
Vol.:(0123456789)

SN Computer Science (2022) 3:80
https://doi.org/10.1007/s42979-021-00939-4

SN Computer Science

ORIGINAL RESEARCH

SecDocker: Hardening the Continuous Integration Workflow

Wrapping the container layer

David Fernández González1 · Francisco Javier Rodríguez Lera1  · Gonzalo Esteban1 · Camino Fernández Llamas1

Received: 31 March 2021 / Accepted: 13 October 2021 / Published online: 23 November 2021
© The Author(s) 2021

Abstract
Current Continuous Integration (CI) processes face significant intrinsic cybersecurity challenges. The idea is not only to
solve and test formal or regulatory security requirements of source code but also to adhere to the same principles to the CI
pipeline itself. This paper presents an overview of current security issues in CI workflow. It designs, develops, and deploys
a new tool for the secure deployment of a container-based CI pipeline flow without slowing down release cycles. The tool,
called SecDocker for its Docker-based approach, is publicly available in GitHub. It implements a transparent application
firewall based on a configuration mechanism avoiding issues in the CI workflow associated with intended or unintended
container configurations. Integrated with other DevOps Engineers tools, it provides feedback from only those scenarios that
match specific patterns, addressing future container security issues.

Keywords  Containerization · Continuous integration · Docker

Introduction

There are plenty of tools to analyze and secure the creation
of container images. Besides that, several organizations have
developed guidelines to assist developers in the creation of
such images with a certain degree of security. For instance,
focusing on Docker [18], it is possible to find the Docker
Benchmark tool released by the Center for Internet Security
(CIS) [9] or the Ultimate Benchmark for Container Image
Scanning (UBCIS) [2]; both containing guides that analyze
every single dangerous step involved during the image-
building process.

However, there are different local exploitation issues
associated to the continuous integration (CI) workflow
that needs to be secured. The problem here is that some

containerization solutions (like Docker) have different
exploits that allow an attacker to override some of the image
specifications; which is done by providing new ones at the
very moment the container is created. Furthermore, open-
ing ports are always a security risk if it is controlled by a
low level user in the system (like a developer in a DevOps
server).

Thus, this study focuses on developing a tool called Sec-
Docker that enhances the cybersecurity pipeline when inte-
grating containerization in the CI workflow [27]. SecDocker
is a wrapper, specifically an application firewall for Docker,
that allows system administrators to block the capabilities
offered by Docker in the run command. By doing so, any
dangerous actions performed during the creation or execu-
tion of a container, such as deploy container images with
malicious code, download malicious payload at runtime
within the container of the host, or get sensitive information
from the Docker log (to name a few), can be blocked before
they even get executed.

But CI environments are, by definition, completely auto-
mated, which suggests a security approach that can deal with
the underlying workflow. This creates a need for security
administrators to apply tools that perform security checks
at the processes that shape the CI. SecDocker adds a layer
of security to CI environments, allowing the complete use

This article is part of the topical collection “New Paradigms of
Software Production and Deployment” guest edited by Alfredo
Capozucca, Jean-Michel Bruel, Manuel Mazzara and Bertrand
Meyer.

 *	 David Fernández González
	 dferng@unileon.es

1	 University of León, Campus de Vegazana, 24071 León,
Spain

http://orcid.org/0000-0002-8400-7079
http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-021-00939-4&domain=pdf

	 SN Computer Science (2022) 3:8080  Page 2 of 13

SN Computer Science

of Docker to developers and users, regardless of whether
they use the system correctly. Right now, a CI user could
potentially create security threats if they use the platform
incorrectly. SecDocker aims to solve such cases by simply
removing the possibility of creating them from the users. It
controls every request performed by the CI to the container
platform, providing a secure use for Docker pipelines.

Below, the research question and main contribution are
presented. The remainder of the paper presents the elements
for answering the Research Question. Section “Background”
overviews the state of the art in containerization and con-
tinuous integration workflow. Section “Container Layer in
CI” presents the developer’s and attacker’s schemes to the
containerized CI layer. Section “Proposed Solution” pre-
sents SecDocker tool: its design, architecture and usage.
Section “Empirical Validation” validates with the results
of SecDocker from two different experiments carried out
in this research measuring performance and the operational
flow. Section “Discussion” discusses enumerating pros and
cons of SecDocker and finally sect. “Conclusion” provides
conclusions about the processes and solutions presented in
this paper.

Research Question and Contribution

CI is a cornerstone methodology that automatically
addresses several processes previously faced by software
developers. However, the CI workflow also needs to meet
the security mechanisms that will guarantee flexibility, pro-
ductivity, and efficiency during the Software Development
Life Cycle. Thus, this paper aims to frame a set of elements
that are addressed within the next Research Question (RQ):
RQ: Which are the mechanisms for avoiding and minimizing
cybersecurity and misconfiguration issues in a CI container-
based deployment system?

This RQ scales to a new level when the containerization
tool is Docker. Most parts of current automation servers and
processes are supported on Docker containers. However, its
engine shows critical points that can lead to a crashed CI
pipeline due to malicious users or unaware DevOps engi-
neers. Working with an erroneous configuration would
promote a bad system behavior, with the manpower and
economical costs associated. There are three main phases
when using Docker containers in the CI workflow: (1) issues
associated with image retriever; (2) issues associated with
image builder; and (3) issues generated when the image is
deployed.

This study presents an overview to the latter step, as well
as the design and development of a tool called SecDocker
for minimizing issues associated with container deployment.
Besides, the tool introduces expansion capabilities for solv-
ing the first and second steps using plugins.

