comparison of the tuples present in the database to an exist-
ing set of reference tuples. In our view, such metrics are not 
suitable for evaluating completeness in MCS environments.

To illustrate our claim, consider the following example. 
The table in Fig. 1 shows a sample of the measurements 
from one sensor. It contains the timestamp at which the 
measurement was taken, the value of the pollutant, and the 
longitude and latitude indicating the location of the sensor 
at that time. If we consider that data completeness is evalu-
ated as the proportion of Null values in the table, then we 
can see from Fig. 1 that there are no such values for any of 
the records in the table, and we can, therefore, say that our 
data are complete.

However, after we plot these data measurements on a 
map as shown in Fig. 2, we can see that these measurements 
cover only three cells in the studied area. We also notice that 
there are no measurements recorded in the remaining cells 
of the grid. Ideally, the measurements should have been dis-
tributed over all the cells in the considered area. Assume that 
we want to compute the average level of a given pollutant in 
this area. It is important to be aware that this characterizes 
only a small portion of this area, not the area as a whole.

Consider another example, and let us assume that the 
rate of measurement of the sensor is 1 measurement/s. This 

Fig. 1  Snapshot of the data 
captured by sensors
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means that we expect 10 min × 60 measurements/min = 600 
measurements during this 10 min period of our study. Even 
though the data look complete in Fig. 1 with the absence 
of null values, there are 590 missing measurements in that 
table. Hence, the data in our table is in fact incomplete.

The examples presented above show that the existing 
completeness definitions and associated metrics are not 
appropriate to capture all the facets of completeness in MCS 
environments. In the following section, we will present a 
multi-dimensional model for storing pollution measurement 
data in the Polluscope project, and we will discuss the dif-
ferent facets of completeness in this context.

Mutli‑dimensional Data Model

In this section, we introduce the multi-dimensional model 
which represents the pollution measurements in a MCS envi-
ronment and the relevant analysis dimensions. We use the 
multi-dimensional views exposed by the model to illustrate 
the different facets of completeness.

In the Polluscope project, different pollution data acqui-
sition campaigns are planned, each one having a start and 
an end date. Volunteering participants in the campaign are 
provided with a kit of sensors, which they will be expected 
to carry for around 7–10 days during the campaign. Each 
kit may consist of different sensors providing measure-
ments of distinct pollutants such as particulate matter 
(PM10, PM2.5 and PM1.0), NO2 or black carbon (BC). 
Each measurement is associated with a timestamp and a 
location. Figure 3 depicts our multi-dimensional model. 
A single sensor reading is represented in the fact table 
Measurement by the attribute measurementValue which 

represents the quantity of a pollutant in the air. There are 
six dimensions in the model. For a given measurement, 
the Sensor dimension represents the sensor that took the 
measurement, described by a sensor id, a type and a name. 
Location and Time dimensions give information about the 
spatial coordinates where the measurement was taken and 
the associated time. The Campaign dimension represents 
the campaign details during which the measurement was 
taken. The User dimension identifies the participant who 
was carrying the sensor that took this measurement; user-
identity information are not saved for privacy reasons; the 
gender and the age are recorded for analysis purposes. The 
PollutantType dimension provides information about the 
name of the pollutant associated to the measurement value.

We leverage the different dimensions demonstrated in 
this model to explain the various understandings of com-
pleteness in this context. Completeness in mobile crowd-
sensing environments has different facets, and there are 
several understandings of how completeness can be per-
ceived and represented. The multi-dimensional model in 
Fig. 3 helps us analyze the different facets and perspectives 
of completeness, we present five of them in the following:

– Completeness over a campaign, which expresses the 
overall completeness of a campaign. It represents the 
extent to which the measurements expected during this 
campaign from all the sensors in use and all the partici-
pants are actually stored.

– Completeness for one participant in a campaign, which 
expresses the completeness of the measurements from 
all sensors carried by this participant during their vol-
unteering period in the campaign. Such completeness 

Fig. 2  Map showing the spread 
of the pollution measurements 
over the grids of a given area



 SN Computer Science (2022) 3:216216 Page 4 of 16

SN Computer Science

indicator allows for better exposure quantification to air 
pollutants for this participant.

– Completeness for a spatial area in one campaign is 
another facet which represents the spatial coverage of a 
designated area. It indicates the spatial dispersion of the 
measurements over this area. The goal is to understand 
the way measurements are distributed in the considered 
area of study, and whether the measurements are focused 
in a limited part of the designated area, or if they cover 
all of it.

– Temporal completeness characterizes the way a given 
period of time is covered by the collected measurements. 
These measurements may have been collected at regu-
lar intervals throughout the period, or taken in specific 
chunks of time, leaving other chunks without any meas-
urement. Assessing such completeness assumes that the 
rate at which the sensors are supposed to provide their 
measurements is known.

– Sensor completeness which is an indicator that reflects 
the completeness of one specific sensor throughout the 
duration of the campaign. As one sensor could be used by 
different participants at different times during one cam-
paign, the study of sensor completeness over a campaign 
shows the extent to which this sensor has provided the 
expected measurements regardless of the participant car-
rying this sensor.

In the following sections, we will present the definitions and 
metrics for three of the completeness facets presented above: 
sensor, spatial and temporal completeness.

Sensor Completeness

Sensor completeness is a quality facet that captures the 
extent to which the measurements of a given sensor are com-
plete over a certain time period. It shows the completeness 
of the data captured and sent by this specific sensor during 
this time period. The nature of the sensors can be faulty 
and prone to many points of failures. Studying their com-
pleteness can show how reliable these sensors are by giving 
information about the completeness of the data captured and 
sent by each one.

A sensor unit can be used multiple times for different 
users. A sensor usage is performed by a single user. To 
study the completeness of one sensor over a certain period 
of time T, we have to study its completeness every time it 
was used in T. Hence, if a sensor has been used 4 times dur-
ing a period, we have to study its completeness for each of 
these 4 times.

