
Vol.:(0123456789)

SN Computer Science (2022) 3:196
https://doi.org/10.1007/s42979-022-01086-0

SN Computer Science

ORIGINAL RESEARCH

An Algorithm for Transforming Property Path Query Based on Shape
Expression Schema Update

Goki Akazawa1 · Naoto Matsubara1 · Nobutaka Suzuki1 

Received: 7 July 2021 / Accepted: 5 March 2022 / Published online: 23 March 2022
© The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2022

Abstract
In this paper, we consider transforming queries automatically according to schema update. Suppose that we have a query q under
schema S and that S is updated. Then due to the schema update we have to update q accordingly, otherwise q no longer provides
correct answer. However, updating q manually is often a difficult and time-consuming task since users do not fully understand the
schema definition or are not aware of the details of the schema update. We focus on Shape Expression (ShEx) and Property Path
as schema and query language, respectively, and we take a structural approach to transform Property Path query. For Property
Path query q and schema update s to ShEx schema S, the proposed algorithm checks how s affects the structure of q under S, and
transforms q according to the result. Our experimental result suggests that the proposed algorithm transforms Property Path queries
appropriately according to ShEx schema updates.

Keywords  ShEx · Property path · Schema update

Introduction

For over years, schema plays an important role in managing
various types of data, and the importance holds for RDF/
graph data as well. Since user requirements for RDF data may
change over time, schemas are continuously updated to meet
the requirements. Here, suppose that we have a query q writ-
ten for data under schema S, then S is updated, and that q is
(re)executed after the update. Such a situation often arises;
for example, (a) q is embedded in a program code and the
code is executed after a schema update, (b) q is recorded in a
user’s history and she/he attempts to use q again, and so on. In
such cases, we have to update q according to the update of S,

otherwise q no longer reports correct answer. However, updat-
ing q manually is a difficult and time-consuming task, since
users do not fully understand the schema definition or are not
aware of the details of the schema update.

To address the problem, we consider transforming queries
automatically according to schema update. We focus on Shape
Expression (ShEx) [3] and Property Path as schema and query
language, respectively. Here, ShEx is a novel schema language
for RDF whose specification is considered under the Shape
Expression Community Group. Although ShEx is a relatively
recent schema language, it is already applied to various areas
including Wikidata and FHIR [10, 17, 20]. For RDF data, there
is another novel schema language, called SHACL [15]. ShEx
and SHACL share a number of similar properties [11], and the
main results of this paper can be applied to SHACL as well. On
the other hand, they have a few differences. SHACL schema
description tends to be more complicated due to its strict defi-
nition, while ShEx has higher readability and is easy to han-
dle, although the vocabulary has few limitations. In addition,
recursion is formally supported by ShEx but not in the case
of SHACL (depending on the implementation). As for query
language, Property Path is a well-known path query language
included in SPARQL 1.1. Property Path is defined similar to
regular path query, but is extended in several aspects, e.g., back-
ward navigation and negation.

An earlier version of this paper, Akazawa et al. [2], was presented
in the 16th International Conference on Web and Information
Systems and Technologies (WEBIST 2020). We have elaborated
the explanation throughout this paper and also expanded the
evaluation experiments.

This article is part of the topical collection “Web Information
Systems and Technologies 2021” guest edited by Joaquim Filipe,
Francisco Domínguez Mayo and Massimo Marchiori.

 *	 Nobutaka Suzuki
	 nsuzuki@slis.tsukuba.ac.jp

1	 University of Tsukuba, Tsukuba, Japan

http://orcid.org/0000-0003-1628-1081
http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-022-01086-0&domain=pdf

	 SN Computer Science (2022) 3:196196  Page 2 of 10

SN Computer Science

In this paper, we first introduce update operations to ShEx
schema, and then propose an algorithm for transforming a given
query into a new query according to schema update. We take
a structural approach to transform queries. For a query q and a
sequence of update operations s to ShEx schema S, our algo-
rithm checks how s affects the structure of S, examines how
the changes to S affects the structure of q, and then transforms
q into new query q′ according to the result. Here, it is desirable
that the transformed query q′ preserves the behavior of q as
much as possible; i.e., the answer of q′ should be as close to that
of the original query q as possible. To examine the effectiveness
of the proposed structural approach, we conducted an experi-
ment. The result suggests that transformed queries obtained
by the proposed algorithm exhibited rather good behaviors on
this aspect.

The rest of this paper is organized as follows. Section 2 gives
some preliminary definitions. Section 3 describes operations to
ShEx schema and proposes our algorithm. Section 4 presents
the results of our evaluation experiment. Section 5 describes
some related works. Section 6 concludes the study.

