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Abstract
Different approaches to speeding up the classical exact pattern matching Boyer–Moore–Horspool algorithm are discussed. 
The first improves such known technique of exact pattern matching as a 2-byte read by introducing the so called ‘1.5-byte 
read’, which allows us to address the problem of a large shift table not fitting into the L1 cache. Then we discuss different 
types of a fast loop, experimentally test them and enrich the most efficient one with the so called ‘double loop’ technique. 
Also, a specific technique of increasing the maximal shift length in ‘1.5-byte read’-algorithms and a known technique of 
sliding windows are taken into consideration. Combining these approaches, we get different exact pattern matching solu-
tions, well suited for different types of input data. The experiments have been provided on a byte-aligned text, encoded with 
(s, c)-dense codes, English text, protein, and DNA sequences. Based on a solution for a byte alphabet, we build the algo-
rithm Z-bit, intended to be used for searching a string in a bitstream. The Z-Bit algorithm demonstrates the most impressive 
experimental results, outperforming other known solutions more than twice on all investigated pattern lengths. Our other 
algorithms appear to be the fastest on some ranges of pattern lengths.

Introduction

Finding all occurrences of a given substring in a larger body 
of a text is one of the most fundamental problems in com-
puter science. In this paper, we consider either this general 
problem or its important sub-problem consisting in search-
ing a bitstream pattern in a bitstream text. It is of interest 
since a vast variety of data is presented in a binary form, e.g. 
images, videos, archived data, etc. The recent invention of 
data compression codes, which perform close to entropy and 
at the same time support data search in a compressed file [1], 
also actualizes the demand for bitstream pattern matching.

The first non-trivial bitstream pattern matching algorithm 
was presented in 2007 by Klein and Ben-Nissan [17]. Since 
then, Faro and Lecroq developed a number of improved 
bitstream pattern matching techniques implemented in the 
Binary-hash and Binary-skip algorithms (both presented in 
[11]) and the most advanced Binary–Faro–Lecroq (BFL) 
algorithm [10]. Also, the adaptation of the FED algorithm 
(Fast matching with Encoded DNA sequences) [16] to 
binary search has to be mentioned, although it is somewhat 
inferior to BFL on short and middle-sized patterns.

The general idea of any non-trivial bitstream pattern 
matching method consists in avoiding time consuming bit-
level operations as far as possible. A search is performed 
on the byte level, and only when a candidate substring is 
found, the bit-level procedure checks if a true pattern occur-
rence takes place. Therefore, any bitstream pattern matching 
technique is based on the underlying algorithm of pattern 
matching on a byte alphabet. For example, the algorithm 
[17] is based on Boyer–Moore search method, while the 
BFL algorithm combines a multi-pattern version of the 
BNDM algorithm [20] with the simplified shift strategy of 
Commentz–Walter algorithm [4].

Of course, an underlying byte-level algorithm has to be 
implemented in a multi-pattern version, since it searches not 
a single pattern but 8 patterns corresponding to 8 possible 
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alignments of a binary substring towards the byte boundaries 
(assuming a byte is 8 bits). However, the performance of a 
multi-pattern version of an algorithm strongly depends on 
the performance of its single-pattern version, and thereby the 
development of pattern matching algorithms that efficiently 
perform on a byte alphabet is a key for solving the bitstream 
pattern-matching problem.

According to [12] and our own experiments, the follow-
ing algorithms are of the most interest for large alphabets 
(consisting of ≥ 64 characters), in different testing environ-
ments and for different pattern lengths: comparison-based 
Fast Search (FS, [3]); exploiting SIMD instructions Stream-
ing SIMD Extensions Filter (SSEF, [18]) and Exact Packed 
String Matching (EPSM, [7]); variations of algorithms 
exploiting the bit-parallelism idea: Simplified BNDM with 
q-grams (SBNDMq, [5]), Forward SBNDM (FSBNDM, 
[9]), BNDM for long patterns (LBNDM, [21]), and Q-gram 
Filtering (QF, [6]).

As shown in [23], the performance of BNDM-type algo-
rithms can be improved by applying the technique of 2-byte 
read, which is of special interest when the alphabet consists 
of 256 characters, each occupying all 8 bits of some byte in 
memory; we call it a byte aplphabet. However, the perfor-
mance of 2-byte reads suffers from the expansion of shift 
tables. As experiments show, the running time of an algo-
rithm increases significantly when its shift tables together 
with some other preprocessed data cease to fit into processor 
L1 cache, which is typically 16–64 kB. For a byte alphabet, 
the size of a shift table with 2-byte indices is 64 kB, which 
exceeds the “L1 cache limit” in most cases.

Two other techniques, which can significantly improve 
the algorithm performance for different alphabets and pat-
tern lengths, are based on using multiple sliding search win-
dows [14] and skipping the occurrence check with a help of 
so called fast loop [15].

For a byte alphabet, featuring a simple comparison-based 
method with these techniques can outperform the algorithms 
based on bit-parallelism. Indeed, the experimental results in 
Table 2 show that the comparison-based Fast Search algo-
rithm with 8 sliding windows performs faster than all other 
known methods (except for those hereinafter developed) for 
8 ≤ m ≤ 128.

In this paper, we improve all three aforementioned 
techniques. At first, we present a “compromise” solution 
between 2-byte and 1-byte reads, forming the index of a 
search table from the values of more than 1 but less than 2 
sequential bytes of a text, typically 13–15 bits. We call this 
method a 1.5-byte read. It allows us to increase the average 
length of a shift compared to “1-byte read” algorithms while 
spending rather less memory than the 2-byte read approach 
requires. Then we offer a few tricks, which improve the per-
formance of a fast loop and sliding windows techniques. As 
a result, we construct a comparison-based algorithm, which 

outperforms all other known solutions in discovering pat-
terns of lengths > 4 in a text on a byte alphabet. This algo-
rithm is called Z-Byte and discussed in “Pattern matching 
over a byte alphabet”. A bitstream search algorithm, based 
upon Z-Byte, is constructed in “Pattern matching in a bit-
stream”, we call it Z-Bit.

Z-Byte algorithms either perform well on middle-size 
alphabets (e.g. for protein sequences). However, when the 
alphabet becomes smaller, its characters contain too many 
insignificant (or identical) bits and 1.5-read loses the effi-
ciency. In this case, the bit-level shift operation together with 
or/xor/+ can be applied to ‘attach’ the significant bits of 
adjacent text characters to each other and thus to form the 
index of a shift table. The algorithm based on this principle 
we call Bricks since the process of constructing an index of 
a shift table from blocks of bits resembles building a wall 
from bricks. This algorithm is discussed in “Pattern match-
ing on small alphabets”. Finally, the results of algorithm 
benchmarking are presented in “Experimental results”.

Let us note that an attempt to combine multiple-character 
reads and multiple search windows has been done in our 
previous work [26]. However, the methods presented here-
inafter are simpler and faster.

Throughout the entire presentation we use the following 
notations:

• �—alphabet of an input text and a pattern
• |�|—size of the alphabet
• � = ⌈log2 ���⌉—the number of bits required to store a 

character of �
• b—number of bits in a byte, by default b = 8

• k—number of significant bits in a 1.5-byte read, typically 
b ≤ k ≤ 2b

Pattern Matching Over a Byte Alphabet

In this section as well as in “Pattern matching on small 
alphabets”, we assume that each character of a text occu-
pies one byte of memory, and all bits of this byte are signifi-
cant, i.e. |�| = 256 . By T[0 … n − 1] and P[0 … m − 1] we 
denote a text and a pattern respectively.