We evaluate the completeness of a specific sensor Si as 
follows:

Fig. 3  A multi-dimensional 
model for pollution data
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– Identifying all the usages of sensor Si in the specified 
time period.

– Evaluating sensor completeness for each usage of Si sepa-
rately.

– Aggregating the computed evaluations of each usage to 
calculate the completeness of sensor Si.

The completeness for a single sensor Si in one campaign is 
evaluated as follows:

where AMSi
 is the actual number of measurements sensor Si 

has taken during all its usages in the specified period of time, 
and RMSi

 is the expected number of measurements from sen-
sor Si during its usages in this time period.

The required number of measurements RMSi
 for a sensor 

Si throughout a specific time period is defined as:

where K is the number of usages of sensor Si over the speci-
fied time period, and nSij is the number of required measure-
ments for sensor Si in usage j.

For every single usage denoted j including the sensor Si , 
nSij is computed as follows:

where fSi is the sampling rate of the sensor Si and DCj
 is the 

duration of the usage j of the sensor.

Spatial Completeness

Spatial completeness is the extent to which data sufficiently 
represents a specific spatial area, and it characterizes the 
coverage of this area considering the available measure-
ments. In other words, spatial completeness indicates how 
sufficient and comprehensive the current measurements are 
for a particular area. This notion is similar to the concept of 
data skewness [3].

Completeness of measurements does not necessarily 
mean the more the better. It only means that we have enough 
measurements that ideally cover the area of study such that 
we can say it is spatially complete. Spatial completeness is 
quantifying that distance between the ideal and the actual 
situation of the measurements. The specification of an ideal 
spatial coverage, however, is to be determined. Several inter-
pretations exist for an ideal required number of measure-
ments for a specific area. For instance, one interpretation 
could be to divide the designated area into equal grid cells 
and aim for an equal number of measurements in each grid 

(1)SenCSi
=

AMSi

RMSi

,

(2)RMSi
= Σ

K
j=1

nSij ,

(3)nSij = fSi ∗ DCj
,

cell. This means that the measurements taken by the sensor 
are not clustered in few portions of the area but are rather 
evenly spread all over it. Hence, we propose a spatial com-
pleteness metric that compares the actual distribution of the 
measurements to a uniform distribution of the measurements 
over the area of study. For this particular interpretation, the 
evaluation steps of spatial completeness over the designated 
area are performed as follows:

– Dividing the area of study into equal-sized grid cells
– Computing the required number of measurements for 

each grid cell, and evaluating the spatial completeness 
of each grid cell

– Aggregating the computed evaluations of each grid cell 
to compute the spatial completeness of the area of study

Spatial Completeness of a Cell C
i

After dividing the designated area of study into equal sized 
grid cells, we compute the spatial completeness for each cell 
in the grid. Spatial completeness of a grid cell Ci , denoted 
SCi , is computed as follows:

where AMCi
 is the actual number of measurements in a grid 

cell Ci , and RMCi
 is the required number of measurements 

in a grid cell Ci.
Different assumptions could be made to estimate RMCi

 , 
the required number of measurements in a given cell. Two 
of them are presented hereafter:

– Hypothesis 1: We consider as a reference, a uniform 
distribution of the measurements over the area of study 
A. This means that the number of measurements should 
be evenly distributed over the cells in the grid. Hence, 
the required number of measurements is: 

 where AM is the actual number of available measure-
ments for the whole grid, and |A| is the number of grid 
cells in the area A.

– Hypothesis 2: We consider as a reference, a distribution 
of the measurements that takes into account the variation 
of pollutant levels in the different cells of the area of study 
A. Pollutant variability could be learned from existing data 
obtained from previous campaigns. If for a given cell, the 
data show that there is a low variation of pollutant levels in 
all the spatial area represented by this cell, then the number 
of required measurements for this cell can be low without 
a loss of coverage. Conversely, if there is a high variability 

(4)SCi =

AMCi

RMCi

,

(5)RMCi
=

AM

|A| ,
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in a given cell, then the required number of measurements 
should be higher to better represent this cell.

The value of SCi ranges from 0 to 1. A value of 1 meaning 
that the available measurements are uniformly distributed over 
the considered area. A low value represents the fact that the 
measurements are unevenly distributed over the area. Note that 
a high spatial completeness value does not represent the fact 
that a high number of measurements is available, but that the 
available measurements, regardless of the quantity, are more 
evenly distributed.

Spatial Completeness of an Area A

After computing spatial completeness for each cell in the grid 
separately, the overall spatial completeness for the whole area 
of study A is computed by aggregating the spatial complete-
ness of all the cells. This could be done in different ways, for 
example using the average, the median, the minimum or the 
maximum functions.

We propose two quality metrics to compute the overall spa-
tial completeness:

– Cumulative average, which computes the average of all 
cells’ spatial completeness, as shown in the formula below: 

 where SCCi is the spatial completeness of one grid cell 
Ci , and |A| is the number of cells in the grid covering 
area A.

– Spatial completeness above a certain threshold, which 
computes the proportion of cells having their spatial com-
pleteness above a given threshold t, as shown in the for-
mula below: 

(6)SC(A) =

∑�A�
i=1

SCCi

�A� ,

(7)
SC

(A) =

∑�A�
i=1

𝛼i

�A� ,

where

�
𝛼i = 1 if SCCi ≥ t

𝛼i = 0 if SCCi < t.

Temporal Completeness

Temporal completeness is another facet of data complete-
ness which can be relevant in the context of MCS environ-
ments. It expresses the extent to which a considered period 
of time is covered by the available measurements. On one 
hand, sensors capturing measurements at a very high fre-
quency may at some point add redundancy to the data, 
but on the other hand, a very low frequency will result in 
missing data. Therefore, we need a clear characterization 
of temporal completeness.