Background

CI is one of many software development practices aimed
at helping organizations to accelerate their development
and delivery of software features without compromising
quality [11]. According to Fitzgerald and Stol [8], it can
be defined as “a process which is typically automatically
triggered and comprises inter-connected steps such as com-
piling code, running unit and acceptance tests, validating
code coverage, checking compliance with coding standards
and building deployment packages”. For Shahin et al. [22],
alongside Continuous Delivery or CDE (ensure the package
is always at a production-ready state after tests) and Con-
tinuous Deployment or CD (deploy the package to produc-
tion or customer environments), CI is considered part of the
continuous software engineering paradigm which includes
the popular term “DevOps” [8].

DevOps is a mix of the words Development and Opera-
tions and, although there is no common definition for it,
some literature reviews exist to date that addresses this
point [5, 12, 23]. For instance, Jabbari et al. [12] define
it as “a development methodology aimed at bridging the
gap between Development (Dev) and Operations (Ops),
emphasizing communication and collaboration, continuous
integration, quality assurance and delivery with automated
deployment utilizing a set of development practices”. To
enable such concepts or practices, and thus aid developers
in materializing them, DevOps relies on using a range of
tools [5, 16], from source code management to monitoring
and logging, as well as configuration management. Together,
these tools allow the creation of a pipeline that automates the
processes of compiling, building and deploying the source
code into a production platform [11].

But as a relative young methodology, integrating and
maintaining these tools or managing the infrastructure in
which they run automatically may pose a challenge [22];
especially for CI and CD. As Leite et al. discuss in their liter-
ature review [16], concepts like “infrastructure as code”, vir-
tualization, containerization or cloud services are solutions
currently known to be used for these types of issues. Among
all of them, containerization is perhaps the most popular
solution in DevOps environments at the moment. With a
platform as a service focus, it is used for delivering software
in a portable and streamlining way by providing a platform
that allows developing, running and managing applications
without worrying about the infrastructure needed [20].

Technically speaking, containerization is a type of
lightweight OS-level virtualization technology that allows
running multiple isolated systems (in terms of processes,
resources, network, etc) while sharing the same host OS.
Such systems or containers, hold packaged, self-contained
applications and, if necessary, binaries and libraries required

SN Computer Science (2022) 3:80	 Page 3 of 13  80

SN Computer Science

to run them [3]. Moreover, they have been around for some
time in various forms: from chroot, FreeBSD jails or Solaris
zones to Linux-based solutions relying on kernel support
like LXC or OpenVZ [3, 7, 20, 26]. But over time, con-
tainerization has become a major trend thanks to tools like
Docker [16, 19].

Docker is an open-source platform that facilitates the
management of containers using a client-server architecture
through a CLI tool, a daemon and a REST API [19, 26]. It
relies on the concept of images to build containers, that is, a
specification of the collection of layered file systems, their
corresponding execution environment and some metadata;
making them portable, shareable and also updatable [20].
Regarding their usage, Docker containers can be used either
as a microservice (to host a single service), as a way of ship-
ping complete virtual environments (to reproduce and auto-
mate the deployment of applications) or even as a platform
as a service (to cope with security and infrastructure integra-
tion issues) [7, 18].

From a security perspective, Docker provides different
levels of isolation, host hardening capabilities and some
countermeasures related to network operations [6, 7, 18].
Nevertheless, it is not exempt from security threats nor vul-
nerabilities, such as ARP spoofing, DoS attacks, privilege
escalation, etc. This is due to the nature of containeriza-
tion itself because an attack on the host OS may expose
all containers and their network traffic. To address these
cybersecurity risks, it is necessary to take similar actions to
DevOps; especially where pipeline automation is a require-
ment (as in CI or CD). Such actions can be understood as
best practices or recommendations that aim to establish a
Secure Software Development Life Cycle. Examples of this
can be found in reports like DevSecOps: How to Seamlessly
Integrate Security Into DevOps [17] or DoD Enterprise
DevSecOps Reference Design [15], where container hard-
ening is contemplated.

Container Layer in CI

Containers are used in CI processes to isolate and automate
the creation of an application into one single self-contained
virtual environment. This solution simplifies DevOps man-
power, as it allows to split a large application development
project into several smaller work units. Having said that, this
section describes the role of CI from the point of view of two
actors (DevOps engineers and attackers) and also presents
the scenarios likely to be vulnerable.

DevOps Engineers Scheme

From a developers perspective, CI is used to guaran-
tee the quality, consistency and viability across different

environments [10]. But as CI systems are vulnerable to secu-
rity attacks and misconfigurations [22], DevOps engineers
frequently rely on containers to create such environments
as they provide isolation without much effort to them. Gen-
erally, this has been achieved by technologies like Docker
which allow them to treat infrastructures as code [13].

Regarding CI, Docker has ease DevOps engineers in the
replication of environments for building automation pipe-
lines. Particularly, as Boettinger et al. point in their work [4],
it has solved common issues encountered by end-users like
managing dependencies (through images), imprecise docu-
mentation (through scripts to build up such images) or code-
rot (with image versioning), along with the adoption and
re-use of existing workflows (thanks to features like port-
ability, easy integration into local environments or public
repositories for sharing and reusing those images).