1.5‑Byte Read

At first, let us discuss the essence of the “1-byte read”, 
“2-byte read” approaches and their “1.5-byte read” modifica-
tion. Let Z be a one-dimensional shift table for some pattern 
matching algorithm and i is the index of some character of a 
text. The 1-byte read approach assumes the value Z[T[i]] to 
be the shift length, as in the Boyer–Moore–Horspool algo-
rithm (BMH, [13]), or other data the shift depends on. BMH 
method is shown schematically in Alg. 1. 
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Algorithm 1: Boyer-Moore-Horspool algorithm
1 foreach c ∈ Σ do Z[c] ← m; // Preprocessing
2 for i ← 0 to m− 2 do Z[P [i]] ← m− 1− i;
3 pos ← 0; // Search
4 while pos ≤ n−m do
5 check the occurrence at pos;
6 pos ← pos+ Z[T [pos+m− 1]];

Table 1  Running times of BMH algorithm variations on a random text, |�| = 256 (hundredths of seconds)

Row m 2 4 8 16 32 64 128 256 512 1024 2048 4096

1 BMH 155.67 79.72 41.58 23.42 14.08 10.81 9.97 15.29 17.65 19.61 23.78 25.69
2 BMH-12 333.55 111.29 48.56 24.52 13.8 10.24 13.85 18.84 12.27 8.17 5.98 3.94
3 BMH-13 331.45 110.99 48.08 24.16 13.51 10.21 14 18.41 11.97 7.76 5.51 3.23
4 BMH-14 330.29 111.62 47.86 24.4 14 10.49 14.11 18.24 11.54 7.59 5.32 2.99
5 BMH-15 342.13 120.81 53.33 27.06 15.53 10.93 14.19 18.13 11.2 7.6 5.29 2.95
6 BMH-16 401.19 137.57 59.87 29.21 16.59 11.57 14.59 18.25 11.25 7.79 5.38 2.96
7 Value skip 151.72 77.56 39.19 20.45 11.94 9.9 10.17 18.76 20.22 21.55 22.77 23.12
8 Value skip + 1.5-read 357.2913 119.2113 52.012 24.6913 12.5813 9.5913 12.8512 16.0613 9.7314 7.3614 5.3415 3.0615

9 Flag skip 22.94 14.92 12.27 9.92 8.69 8.28 8.03 9.98 13.96 17.27 23.02 23.09
10 Flag skip + 1.5-read 42.3216 15.0716 8.3616 6.6316 5.3516 5.0315 4.2216 2.8615 1.6916 1.116 0.7616 0.6116

11 Double flag skip + 1.5-
read

42.2716 14.8316 8.3316 6.4516 5.3716 4.9213 4.2416 2.7413 1.6115 0.9616 0.5815 0.4316

12 Double flag 
skip reverse + 1.5-read

27.9116 14.4616 10.4316 8.0216 6.1412 5.0912 4.3112 2.8112 1.6115 0.9715 0.615 0.4316

Line 6 corresponds to a “bad character” shift with the 
maximal possible value m. When |�| = 256 and the pat-
tern is short, the probability of a maximal BMH shift is 
high enough. E.g. it equals (255∕256)m for random text and 
random pattern. But when the pattern is longer, the “1-byte” 
bad character shift becomes not sufficient. For example, if 
m = 512 , (255∕256)m ≈ 0.135.

The situation can be amended by using 2 sequential 
bytes of a text as a basis of a bad-character shift. E.g. for 
m = 512 , the probability of a maximal shift of a random pat-
tern over a random text becomes greater than 0.99, although 
the length of a maximal shift length is decreased by 1 (the 
latter fact is important for short patterns only). The compu-
tationally efficient implementation of this approach is dis-
cussed in [23]: the expression Z[T[i]] is transformed into 
Z[word(T[i],T[i + 1])] , where the function word converts 
two sequential bytes of memory into a two-byte word in a 
processor register. In C programming language this func-
tion can be implemented by the type-casting mechanism, 
i.e. word(T[i],T[i + 1]) equals to *(unsigned short*)

(T+i). In fact, the time complexity of calculating the 
Z[T[i]] and Z[word(T[i],T[i + 1])] values is the same, while 
the memory complexity is significantly increased from 256 
bytes needed for 1-byte reads to 64 kB occupying by a shift 
table with 2-byte indices.

However, for reasonable pattern lengths, e.g. less than 
1000 bytes, the memory complexity can be significantly 
reduced with a little impact on the shift length. This can be 
achieved by using not all bits of a 2-byte word in the index 
of a shift table. Some of bits can be suppressed by apply-
ing the mask: Z[word(T[i],T[i + 1])&mask]. For example, if 
m = 512 and the mask contains 14 ‘one’ bits, the probability 
of a maximal shift for a random text and a random pattern 
will be ((214 − 1)∕214)511 ≈ 0.97 , which is only 0.022 less 
than that one for 2-byte read. At the same time, the shift 
table will contain 214 vs. 216 elements, i.e. 4 times less. Of 
course, one extra operation &mask has to be performed in 
the search loop, but in most cases, this expense will be more 
than covered by the fact that the shift table fits into L1 cache.
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Experimental results of featuring the BMH algorithm 
with 2-byte and 1.5-reads are presented in the upper part 
of Table 1. A random pattern was searched 1000 times 
in a random 10MB text on a byte alphabet, the computer 
parameters are given in “Experimental results”. The average 
running times of the original BMH algorithm are given in 
row 1, while the BMH algorithms featured with k-bit reads 
are denoted as BMH-k and represented in rows 2–6. BMH-
16 is the algorithm with a 2-byte read, where the opera-
tion and mask is not applied. For all algorithms we use the 
unsigned char shift array (with 1-byte elements), when 
m ≤ 256 , and unsigned short (2-byte elements) for 
longer patterns.

As seen, the original version of BMH is faster on short 
patterns, m ≤ 16 , when 2-byte and 1.5-byte reads are super-
fluous, and decreasing of a maximal shift length by 1 is 
important. As the pattern is longer, the 2-byte and 1.5-byte 
reads become more efficient. In particular, for m = 4096 , 
the original BMH version is more than 8 times slower than 
versions based on 14-bit, 15-bit and 16-bit reads. If to com-
pare 1.5-byte read and 2-byte read versions, the former is 
faster for all pattern lengths, and this superiority is more 
significant for short patterns when either 1.5 read or 2-byte 
read almost always provides the maximum length shift. E.g., 
when m = 2 , the BMH-14-bit performs 20% faster than the 
2-byte read version despite extra&mask operation, which 
shows the benefit of fitting the shift table into the L1 cache. 
However, when the pattern is longer, the ‘2-byte shifts’ 
become longer than ‘1.5-byte shifts’, and this neutralizes 
the gain. The same reason explains a balance between per-
formances of different 1.5-byte read versions. Thus, on short 
patterns, 12-, 13-, and 14-bit versions perform at the same 
rate, since their shift tables perfectly fit into 32 kB L1 cache, 
while the table of a 15-bit version mostly fits (the cache may 
also contain some other data), and this is why the 15-bit 
method performs a bit slower. At the same time, when a pat-
tern is longer, each extra significant bit in the mask increases 
the average shift length essentially and makes the search 
faster, which we can observe for m ≥ 2048.

Fast Loop

The other disadvantage of Algorithm 1 consists in the neces-
sity to check the possible occurrence of a pattern at each 

iteration of the search loop. However, the occurrence check 
can be avoided by applying the so called “fast loop”, which 
was first introduced in [15]. This technique is implemented 
in a number of algorithms and is particularly effective when 
more than one character of a text is processed at each itera-
tion, e.g. in the FS [3], SBNDM [22] and other algorithms.

Let us distinguish two types of a fast loop:

• A shift table element contains the length of a shift. Then 
the search position is shifted by this length until it is 
zero. This type of a fast loop we call skip by value. It is 
implemented mostly in algorithms based on character 
comparison, e.g. TBM [15], FS [3], MAW [26].

• A shift table element contains a flag indicating whether 
a shift of some constant length, e.g. m or m − 1 , is safe, 
i.e. cannot cause missing the pattern occurrence. If it is, 
the constant length shift is performed and the fast skip 
loop continues, otherwise the loop breaks, the pattern 
occurrence has to be checked, and the value of the next 
shift is calculated by some other algorithm. This type of a 
fast loop we call skip by flag. It is implemented mostly in 
algorithms based on bit-parallelism or oracle automatons, 
e.g. EBOM [9] or SBNDM [22].

The advantage of a skip by value is quite obvious: we avoid 
the occurrence check even if the shift is non-maximal. On 
the other hand, a flag skip allows us to avoid loading the shift 
length value from memory to a computer register, which 
is quite a consuming operation. Actually, the main factor 
to choose a value or a flag fast loop is the probability of a 
maximal (or almost maximal) shift. When it is higher, the 
flag skip becomes preferable.