Preliminaries

Graph and ShEx Schema

Let � be a set of labels. A labeled directed graph (graph for
short) is denoted G = (V ,E) , where V is a set of nodes and
E ⊆ V × 𝛴 × V is a set of edges. Let e ∈ E be an edge labeled
by l ∈ � from node v ∈ V to node v� ∈ V . Then e is denoted
(v, l, v�) , v is called source, and v′ is called target.

Unlike XML documents, in RDF/graph data the order
among sibling nodes is less significant. Thus ShEx uses regu-
lar bag expression (RBE) to represent content model of type
[18]. RBE is similar to regular expression except that RBE uses
unordered concatenation instead of ordered concatenation. Let
� be a set of types. Then RBE over � × � is recursively defined
as follows:

–	 � and a ∶∶ t ∈ � × � are RBEs.
–	 If r1, r2,⋯ , rk are RBEs, then r1|r2|⋯ |rk is an RBE, where

| denotes disjunction.
–	 If r1, r2,⋯ , rk are RBEs, then r1 ∥ r2 ∥ ⋯ ∥ rk is an RBE,

where ∥ denotes unordered concatenation.
–	 If r is an RBE, then r[n,m] is an RBE, where n ≤ m . In par-

ticular, r? = r[0,1] , r∗ = r[0,∞] , and r+ = r[1,∞].

For example, let r = a ∶∶ t1 ∥ (b ∶∶ t2|c ∶∶ t3) be an RBE.
Since ∥ is unordered, r matches not only a ∶∶ t1 b ∶∶ t2 and
a ∶∶ t1 c ∶∶ t3 but also b ∶∶ t2 a ∶∶ t1 and c ∶∶ t3 a ∶∶ t1.

A ShEx schema is denoted S = (�,� , �) , where � is a set
of types and � is a function from � to the set of RBEs over

� × �  . For example, let S = (�,� , �) be a ShEx schema,
where � = {a, b, c} , � = {t0, t1, t2, t3, t4} , and � is a function
defined as follows:

Let � ∶ V → � be a function that associates every node
v ∈ V with a type �(v) . Let

where {|⋯ |} denotes a bag. Then G = (V ,E) is valid for S if
there is a function � such that for every node v ∈ V  , �(�(v))
matches out-lab-type�

G
(v) . For example, consider the graph

G shown in Fig. 1. Assuming that �(vi) = ti for 0 ≤ i ≤ 4 , it
is easy to verify that �(ti) matches out-lab-type�

G
(vi) . Thus G

is a valid graph of S.
The schema graph of ShEx schema S = (�,� , �)

i s a g raph GS = (VS,ES) , where VS = � and
ES = {(t, a, t�) ∣ �(t)containsa ∶∶ t�} . For example, Fig. 2
shows the schema graph of S.

�(t0) =a ∶∶ t1 ∥ b ∶∶ t3 ∥ (c ∶∶ t2)
∗,

�(t1) =b ∶∶ t3|c ∶∶ t4,

�(t2) =c ∶∶ t3,

�(t3) =�,

�(t4) =a ∶∶ t3.

out-lab-type�
G
(v) = {|a ∶∶ �(v) ∣ (v, a, v�) ∈ E|},

Fig. 1   A valid graph G of S 

Fig. 2   Schema graph of S 

SN Computer Science (2022) 3:196	 Page 3 of 10  196

SN Computer Science

Property Path and its Traversal Area

We use Property Path as a query language. Formally, Property
Path query (query for short) over � is defined as follows:

–	 � and any a ∈ � is a query. Here, query a matches an edge
labeled by a.

–	 ∗ is a “wildcard” query, which matches any edge.
–	 For a set of labels {a1, a2,⋯ , ak} , !{a1, a2,⋯ , ak} is a

query. Here, ! denotes negation and this query matches an
edge whose label is not in {a1, a2,⋯ , ak}.

–	 For label a ∈ � , a−1 is a query, which matches the inverse
of an edge labeled by a.

–	 For queries q1, q2,… , qk , q1.q2.… .qk and q1|q2|… |qk
are queries. The former matches path p = p1.p2.… .pk if qi
matches subpath pi for every 1 ≤ i ≤ k . The latter matches
path p if one of q1, q2,… , qk matches p.

–	 For query q, q∗ is a query. This query matches a path
p = p1.p2.… .pk if q matches subpath pi for every 1 ≤ i ≤ k
(k ≥ 0).