A high temporal completeness indicates a high coverage 
of the acquired measurements over a time period P. To 
assess temporal completeness, we divide a period P into 
n equal chunks and then compare the number of acquired 
measurements during time period P to a reference number 
of measurements defined for each chunk denoted by RMDi . 
The reference number of measurements can be computed 
in several ways. In our work, we assume a uniform distri-
bution of the acquired measurements in period P over the 
time chunks Di where i�{i = 0, 1, 2..., n} . A high number 
of measurements does not necessarily mean high tempo-
ral completeness, we have to study their distribution over 
time as well.

The evaluation of temporal completeness for a specified 
period of study is done as follows:

– First, dividing the period of study P into equal-sized 
chunks of time as it is shown in Fig. 4

– Then computing the required number of measurements 
and evaluating the temporal completeness for each 
chunk.

– Aggregating the computed evaluations to calculate the 
overall temporal completeness of period P.

Fig. 4  Period P divided into 
chunks D

i
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Temporal Completeness of a Specified Chunk 
of Time D

i

Different assumptions could be made to estimate the tem-
poral completeness for a single time chunk Di . Two of 
them are presented hereafter:

– Hypothesis 1: We consider as a reference, a uniform 
distribution of the measurements over time. The temporal 
completeness for a single time chunk Di is: 

 where AMDi is the actual number of measurements in 
a chunk of time Di and RMDi is the required number of 
measurements in the chunk of time Di . RMDi

 is defined 
for a chunk of time Di as: 

 where K is the number of sensors, nsj is the number 
of required measurements for sensor sj during the time 
chunk Di . For a sensor sj , the number of required meas-
urements during a chunk of time Di is computed as: 

 where fsj is the sampling rate of the sensor sj expressed 
in number of measurements per minute, and |Di| is the 
size of the chunk Di expressed in minutes.

– Hypothesis 2: We consider that the measurements are 
distributed considering the variation of pollutant levels 
at different times of the day, month or year. Pollutant 
measurements are highly affected by time (e.g., rush 
hours pollutant readings are higher than other times of 
the day). A possible approach would be to analyze the 
available data to detect variation patterns. The number 
of required measurements can then be set using these 
patterns in order to compute the temporal completeness.

Temporal Completeness of a Period P

The temporal completeness of a period of time P provides 
information about the way the available measurements are 
distributed over P, and how well P is covered by these meas-
urements. It is computed by aggregating the temporal com-
pleteness values computed for all the time chunks in P.

Temporal completeness for a time period P can be com-
puted as the average of all the temporal completeness values 
of its chunks, as shown below:

(8)TCi =
AMDi

RMDi

,

(9)RMDi
= Σ

K
j=1

nsj,

(10)nsj = fsj ∗ |Di|,

(11)TCP =

Σ
|P|
i=1

TCi

|P| ,

where |P| is the number of chunks in a period of time P, and 
TCi the temporal completeness of chunk Di.

Improving Completeness: A Quality‑Based 
Approach

In “Sensor Completeness”, “Spatial Completeness”, “Tem-
poral Completeness” we have presented different quality fac-
tors related to the completeness dimension along with their 
corresponding evaluation metrics. In this section, we address 
the problem of improving data completeness in mobile 
crowdsensing environments. To this end, we will rely on 
existing data imputation techniques to generate missing val-
ues. Our proposal is to revisit existing techniques by intro-
ducing quality aspects during the data imputation process.

According to [16], there are three families of data imputa-
tion techniques for time series, two of which are very com-
monly used: pattern-based and matrix based techniques. 
Pattern-based approaches assume a high similarity in the 
patterns of the series. To generate missing data in series X1 , 
approaches in this family study the patterns of the reference 
time series at the missing block’s timestamp tj , and then 
look for candidate replacement patterns in other timestamps 
of the reference series. When a similarity in the reference 
series is found at some timestamp ty , the missing block in X1 
at timestamp tj is replaced with the pattern at timestamp ty in 
X1 . Matrix-based approaches use dimensionality reduction 
methods to detect linear correlations across multiple series 
which will later be used to recover missing values and then 
compensate the lost accuracy with iterations over compu-
tations until a set error metric threshold is reached. Prin-
cipal Component Analysis (PCA) [11] and Singular Value 
Decomposition (SVD) [32], among several others, are the 
most commonly used dimensionality reduction techniques. 
SoftImpute [21] and CDRec [14, 15] are matrix-based data 
imputation approaches based on SVD [32] and Centroid 
Decomposition (CD) [6], respectively. ST-MVL [39] and 
DynaMMo [19] are pattern-based techniques that learn hid-
den patterns and exploit series smoothness and neighboring 
sensors to generate missing values.

Existing data imputation techniques mainly rely on exist-
ing measurements either from the same sensor or other sen-
sors or both. Given the erroneous nature of the low-cost 
mobile sensors, imputation techniques can sometimes per-
form poorly due to the usage of low-quality sensors in the 
imputation process. We propose an improvement to the 
existing techniques by providing them with sensor quality 
information. Our idea is to use the quality of the measuring 
sensor during the imputation process. A quality-aware data 
imputation technique prioritizes high-quality sensors. Con-
sider the example of a sensor s1 having a missing value at 
timestamp tj and two other sensors s2 and s3 having a quality 
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of 0.2 and 0.85, respectively. Assume that the measurements 
provided by these two sensors at timestamp tj are 4 and 8, 
respectively. Because s3 has a higher quality than s2 , the 
measurement of sensor s3 should be given a higher weight 
than the one of sensor s2 when imputing the value of s1 at 
timestamp tj.