But despite the benefits that Docker or other containeri-
zation technologies may offer to DevOps engineers in CI
environments, the latter still face challenges related to its
adoption; particularly associated with introducing any new
technologies or phenomena in a given organization [10,
22]. According to Shahin et al. [22], literature shows that,
among the common practices for implementing CI work-
flows, DevOps engineers need to decompose development
into smaller units and also plan and document the activities
that comprise the automation pipeline. Having said that, it
must be noted that there are many ways of approaching the
design of such pipelines. But taking into account the use
of containers and based on Bass et al. approach [1], any CI
workflow must include the following 6 components in such
design plan:

1.	 Automation server. Implements the CI/CD pipeline and
creates a local workspace in which its steps take place.

2.	 Orchestrator. Sequentially triggers each step of the pipe-
line by communicating with the remaining components.
It should be noted that, when using containers, steps
may require images to perform their actions. Thus, the
same image can be used through the whole pipeline or
in specific steps.

3.	 Code retriever. Pulls source code from repository to
local workspace.

4.	 Unit tester. Runs automated unit tests on source code.
5.	 Artifact builder. Builds deployable artifacts from source

code.
6.	 Image generator. Builds, verifies, stores and deploys an

image to be used within the pipeline.

With this in mind and despite using containers, any standard
CI workflow that establishes and defines this components
will lower security and increase its functionality risks. To
avoid this, different automated continuous tests could be
applied to the whole process. However, and particularly for

	 SN Computer Science (2022) 3:8080  Page 4 of 13

SN Computer Science

item 6, some of the tools go toward a specific commercial
solution. As a result, there is a need to develop a tool like
SecDocker.

Attacker Scheme

As mentioned in sect. “Background”, containers are the
target of different security threats or vulnerabilities. There-
fore, a containerized environment—like those created with
Docker—may have different potential attack vectors [18]:
host OS, network or physical systems, source code reposi-
tories, image repositories or the very own containers. Secur-
ing these vectors is not a trivial task, but the contributions
presented in this paper are framed towards the integrity of
container images used by CI (or CD) pipelines.

In such cases, images are frequently used to ship a com-
plete virtual environment where concrete actions from the CI
workflow take place (e.g. build, test, run or deploy an appli-
cation). Such workflow is scripted and usually automated by
triggering a webhook from some version control system. But
this approach makes pipelines unreliable so, to contribute
to its hardening, the image generator component from the
CI process (see the previous subsection) is an element that

needs to be hardened somehow. Regarding this process and
based on Bass et al. approach [1], it is possible to distinguish
four components involved in it (see Fig. 1):

1.	 Builder. Builds a container image according to some
specifications. This image comprises the virtual environ-
ment or workspace where some or all workflow actions
will take place.

2.	 Verifier. Computes a checksum to verify the authentica-
tion of the image was just built.

3.	 Archiver. Stores the image in a registry or repository so
it can be retrieved later.

4.	 Deployer. Deploys the image into a testing or produc-
tion environment in order to execute the CI workflow or
some of its scripted actions.

This study considers the last component to be one of the
most important. The reason is that a correct configuration
will minimize the impact of an issue in the previous three
components. A container with no root or bounded CPU will
guarantee minimal resource exploitation to the host machine.
Thus, a runtime check for the detection of common secu-
rity and configuration weaknesses against a compliance

Client

Source code
repository

Push code Webhook
Automation server Deploy

Docker Registry

Poison registry /
Untrusted images

Malicious code

Get docker image

Build image

Run image

Compile

Run tests

Docker image development

Code development

Docker

Archiver

VerifierBuilder

Verify authentication

Deployer

Malicious code

Fig. 1   Attacker scheme: Vulnerability points during container deployment

SN Computer Science (2022) 3:80	 Page 5 of 13  80

SN Computer Science

configuration pattern defined by DevOps engineers seems
to meet the requirements for production environments.

Proposed Solution

SecDocker is an application firewall for Docker. It must be
noted that, nowadays, such firewalls are frequently used to
control the traffic of web applications [21]; for instance, as a
reverse HTTP proxy that decides whether a token requires to
replace any suspicious parts found in requests [14]. Bearing
this in mind, SecDocker shares the same purpose as any web
application firewall: prevent users from performing danger-
ous or unexpected actions on the application.

Docker is commonly used in a local environment when
configured and managed by end users. But for those Docker
platforms set up in a system different from the one where
commands are executed, network traffic is a topic to be dis-
cussed. In this context, it is important to highlight that the
Docker CLI sends an HTTP request to the Docker daemon
and the latter processes it and answers with the correspond-
ing results.

Therefore and, broadly speaking, SecDocker filters TCP
traffic and works by monitoring the Docker commands. Its
main goal is to evaluate all the requests meant for the Docker
daemon by standing between it and the user (see Fig. 2).
This workflow can be described in four steps:

1.	 Send Docker command. The workflow starts when the
end user sends a new HTTP request through a Docker
command. As the CLI is configured to send commands

to a Docker daemon located in a different system, the
CLI just crafts the HTTP request and sends it to the
daemon.

2.	 Inspect Docker command. Whenever a new HTTP
request aiming for the run API endpoint reaches the
firewall, the IP packet is intercepted, opened and the
request parameters from the Docker command (i.e. ports
request, user, image name, etc) are loaded from its data
section. If IP packets are encrypted the same actions
are applied, but in this case, SecDocker needs to be
configured with the same TLS/SSL certificates used by
the Docker daemon in order to be able to decrypt and
inspect their content; otherwise, the IP packet will not
even be intercepted by SecDocker as its contents can-
not be read. Finally, if the request contains a command
different than run, it simply forwards it to the Docker
daemon.

3.	 Check packet against security profile. After the inspec-
tion, the request parameters are checked against a
security profile (previously configured by the DevOps
engineer) in order to prevent unauthorized actions com-
ing from the container itself. This profile is part of a
configuration file and contains a set of constraints for
the parameters of the Docker command; for instance,
the list of banned ports, forbidden mounted volumes or
restricted container images. If at least one of the param-
eters in the packet contains a value present within the
security profile, the packet is considered as "not valid".
Hence, it is discarded and a new one is created and sent
back as a response to the end user, notifying him about
the use of a forbidden option.