In this paper, we focus on single source query traversal. For
graph G = (V ,E) , query q, and start node vs ∈ V , the answer
of q from vs over G, denoted Ans(G, q, vs) , is the set of nodes
v such that G contains a path from vs to v whose sequence of
labels is matched by q. For example, if q = a−1.!{a, b} and G
is the graph in Fig. 1, then Ans(G, q, v1) = {v2}.

Let GS = (VS,ES) be the schema graph of S, q be a query,
and t be a type of S. By GS(q, t) we mean the traversal area of
q from t over GS , that is, the subgraph of GS traversed by q from
t over GS . For example, let GS be the schema graph shown in
Fig. 2, q = b.(c−1)∗.(a|b) . Then GS(q, t1) is shown in Fig. 3. t4
and the two edges incident to t4 are not in the traversal area. By
Ans(GS(q, t)) , we mean the “answer” types of GS(q, t) , that is,
the “answer” types obtained by traversing q from t over GS . For
example, in Fig. 3 Ans(GS(q, t1)) = {t1, t3}.

Query Transformation

In this section, we first introduce operations to types of ShEx
schema and define our problem. Then we present an algorithm
for transforming a given query according to schema update.

Operation on Types and Problem Definition

To represent schema update, we introduce update operations
(operations for short) to types. To update types, we need to
specify explicitly the positions of labels and operators in RBEs.
Thus, we introduce tree representation of type and assign an ID
based on Dewey ordering to each node. For example, let

Then the tree representation of t0 is shown in Fig. 4. The ID
associated with each node is the position of the node.

It is desirable that the operations are “complete,” that is, any
ShEx schema can be updated to arbitrary ShEx schema using
the operations. Thus, we define the following eight operations
so that they are complete. Let t be a type of ShEx schema S.

–	 Updating label::type pair of type:

–	 add_lt(t, i, l�∶∶ t�) : it adds label::type pair l� ∶∶ t� to �(t)
at position i, where i is a Dewey order. The operation
corresponds to adding an edge (t, l�, t�) to the schema
graph of S.

–	 del_lt(t, i) : it deletes label::type pair at position i of �(t) .
Let l� ∶∶ t� be the pair to be deleted. Then the operation
corresponds to the deletion of edge (t, , t�, l�) from the
schema graph of S.

–	 change_lt(t, i, l� ∶∶ t�) : it replaces label::type pair at
position i of �(t) with l� ∶∶ t� . Let l�� ∶∶ t�� be the pair
to be replaced. Then the operation corresponds to the
replacement of edge (t, l��, t��) with an edge (t, l�, t�) in
the schema graph of S.

–	 Updating operator (|, ∥ , [n, m]) of type:

�(t0) = a ∶∶ t+
1
∥ (b ∶∶ t2|c ∶∶ t3) ∥ a ∶∶ t∗

4
.

Fig. 3   Traversal area GS(q, t1) Fig. 4   Tree representation of t0

	 SN Computer Science (2022) 3:196196  Page 4 of 10

SN Computer Science

–	 add_opr(t, i, op) : it adds operator op to to �(t) at posi-
tion i.

–	 del_opr(t, i) : it deletes the operation at position i from
�(t).

–	 change_opr(t, i, op) : it replaces the operation at posi-
tion i of �(t) with op.

–	 Adding/deleting type of schema:

–	 add_type(t) : it adds a new type, i.e., t, to S. Initially,
�(t) = �.

–	 del_type(t) : it deletes type t from S.

An update script is a sequence s = op1op2 ⋯ opn of operations.
For example, consider t0 in Fig. 4 and let

be an update script. By applying s to t0 , we obtain
�(t0) = a ∶∶ t+

1
∥ (b ∶∶ t2 ∥ c ∶∶ t3) ∥ d ∶∶ t3 ∥ a ∶∶ t∗

4

(Fig. 5).
For given ShEx schema S, we can add arbitrary types to S,

delete any types from S, and modify RBEs in S arbitrarily. Thus
we have the following:

Theorem 1  The eight operations are complete, that is, for any
ShEx schemas S and S′ , there is an update script s that can
update S to S′.

When S is updated to S′ , the data G under S may no longer
be valid for S′ . In such a case, G must be updated according to
the schema update so that updated version of G becomes valid
for S′ . How to update G depends on the user’s intention which
is difficult to predict precisely, but in this paper we make the
following minimum assumptions:

–	 add_lt(t, i, l�∶∶ t�) : for each node v of type t, edges (v, l�, v�)
are added to G so that G becomes valid for S′ , where v′ is a
new or existing node of type t′.