To improve the completeness of the data coming from 
the sensors, we propose an extension to the existing data 
imputation techniques to make them aware of the quality of 
the sensors providing the data used for the imputation. Qual-
ity of a sensor is a broad concept that has several facets. In 
our extension, we use the definitions of sensor completeness 
proposed in “Sensor Completeness” to assess the quality of 
a sensing unit. Provided with other quality factors character-
izing sensors, we could integrate more quality information to 
further improve the imputation. In this section, we will first 
discuss sensor quality, then we will present the considered 
data imputation techniques and finally we will describe the 
proposed quality-based extensions of these techniques.

Sensor Quality

Sensor quality is a general indicator of the performance of 
a sensor unit expressing the extent to which we can trust 
the data coming from it. Some sensors perform better than 
others. This could be due to a variety of reasons, such as 
the characteristics of the device itself, like the measure-
ment acquisition rate or the technologies at the heart of this 
device. In addition, the performance of sensor units of the 
same type and coming from the same manufacturer may 
vary depending on the meteorological context in which 
the measurements were taken. For example, the indoor air 
quality measuring sensor, NETATMO3 works only for an 
external temperature between 0 and 50 ◦ C with a humid-
ity level between 0% and 100%. We can therefore deduce 
that the data provided by this sensor when the temperature 
is negative is of poor quality. The quality of the measure-
ments can also be impacted by the way the sensor is used by 
its carrier. Indeed, a sensor whose battery is discharged, or 
even turned off by its user, will provide data of lower quality 
than a sensor operating continuously with a correct battery 
level. Hence, the data coming from each sensor unit can be 
disparate in terms of quality and all of the aforementioned 
factors can be used to determine the level of quality of a sen-
sor. We can also evaluate the quality of a sensor using some 
measurements provided by reference devices if available.

There are different perspectives on how to define sensor 
quality and many quality factors could be added, normalized 
and aggregated to represent sensor quality. In this work, as 
stated earlier, we will use the definition of data completeness 

and the evaluation metrics proposed in “Sensor Complete-
ness” to represent the quality of the sensors, and we will rely 
on these to extend the existing data imputation techniques.

Data Imputation Algorithms

There are many data imputation algorithms in the literature 
using different techniques to infer missing values. In our 
work, we have used two existing approaches, KNNimpute 
and SVDImpute proposed by [36]. To generate a missing 
value for a given sensor, KNNImpute uses data from k 
neighboring sensors. SVDImpute uses SVD to extract linear 
correlations across data series of several existing sensors. 
We will describe hereafter each of these two approaches.

KNNimpute

KNNimpute is based on k-nearest neighbors applied on the 
data matrix containing data measurements of k sensors at 
timestamp t. KNNImpute generates a missing value at times-
tamp t based on the measurements from neighboring sensors 
at timestamp t. The value of the measurement from each 
sensor is weighted according to its similarity with the target 
sensor st . The similarity metric is the Euclidean distance 
between a sensor si and the target sensor st with the missing 
measurement. Finally, to impute a missing value, a weighted 
average of the k-nearest sensors is computed using similarity 
as the weight. The missing value inferred using KNNImpute 
is defined by:

where v̂j is the imputed value of target sensor st at timestamp 
tj , k is the number of neighboring sensors, vlj is the meas-
urement value of sensor sl at timestamp tj , st is the target 
sensor, and dsl,st is the Euclidean distance between sensor sl 
and target sensor st.

SVDImpute

SVDImpute is a matrix-based technique that relies on the 
Singular Value Decomposition (SVD) matrix factorization 
technique [32] to extract the linear combinations in the data 
which will be later used in the regression to finally recover 
missing values as shown in Fig. 5. SVD is employed to 
obtain the principle components of the matrix containing the 
sensors and their corresponding values at every timestamp 
within a period of time P.

Let us consider a set of sensors S = {s1, s2, ..., sn} . We 
denote by A, the matrix containing all the measurements 

(12)v̂j =

∑k

l=1
vlj ∗ dsl,st∑k

l=1
dsl,st

,

3 https:// www. netat mo. com/ fr- fr/ airca re/ homec oach/ speci ficat ions.

https://www.netatmo.com/fr-fr/aircare/homecoach/specifications


SN Computer Science (2022) 3:216 Page 9 of 16 216

SN Computer Science

from the set of sensors S. SVD factorizes the matrix A, into 
3 singular matrices as follows:

where U is an m × m unitary matrix, Σ is an m × n diagonal 
matrix, VT is the transpose of an n × n unitary matrix that 
contains eigenvectors, that are quantified by their corre-
sponding eigenvalues on the diagonal of matrix Σ . After the 
principle components are computed, the k most significant 
eigenvectors are selected from VT . Then, we estimate a miss-
ing value vij in sensor si by first regressing this sensor against 
the k eigenvectors to get the coefficients ( �0, �1, ..., �n ) in the 
regression equation below.

where v̂ij is the imputed value of sensor si at timestamp tj , 
�0 is the intercept, ( �1, ..., �n ) are the regression coefficients, 
x1, ..., xn are the corresponding sensor values, and � is the 
residuals.

The coefficients of the regression are used to reconstruct 
a missing value vij from a linear combination of the k eigen-
vectors. The imputation of all missing values in the data 
matrix A using the aforementioned technique constructs 

(13)Am×n = Um×mΣm×nV
T

n×n
,

(14)v̂ij = 𝛽0 + 𝛽1x1 + 𝛽2x2 + ... + 𝛽nxn + 𝜖,

the new matrix Â . Finally, the difference between A and Â 
is computed. If the difference is greater than a predefined 
threshold � , we iterate and repeat the process considering Â 
as the matrix to factorize in Eq. (13). Iterative SVDImpute 
is described in Fig. 5.

Quality‑Based Data Imputation

In this section, we present our approach for extending exist-
ing data imputation techniques with insights about the 
quality of the sensors acquiring the measurements. In our 
approach each sensor is associated to a quality score that 
ranges between 0 and 1. The considered quality dimension is 
sensor completeness, and the completeness score is assessed 
using the metrics introduced in “Sensor Completeness”.