SecDocker

Client

Inspect Docker
command

Check packet
against security

profile

Yes

No

Is it
valid?

Apply restrictions to
Docker command

Security
profile

Discard packet

General
restrictions

Send response

IP packet

Send Docker
command

Config

Docker

Fig. 2   SecDocker general workflow

	 SN Computer Science (2022) 3:8080  Page 6 of 13

SN Computer Science

4.	 Apply restrictions to Docker command. If the packet is
valid (i.e. no matches were found in the security pro-
file during the packet verification), SecDocker is able
to append or modify the requested parameters to suit
some general purpose restrictions for creating or run-
ning any container from the server hosting the Docker
daemon. These restrictions (also previously specified by
the DevOps engineer as part of the same configuration
file containing the security profile), are meant to limit
all containers with settings such as: memory or CPU
usage limit, users forbidden to run containers or envi-
ronment variables meant to omit. Having a single con-
figuration file allows SecDocker to define an additional
security layer in the server, ensuring that all containers
run under the same settings. Once the restrictions have
been applied, the packet is recreated and sent back to the
Docker daemon to finally perform the requested action.

In addition, it should be noted that since SecDocker runs
in parallel to Docker, this workflow is pseudo-transparent
in terms of performance to commands other than run. This
ensures that the tool acts as a web application firewall and
only filters traffic from processes in isolated containers.

Software architecture

SecDocker is written in Go and is publicly available in
GitHub.1 It features a modular and extensible design com-
posed of 5 components at its core:

1.	 Security. Performs validation against the user-supplied
options.

2.	 Config. Loads user’s information into the firewall in real-
time.

3.	 Docker. Performs tasks related to how Docker processes
information.

4.	 HTTPServer. Manages and performs actions against
HTTP data (e.g. loading the body of the requests, craft-
ing new requests/responses, etc.).

5.	 TCPIntercept. Handles packages at the TCP level, so
the communication looks transparent for the end-user.
It also maintains the communications and gathers data
for the HTTPServer module. Additionally, it must be
noted that this module is based on Trudy,2 a transparent
proxy that can modify and drop TCP traffic.

Its functionality can also be expanded by third-party appli-
cations thanks to a dedicated component named Plugins.

For its basic workflow, SecDocker delegates some extra
functionality to two plugins:

–	 Anchore.3 Inspects, analyzes and applies user-defined
acceptance policies.

–	 Notary.4 Ensures the integrity of a trusted collection of
Docker images.

Likewise, an accountability component based on logs is also
included with SecDocker. This logging component relies on
Logrus,5 an external logger package for Go that provides
structured logs.

Usage

As mentioned at the beginning of this section, SecDocker
workflow involves routing TCP packages in a similar way to
a firewall. In a nutshell, it listens to all incoming TCP traffic
and only monitors those packets involving HTTP data and
which body contains requests to the Docker Engine API (e.g.
list containers, create containers, start a container, etc). Con-
sequently, it should be placed in top of the server responsible
for handling requests to Docker. This is done either to main-
tain the original destination port of the Docker daemon or
to perform some alteration to redirect the traffic to the right
port by applying some firewall rules so the traffic can be
intercepted by SecDocker.

Once installed, a configuration file written in YAML
is used to filter the HTTP data (see Listing 1). This file
contains a list of plugins to be enabled, the location of the
Docker daemon and a security profile. With regard to the
latter, an aggregation of rules must be specified. These rules
define a set of parameters that allow DevOps engineers to
set up some security features related to the Docker image
and its execution. On the one hand, there are restrictions or
rules that forbid the use of specific parameters; that is, if a
packet contains one parameter listed there, the packet will
be dropped. On the other hand, there are general rules that
apply to all requests; for example, if we want to restrict the
amount of RAM to 1GB per container, we can set a rule to
force it (as in Listing 1).

1  https://​github.​com/​ulero​botic​sgroup/​Secdo​cker/.
2  https://​github.​com/​praet​orian-​inc/​trudy/.

3  https://​ancho​re.​com/.
4  https://​docs.​docker.​com/​notary/​getti​ng_​start​ed/.
5  https://​github.​com/​sirup​sen/​logrus/.

https://github.com/uleroboticsgroup/Secdocker/
https://github.com/praetorian-inc/trudy/
https://anchore.com/
https://docs.docker.com/notary/getting_started/
https://github.com/sirupsen/logrus/

SN Computer Science (2022) 3:80	 Page 7 of 13  80

SN Computer Science

In addition, Table 1 collects a list of the current available
parameters supported by SecDocker. The definition of these
features (or parameters) resembles those from the official
Docker Compose tool, meaning that a minimal understand-
ing of Docker parameters is required. With this in mind,
writing a security profile like the one shown in Listing 1
is relatively easy. Thus, any DevOps engineer may create
one attending to company policies, NIST suggestions for
resourcing allocation [24] or even for performance as sug-
gested by Tesfatsion, Klein and Scarfone [25].