–	 del_lt(t, i) : let l� ∶∶ t� be the pair to be deleted. Then for each
node v of type t, edges (v, l�, v�) are deleted from G so that G
becomes valid for S′ , where v′ is a node of type t′.

s = change_lt(t0, 1.2, ∥) add_lt(t0, 1.3, d ∶∶ t3)

–	 change_lt(t, i, l� ∶∶ t�) : let l�� ∶∶ t�� be the pair to be
replaced.

–	 If t′ ≠ t′′ , then this is a combination of the above two
cases; deleting edges (v, l��, v��) and adding edges
(v, l�, v�) so that G becomes valid for S′ , where v′′ is a
node of type t′′ and v′ is a node of type t′.

–	 If t� = t�� , then for each edge whose source is v and label
is l′′ , the label is replaced by l′.

–	 add_opr(t, i, op) , del_opr(t, i) , change_opr(t, i, op) : if
edge(s) need to be added to G (e.g., ? is deleted or ∗ is
replaced by + ), the edges are added to G so that G becomes
valid for S′ . If edge(s) need to be deleted from G (e.g., + or ∗
is deleted), the edges are deleted from G so that G becomes
valid for S′.

–	 add_type(t) : no update is made for G since G remains valid
for S′.

–	 del_type(t) : every node of type t is deleted from G. We
assume that, prior to this update, any label-type pair l : : t
of l ∈ � and t is already deleted from S.

Now we define our query transformation problem as follows:

Input:	
�ShEx schema S = (�,� , �) , graph G = (V ,E) , update script
s to S, query q, and start node vs of q
Problem:	
�transform q to new query q′ so that Ans(G, q, vs) and
Ans(G�, q�, vs) are as “close” as possible, where G′ is a graph
obtained by updating G according to s under the above
assumption.

 We have three additional points. First, since G′ is not uniquely
determined since it depends on the user’s intention, it is diffi-
cult to find optimum q′ in general. Thus we propose a heuristic
algorithm in the following subsection. Second, the criteria for
the closeness above can be various depending on user’s require-
ment, e.g., accuracy, recall, and precision. In the experiments
presented in the next section, we use recall and precision to
evaluate our algorithm. Third, in the aforementioned operations,
add_lt() , add_opr() , del_opr() , change_opr() , add_type() do
not affect q in that q remains “valid” against the update schema
of S. On the other hand, del_lt() , change_lt() , del_type() may
affect q, that is, q may become “invalid” under the updated
schema of S in that q may lost some part of answers that were
obtained under S. Thus, our algorithm below transforms q when
del_lt() , change_lt() , or del_type() is applied to S.

Algorithm

The proposed algorithm comprises Algorithms 1 and 2. In the
following, the type of start node is called start type. Algorithm 1 Fig. 5   Tree representation of t0 after applying s 

SN Computer Science (2022) 3:196	 Page 5 of 10  196

SN Computer Science

is the main part of our algorithm. For a given update script
s = op1.op2.⋯ .opn on ShEx schema S and start type ts , the
algorithm transforms a given query q according to s. Let GS
be the schema graph of S, and let GS(q, ts) be the traversal area
of q from ts (lines 1 and 2). First, we prepare copies HS and G′

S

of GS(q, ts) and GS , respectively (line 3). Here, HS maintains
the current traversal area of q. Then for each operation opi of
s, the algorithm modifies HS according to opi (lines 4–27), and
converts HS to the transformed query q′ (line 28). The for loop
in lines 4–27 proceeds as follows: The algorithm does nothing
if opi does not affect the traversal area HS (lines 5–7). Other-
wise, HS (and G′

S
 ) is modified according to opi in lines 8–26,

as follows:

–	 Lines 8–14 deal with change_lt(t, i, l� ∶∶ t�) . This operation
changes label::type pair li ∶∶ ti of �(t) at position i to l� ∶∶ t� .
According to this, we replace edge (t, li, ti) with (t, l�, t�) in
HS and G′

S
 . If ti = t� , then the target node of the edge does

not change. Otherwise, since ti is changed to t′ , a path from
ts to some accepting node via ti may be disconnected by this
change. To repair this, we determine a set of simple paths P
from t′ to ti in G′

S
 using FindPaths and add each path p ∈ P

to HS to connect ti and t′ . Here, FindPaths is a method for
finding simple paths based on depth first traversal; for given
schema graph GS and types t, t′ , FindPaths finds the set P
of simple paths p from t to t′ over G′

S
 allowing inverse edge

traversal.
–	 Lines 15–19 deal with del_lt(t, i) . It deletes the label::type

pair li ∶∶ ti at position i of �(t) . According to this, we delete
edge (t, li, ti) from HS and G′

S
 . By the edge deletion, t and ti

may be disconnected, thus we determine paths from t to ti
over G′

S
 using FindPaths and add the paths to HS.