Featuring the BMH method with the flag fast loop and 
1.5-byte reads, we get the Algorithm 2. The shift table Z 
contains the “flag” information. That is, if Z[T[i]] = 1 , the 
shift of the search window m − 1 characters right is safe. 
The fast loop is implemented in lines 7 and 8. Although two 
bytes of a text are read in line 7, only k < 2b bits of each 
two-byte word are used to form the index of the shift table Z. 
After exiting the fast loop, we check the occurrence and get 
the shift value from the Quick Search shift table (QS, [24]). 
To exit the fast and main loops at the end of a text correctly, 
it should be appended by a stop pattern. 
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Algorithm 2: Search algorithm with the fast loop and k-bit reads
1 mask ← 2k − 1; // Preprocessing

2 foreach i ∈ [0; 2k) do Z[i] ← 1;
3 for i ← 0 to m− 2 do
4 Z[word(P [i], P [i+ 1])&mask] ← 0
5 pos ← m− 2; // Search
6 while pos < n do
7 while Z[word(T [pos], T [pos+ 1])&mask] �= 0 do
8 pos ← pos+m− 1;
9 check the occurrence at pos−m+ 2;

10 pos ← pos+QS[pos+ 2];

Memory

  (a)  (b)   

16 8 1 16 8 1

Processor register

Fig. 1  Loading a 2-byte value from memory on a little endian machine. ‘White’ bits are reset to zero by mask, ‘grey’ bits remain significant. 
mask resets the bits of the highest byte (a) or lowest byte (b)

A value and a flag skip loop performances are presented 
in rows 7–10 of Table 1. The performance of the original 
BMH featured with a fast loop is shown in rows 7 and 9. 
As seen, when m ≤ 1024 , the flag skip loop outperforms 
the value skip more or less strongly, while for longer pat-
terns they operate roughly at the same level. Rows 8 and 10 
of Table 1 represent the performance of BMH with 1.5- or 
2-byte read and a fast loop as well (the number of signifi-
cant bits in the mask is put in brackets). In this case, the 
flag skip approach outperforms the value skip strongly for 
all tested pattern lengths since the probability of a maximal 
shift provided by a 1.5- or 2-byte read can be considered 
high enough even for long patterns. Therefore, in combina-
tion with 1.5- or 2-byte read, the ‘flag’ fast loop is definitely 
more productive than the ‘value’ fast loop when it comes to 
pattern search on a byte alphabet.

Double Fast Loop

Taking into account that the 1.5-byte or 2-byte read implies 
a high probability of a maximal shift, we develop a simple 
and efficient method to process the exit from a fast loop. The 
main idea is based upon the assumption that the inequality 
Z[word(T[i − 1], T[i])&mask] ≠ 0 holds with roughly the 
same probability as the inequality Z[word(T[i],T[i + 1])]

&mask] ≠ 0 . It implies that even if the fast loop condition 
fails, we can take one step back and, very likely, continue the 
fast loop from that position. This double fast loop is shown 
in Alg. 3, which preprocessing phase is the same as in Alg. 
2. If the condition in line 5 fails, we continue the main fast 
loop in line 9 with 1 character shorter shift and then in lines 
3–4. Otherwise, the occurrence check is performed.

In general, the double fast loop resembles the factor-based 
approach limited to 1 step in the case when the main fast 
loop fails. And this limitation to 1 step makes sense since the 
logic of a factor-based approach ‘process longer suffixes of a 
search window until the fast loop can continue or the pattern 
length is reached’ requires rather more operations to imple-
ment than simple stepping 1 character back, and therefore it 
seems to be superfluous in many cases; in particular, if the 
alphabet is large.

The double fast loop is especially efficient for long pat-
terns, when the probability of the fast loop termination is 
higher, while the relative impact of the left shift (lines 5 and 
9) is less. This can be confirmed by comparison of rows 10 
and 11 in Table 1. While for short patterns the performance 
of a fast loop and a double fast loop is roughly the same, 
for m = 4096 the performance gain from a double fast loop 
reaches 30%. 
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Algorithm 3: Search phase of the algorithm with the double fast loop
1 pos ← m− 2;
2 while pos < n do
3 while Z[word(T [pos], T [pos+ 1])&mask] �= 0 do
4 pos ← pos+m− 1;
5 if Z[word(T [pos− 1], T [pos])&mask] = 0 then
6 check the occurrence at pos− (m− 2);
7 pos ← pos+QS[pos+ 2];
8 else
9 pos ← pos+m− 2;

We denote the Alg. 3 by Zk-Byte, where k is the number 
of ‘one’ bits in the mask (8 ≤ k ≤ 16) . If k = 16 , lines 3 and 
5 contain full 2-byte reads and variable mask is not needed, 
while in algorithm Z8 the reference to the shift table looks 
as Z[T[pos]] and the variable pos can be incremented by m 
in line 4 and by m − 1 in line 9. In the next subsection, we 
discuss how to shift the search window m characters right 
for any value of k.

Longer Shifts

Let T[pos] and T[pos + 1] be the two last characters of a 
search window. If the condition Z[word(T[pos], T[pos + 1])

&mask] ≠ 0 in lines 3 and 5 of Alg. 3 is satisfied, these two 
bytes of a text cannot belong to the pattern together. Still, the 
character T[pos + 1] can coincide with P[0] and that’s why 
the search window can be shifted safely by m − 1 characters 
at most, not by m. If the pattern is short, this decrement of 
a maximal safe shift length can have a meaningful effect on 
algorithm performance.

This situation can be amended by adjusting the 
array Z: we can assign 0 to all elements of the form 
Z[word(c, P[0])&mask], c ∈ � . As a result, if the last byte 
of a search window coincides with P[0], the shift will be 
considered as non-maximal, and m can be assumed to be the 
value of the maximal shift. It seems that this will increase 
the probability of a non-maximal shift in a random text by 
1/256 at most, which is not too much. However, the endian-
ness of a machine, i.e., an order in which the bytes of a value 
are loaded from memory into a processor register, has to be 
taken into account. Let us examine the function word, used 
in lines 3 and 5 of Alg. 3. It converts two sequential bytes 
of memory into a two-byte number in a processor register. 
In most programming languages this function can be imple-
mented by the type-casting mechanism, e.g. (unsigned 
short*) operator in C language. However, its result 
depends on the endianness. On a little endian machine (e.g. 
x86 processor) bytes of a value are loaded into a register in 
the reverse order (Fig. 1). This is an unwanted situation if we 

compose a shift table index of the full last byte of a search 
window and a part of the second to last because a resultant 
value will be shifted in a register to the left (Fig. 1a), which 
makes the size of the shift table the same as for the 2-byte 
read. However, the situation in Fig. 1b—not full last byte 
and full second to last—is also unwanted, because only the 
part of the last byte of a search window should coincide 
with the part of P[0] byte to make the shift non-maximal. 
Then, the increase of the non-maximal shift probability for a 
random text will be up to 1∕2k−8 , which significantly reduces 
the probability of a fast loop continuation. For example, if 
k = 12 , the latter probability will be reduced by up to 1/16.

Nonetheless, on a little endian machine the permutation, 
shown in Fig. 1b, becomes admissible if the text is searched 
from right to left. Then, extending the maximal shift from 
m − 1 to m decreases the probability of a fast loop termina-
tion by up to 1/256, and the index of a shift table is com-
posed of the low bits of a two-byte word. We call right-to-
left search algorithms reverse and denote them by the letter 
“R”, e.g. RZ12-Byte. The reverse search method RZk-Byte 
is shown in Alg. 4.