Regarding its output, SecDocker starts to listen on port
8999 and logs all packets and their related data to the

Table 1   Configurable features supported by SecDocker 

Feature type Setting Description

Docker options Ports Port number(s) used by the container
Users Username(s) or uid(s) running the container
Mounts Mounted volume(s) (file or directory) from the host filesystem
Environment List of environment variables (KEY=VAL) used within the container
Security policies Adds or drops Linux capabilities
Images Name(s) of container image(s) to monitor
Privileged Whether the containers has granted capabilities in its host machine

General restrictions Memory Maximum amount of memory usage
CPU Number of CPU resources
User Username or uid (in host) allowed to run the container
Environment Environment variables of the container

p lug in s :

dockerapi : " / var / run / d o c k e r . s o c k "

r e s t r i c t i o n s :
port s :

− 22
− 25

mounts:
− / root
− /

user s :
− root

environment :
− USER=0

images :
− ubuntu: 1 6 . 0 4

p r i v i l e g e d : true

genera l :
memory: " 1 g "
cpu: 0 . 2 5
user : " 1 0 0 0 "
environment :

− " M Y _ E N V = t r u e "

Listing 1 Example of a SecDocker configuration file

standard output by default. A separated log file is also cre-
ated containing all the requests; whether they were allowed
or not and why. Furthermore, any external plugins can have
their logs to output their own results.

Empirical Validation

This section presents SecDocker software metrics and the
results from three experiments that were conducted to assess
its performance, its own workflow and also its role in the CI
workflow.

	 SN Computer Science (2022) 3:8080  Page 8 of 13

SN Computer Science

Software Implementation

SecDocker has 1834 lines of code (LOC) distributed among
the different functions of four files: tcpintercept
(tcpproxy.go), commandline (command.go) docker
(security.go) and httpserver_test (server_test.go).
Moreover, a set of software metrics is presented to provide
some sort of assessment to the tool implemented in this
study. These metrics can be used to define its maintainabil-
ity and code quality but also can give details about how
easy is to debug, maintain or integrate new functionalities
to it. They were measured against version v0.1-beta of the
application and using SonarQube6 and Golint7 as code qual-
ity tools. Additionally, SecDocker has a total number of 35
test cases—aggregated in 13 test functions that are grouped
by table-driven tests—, defining an 87% of test coverage.
Lastly, and regarding code quality, Golint detects 31 issues
(28 related to naming and comments and 3 to coding struc-
tures) while SonarQube detects only 12 code smells and no
bugs, vulnerabilities nor security hotspots.

Experiment Description

Two experiments were carried out to both measure SecDock-
er’s performance and check its functionality. The experi-
ments were conducted on two PCs connected to the same
LAN. Both systems were configured using Elementary OS
5.1.7 and had different specifications: one with an Intel(R)
i5-3570 CPU @ 3.40 GHz and 16.0 GB memory, and the
other with an AMD Ryzen 5 3500U CPU @ 3.60 GHz and
8.0 GB memory. The first PC was used as a server for run-
ning Docker and SecDocker and the second as a client to
connect to the latter and execute different Docker commands.

Performance Testing

The first experiment was carried out to evaluate SecDocker’s
performance as timing behavior, that is, to run transparently
from a running Docker server. The test consisted of run-
ning 100 times each of the following commands from the
client’s PC:

It must be noted that the purpose of the first two commands
was to test the command overhead for the third one; that is,
to measure the processing time required by the system prior
to executing the Docker run command. To measure these
times, the standard Unix time tool was used. That said,
Table 2 summarizes the experiment results after its execu-
tion without and with SecDocker.

On the one hand, the mean times for running the image
ls and the container ls commands without SecDocker
in the server PC were 0.134 ± 0.007 s and 0.044 ± 0.005 s,
respectively, with an interquartile range for both commands
of 0.01 s. Likewise, the mean times for running those same
commands with SecDocker in the same server PC was
0.163 ± 0.005 s and 0.066 ± 0.006 s, respectively, with an
interquartile range of 0.01 s again for both commands. Due
to the fact that the differences between the mean times are
relatively low (0.029 s for image ls and 0.022 s for con-
tainer ls) and the interquartile range does not change,
it is possible to assert that SecDocker’s overhead effect is
negligible to commands other than run.

On the other hand, the mean time for running the run
command when SecDocker was disabled in the server PC
was 0.301 ± 0.013 s, with an interquartile range of 0.02 s.
Meanwhile, the mean time when SecDocker was enabled in
the same server was 0.479 ± 0.030 s, with an interquartile

������ ����� ��

������ ��������� ��

������ ��� −� −� ���� ∶ ���� −−�� �
���� ∶ ��.��

Table 2   Statistics related to
time taken to execute three
different Docker commands
(100 times each) when
SecDocker is both enabled and
disabled

Time elapsed (secs)

Without SecDocker With SecDocker

image ls container ls run image ls container ls run

Mean 0.134 0.044 0.301 0.163 0.066 0.479
Median 0.130 0.040 0.300 0.160 0.070 0.485
Mode 0.130 0.040 0.300 0.160 0.060 0.490
Std. deviation 0.007 0.005 0.013 0.005 0.006 0.030
Minimum 0.120 0.030 0.270 0.150 0.060 0.410
Maximum 0.160 0.060 0.350 0.180 0.080 0.560
First quartile 0.130 0.040 0.290 0.160 0.060 0.460
Third quartile 0.140 0.050 0.310 0.170 0.070 0.500
Sum 13.380 4.370 30.120 16.320 6.570 47.910

6  https://​www.​sonar​qube.​org/.
7  https://​github.​com/​golang/​lint/.

https://www.sonarqube.org/
https://github.com/golang/lint/

SN Computer Science (2022) 3:80	 Page 9 of 13  80

SN Computer Science

range of 0.04 s. Since the differences are only 0.178 s
between the mean times and 0.02 s between the interquartile
ranges, it can be considered valid to state that, apparently,
SecDocker runs transparently from Docker.