–	 Lines 20–26 deal with del_type(t) . This operation deletes
type t from S. Thus t and every edge incident to t is deleted
from HS and G′

S
 . To repair this, we find the set Ts of nodes

outgoing to t and the set Tg of nodes incoming from t and
determine paths from Ts to Tg and add the paths to HS.

In line 28, ConstructPropertyPath (Algorithm 2) converts HS
to new query q′ . This is done by regarding HS as an NFA M
with start state ts and the set Ans(GS(q, ts)) of accept states (line
2), constructing DFA M′ equivalent to M (line 3), and then
converting M′ into query q′ (line 4). The conversion process is
performed using an extension of the state elimination method
for DFA.

	 SN Computer Science (2022) 3:196196  Page 6 of 10

SN Computer Science

To exhibit the behavior of the algorithm, we provide the fol-
lowing example: Let S = (�,� , �) be a ShEx schema, where
� = {a, b, c} , � = {t0, t1, t2, t3, t4} , and � is defined as follows:

Let q = a.c , ts = t0 , and s = del_(t0, 1) . The schema graph GS
and GS(q, ts) are shown in Fig. 6. Since s = del_(t0, 1) , the
edge from t0 to t1 is deleted (the red edge in Fig. 6). Thus the
condition in line 15 of Algorithm 1 holds, and the edge is
deleted from HS in line 17. Then FindPaths is applied in line
18 and returns two paths which are denoted by blue in Fig. 7.
Thus the two paths are added to HS in line 19. Finally, HS is
converted by using ConstructPropertyPath, and we obtain
the following query:

�(t0) =a ∶∶ t1 ∥ b ∶∶ t3 ∥ (c ∶∶ t2)
∗,

�(t1) =b ∶∶ t3|c ∶∶ t4,

�(t2) =c ∶∶ t3,

�(t3) =�,

�(t4) =a ∶∶ t3.

q� = (b|c.c).d−1.c.

Fig. 6   Schema graph of S 

Fig. 7   Two paths obtained by FindPaths

Fig. 8   Data structure of Japa-
nese Textbook LOD

SN Computer Science (2022) 3:196	 Page 7 of 10  196

SN Computer Science

Experimental Results

The proposed algorithm transforms a query when ShEx schema
is updated by del_lt() , change_lt() , or del_type() . The answer
may be different from the one before and after the transfor-
mation, especially when the schema is updated by del_lt() or
del_type() . The reason for this is that when a node (type) or an
edge in a schema graph is deleted by del_lt() or del_type() , a
path in the schema graph is disconnected and an “alternative
path” is obtained by FindPaths, but the alternative path does not

always match the nodes reached by the original path. Therefore,
in our experiments we mainly focus on the case where del_lt()
and del_type() are included in the update script. After consid-
ering the structure (connection between types) of several RDF
data, we selected Japanese Textbook LOD [8, 9] as the dataset
that allows us to try such various alternative paths. Then we
applied the proposed algorithm to several queries to examine
if the transformed queries exhibit “good” behavior in the sense
that the answers of the original queries are maintained after
schema update.

Table 1   Original query and
update script

No (a) start type, original query, and (b) update script

1 (a) t10 , catalogue.school
(b) del_lt(t10, 6) add_lt(t10, 1, subjectType ∶∶t4)

2 (a) t2 , catalogue
−1
.publisher−1.curriculum.hasSubjectArea.hasSubject

(b) del_type(t3) del_lt(t2, 1)
3 (a) t8 , curriculum

−1
.school

(b) del_lt(t10, 5) del_type(t5)
4 (a) t10 , (catalogue subjectArea).school

(b) del_lt(t10, 6) add_lt(t4, 3, hasSubject ∶∶t6)
5 (a) t5 , subjectArea

−1
.curriculum.hasSubjectArea.hasSubject.school

(b) del_type(Subject) change_lt(t8, 1, version ∶∶t9)

6 (a) t8 , curriculum
−1.catalogue.school

(b) change_lt(t10, 4, curriclumguideline ∶∶t8)del_lt(t10, 3.1)

7 (a) t10 , curriculum.hasSubjectArea.hasSubject
(b)change_lt(t8, 2.1, subjectArea ∶∶t5) change_lt(t5, 1, subject ∶∶t6)

8 (a) t10 , subjectArea.hasSubject.school
(b) del_lt(t10, 17)change_lt(t8, 2.1, hasArea ∶∶t5) del_type(t4)