The text T is assumed to be prepended with a stop pattern 
( T[−m…− 1] = P[0…m − 1] ) to exit the fast loop, given in 
lines 11−12, when the search finishes. The search window 
starts at the position n − m and moves to the left. The vari-
able pos always addresses the beginning of a search window 
in which the first two bytes are used to determine the pos-
sibility of a maximal shift by m characters. The algorithm 
steps 1 character forward after the fast loop and repeats 
the fast loop check (line 13). If the fast loop can continue 
from this new position, it continues in lines 17 and then 
11. Otherwise, after checking the occurrence (line 14), we 
make the “Reverse Quick Search” shift using the shift table 
RQS (line 15), which is filled in lines 7–8. Lines 5—6 are 
intended to block the maximal shift when the first charac-
ter of a search window coincides with the last character of 
the pattern; this code is equivalent to Z[word(c,P[m − 1])

&mask] ← 0, c ∈ � . Finally, lines 1–4 of the preprocessing 
stage are similar to those in Alg. 3. 
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Algorithm 4: The reverse search algorithm RZk-Byte
1 mask ← 2k − 1; // Preprocessing

2 foreach i ∈ [0; 2k) do Z[i] ← 1;
3 for i ← 0 to m− 2 do
4 Z[word(P [i], P [i+ 1])&mask] ← 0
5 for i ← 0 to 2k−b do
6 Z[(i << b)|P [m− 1]] ← 0
7 foreach c ∈ Σ do RQS[c] ← m+ 1;
8 for i ← m− 1 downto 0 do RQS[P [i]] ← i+ 1;
9 pos ← n−m; // Search

10 while pos ≥ m do
11 while Z[word(T [pos], T [pos+ 1]) & mask] �= 0 do
12 pos ← pos−m
13 if Z[word(T [pos+ 1], T [pos+ 2]) & mask] �= 0 then
14 check the occurrence at pos;
15 pos ← pos−RQS[T [pos− 1]];
16 else
17 pos ← pos− (m− 1);

The evaluation of Alg. 4 performance is given in row 12 
of Table 1. As expected, it appears faster than Alg. 3 on short 
patterns ( m ≤ 4 ) due to the effect of 1 byte longer shifts. On 
long patterns, the algorithms perform almost at the same 
level, while on middle patterns the Alg. 4 is somewhat infe-
rior to Alg. 3.

Sliding Windows

The performance of Z-Byte and RZ-Byte algorithms can 
be improved significantly by implementing a two sliding 
windows technique [14]. However, for reverse methods, it 
should be slightly changed, since we can search a text from 
right to left only, while in the standard method windows are 
moving towards each other until they meet. The search phase 
of Alg. 4 can be rewritten as shown in Alg. 5. Both sliding 
windows are moving towards the beginning of a text. The 

first window specified by pos1 starts in the middle of a text, 
while the second one specified by pos2 starts in the end. 
The main loop is finished when the first window reaches the 
beginning of a text. After that, the second window may be 
moved further if it has not reached the middle position yet 
(lines 17–22). The preprocessing phase of Alg. 5 is just the 
same as of Alg. 4.

Let us note that filling the shift table Z with zeros and 
ones allows us to join the 1.5-character checks with the bit-
wise ‘&’ operation (line 4) instead of the slower logical AND 
as in “classical” sliding windows approach [14]. Also, the 
external fast loop is replaced with separate ‘if-else’ blocks 
for each of two sliding windows (lines 7–11 and 12–16). 
This is done to take the advantage of the situation when 
the maximal shift can be made only in one of two sliding 
windows. 
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Algorithm 5: The search phase of the reverse search algorithm with 2
sliding windows RZk-Byte-w2
1 pos1 ← �n/2�;
2 pos2 ← n−m;
3 while pos1 ≥ 0 do
4 while Z[word(T [pos1], T [pos1 + 1]) & mask] �= 0 &

Z[word(T [pos2], T [pos2 + 1]) & mask] �= 0 do
5 pos1 ← pos1−m;
6 pos2 ← pos2−m;
7 if Z[word(T [pos1 + 1], T [pos1 + 2]) & mask] = 0 then
8 check the occurrence at pos1;
9 pos1 ← pos1−RQS[T [pos1− 1]];

10 else
11 pos1 ← pos1−m+ 1;
12 if Z[word(T [pos2 + 1], T [pos2 + 2]) & mask] = 0 then
13 check the occurrence at pos2;
14 pos2 ← pos2−RQS[T [pos2− 1]];
15 else
16 pos2 ← pos2−m+ 1;
17 while pos2 > �n/2� do
18 while Z[word(T [pos2], T [pos2 + 1]) & mask] �= 0 do
19 pos2 ← pos2−m;
20 if pos2 > �n/2� then
21 check the occurrence at pos2;
22 pos2 ← pos2−RQS[T [pos2− 1]];

Memory s

  (a)   (b)

s
16 8 1 16 8 1

End of the pa�ern ► End of the pa�ern ►
s

sProcessor register

Fig. 2  The bitWord permutation (Alg. 9) of the right tail of a pat-
tern. The bits, remaining significant after the permutation, are high-
lighted with dark grey. The bits that would have remained significant 

if not for the end of a pattern, highlighted with light grey. a The pat-
tern ends within significant bits of the lowest byte; b the pattern ends 
within insignificant bits

We denote the Alg. 5 as RZk-Byte-w2—the reverse 
search algorithm with a k-bit read and 2 sliding windows. 
As opposed to the “classical” approach, we can use an 
odd number of sliding windows. For example, the parallel 
searches in the algorithm RZk-Byte-w3 will start at posi-
tions ⌊n∕3⌋ , ⌊2n∕3⌋ , and n. Of course, each pair of sliding 
windows in non-reverse Z-algorithms can be moved towards 
each other. However, for large enough texts the experiments 
show no significant difference in performance between “bi-
directional” and “uni-directional” sliding windows methods.

Pattern Matching in a Bitstream

In this section we denote the array of full bytes of a pattern 
by P[0 … m − 1] , and T[0 … n − 1] denotes the input text. 
The last bytes P[m] and T[n − 1] are not full and padded 
with zeros if the pattern and/or text bit length is not a factor 
of 8. Otherwise, P[m] is assumed to be 0, while T[n − 1] 
is a full byte. The byte next to the text, T[n], is always 0 as 
well as P[m + 1] . We denote the bit length of a pattern by 
l, and p[0 … l − 1] is the array of pattern bits. By “search 
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window” we mean a (m − 1)-byte substring of a text that is 
supposed to belong to the pattern.

Hereinafter we assume a little endianness and discuss 
the “right-to-left” bitstream search by the example of the 
RZk-Bit algorithm (on a bitstream the ‘reverse’ method runs 
essentially faster than the ‘direct’ method for short patterns 
and at the same level for longer ones). Its general structure 
is similar to the structure of the underlying RZk-Byte algo-
rithm. At each iteration of the fast loop, we try to move the 
search window as far as possible to the left. pos addresses 
the leftmost byte of a search window. Thus, the window 
occupies the bytes T[pos],… , T[pos + m − 2] , while bytes 
T[pos − 1] , T[pos + m − 1] , and possibly T[pos + m] , may 
contain the left and right “tails” of the pattern.

The search window can be safely moved m − 1 bytes to 
the left if two conditions are met (taking into account the 
endianness and applying the mask): (a) the pair of bytes 
( T[pos], T[pos + 1] ) does not belong to the pattern, and (b) 
some prefix of the pair ( T[pos], T[pos + 1] ) of length greater 

than 8 does not coincide with the pattern suffix. The shift 
table Z is filled following these conditions at the preproc-
essing phase (Alg. 8) and checked during the search phase 
(lines 3 and 5 of Alg. 6). The whole block of code in lines 
3–10 of Alg. 6 implements the double fast loop discussed 
in “Fast loop”.

After the exit from the double fast loop, we check if the 
pattern can be aligned with the search window shifted q bits 
to the left, q = 0,… , b − 1 . This check is performed by the 
procedure CheckMatch(q, pos) invoked in line 7 of Alg. 6. 
It is not efficient to test all b possible values of q. Instead, 
we store in the set �[c] all values q < b such that the factor 
p[q]… p[q + b − 1] of a pattern coincides with the byte c. 
This implies that all possible occurrences such that the byte 
T[pos] is the leftmost full byte of a text that belongs to the 
pattern are checked in lines 6 and 7 of Alg. 6. After the 
occurrence check, pos is safely moved 1 byte to the left in 
line 8, and the fast loop starts again at the next iteration of 
the main loop. 