The existing data imputation techniques do not make any 
assumption on the quality of their input data. In MCS envi-
ronment, there may be important variations of the quality of 
the data provided by a sensor. To improve the quality of the 
imputation, we propose to enrich the data imputation tech-
niques with the quality of the measuring sensor. A quality-
aware data imputation technique would not consider all the 
sensors in the same way, but instead give higher weights 

Fig. 5  Iterative SVDImpute 
Algorithm
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to measurements coming from sensors with higher quality 
scores.

We propose three different ways to extend the existing 
techniques with sensor quality: 

1. Taking into account sensors with a quality score above 
a predefined threshold � , where 0 ≥ � ≤ 1

2. Taking into account the data of a percentage p of the 
sensors having the highest quality score.

3. Considering all the sensors, but weighting the measure-
ments by the quality score of the measuring sensor.

Our goal in this section is to extend an approach A with sen-
sor quality denoted by qs , and propose an extended approach 
A ′ such that the imputed value using A ′ is closer to the 
actual value than the imputed value using A.

Extending KNNImpute Using Sensor Completeness

KNNImpute chooses the k-nearest sensors to be used for the 
imputation of the missing value.

To extend KNNImpute, we use the third type of extension 
presented earlier, which consists in weighting the measure-
ments with the quality score of the measuring sensors. This 
way, sensor quality will be considered as a weight that gives 
more importance to the measurements coming from good-
quality sensors over those from poor-quality ones.

Consider a set of sensors S = {s1,..., sn} where each sen-
sor si has a quality score qsi . Assume sensor st has a missing 
measurement vj at timestamp tj . The imputed value v̂j gener-
ated by the extended version of KNNImpute is defined by:

where k is the number of neighboring sensors, dsl,st is the 
Euclidean distance between sensor sl and target sensor st , 
and vlj is the measurement value of sensor sl at timestamp tj.

Extending SVDImpute Using Sensor Completeness

We propose two possible extensions to SVDImpute to take 
into account sensor quality. One considers only a percent-
age p of sensors having the highest quality score in the data 
matrix. The second takes sensors having a quality score 
above a predefined threshold �.

The first proposed extension takes place at the very first 
phase of the algorithm, after the data from the sensors 
required for the imputation is retrieved. In this data set, we 
will consider only the data of the percentage p of the sen-
sors having the highest quality score. For example, if we set 
p = 70% and if we have data from 10 sensors, SVDImpute 

(15)v̂j =

∑k

l=1
vlj ∗ dsl,st ∗ qsl∑k

l=1
dsl,st ∗ qsl

,

will consider only the data from the 7 sensors with the 
higher quality scores. The data from the 3 remaining sen-
sors with lower quality scores will be discarded.

The second proposed extension is similar to the first one, 
but instead of considering the percentage p of sensors hav-
ing the highest quality score, it considers sensors having a 
quality score above a threshold � , where � ranges between 0 
and 1. In this proposition, we are only interested in the data 
from the sensors that have a quality score above a predefined 
threshold. This threshold is determined empirically. If we 
consider the previous example, and assume our threshold is 
70% and only 4 sensors out of 10 have a quality score above 
70%. In this case, we only consider the data from these 4 
sensors into our data matrix and discard the remaining ones.

For both extensions, we filter out the data of the unwanted 
sensors by multiplying the data matrix Am,n by a filter Km,m 
that nullifies the rows of the unwanted sensors. Hence, the 
resulting matrix A′

m,n
 only contains the rows of data from the 

selected sensors. For instance, if matrix A is of size 4 × 5 , 
representing data from 4 sensors over 5 timestamps, and 
suppose only sensors s2 and s3 have a quality score above 
the considered threshold. Then, the matrix A′

m,n
 will be com-

puted as follows:

Evaluations

In this section, we present some experiments on the 
approaches and metrics discussed in this paper. Our experi-
ments are done on the real data collected in the context of 
the Polluscope4 research project [5] over two campaigns. 
In this section, we present preliminary evaluations of the 
spatial, temporal and sensor completeness of the collected 
data using the metrics defined in this paper.

For completeness improvement, we illustrate our 
experiments with the proposed extensions of existing data 

(16)A�

m,n
= Km,m × Am,n,

K

⎛⎜⎜⎜⎝

0 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0

⎞⎟⎟⎟⎠
×

s
1

s
2

s
3

s
4

⎛
⎜⎜⎜⎜⎜⎝

t
1

t
2

t
3

t
4

t
5

a
11

a
12

a
13

a
14

a
15

a
21

a
22

a
23

a
24

a
25

a
31

a
32

a
33

a
34

a
35

a
41

a
42

a
43

a
44

a
45

⎞⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎝

0 0 0 0 0

a
21

a
22

a
23

a
24

a
25

a
31

a
32

a
33

a
34

a
35

0 0 0 0 0

⎞⎟⎟⎟⎠
.

4 http:// pollu scope. uvsq. fr.

http://polluscope.uvsq.fr
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imputation techniques from the literature. We show the 
improvement of the imputations by the extensions proposed 
to each of KNNimpute and SVDimpute.

Context of the Experiments

During the first phase of the Polluscope project, studies and 
experiments on pollutants and sensors were performed. The 
measured pollutants are PM1.0, PM2.5, PM10 (particulate 
matter of diameters 1.0, 2.5 and 10 respectively), NO2 and 
BC (black carbon). Multiple sensors were selected to meas-
ure different pollutants.

For data acquisition, volunteers carry kits containing sen-
sor units with them during their daily life routines (both 
indoor and outdoor) without any preset routes or destina-
tions. A kit may contain either a single sensor, or multiple 
sensors, each measuring a different pollutant. Each acquired 
measurement is associated with its timestamp and its spatial 
coordinates.