9 (a) t8 , curriculum
−1.(catalogue publisher.catalogue)∗.school

(b) del_lt(t10, 14) del_lt(t10, 3.1) del_type(t4)
10 (a) t2 , catalogue

−1.(publisher−1) ∗.(subjectArea.hasSubject| subject).school
(b) change_lt(t10, 3.1, list ∶∶t2) change_lt(t3, 1.1, list ∶∶t2)
change_lt(t8, 2.1subjectArea ∶∶t5) change_lt(t5, 1.1, subject ∶∶t6)
del_lt(t10, 17) del_type(t4)

Table 2   Transformed query No Transformed query

1 Publisher.catalogue.school
2 catalogue−1.curriculum.hasSubjectArea.hasSubject

3 curriculum−1
.publisher∗.catalogue.school

4 (publisher.catalogue subjectArea). School
5 (subjectArea−1.curriculum.hasSubjectArea)∗.subjectType∗.school

6 curriculumguideline−1.publisher.catalogue.school
7 Curriculum.subjectArea.subject
8 Curriculum.hasArea.hasSubject.school
9 curriculum−1.(publisher.catalogue subjectArea.hasSubject∗|subject).school
10 list−1.(publisher−1)∗.(curriculum.subjectArea)∗.subject.school

	 SN Computer Science (2022) 3:196196  Page 8 of 10

SN Computer Science

Japanese Textbook LOD is RDF data compiled from a col-
lection of textbooks that have been organized over the years
by NIER Education Library and Textbook Research Center
Library. Its data structure is illustrated in Fig. 8. The LOD
comprises 233,001 triples of the Turtle format. The data size
is 12 MB.

In this experiment, we manually created ten queries with
start type and short schema updates (Table 1). We transformed
each query using the proposed algorithm (and the data are also
transformed according to the schema update under the assump-
tion in Sec. 3.1). Table 2 lists the transformed queries of the
original queries. Then, using each node of the start type as the
start node, we executed the original and transformed queries
over the original and updated data, respectively. To evaluate
the outputs of the algorithm, we need a metric to evaluate how
“close” the results of transformed query are to the result of its
original query. To do this, we calculated recall and precision.
Let G be a graph, G′ be the transformed graph obtained from
G, q be a query, q′ be the transformed query of q, and vs be the
start node of q, q′ . The recall of q′ w.r.t. q from vs over G and G′
is defined as follows:

Similarly, the precision of q′ w.r.t. q from vs over G and G′
is defined as follows:

Table 3 lists the mean values of the obtained recall, preci-
sion, and F-measure values. The F-measure of the ten que-
ries is 0.87, which means that the results of transformed
queries are close to those of their original queries. Thus, we
can say that our algorithm shows a good behavior in terms
of our research objective.

recallvs,G,G� (q, q
�) =

|Ans(G, q, vs) ∩ Ans(G�, q�, vs)|

|Ans(G, q, vs)|
.

precisionvs,G,G� (q, q
�) =

|Ans(G, q, vs) ∩ Ans(G�, q�, vs)|

|Ans(G�, q�, vs)|
.

However, some of the transformed queries missed a few cor-
rect answers. The main reason for this is due to del_lt() and
del_type() , as expected: when an edge or a node (type) on a
path in a schema graph is deleted, the path is disconnected.
Thus the proposed algorithm tries to find an alternative path
by FindPaths method. However, the alternative path does not
always return the same results as the original path, which is
the reason why precision and recall are reduced. For example,
consider the second query in Table 1. The query passes though
the Publisher ( t3 ) in the opposite direction on the way from
Catalogue ( t2 ) to TextBook ( t10 ) (i.e., “catalogue−1.publisher−1
”), but t3 is deleted by the update script. Thus the algorithm
finds an alternative path, which is a direct inverse path labeled
by “catalogue−1 ” from Catalogue to TextBook. However, the
alternative path does not necessarily return the same TextBook
nodes as the original path, so the results of the transformed
query are also different. Similar situations are also observed for
the other queries whose F-measure is less than one, i.e., queries
1, 4, 6, and 8 to 10, although to a lesser extent.

Related Work

For many years, RDF Schema (RDFS) has been used as a
schema language for RDF data. However, RDFS is essentially
an ontology description language, which has a different orienta-
tion from schema description language for defining the structure
of data and specifying vocabulary. Hence, ShEx was proposed
as a user-friendly and high-level schema language for RDF.
Validation under ShEx is naturally the most fundamental and
important problem, and several methods have been proposed [5,
11, 18]. Although ShEx is a relatively recent schema language,
it is already applied to various areas, e.g., Wikidata and FHIR
[10, 17, 20]. Since ShEx is highly expressive, static analysis
of query under ShEx schema, e.g., query containment, is also
an interesting problem and some pioneering studies have been
made [1, 19]. Since ShEx is a recently proposed language, some
existing RDF data are not given any ShEx schema. However,
methods for extracting ShEx schema from RDF data has been
proposed [10, 21]. Using these methods, RDF data for which
ShEx schema was not defined can benefit from ShEx schema.