Fig. 3  Conversion a q-gram of 
pattern characters into a q�-bit 
value

Algorithm 6: The search phase of the RZk-Bit algorithm
1 pos ← n− 1;
2 while pos ≥ m− 1 do
3 while Z[word(T [pos], T [pos+ 1]) & mask] �= 0 do
4 pos ← pos− (m− 1)
5 if Z[word(T [pos+ 1], T [pos+ 2]) & mask] = 0 then
6 foreach q ∈ λ[T [pos]] do
7 CheckMatch(q, pos);
8 pos ← pos− 1;
9 else

10 pos ← pos− (m− 2);
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The body of the procedure CheckMatch(q, pos) is given 
in Alg. 7. We have to check if a window, occupying q lowest 
bits of the byte T[pos − 1] and the next l − q bits of a text, 
coincides with the pattern. The function byte in line 2 trun-
cates a 2-byte value to its lowest byte. It can be implemented 
as a type-casting (unsigned char) in C language. Gen-
erally, in line 2 we compose a series of bytes from pairs of 
the adjacent bytes of a text taking q lowest bits of the byte 
T[j] and b − q highest bits of the byte T[j + 1] . The com-
posed bytes are compared with the bytes of the pattern. If 
they all match, the last byte is composed and compared with 
P[m] in line 5. Since the byte P[m] is not full, the composed 
byte is truncated by the mask lastMask to significant bits of 
P[m] only. 

Algorithm 7: Procedure CheckMatch(q, pos)

1 start ← j ← pos− 1;
2 while j − start < m AND

byte((T [j] << (b− q))|(T [j + 1] >> q)) = P [j − start] do
3 j ← j + 1
4 if j − start = m then
5 if ((T [j] << (b− q))|(T [j + 1] >> q))&lastMask = P [m] then
6 output(start · k + q)

The value lastMask as well as other values and tables, 
which remain constant through the search phase, is calcu-
lated at the preprocessing phase, shown in Alg. 8. Let us 
explain how the loop in lines 4–11 of Alg. 8 works, in which 
the shift table Z is constructed. For each 16-bit substring of 
a pattern, starting at the bit position i, the corresponding 
element of the array Z is specified with the flag 0, which 
denotes a non-maximal shift (the short suffixes of the pat-
tern, l − i ≤ b , are not processed, since their possible align-
ments with search window prefixes have no impact on a safe 
shift of the length m − 1 ). During the search phase, it will be 

checked if this substring coincides with some substring of a 
text. Each of these substrings does not consist of a continu-
ous sequence of significant bits but has a “hole” of insignifi-
cant ones shown in the upper part of Fig. 1b. However, the 
function bitWord invoked in line 5 of Alg. 8 performs the 
bits permutation shown if Fig. 1b and returns the mentioned 
substring in the compact form shown in the lower part of 
that figure. If such substring is aligned to the boundaries 
of a two-byte word, this permutation becomes trivial and 
can be completed by the type-casting. This is how the func-
tion word is calculated in the search phases of RZ-Byte and 
RZ-Bit methods. However, the mentioned substring may 
intersect with 3 adjacent bytes of a pattern in a bitstream, 

and the permutation becomes trickier. It is explained in the 
comments to Alg. 9.

The formatted substring is assigned to the variable t in 
line 5 of Alg. 8. If l − i ≥ 2b , the whole substring belongs 
to the pattern, and Z[t] = 0 (line 7). Otherwise, the substring 
is truncated at the end of the pattern, and after the bitWord 
permutation a “hole” of insignificant bits may appear inside 
the formatted substring, Fig. 2a. The length s of this “hole” 
is calculated in lines 9 (Fig. 2a) or 10 (Fig. 2b). In line 11 the 
“hole” in the substring t is filled with all possible 2s values. 
This way, the set of indices of zero elements of the array Z 
is constructed. 
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Algorithm 8: The preprocessing phase of the RZk-Bit algorithm
1 mask ← 2k − 1; m ← �l/b�; lastMask ← byte((2b − 1) << (b− l

mod b));
2 foreach i ∈ [0; b) do c ← (P [0] << i)|(P [1] >> (b− i));

λ[c] ← λ[c] ∪ {i};
3 foreach i ∈ [0; 2k) do Z[i] ← 1;
4 foreach i ∈ [0; l − b) do
5 t ← bitWord(i,mask);
6 if l − i ≥ 2b then
7 Z[t] ← 0;
8 else
9 if l − i > 3b− k then s ← 2b− (l − i); // 2 (a)

10 else s ← k − b; // 2 (b)
11 foreach j ∈ [0; 2s) do Z[t|(j << b)] ← 0;

Table 2  Running times on SCDC-encoded text (short patterns on top, long patterns on bottom)

m 2 4 6 8 12 16 24

WFRq 42.28 30.1 23.812 18.182 13.512 11.442 9.284

QF(Q, S) 1032,3 49.472,3 25.713,4 17.863,4 12.353,4 9.13,4 7.53,4

FS-wq 38.318 20.368 13.738 10.88 7.698 6.48 5.378

BSDMq 59.482 21.222 13.732 10.932 8.922 8.222 7.252

skip-q 86.572 30.652 19.582 14.922 10.562 9.112 7.742

FSBNDMqf 89.5731 33.1731 21.0831 16.4931 10.9331 9.0231 7.3331

SBNDMq 76.92 28.382 18.42 14.512 10.422 9.122 7.612

LBNDM 61.03 38.35 31.86 27.52 23.69 21.63 18.5
EPSM 10.63 12.02 11.77 11.79 10.89 9.11 6.68
Z-Byte(k)-wq 30.28−2 13.0414−3 �.��

14−3
�.��

14−3
�.��

14−3
�.��

14−3
�.�

13−3

 m 32 64 128 256 512 1024 2048 4096

WFRq 7.884 6.094 5.434 3.784 2.184 1.324 1.014 0.996

QF(Q, S) 6.733,4 5.314,3 4.64,3 3.774,3 2.054,3 1.44,3 1.514,3 2.24,3

FS-wq 4.988 4.578 4.178 4.638 3.548 2.838 2.658 2.858

BSDMq 6.832 5.924 5.324 4.654 3.914 3.434 3.224 3.084

skip-q 7.062 5.914 5.194 4.154 2.64 1.984 1.984 4.134

FSBNDMqf 6.631 5.9851 5.7251 4.3251 2.4851 1.3951 0.951 0.8251

SBNDMq 6.812 5.94 5.364 3.944 2.124 1.244 0.844 0.666

LBNDM 16.75 12.06 9.38 6.28 4.08 3.03 2.43 1.98
SSEF 12.97 6.36 4.98 3.39 2.11 1.67 2.05 5.05
EPSM 6.04 4.98 4.34 3.28 2.53 2.34 2.79 5.52
Z-Byte(k)-wq �.��

14−3
�.��

14−3
�.��

14−5
�.��

16−3
�.��

16−3
�.��

16−3
�.��

16−3
�.��

15−5
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Algorithm 9: Function bitWord(i,mask), little endian machine

1 r ← �i/b�; // index of the highest byte
2 s ← (P [r] << 2b)|(P [r + 1] << b)|P [r + 2]; // load 3 bytes from

memory
3 s ← s << (i mod b); // shift to the left edge of a 3-byte word

4 mask1 ← (2b − 1) << 2b; // mask for the highest byte, 0xff0000

5 mask2 ← mask&((2b − 1) << b); // mask for the middle byte
6 return ((s&mask1) >> 2b)|(s&mask2); // move highest byte to

lowest

Table 3  Running times on 
a bitstream (hundredth of 
seconds)

Pattern length (bits) 25 50 100 200 400 800 1600 3200

RZ(k)-Bit 39.9216 14.4214 10.0215 7.6915 5.2116 4.2714 3.1915 2.3214

RZ-Bit16-w2 27.72 11.74 7.91 6.08 4.9 4.24 3.11 1.97
BFL 134.8 44.96 21.61 13.57 14.72 38.34 114.81 169.37
FED 205.08 68.11 30.03 15.95 16.82 29.09 41.87 68.96

Fig. 4  The running times of 
the bitstream pattern search 
algorithm and the underlying 
byte version

Pattern Matching on Small Alphabets

Assume the text alphabet consists of ≤ 128 characters, and 
the leftmost bits of a character are insignificant. Then the 
value word(T[pos1], T[pos1 + 1])&mask consists of the 
‘hole’ of insignificant bits. Nonetheless, even under this 
assumption algorithms 2–5 work correctly without change. 
However, their efficiency is less as the hole size is bigger. 
For example, when |�| = 16 and k = 12 , only 8 bits of each 
12-bit element of a shift table are significant. In this case, a 
method based on combining only significant bits of several 
adjacent bytes into a k-bit value may perform faster.