Functional Testing

The second experiment was carried out to test SecDocker
functionality. This time, the goal was to send the following
command from the client’s PC to perform a hypothetical
privilege escalation attack:

To prevent this potential threat, the server PC used the same
configuration file shown in Listing 1; which includes the
privileged option set to true in order to drop commands
like the one previously mentioned.

Figure 3 shows that running the proposed command for
this test fails as expected. From SecDocker’s point of view,
the command is processed as represented in the sequence

������ ��� −−���������� ������ ∶ ��.�

diagram shown in Fig. 4. When the HTTP request derived
from the command arrives at SecDocker, it extracts all
parameters and checks them against the security configura-
tion loaded. In the test environment, the privileged option
is met, so a response is sent to the user stating that it has a
forbidden option.

SecDocker in the CI Flow

SecDocker is a standalone tool not meant to replace current
state-of-the-art solutions. Instead, it is meant to run in paral-
lel with such tools. Hence, its impact in the CI ecosystem
needs to be discussed and, for such task, this section com-
pares SecDocker to other tools, such as hadolint8 or Docker
scan9.

To this end, an experiment that evaluates the system
resources used by each of the above-mentioned tools was

Fig. 3   SecDocker response
when running the proposed
Docker command

Fig. 4   Sequence diagram describing how SecDocker blocks a docker run command

8  https://​github.​com/​hadol​int/​hadol​int/.
9  https://​docs.​docker.​com/​engine/​scan/.

https://github.com/hadolint/hadolint/
https://docs.docker.com/engine/scan/

	 SN Computer Science (2022) 3:8080  Page 10 of 13

SN Computer Science

carried out. The goal was to measure the time and cpu usage
taken by each tool to execute 100 times. The Unix dstat
tool was used for such task and, particularly, the following
data were assessed: (1) user process time or amount of CPU
time spent by the tool in user mode; (2) system process time
or amount of CPU time spent by the tool in the kernel; (3)
time elapsed or total time spent to finish each execution; and
(4) percentage of CPU used during each execution.

Table 3 collects the user and system process times along
with the time elapsed to execute each tool studied 100 times.
First, in terms of user process time, the mean time for had-
olint was 0.019 ± 0.007 s, for scan was 0.254 ± 0.052 s
and for SecDocker was 0.034 ± 0.009 . Similarly, their total
time for executing 100 iterations of each tool was 1.940 s

Table 3   Statistics related to the performance of the time taken to run hadolint, scan and SecDocker100 times

User process time (secs)

Hadolint Scan SecDocker

Mean 0.019 0.254 0.034
Median 0.020 0.255 0.030
Mode 0.020 0.270 0.030
Std. deviation 0.007 0.052 0.009
Minimum 0.000 0.130 0.010
Maximum 0.030 0.370 0.050
Sum 1.940 25.380 3.420
First quartile 0.020 0.210 0.030
Third quartile 0.020 0.290 0.040

System process time (secs)

Hadolint Scan SecDocker

Mean 0.010 0.059 0.023
Median 0.010 0.060 0.020
Mode 0.010 0.060 0.020
Std. deviation 0.007 0.015 0.009
Minimum 0.000 0.030 0.010
Maximum 0.030 0.120 0.040
Sum 1.020 5.940 2.280
First quartile 0.010 0.050 0.020
Third quartile 0.010 0.070 0.030

Time elapsed (secs)

Hadolint Scan SecDocker

Mean 1.145 4.165 0.485
Median 1.040 4.000 0.490
Mode 1.030 3.940 0.490
Std. Deviation 0.235 0.937 0.027
Minimum 0.870 3.740 0.410
Maximum 1.930 13.170 0.560
Sum 114.540 416.490 48.500
First quartile 0.970 3.930 0.470
Third quartile 1.290 4.190 0.500

Table 4   Statistics related to CPU percentage usage from executing
100 iterations of hadolint, scan and SecDocker 

CPU (%)

Hadolint Scan SecDocker

Mean 2.970 7.370 13.110
Median 3.000 7.000 13.000
Mode 3.000 8.000 13.000
Std. deviation 0.758 1.468 0.952
Minimum 1.000 2.000 11.000
Maximum 5.000 10.000 16.000
First quartile 2.000 6.750 13.000
Third quartile 3.000 8.000 14.000

SN Computer Science (2022) 3:80	 Page 11 of 13  80

SN Computer Science

for hadolint, 25.380 s for scan and 3.420 s for SecDocker.
Their interquartile ranges are 0 s, 0.080 s and 0.010 s,
respectively. These data suggest that scan is the tool which
takes the longest time to execute, followed by SecDocker
and then hadolint.

Second, with regard to system process time, the mean
time for hadolint was 0.010 ± 0.007 s, for scan was
0.059 ± 0.015 s and for SecDocker was 0.023 ± 0.009 .
Likewise, the total times for running each tool were 1.020 s
(hadolint), 5.940 s (scan) and 2.280 s (SecDocker). Their
interquartile ranges are 0 s, 0.020 s and 0.010 s, respectively.
That said, the data suggest once more that scan is the tool
which takes the longest time to execute, followed by Sec-
Docker and then hadolint.

Lastly, for the time elapsed, the mean times were:
1.145 ± 0.235 s for hadolint, 4.165 ± 0.937 s for scan and
0.485 ± 0.027 s for SecDocker. Also, the sum of time for
hadolint was 114.540 s, for scan 416.490 s and for Sec-
Docker 48.500 s; with interquartile ranges of 0.32 s, 0.26
s and 0.03 s, respectively. In view of the results obtained,
SecDocker is the fastest tool followed by hadolint and then
scan.