Focusing on schema update of RDF data, Chirkova and
Fletcher proposed a model for RDF schema (RDFS) evolu-
tion [7]. However, no query transformation was considered in
that study. Gutierrez et al. proposed procedures for comput-
ing schema and instance RDFS updates, where schema and
instance updates are treated separately [13]. Bonifati et al. dis-
cussed the evolution of the property graph schema based on
graph rewriting operations [6]. ShEx is also used for model
transformation; a transformation method from FHIR model to
ShEx has been proposed, and a system based on the method has
been constructed [10, 17].

Table 3   Recall, precision, and F-measure

No Recall Precision F-measure

1 0.88 0.99 0.93
2 0.70 0.50 0.59
3 1.00 1.00 1.00
4 0.88 0.77 0.82
5 1.00 1.00 1.00
6 0.87 0.98 0.90
7 1.00 1.00 1.00
8 0.97 0.78 0.87
9 0.87 0.78 0.83
10 0.90 0.74 0.82
Mean 0.90 0.85 0.87

SN Computer Science (2022) 3:196	 Page 9 of 10  196

SN Computer Science

In addition to RDF data, a number of studies on schema
updates for XML documents have been conducted. Guerrini
et al. proposed update operations that assures any updated
schema contains its original schema so that documents under an
original schema remains valid under its updated schema [12].
Junedi et al. studied query-update independence analysis and
showed that the performance of [4] can be drastically enhanced
in the use of �-calculus [14]. Oliveira et al. proposed an algo-
rithm for detecting possible problems that affect XQuery code
according to XML Schema update [16]. Wu et al. proposed an
algorithm for correcting XSLT stylesheet according to DTD
update [22].

To the best of our knowledge, no studies on the transforma-
tion of Property Path query according to ShEx schema update
have been conducted.

Conclusion

In this paper, we considered transforming a given query accord-
ing to schema update. We used ShEx as the schema language,
and Property Path as the query language. First, we introduced
update operations to ShEx schema and describe the problem
based on the operations. Then we proposed an algorithm for
transforming a given query into a new query according to
schema update. Here, the algorithm is intended to make the
answer of the original query as close as possible to that of
the transformed query. We conducted an experiment, and the
results showed that the transformed queries exhibited good
behavior in that the answers were close to that of the original
queries.

However, we still have some works to do. Among them, the
main things that should be done are two parts: expansion of
evaluation experiments and extension of the algorithm.

–	 First of all, the dataset used in our experiment was lim-
ited, i.e., only Japanese Textbook LOD. Thus, we need
to conduct more experiments with other various datasets.
Furthermore, the queries and the update scripts used in the
experiment are also limited. As shown in the experiments,
the performance of “alternative path” directly affects that of
transformed queries. Therefore, we need to conduct more
experiments using various datasets and queries, especially
affected by “alternative paths,” and evaluate the perfor-
mance of transformed queries.

–	 We also need to consider extending the algorithm. In par-
ticular, the experiments showed that queries containing
“alternative paths” may miss some coronet answers. The
fundamental problem with the algorithm is that query trans-
formation is based only on the operations applied to ShEx
schema. To achieve a better query transformation, we need

to analyze how the data under the ShEx schema is updated
and incorporate that into the query transformation.

Acknowledgements  The authors express sincere thanks to anonymous
reviewers for their invaluable and insightful comments that greatly help
us to improve this paper.

Declarations 

Conflict of interest  The authors declare that they have no conflict of inter-
est.

References

	 1.	 Abbas A, Genevès P, Roisin C, Layaïda N. SPARQL query containment
with ShEx constraints. In ADBIS 2017 - 21st European Conference
on Advances in Databases and Information Systems , 2017;343–356.

	 2.	 Akazawa G, Matsubara N, Suzuki N. Ransforming property path query
according to shape expression schema update. In Proc. the 16th Inter-
national Conference on Web Information Systems and Technologies
(WEBIST 2020), 2020;292–298.