Assume � = ⌈log2 ���⌉ is the number of bits required to 
store a character of alphabet � , q is the number of char-
acters processed at each iteration of a search loop. Then 

the i-th q-gram of adjacent pattern characters can be con-
verted into a q�-bit index of a shift table by the expression 
P[i] + P[i + 1] << 𝜎 + ⋯ + P[i + q − 1] << (q − 1)𝜎  . 
This formula is illustrated in Fig. 3 for |�| = 4 , � = 2 , q = 3.

Applying this conversion to pattern characters in the pre-
processing phase and texts characters in the search phase, 
we get the pattern matching Alg. 10. We call it a ‘Bricks’ 
algorithm since it presumes building an index of a shift table 
from �-bit values like a wall from bricks. If the ‘wall’ is 
constructed from q �-bit ‘bricks, we denote the algorithm 
as Bricks� − q.

The search phase consists of the main loop (lines 5–9) 
including the fast loop (lines 6–7). If the fast loop condi-
tion is satisfied, this means that the q-character suffix 
T[pos…pos + q − 1] of a search window does not belong to 
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the pattern and this window can be safely moved m − q + 1 
characters forward (line 7). Otherwise, the occurrence check 
is performed in line 8. After the occurrence check a search 

window can be safely moved by a ‘Quick search’ shift [24] 
in line 9 (filling the table QS is not shown in the preprocess-
ing phase). 

Table 4  Running times on English text (short patterns on top, long patterns on bottom)

m 2 4 8 10 12 14 16 18 20

WFRq 109.53 46.992 26.032 21.834 17.644 15.224 13.564 12.24 11.34

QF(Q, S) – 54.394,3 18.824,3 14.794,3 12.364,3 10.944,3 9.954,3 9.34,3 8.854,3

FS-wq 90.036 48.666 27.926 23.516 20.846 19.346 17.256 16.736 15.556

BSDMq 73.132 33.242 22.092 18.514 14.744 12.84 11.54 10.534 9.954

skip-q 99.652 43.42 26.752 20.224 16.284 13.914 12.344 11.264 10.484

FSBNDMqf 99.4331 36.4831 18.1131 15.4231 12.9431 11.7931 11.1931 10.7331 10.3631

SBNDMq 66.182 29.72 20.12 17.832 14.254 12.314 11.314 10.284 9.694

EBOM 88.71 35.4 20.95 18.47 16.86 16.18 15.75 15.5 14.8
EPSM 9.21 11.78 12.86 12.41 12.34 12.05 9.43 9.58 9.82
Z16-w3 38.95 21.01 15.39 14.7 13.92 13.65 13.41 13.14 13.02
Bricks�q(k) 67.2422(16) 31.6922(16) 16.8143(15) 13.6843(15)

��.��
43(14) ��.��43(13) 9.8543(14)

�.��43(15) �.��
43(14)

 m 24 32 64 128 256 512 1024 2048 4096

WFRq 9.984 8.544 6.644 5.874 4.394 2.844 1.646 1.176 1.036

QF(Q, S) 8.144,3 7.224,3 6.014,3 5.314,3 4.044,3 2.714,4 1.944,3 1.554,3 1.554,3

FS-wq 14.296 12.226 9.666 8.238 7.768 7.898 7.248 6.438 5.778

BSDMq 9.034 8.144 6.646 6.166 6.046 5.888 5.428 4.928 4.698

skip-q 9.324 8.034 6.484 5.734 4.574 3.434 2.578 3.08 3.68

FSBNDMqf 9.6151 8.0551 6.7451 6.6451 6.4451 5.4451 4.8351 3.5551 2.2551

SBNDMq 8.924 7.734 6.594 6.254 5.616 4.546 4.266 3.256 1.86

EBOM 14.22 13.5 12.32 10.39 8.81 8.22 10.42 7.8 10.4
SSEF – 11.56 6.51 5.19 3.4 2.09 1.47 2.5 3.83
EPSM 7.12 6.21 5.2 4.42 3.32 2.6 2.47 3.51 5.28
Z16-w3 12.55 11.77 9.65 7.82 7.092 6.74 4.85 3.84 3.1
Bricks�q(k) 8.2434(15) 7.1834(16) 5.9625(13) 5.0634(15) 3.8134(15) 2.3934(15)

�.��26(15) �.��26(15) �.��
26(15)

Algorithm 10: Bricksσ-q algorithm for q-grams on Σ, σ = log |Σ|
1 foreach i ∈ [0; 2qσ) do Z[i] ← 1; // Preprocessing
2 for i ← 0 to m− q do
3 Z[P [i] + P [i+ 1] << σ + . . . + P [i+ q − 1] << (q − 1)σ] ← 0
4 pos ← m− q; // Search
5 while pos ≤ n−m+ q do
6 while Z[T [pos] + T [pos+ 1] << σ + . . . + T [pos+ q − 1] <<

(q − 1)σ] �= 0 do
7 pos ← pos+m− q + 1
8 check the occurrence at pos−m+ q
9 pos ← pos+QS[T [pos+ q]]



 SN Computer Science (2022) 3:181181 Page 14 of 20

SN Computer Science

The main shortcoming of Alg. 10 appears on short pat-
terns when the value m − q + 1 and thus the shift in the 
fast loop becomes too small. One way to increase the shift 
length is to ensure that suffixes of a search window do not 

coincide with the prefixes of a pattern. Assume suffixes of a 
search window/prefixes of a pattern of length q − t,… , q − 1 
are checked. Then the search window can be safely moved 
m − q + t + 1 characters forward and we get Algorithm 11. 

Table 5  Running times on a protein sequence (short patterns on top, long patterns on bottom)

m 2 4 6 8 12 16 18 20 22

WFRq 33.38 14.332 10.032 8.182 5.174 3.874 3.474 3.024 2.794

QF(Q, S) – 16.053,4 8.183,4 5.513,4 3.414,3 2.644,3 2.44,3 2.14,3 2.064,3

FS-wq 25.066 13.366 9.36 7.366 5.526 4.566 4.266 4.066 3.876

BSDMq 23.772 10.572 8.032 7.082 4.614 3.484 3.194 2.914 2.74

skip-q 31.912 13.742 10.032 8.394 4.854 3.484 3.134 2.794 2.64

FSBNDMqf 26.1631 9.0831 5.8431 4.5531 3.1631 2.6331 2.5931 3.8631 2.431

SBNDMq 20.572 8.092 5.862 4.592 3.722 3.064 2.744 2.454 2.254

EBOM 27.6 9.17 6.45 5.01 3.67 3.23 3.02 2.84 2.83
EPSM 3.16 3.56 3.5 3.56 3.43 2.73 2.77 2.77 2.88
Z16-w3 10.64 4.34 3.12 2.62 2.19 2.07 2.07 1.99 2.02
Bricks�q(k) 27.5222(16) 13.7222(16) 7.3943(16) 5.1743(15) 3.4843(14) 2.7343(15) 2.5643(15) 2.3243(14) 2.343(14)

 m 24 32 64 128 256 512 1024 2048 4096

WFRq 2.74 2.094 1.414 0.846 0.566 0.326 0.246 0.266 0.446

QF(Q, S) 1.894,3 1.64,3 0.984,3 �.��
4,3

�.��
4,3 0.274,3 0.214,3 0.254,3 0.44,3

FS-wq 3.616 3.316 2.696 2.386 2.186 2.26 2.136 2.236 2.426

BSDMq 2.444 2.224 1.674 1.388 1.178 1.238 1.098 1.158 1.28

skip-q 2.294 1.964 1.294 0.984 0.634 0.654 0.734 1.024 3.054

FSBNDMqf 2.1331 1.8351 1.2151 0.9551 1.2751 1.0651 0.8351 0.5551 0.2751

SBNDMq 2.024 1.684 1.124 0.864 0.676 0.976 0.86 0.546 0.286

EBOM 2.71 2.51 2.67 3.08 2.94 3.61 5.91 9.8 14.67
SSEF – 2.42 1.37 0.96 0.51 0.49 0.64 1.16 1.94
EPSM 1.65 1.33 0.94 0.74 0.48 0.6 0.83 1.35 2.33
Z16-w3 1.89 1.86 1.73 1.44 1.2 0.93 0.88 1.33 2.23
Bricks�q(k) 2.1243(15) 1.8225(14) 1.1425(14) 0.7825(14) 0.4826(15)