Continuing with the analysis, Table 4 shows the CPU
percentage usage from executing the aforementioned tools.
The mean percentages were 2.970 ± 0.758 % for hadolint,
7.370 ± 1.468 % for Docker scan and 13.110 ± 0.952 % for
SecDocker. Furthermore, their interquartile ranges were
1%, 1.25% and 1%, respectively. These results show that
all tools have a low impact on the CPU, with SecDocker
being the most “demanding” (its median is 13% versus the
3% from hadolint and the 8% from scan). However, this is
due to being an application that runs in real time to filter all
Docker’s traffic.

Discussion

SecDocker is a tool meant to be used for a wide variety
of members from CI and DevOps communities. Thus, this
section explains what this paper has presented from two dif-
ferent points of view: research and software.

Research Perspective

This work makes the assumption that the RQ proposed in
sect. “Research Question and Contribution” (see below) is
appropriate, meaningful, and purposeful when facing cyber-
security issues during the CI workflow.

RQ:	 Which are the mechanisms for avoiding and mini-
mizing cybersecurity and misconfiguration issues in a
CI container-based deployment system?

As discussed in sect. “Attacker Scheme”, four points are
vulnerable to attacks during the container CI workflow: (1)
when building a container image according to some specifi-
cations; (2) when verifying the authentication of the image
just build; (3) when storing the image in a registry or reposi-
tory; and (4) when deploying the image into some environ-
ment. SecDocker is a tool meant to secure the latter point
by acting as an application firewall in order to prevent users
from dangerous or unexpected actions. However, its design
also allows to indirectly securitise other vulnerable points of
the CI workflow. Thanks to its design, not only SecDocker’s
functionality can be easily expanded with external tools like
Anchore and Notary, but it also can complement Docker’s
security at the same time as tools like hadolint or Docker
scan without impacting their performance.

Moreover, previous sections mentioned some of the com-
mon strategies used to solve CI issues associated to this RQ,
mainly focused on the Image Generator step. Hence, it is
possible to present a subset of scenarios for identifying Sec-
Docker validity. Some of the answers extracted from this
work are:

–	 Even though is commonly accepted that the CI workflow
relies on DevOps engineers experience, it is necessary to
avoid unaware behaviors using a transparent and auto-
mated mechanism such as SecDocker.

–	 SecDocker, which works as an application firewall, has
no impact compared with regular Docker use.

–	 Using a deployment engine based on YAML configu-
ration files minimizes unaware deployments, simplifies
repetitively tasks and makes more comprehensible auto-
mated monitoring process.

–	 SecDocker allows to track and audit all commands sent
to Docker. Its logging capabilities could be used as a
tracking system having in mind the timestamp.

These points summarize the goal of the work presented and,
at the same time, provide a concise and clear way to answer
the RQ posed.

Software Perspective

SecDocker offers many potential benefits regarding the CI
process. Some of these are:

–	 Publicly available. It is an open source tool released
under the MIT license. The tool is presented in a way that
makes deployment easier for the DevOps community. It
is written in Go, a popular programming language, and
offers a middleware solution for Docker, a mainstream
containerization solution.

–	 Flexibility, scalability and security. It should be notice-
able from DevOps and CI engineers that the current

	 SN Computer Science (2022) 3:8080  Page 12 of 13

SN Computer Science

release of SecDocker brings simplicity to CI and CD
processes. Likewise, relying on different configuration
files, makes easier to define all the requirements needed
for an infrastructure and thus prevent misconfiguration
issues related to last minute fixes, to reduce performance
issues associated with lack of hardware resources or even
software incompatibilities between versions.

–	 Installation costs. The process of downloading, compil-
ing and deploying is performed with exactly three com-
mands, as indicated in the documentation available in the
GitHub repository.

–	 Assurance. SecDocker users do not need to consider the
trade-off between speed and certainty. Results presented
in Sect. “Performance Testing” show similar perfor-
mance and negligible differences when using Docker
with or without SecDocker.

However, SecDocker also has certain shortcomings,
including:

–	 The solution is only applicable to the deployment part
of a CI/CD workflow; it does not cover previous steps.
However, SecDocker architecture favors the use of
plugins (like Anchore and Notary) in order to support
such features.

–	 SecDocker works as an application proxy. Each time a
client makes a Docker request, SecDocker only intercepts
it and checks its IP and port (which need to be the ones
associated to Docker). Currently, SecDocker does not
route these packages, which, on the other hand, would
add a new level of security allowing to hide connection
elements to the user.

–	 The image provided in SecDocker’s configuration file is
not validated. More precisely, SecDocker does not check
if the image provided by the Docker server is legit.

–	 Unusual launch parameters (like those related to DNS or
Input/Output) are also not checked by SecDocker.

–	 Once a container is running, SecDocker does not per-
form additional actions to test whether such container
is executing under the defined specifications or is being
used for the intended purpose.

Conclusion

In conclusion, it is important to harden CI workflow. We
knew from previous experiences that corporations refuse
to deploy new tools given the cost associated (training,
deployment, etc). Thus, the idea of providing a firewall app
that allows maintaining the current workflow was a key for
designing SecDocker.

It is critical for every DevOps engineer to secure as
much as possible their containers platforms. By developing

SecDocker, we have learned the possible threats of a CI sys-
tem running containers, in particular the mainstream tool
Docker. Performing a close analysis of the user input hard-
ens the systems to minimize the possible attack surface and
the capabilities the users can access to.

Acknowledgements  This work has been partially funded by the “Uni-
versidad de León-Instituto Nacional de Ciberseguridad (INCIBE)
Convention Framework about Detection of new threats and unknown
patterns” (Spain).

Funding  Open Access funding provided thanks to the CRUE-CSIC
agreement with Springer Nature.