In our completeness improvement experiments, we evalu-
ate the inference of missing values on a subset of PM2.5 
measurements selected to ensure that they have neighbor-
ing sensors within a 30 m diameter at the same time. This 
is because some of the studied data imputation algorithms 
rely on neighboring sensors for the imputation of a missing 
value. To conduct our experiments, we assume that each 
measurement in the selected set is missing, and we gen-
erate the imputed value both with the original imputation 
approaches and with the extended ones. Finally, we evalu-
ate our extensions using the metrics defined in “Complete-
ness Improvement Indicators”. We extend KNNimpute by 
weighting every data measurement by the quality score of 
the measuring sensor. We have tested the two proposed 
extensions for SVDImpute, which consist, respectively, in 
considering a percentage p of the sensors having the highest 
quality score, and considering only data from sensors having 
a quality score above a predefined threshold.

Setup

We conducted our experiments on a Intel(R) Core(TM) 
i5-8250U CPU @ 1.60GHz machine with 16GB System 
Memory and clock 100MHz. The data are stored on Postgres 
in a docker container on the cloud. We have used Python on 
Jupyter Notebook to establish a connection with the server 
containing the data and to be able to access the data for our 
evaluations. The sensor sampling rate is 1 measurement per 
minute.

For the completeness improvement experiments, the ini-
tial data set contains 7700 measurements. We will gener-
ate the missing values of a subset of this data set that con-
tains 500 measurements. As discussed earlier, this subset is 
selected so as to ensure that for each measurement, there are 

other measurements taken by sensors within a 30 m distance. 
During our experiments, we evaluate our extensions by first 
assuming that every measurement in the subset is missing. 
We use the sensor completeness metric to compute the sen-
sor quality score. We have set k to 5 for KNNImpute.

Completeness Improvement Indicators

To assess the proposed extensions, we compute the propor-
tion of improved, unchanged and worsened measurements. 
These indicators show the accuracy of our extensions com-
pared to that of the original versions of the imputation 
techniques.

We also compute the RMSE metric to quantify the error 
between the generated series and the actual ones. RMSE 
is computed between the data generated by the origi-
nal approaches and the actual values. It is also computed 
between the values generated by the extended approaches 
and the actual values. Finally, we compare the two obtained 
results to infer whether our extensions minimized the error 
between the generated values and the actual ones or not.

RMSE Error Metric

RMSE measures the quality of an estimator. To get the error 
of the estimation models, we compute the root mean squared 
error RMSE error metric between a vector of estimated/pre-
dicted values v̂ij and a vector of the actual/observed val-
ues vij . The RMSE could be computed for the estimation 
of the original approaches as well as the estimation from 
the extended approaches proposed in this paper. We can 
compare the error metric RMSE between the estimations 
from the original approaches (SVDImpute and KNNImpute) 
to the values generated using the extended versions of the 
aforementioned approaches.

Proportion of Improved Measurements

The proportion of improved measurements shows the num-
ber of measurements improved using the extension of the 
techniques with sensor quality, compared to the original 
approach. This means that the data imputation techniques 
generate more accurate estimations of the missing meas-
urements with the extended versions than the original 
approaches. Therefore, the imputation of a missing meas-
urement is said to be improved, if the absolute value of the 
difference between the actual measurement and the imputed 
value of the extended approach is smaller than the absolute 
value of the difference between the actual measurement and 
the imputed value of the original approach as shown in the 
following Eq. (17):
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where vij is the actual measurement, v̂ij is the imputed meas-
urement generated by the original approach, and v̂′

ij
 is the 

imputed measurement generated by the extended approach.

Proportion of Worsened Measurements

Similarly, the proportion of worsened measurements shows 
the number of measurements worsened using the exten-
sion of the techniques with sensor quality, compared to the 
original approach. This means that the original approach 
provided a more accurate estimation of the missing measure-
ments than the extended approach. The imputation of a miss-
ing measurement has been worsened using our extension if 
the absolute value of the difference between the actual meas-
urement and the imputed value of the extended approach is 
greater than the absolute value of the difference between the 
actual measurement and the imputed value of the original 
approach as shown in the following Eq. (18).

where vij is the actual measurement, v̂ij is the imputed meas-
urement generated by the original approach, and v̂′

ij
 is the 

imputed measurement generated by the extended approach.

Proportion of Unchanged Measurements

Likewise, the proportion of unchanged measurements shows 
the percentage of measurements for which both the original 
and the extended versions of the data imputation technique 
generated the same value. This means that there was no 
improvement using sensor quality, and that both the origi-
nal and the extended versions of the technique performed 
similarly. In such case, the absolute value of the difference 
between the actual measurement and the imputed value of 
the extended approach is equal to the absolute value of the 
difference between the actual measurement and the imputed 
value of the original approach as shown in the following 
Eq. (19).

where vij is the actual measurement, v̂ij is the imputed meas-
urement generated by the original approach, and v̂′

ij
 is the 

imputed measurement generated by the extended approach.

Results

Our completeness experiments are performed on the NO2 
pollutant measurements obtained in both campaigns 1 and 
2. We have considered 21,398 measurements from campaign 

(17)|vij − v̂�
ij
| < |vij − v̂ij|,

(18)|vij − v̂�
ij
| > |vij − v̂ij|,

(19)|vij − v̂�
ij
| = |vij − v̂ij|,

1, and 38,834 measurements in campaign 2 for our sensor 
completeness experiments. The sensor completeness value 
was 58.66 and 59.92% for campaigns 1 and 2 respectively. 
Table 1 shows the sensor completeness of the selected sensor 
in all its usages during campaign 2.

Over the two campaigns 1 and 2, we evaluated spatial 
completeness for each of the following pollutants: PM1.0, 
PM2.5, PM10, NO2 , BC. The evaluations are done over a 
manually selected area in Paris. The spatial completeness 
experiments were done on a total number of measurements 
1,627,487 in campaign 1, and 4,229,053 measurements in 
campaign 2 (Table 2).