�.��26(14) �.��26(14) �.��26(14) �.��
26(15)
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Algorithm 11: Bricksσ-q-t algorithm for q-grams on Σ and checking
t pattern prefixes, σ = log |Σ|
1 foreach i ∈ [0; 2qσ) do Z[i] ← 1; // Preprocessing
2 for i ← 0 to m− q do
3 Z[P [i] + P [i+ 1] << σ + . . . + P [i+ q − 1] << (q − 1)σ] ← 0
4 for i ← 0 to |Σ| do
5 Z[i + P [0] << σ + . . . + P [q − 2] << (q − 1)σ] ← 0
6 . . .
7 for i ← 0 to |Σ|t do
8 Z[i + P [0] << tσ + . . . + P [q − t− 1] << (q − 1)σ] ← 0
9 pos ← m− q; // Search

10 while pos ≤ n−m+ q do
11 while Z[T [pos] + T [pos+ 1] << σ + . . . + T [pos+ q − 1] <<

(q − 1)σ] �= 0 do
12 pos ← pos+m− q + t+ 1
13 check the occurrence at pos−m+ q
14 pos ← pos+QS[T [pos+ q]]

The preprocessing phase of Alg. 11 differs from the pre-
processing phase of Alg. 10 with the loops in lines 4–8. In 
these loops, the value 0 is assigned to elements of shift table 
Z with indexes formed from prefixes of a pattern padded 
to the left with all possible combinations of � characters. 
This ensures that suffixes of a search window of lengths 
q − t,… , q − 1 do not coincide with prefixes of a pattern, 
and in the fast loop, this window can be moved safely t char-
acters more to the right than in Alg. 10 (line 12 of Alg. 11 
vs. line 7 of Alg. 10).

Let us note that occurrence check avoiding techniques 
discussed in “Pattern matching over a byte alphabet”, such 
as the double fast loop or using the sliding windows, lead to 
measurable improvement in Bricks algorithm performance 
for relatively large alphabets ( |�| ≥ 16 ) and small patterns 
( m < 8 ) only, i.e. in the area where Bricks algorithms are 
outperformed by Z/RZ ones, as will be shown in “Experi-
mental results”. This may be explained by the fact that the 
computational complexity of a bad character check in Bricks 
algorithms (e.g. in line 6 of Alg. 10) is relatively large in 
comparison with the occurrence check complexity, particu-
larly when the bad character check expression is long, which 

means |�| is small. That is why we do not apply the double 
fast loop and sliding windows to algorithms of the Bricks 
family.

Also, it is worth noting that pattern search 
in genome sequences represented as a series of 
ACGT-characters requires the modif ication of 
Bricks algorithms. The binary representations of 
ASCII nucleotide characters are the following: 
A = 01000001,C = 01000011,G = 01000111, T = 01010100 . 
And after applying expressions from lines 3 or 6 of Alg. 10 
to these binary strings we may get the index values greater 
than 2q� . Therefore, to limit the values of shift table indices, 
the mask = 2k − 1 can be applied to ‘Bricks’ expressions 
( k ≥ q� ). Also, note that the only pair of bits different in 
all binary representations of ACGT-characters consists of 
2-nd and 3-rd bits from the right. Thus, it is reasonable to 
assume these pairs of bits of sequential characters in the 
‘Bricks’ expression should not intersect. According to these 
considerations, the following expressions should be used in 
lines 3 and 6 of DNA-version of Alg. 10. 
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Algorithm 12: Bricksσ-q(k) – modification of Alg. 10 for a DNA se-
quence; k is the number of bits in a mask
1 mask ← 2k − 1
2 foreach i ∈ [0; 2k) do Z[i] ← 1; // Preprocessing
3 . . .
43 Z[(P [i] >> 1 + P [i+ 1] << 1 + . . . + P [i+ q − 1] <<

(2q − 3))&mask] ← 0
5 . . .
66 while Z[(T [pos] >> 1 + T [pos+ 1] << 1 + . . . + T [pos+ q − 1] <<

(2q − 3))&mask] �= 0 do

Of course, the ‘false positives’ are possible, i.e. the situ-
ations when the expression in line 6 is 0, although the sub-
string T[pos…pos + q − 1] does not belong to the pattern. 
This leads to extra occurrence checks, however, their num-
ber is negligibly small in practice. In fact, the shift table in 
Bricks algorithms implements some hash function, and the 
‘Bricks’ approach, in general, resembles the Hashq algo-
rithms [19], as well as the ‘filtering’ expression in SSEF 
[18] or QF [6]. The main differences of Bricks algorithms 
are: (a) more than 1 bit of each text character can partici-
pate in the shift table index calculation (unlike SSEF), (b) 
characters are shifted more than 1 bit relative to each other, 
(c) the exact value of a shift is not read from memory in 
the fast loop (unlike Hashq), and (d) filtering expression 
is not recurrent and the mask size does not depend on the 
number of processed characters (unlike QF). As experiments 
presented in “Experimental results” show, these differences 
make sense in practice.

Experimental Results

A wide range of Z/RZ-Byte, Z/RZ-Bit, and Bricks algo-
rithms was tested with different parameters on different 
types of text and pattern lengths varying from 2 to 4096. 
Several known algorithms were tested for comparison, both 
in original and “2-byte read” versions, if applicable. The 
results are presented in Tables ***6–2. The test dataset con-
tains the following texts:

• Text on a byte alphabet: 10 MB text contains a set of 
English Wikipedia articles encoded by (s, c)-dense code 
[2]. This code is byte-aligned, i.e. a phrase from the orig-
inal text can be found in the encoded text as a sequence 
of bytes. The results are shown in Table 2.

• Text on a byte alphabet for a bitstream search: 10MB text 
contains a set of English Wikipedia articles encoded by 

the multi-delimiter code D2,4−∞ [1]. Although this code 
compresses texts not far from entropy (2–3% away), it 
makes possible the direct data search in a compressed 
file without its decompression, just like (s, c)-dense code. 
However, unlike SCDC, the multi-delimiter code is not 
byte-aligned and the pattern may not be aligned with the 
byte boundaries. Thus, the bitstream search should be 
applied. The results are shown in Table 3.

• Natural language text (Table  4): collected works of 
Charles Dickens, 10 MB text taken from Silesia corpus.

• Proteine (Table  5): the 3.2MB of the amino acid 
sequences of different proteins taken from SMART tool 
[8].

• DNA: e-coli genome sequence, 4.5 MB text. The search 
results are presented in Table 6.

The algorithms have been compiled with GCC compiler (full 
optimization for speed) and run on a little-endian computer 
with an Intel i5-8265U processor, 4 × 32 kB L1 cache, 8 
GB RAM, OS Windows 10 64-bit. The results, given in 
hundredths of seconds, represent an average time of 1000 
runs of each algorithm. The C code of some Bricks and 
Z-algorithms is published in [25], while most of the other 
algorithms have been taken from [8].

For each pattern length, one algorithm providing the best 
searching time has been selected in each algorithm family 
to be presented in a table. If the family is parametrized, the 
parameters are shown in superscript or in smaller font below 
the time value. The performance of the fastest algorithm, for 
each pattern length, is given in bold.

Z/RZ-Byte algorithms have been run in versions with 1, 
3, and 5 sliding windows and the parameter k varying in 
the range 12–15, while the algorithms Z8 and Z16, based 
on a full byte read, have been tested in 1, 2, and 3 sliding 
windows versions. Also, all reasonable combinations of q 
and t parameters of Bricks algorithms have been tested for 
each text.
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Let us discuss the performance of the algorithms on dif-
ferent real-world data. The EPSM algorithm wins the com-
petition on very short patterns ( m ≤ 4 ) on all investigated 
datasets. This is because this algorithm process multiple 
adjacent short search windows simultaneously, using SIMD 
operations. However, while the pattern length, and hence the 
search window length increases, this advantage disappears, 
and results can be different.