	 3.	 Baker T, Prud’hommeaux Eric. Shape expressions (ShEx) primer.http://​
shexs​pec.​github.​io/​primer/, 2019.

	 4.	 Benedikt M, Cheney J. Destabilizers and independence of XML
updates. Proc VLDB. 2010;3(1–2):906–17.

	 5.	 Boneva I, Gayo JEL, Prud’hommeaux EG. Semantics and validation of
shapes schemas for RDF. In International Semantic Web Conference,
2017;104–120.

	 6.	 Bonifati A, Furniss P, Green A, Harmer R, Oshurko E, Voigt H.
Schema validation and evolution for graph databases. In Proc. 38th
International Conference on Conceptual Modeling (ER 2019),
2019;448–456.

	 7.	 Chirkova R, Fletcher Geroge HL. Towards well-behaved schema evolu-
tion. In Proc. 12th International Workshop on the Web and Databases
(WebDB 2009), 2009.

	 8.	 Egusa Y, Takaku M. Building and publishing Japanese textbook linked
open data. J Inf Sci Technol. 2018;68(7):361–7.

	 9.	 Egusa Y, Takaku M. Japanese textbook LOD. https://​jp-​textb​ook.​github.​
io/​en/​about 2018.

	10.	 Fernandez-Álvarez D, Labra-Gayo JE, Gayo-Avello D. Automatic
extraction of shapes using sheXer. Knowl-Based Syst 2022;238.

	11.	 Gayo JEL, Prud’hommeaux E, Boneva I, Kontokostas D. Vali-
dating RDF data. Synthesis Lect Semant Web: Theory Technol.
2018;7(1):1–330.

	12.	 Guerrini G, Mesiti M, Rossi D. Impact of XML schema evolution on
valid documents. In Proc. International Workshop on Web Informa-
tion and Data Management (WIDM’05), 2005;39–44.

	13.	 Gutierrez C, Hurtado C, Vaisman A. RDFS update: From theory
to practice. In Proc. The Semanic Web: Research and Applications,
2011;99–107.

	14.	 Junedi M, Genevès P, Layaïda N. XML query-update independence
analysis revisited. In Proc. ACM Symposium on Document Engineer-
ing (DocEng’12), 2012; 95–98.

	15.	 Knublauch H, Kontokostas D. Shapes constraint language (SHACL).
https://​www.​w3.​org/​TR/​shacl/ 2017.

	16.	 Oliveira R, Genevès P, Layaïda N. Toward automated schema-
directed code revision. In Proc. the 2012 ACM Symposium on Docu-
ment Engineering (DocEng’12), 2012;103–106.

	17.	 Solbrig HR, Prud’hommeaux E, Grieve G, McKenzie L, Mandel JC,
Sharma DK, Jiang G. Modeling and validating HL7 FHIR profiles

http://shexspec.github.io/primer/
http://shexspec.github.io/primer/
https://jp-textbook.github.io/en/about
https://jp-textbook.github.io/en/about
https://www.w3.org/TR/shacl/

	 SN Computer Science (2022) 3:196196  Page 10 of 10

SN Computer Science

using semantic web shape expressions (ShEx). J Biomed Inform.
2017;67:90–100.

	18.	 Staworko S, Boneva I, Gayo JEL, Hym S, Prud’hommeaux EG, Sol-
brig HR. Complexity and expressiveness of ShEx for RDF. In Proc.
18th In-ternational Conference on Database Theory (ICDT 2015),
2015;17.

	19.	 Staworko S, Wieczorek P. Containment of shape expression schemas
for rdf. In Proc. the 38th ACM SIGMOD-SIGACT-SIGAI Sympo-
sium on Principles of Database Systems, PODS ’19, 2019;303—319.

	20.	 Thornton K, Solbrig H, Stupp GS, Labra GJE, Mietchen D,
Prud’hommeaux E, Waagmeester A. Using shape expressions (ShEx)
to share RDF data models and to guide curation with rigorous valida-
tion. In Proc. the European Semantic Web Conference 2019:606–620.

	21.	 Tsuboi Y, Suzuki N. An algorithm for extracting shape expression
schemas from graphs. In Proc. the ACM Symposium on Document
Engineering 2019;1–4.

	22.	 Wu Y, Suzuki N. An algorithm for correcting XSLT rules according
to dtd updates. In Proc. the 4th International Workshop on Document
Changes: Modeling, Detection, Storage and Visualization, DChanges
’16, 2016.

Publisher's Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

	An Algorithm for Transforming Property Path Query Based on Shape Expression Schema Update
	Abstract
	Introduction
	Preliminaries
	Graph and ShEx Schema
	Property Path and its Traversal Area

	Query Transformation
	Operation on Types and Problem Definition
	Algorithm

	Experimental Results
	Related Work
	Conclusion
	Acknowledgements
	References