Campaign 1 has less collected data than campaign 2. 
We first compute spatial completeness as described in 
“Spatial Completeness” for every pollutant and for each 
of the kits in this campaign, and then we compute an aver-
age of all the kits to get the total spatial completeness. The 
fact that campaign 1 has less collected data than campaign 
2 should be taken into consideration when analyzing spa-
tial completeness because it means that with more data 
in campaign 2, there is the possibility of a wider spatial 

Table 1  Completeness of a 
sensor measuring NO

2
 for all its 

usages during campaign 2

Kit Nb Sen-Comp

1 37.65%
2 77.3%
3 70.20%
4 28.55%
5 87.89%

Table 2  Computed spatial completeness of all pollutants during cam-
paigns 1 and 2

Pollutants SC Campaign 1 SC Campaign 2

PM1.0 15.10% 33.02%
PM2.5 15.10% 33.02%
PM10 15.10% 33.02%
NO

2
18.17% 35.15%

BC 20.38% 34.99%
Temperature 15.10% 32.91%
Humidity 15.10% 32.91%
Pressure 15.10% 33.024%

Table 3  Aggregated total average of temporal completeness of all 
pollutants during each sensing campaign

Pollutants TC Campaign 1 TC Campaign 2

PM2.5 7.75% 42.23%
NO

2
60.91% 63.66%

BC 68.53% 59.49%
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coverage. Table 3 shows the spatial completeness values 
computed for campaigns 1 and 2.

Over the two campaigns 1 and 2, we have also evaluated 
temporal completeness for each of the pollutants PM2.5, 
NO2 and BC. To evaluate temporal completeness, we have 
extracted 582,506 measurements of the 3 selected pollut-
ants in campaign 1 and 1,378,497 measurements in cam-
paign 2. Table 3 shows the temporal completeness of the 
three pollutants PM2.5, NO2 and BC over campaigns 1 
and 2.

Finally, we evaluate the extended imputation approaches 
using RMSE error metric and proportion of data measure-
ments improved, worsened, and unchanged. In Table 4, we 
present the values of the these metrics for the extensions of 
both SVDimpute and KNNimpute.

The analysis of these results leads to the following 
observations: 

1. The three extensions show promising results. The exten-
sion of SVDImpute that considers data from the 40% 
of sensors having the highest quality score shows the 
highest percentage of improvement (71%).

2. KNNimpute shows very good results as well with 69% 
of the measurements imputation improved and only 11% 
of them worsened. 20% of the measurements remain 
unchanged. The RMSE is also relatively low with a 
value of 5.4.

3. Both extensions of SVDimpute show good results. How-
ever, considering the 40% of sensors having the highest 
quality score shows better results than considering only 
sensors with a quality score above the 0.45 threshold. 
This latter has to be determined empirically by testing 
different percentages and thresholds.

4. Taking the 40% of sensors having the highest quality 
score shows 71% of improved measurements in the 
imputation of the missing values, 21% of worsened 
measurements, and 8% unchanged measurements. The 
RMSE is also low with a value of 2.7.

5. The extension of SVDimpute that considers only sensors 
with a quality score above the 0.45 threshold, shows that 
62% of the measurements were improved. But the per-
centage of worsened measurement is 24%, which is not 

very low. Besides, 14% of the measurements remained 
unchanged. The RMSE value of 5.2 is acceptable.

Discussion

From the experiments, we have seen that Sensor Complete-
ness may significantly vary from one usage of the selected 
NO2 sensor to another in a campaign. During the usages 
of the sensor in the two kits 1 and 4, sensor complete-
ness was relatively low; whereas for the other kits, the 
sensor completeness value scored more than 70%. One 
possible reason could be that sensors used to measure NO2 
may sometimes lose their data if they run out of battery. 
However, overall, the sensor completeness results were 
relatively high for the selected NO2 sensor.

As for the evaluations of Spatial Completeness, the 
results of campaign 2 are generally better than those of 
campaign 1. However, the spatial completeness achieved 
in both campaigns is not high and this could mean that 
the participants did not change their locations a lot dur-
ing their participation periods. This can make sense if we 
think of the amount of time people spend in their homes 
and workplaces. The spatial completeness results are 
almost in the same range for both campaigns as the sen-
sors measuring the studied pollutants were grouped in 
kits and carried together. The spatial areas they cover are, 
therefore, the same. Besides, the rates of sensor measure-
ments in the setup of the experiments were the same for 
all the sensors.

The evaluation of Temporal Completeness scores for 
sensors measuring PM2.5 and NO2 were better in cam-
paign 2 than in campaign 1. However, the temporal com-
pleteness in sensors measuring BC was slightly better in 
campaign 1 than in 2. One possible reason for the very low 
temporal completeness for the sensor measuring PM2.5 in 
campaign 1 could be that during campaign 1, the sensors 
were unstable which caused the loss of many chunks of 
data. Therefore, the values of campaign 2 are more reliable 
for that sensor.

The preliminary results of the extended data imputa-
tion experiments with Sensor Quality are promising. The 
indicators showed approximately 70% of improvement 
of the performance of the existing data imputation tech-
niques when extended with sensor quality represented in 
our experiments by Sensor Completeness. The extension 
of SVDImpute that considers the 40% of sensors having 
the highest quality score shows the best improvement 
result. The SVDImpute extension with quality above the 
0.45 threshold shows the highest percentage of worsened 
measurements. The KNNImpute extension shows the high-
est percentage of unchanged measurements.