Thus, on a byte alphabet, the Z-algorithms are the fast-
est for all patterns of length m ≥ 6 (Table 2). For short and 
medium patterns the 14- or 13-bit read is preferable, while 
for long patterns ( m ≥ 256 ) a full 2-byte read or 15-bit read 
provides better results. This testifies that our “1.5-byte read” 
approach appears to be more efficient than a 2-byte read if 
the alphabet is large and the pattern is not extremely long. 
Indeed, in this case, the probability of a maximal shift based 
on analyzing the 2-byte suffix of a search window is not 
much higher than if we analyze 13–14 bits, however, the 
shift table fits into the L1 cache, which is a more important 
factor.

Among other algorithms, the bit-parallel (F)SBNDM and 
QF, as well as automaton-based WFR, demonstrate good 
performance on long patterns being however 30–120% infe-
rior to best representatives of comparison-based Z-family. 
The main reason for that is that on large alphabets compar-
ison-based algorithms can provide quite good average shift 
length having at the same time less operational complexity if 
the following improvements are applied: (a) involving bits of 
more than one character into bad-character comparisons; (b) 
making use of multiple sliding search windows; (c) tuning 
the fast loop technique.

This is confirmed by the performance of bitstream pattern 
matching algorithms, presented in Table 3. For all investi-
gated pattern lengths, from 25 to 3200 bits, the RZBit16-w2 
algorithm, based on principles (a)–(c), outperforms more 
than twice the BFL method, based upon the bit-parallel algo-
rithm BNDM. Although RZBit16-w2 makes use of 2 slid-
ing windows, the noted outperformance is essential even for 
no-sliding windows versions of RZ-Bit (row 1 of Table 3). 
Apart from the above-mentioned reasons, the superiority of 
the RZ-Bit family may be explained by the following factors: 
(d) although the maximal length of a long-shift in the BFL 
algorithm is 2m − 1 , in practice it is often 2m − 3 or less, 
while any total maximal shift in two sliding windows of RZ-
Bit algorithm is 2m − 2 , i.e. longer in average; (e) when the 
pattern is shortened below 60 bits, and importance of a long-
shift decreases, the timing difference between RZ-Bit and 
BFL becomes especially large, which indicates a higher effi-
ciency of a bit-alignment checking technique implemented 
in the RZ-Bit algorithm; (g) the long shift in BFL cannot 
be longer than 2 machine word lengths, which makes the 
algorithm inefficient in long pattern matching.

The running times of best bitstream pattern matching 
algorithms and corresponding byte alphabet search algo-
rithms are compared in Fig. 4. They differ significantly on 
short patterns only. This indicates that the bit-alignment 
checking technique implemented in the RZ-Bit algorithm 
is quite efficient and cannot be improved a lot, except for 
application to very short patterns.

When it comes to pattern matching in texts on smaller 
alphabets, the relative performance of Z/RZ-algorithms 
decreases and we also take into consideration the Bricks 
algorithm. Experiments show that Bricks algorithm dem-
onstrates higher efficiency on smaller alphabets and longer 
patterns, while Z/RZ algorithms vice versa (Tables 4, 5, 6).

Among Bricks�-q algorithms, the ones with smaller q are 
more efficient on shorter patterns. They provide longer fast 
loop shifts by the cost of fast loop continuation probability 
and this strategy is more efficient as the ratio (m − q + 1)∕m 
is smaller, i.e. m is smaller.

On English text (Table 4) Z/RZ-algorithms do not win 
the competition on any pattern length, while different vari-
ants of the Bricks algorithm appear to be the fastest for very 
long patterns ( m ≥ 1024 ) and some middle pattern lengths 
( m = 12, 14, 18, 20 ). In the latter area, the Bricks algorithm 
competes mostly with EPSM, and its outperformance on 
some disconnected intervals of pattern lengths can be par-
tially explained by a stepped character of EPSM perfor-
mance (i.e. it may not change on wide intervals as pattern 
length increases).

The special version of a Bricks algorithm (Alg. 12) 
is faster than the standard version (Alg. 10) not only in 
genomic but either in protein sequence search; its timing 
shown in Tables 5 and 6, with algorithm parameters in small 
font under the time values. In most cases the parameter t is 
omitted, except for 5 − 1(16) , which denotes the combina-
tion of Alg. 11 and 12, q = 5 , t = 1.

As seen, the Bricks algorithm outperforms all other 
algorithms in search of long patterns, m ≥ 512 , either for 
genomic or protein sequences. Also, it demonstrates good 
performance for medium patterns, 10 ≤ m ≤ 256 , being 
somewhat inferior to EPSM, QF, SSEF, and/or Z-algorithms 
(however, for genomic patterns of length 22 the Bricks26-14 
algorithm appears to be the fastest one again).

Z-algorithms, being obviously inefficient in genomic 
search, demonstrate very good results for protein sequences. 
The algorithm Z16 − w3 with 2-byte read, double fast loop, 
and 3 sliding windows appears to be the fastest one among 
Z-algorithms on all pattern lengths and the fastest among all 
algorithms for 6 ≤ m ≤ 22.

Let us note, that the outperformance of the Z16-w3 algo-
rithm, implementing a 2-byte read, over 1.5-read versions 
of Z-algorithms on English text and protein sequences is 
expected since either in DNA, protein or English texts the 
highest bits of bytes are always zero. Thus, the shift table 
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based on 2 characters occupies 32 kB of memory, and fitting 
to the L1 cache problem becomes almost irrelevant. The 
same reason explains why we use a full 2-byte read in the 
Bricks22 and Bricks23 algorithms: their filter expressions 
cannot exceed 213.

Conclusions

The different speeding mechanisms of the classical 
Boyer–Moore–Horspool algorithm were investigated and 
tested on real-world datasets of different nature. Combining 
these mechanisms, we get three parameterized algorithms. 
The Z/RZ-bit algorithm represents an efficient approach to 
pattern matching in a bitstream. The underlying solution, 
the Z/RZ-byte algorithm, can be used for string matching 
on large alphabets. It relies on improving the 2-byte read 
principle as well as tuning the fast loop and sliding win-
dows techniques. And the third algorithm, Bricks, is effi-
cient mostly on small alphabets. The test results show that 
different representatives of the developed set of algorithms 
outperform all other tested solutions on a wide range of pat-
tern lengths and different data sets.

Appendix: Remarks on Implementation

There are three adjustments in C versions of our algorithms, 
which are not shown in Alg. 2–6 for simplicity.

The first adjustment deals with addressing the charac-
ters of a text. It is reasonable to assume that addressing a 
character via pointer like *ptr will be a bit faster than 
addressing the array element like T[pos], because the lat-
ter expression in fact means *(T+pos) and requires one 
extra addition. Whilst other operations such as additions and 
comparisons have the same time complexity either for point-
ers or indices. Indeed, for our algorithms, the experiments 
show that the gain from using pointers instead of indices 
is up to 20% for patterns of length 2, up to 6% for patterns 
of length 4, 0.5–1.5% for patterns of length 8, and insig-
nificant for longer patterns. For other algorithms, the results 
are rather contradictory. That is why all Z/RZ and Bricks 
algorithms were tested in “pointer” versions, while other 
algorithms have been run in their original versions. Thus, 
to make a comparison more relevant, the timing of Z/RZ/
Bricks algorithms may be increased in the above-mentioned 
proportions.

The second adjustment has to be made in reverse algo-
rithms in order to correctly process the algorithm stop con-
dition. In algorithms, 4–6 the text was assumed to be pre-
pended by a stop pattern. However, it can be problematic 
due to “left-to-right” organization of memory structures 
in programming languages: we can easily allocate extra 

memory after the text to append a string to it, but there is no 
technique to allocate extra memory just before the address 
stored in a given pointer T addressing the beginning of a 
text, except for shifting the whole text right or taking into 
account this specificity before invoking a search function. 
The other option is to: (1) before the main search loop, 
backup the beginning of a text and replace it with a stop 
pattern; (2) after the main loop, restore the beginning of 
a text and search the pattern in it using some other simple 
algorithm. This approach has been implemented in the tested 
reverse algorithms.

And the last adjustment relates to Z/RZ algorithms 
searching the short patterns, less than 3 bytes in length. In 
this case, the length of a maximal shift in Zk-Byte or RZ-Bit 
algorithms is equal to m − 1 = 1 . And since in the double 
fast loop we step 1 character back, this loop may become 
endless. Therefore, in Zk-Byte ( 8 < k ≤ 16 ) and RZ-Bit 
algorithms, the short patterns are considered as a special 
case and processed with a single fast loop.
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