Table 4  Evaluating quality-based data imputation approaches

Extension Improved Worsened Unchanged RMSE

KNNimpute: meas-
urements weighted 
by quality

69% 11% 20% 5.4

SVDimpute top 40% 71% 21% 8% 2.7
SVDimpute quality 

above threshold: 
0.45

62% 24% 14% 5.2
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Related Works

Many research works have addressed the issues related to 
data quality. Some of them have studied quality dimen-
sions and their evaluation metrics [2, 20, 24, 31]. Integ-
rity assessment of maritime messages has been evaluated 
in [28] through both message-based and signal-based 
analysis. To support decision making on whether or not 
allocate a sensing task, [37] assessed the data quality of 
the inferred unsensed cells in a crowdsensing environ-
ment using re-sampling methods such as leave-one-out 
and Bootstrap.

A data quality assessment framework has been pro-
posed in [1]. Dasu et al. [7] proposed two types of data 
quality checks, the first one monitors the data gathering 
process and checks the incoming data while the second 
monitors the quality of the content of the data streams and 
studies data quality according to four defined types of con-
straints on the data. The work presented in [27] proposes 
a supervised classification approach to assess the quality 
of sensor data. Using graph convolutional networks, the 
approach described in [30] defines local variation and a 
data quality level.

Although there are several works data quality evaluation, 
these proposals do not take into account the specific charac-
teristics of the data in MCS environments. In our work, we 
specifically assessed one quality dimension, data complete-
ness, with its different understandings, as one of the main 
issues introduced by mobile sensors is the loss of data. Some 
works have also addressed quality evaluation at the sensor 
level such as [9] who proposed a toolkit for the evaluation 
of micro-sensing units explaining all the factors and their 
metrics. Languille et al. [18] used the SET tool proposed by 
[9] to evaluate the performance of air quality sensors, and 
to justify the selection of some sensors rather than others.

Another set of works are more focused on representing 
and characterizing data quality in data storage systems and 
extending traditional existing tools to allow the association 
of quality indicators to data. Han et al. [10] identified two 
different types of sensor applications and their respective 
requirements, and proposed strategies for both the satisfac-
tion and the optimization of either a single requirement or 
multi-dimensional quality requirements. Mustapha et al. [23] 
proposed a multivariate spatial time series representation 
model and used functional data representation for storing, 
aggregating, transforming and retrieving sensor data. Klein 
et al. [17] presented a metadata model extension for a rela-
tional database schema to store quality information along 
with data values, and have also extended conventional data 
stream systems to propagate data quality indicators.

Given the polysemous nature of the concept of data 
quality, some authors try to define the meaning of this 

concept according to the specific field and context. Han 
et al. [10] characterizes two types of data requirements 
under which they categorized each quality dimension. 
Rodríguez and Servigne [29] defines the quality dimen-
sions for environmental monitoring systems and [25] 
defines the quality dimensions for spatial data. In addition, 
[8] defines and illustrates the data dimensions that are use-
ful for the context of mobile sensing. While these works 
aim at discussing the application of all data dimensions 
to mobile sensing environments, we focus in our work on 
one of these dimensions, namely data completeness, we 
provide a characterization of the different facets of this 
dimension and we propose some suitable evaluation met-
rics. Accuracy and completeness are the most commonly 
described and evaluated dimensions for mobile sensing 
in the existing works. One of these works has specifically 
addressed completeness assessment [4], and the authors 
have developed a quality model to assess data complete-
ness for sensor data by translating data rates to complete-
ness values measured over a period of time. They have 
considered a specific “smart home” application context 
to demonstrate how completeness can be calculated. Simi-
larly to this work, we also use the sampling/data rate to 
evaluate completeness, but we also introduce and discuss 
the different facets of completeness for the context of 
mobile crowd-sensing and assess completeness spatially, 
temporally and for a specific sensor.

There are several works on the evaluation of low-cost 
mobile sensors performance on different aspects and lev-
els. In [12], the authors have reviewed the existing works 
related to these type of sensors and they have introduced 
a comparison of the existing studies and an evaluation 
of the agreement between low-cost sensors and refer-
ence machines. Another systematic review presented in 
[35] studies the quantification and detection of the miss-
ing data and outliers as these two are the most common 
issues in sensor data, and then illustrates the most com-
mon techniques existing for resolving them. To the best 
of our knowledge, there are no works that propose to 
extend existing imputation techniques with sensor quality 
information. However, there are several works that try to 
enrich data imputation techniques, such as in [34], which 
proposes the limited rule-based imputation techniques 
by proposing an extensive similarity neighbors extension 
that can generate missing data that are not revealed by 
the limited imputation techniques based on exact equality 
neighbors. In [33], the same authors extend similarity rule-
based techniques to handle multiple incomplete attributes 
instead of one attribute and improve imputation accuracy 
by considering similarity neighbors under the constraints 
of similarity rules. However, this work requires an impor-
tant amount of knowledge on the data to be able to set the 
similarity rules.
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Conclusion

This paper is a first attempt towards characterizing and 
monitoring data quality in mobile crowd-sensing environ-
ments. We have first introduced a multi-dimensional data 
model to represent sensor data in this context. Then we 
have focused on data completeness and presented its differ-
ent facets. We have provided the definitions and the evalu-
ation metrics for three of these facets: sensor complete-
ness, spatial completeness and temporal completeness. In 
order to improve data completeness, we have also pro-
posed to extend two existing data imputation techniques 
with sensor quality, SVDImpute and KNNImpute. We have 
performed some evaluations on the proposed completeness 
evaluation metrics as well as the two extended imputa-
tion approaches and presented some experiments on real 
mobile sensor data provided by a mobile crowdsensing 
environment dedicated to air pollution measurement. The 
results on completeness evaluations show the benefits of 
studying this quality dimension from different and com-
plementary perspectives. The results obtained using the 
extended imputation approach have illustrated the use-
fulness of considering sensor quality in the imputation 
process.

Beyond data completeness evaluation and improvement, 
our future works will address other quality dimensions such 
as data accuracy. We will also study some important quality-
related problems in the context of MCS environments, such 
as anomaly detection.
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