Declarations 

Conflict of interest  The authors declare that they have no conflict of
interest.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

	 1.	 Bass L, Holz R, Rimba P, Tran AB, Zhu L. Securing a deploy-
ment pipeline. In: 2015 IEEE/ACM 3rd International workshop
on release engineering; 2015, pp. 4–7 https://​doi.​org/​10.​1109/​
RELENG.​2015.​11.

	 2.	 Berkovich S, Kam J, Wurster G. UBCIS: Ultimate benchmark for
container image scanning. In: 13th USENIX Workshop on Cyber
Security Experimentation and Test (CSET 20). USENIX Associa-
tion (2020). https://​www.​usenix.​org/​confe​rence/​cset20/​prese​ntati​
on/​berko​vich. Available online March, 2021.

	 3.	 Bernstein D. Containers and cloud: from LXC to docker to kuber-
netes. IEEE Cloud Comput. 2014;1(3):81–4. https://​doi.​org/​10.​
1109/​MCC.​2014.​51.

	 4.	 Boettiger C. An introduction to docker for reproducible research.
ACM SIGOPS Oper Syst Rev. 2015;49(1):71–9. https://​doi.​org/​
10.​1145/​27238​72.​27238​82.

	 5.	 Bou Ghantous G, Gill A. Devops: concepts, practices, tools,
benefits and challenges. In: Proceedings of the 21st Pacific-Asia
conference on information systems (PACIS2017). AIS Electronic
Library (AISeL) 2017

	 6.	 Chelladhurai J, Chelliah PR, Kumar SA. Securing Docker contain-
ers from Denial of Service (DoS) attacks. In: 2016 IEEE Interna-
tional Conference on Services Computing (SCC), pp. 856–859.
IEEE 2016. https://​doi.​org/​10.​1109/​SCC.​2016.​123.

	 7.	 Combe T, Martin A, Di Pietro R. To docker or not to docker:
a security perspective. IEEE Cloud Comput. 2016;3(5):54–62.
https://​doi.​org/​10.​1109/​MCC.​2016.​100.

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/RELENG.2015.11
https://doi.org/10.1109/RELENG.2015.11
https://www.usenix.org/conference/cset20/presentation/berkovich
https://www.usenix.org/conference/cset20/presentation/berkovich
https://doi.org/10.1109/MCC.2014.51
https://doi.org/10.1109/MCC.2014.51
https://doi.org/10.1145/2723872.2723882
https://doi.org/10.1145/2723872.2723882
https://doi.org/10.1109/SCC.2016.123
https://doi.org/10.1109/MCC.2016.100

SN Computer Science (2022) 3:80	 Page 13 of 13  80

SN Computer Science

	 8.	 Fitzgerald B, Stol KJ. Continuous software engineering: a road-
map and agenda. J Syst Softw. 2017;123:176–89. https://​doi.​org/​
10.​1016/j.​jss.​2015.​06.​063.

	 9.	 Goyal P. CIS docker community edition benchmark. PDF. https://​
www.​cisec​urity.​org/​bench​mark/​docker. Available online March,
2021.

	10.	 Hilton M, Nelson N, Tunnell T, Marinov D, Dig D. Trade-offs
in continuous integration: assurance, security, and flexibility. In:
Proceedings of the 2017 11th Joint Meeting on Foundations of
Software Engineering, 2017;197–207 https://​doi.​org/​10.​1145/​
31062​37.​31062​70.

	11.	 Humble J, Farley D. Continuous delivery: reliable software
releases through build, test, and deployment automation. London:
Pearson Education; 2010.

	12.	 Jabbari R, bin Ali N, Petersen K, Tanveer B. What is DevOps? a
systematic mapping study on definitions and practices. In: Pro-
ceedings of the Scientific Workshop Proceedings of XP2016,
2016;1–11 https://​doi.​org/​10.​1145/​29626​95.​29627​07.

	13.	 Kang H, Le M, Tao S. Container and microservice driven design
for cloud infrastructure DevOps. In: 2016 IEEE International Con-
ference on Cloud Engineering (IC2E), pp. 202–211. IEEE 2016.
https://​doi.​org/​10.​1109/​IC2E.​2016.​26.

	14.	 Krueger T, Gehl C, Rieck K, Laskov P. Tokdoc: A self-healing
web application firewall. In: Proceedings of the 2010 ACM sym-
posium on applied computing, SAC ’10, p. 1846–1853. Associa-
tion for computing machinery, New York, NY, USA 2010. https://​
doi.​org/​10.​1145/​17740​88.​17744​80.

	15.	 Lam T, Chaillan N, Ranks P. DoD enterprise DevSecOps refer-
ence design version 1.0. Tech. rep., Department of Defense, Chief
information officer (2019). https://​dodcio.​defen​se.​gov/​Porta​ls/0/​
Docum​ents/​DoDEn​terpr​ise DevSe​cOps Refer​ence Desig​n v1.0_​
Publi​c Relea​se.​pdf. Accessed Mar 2021

	16.	 Leite L, Rocha C, Kon F, Milojicic D, Meirelles P. A survey
of devops concepts and challenges. ACM Comput Surv. 2019.
https://​doi.​org/​10.​1145/​33599​81.

	17.	 MacDonald N, Head I. DevSecOps: how to seamlessly integrate
security into DevOps. Tech rep Gartner Tech Rep 2016

	18.	 Martin A, Raponi S, Combe TRD. Docker ecosystem-vulnerabil-
ity analysis. Comput Commun. 2018;122:30–43. https://​doi.​org/​
10.​1016/j.​comcom.​2018.​03.​011.

	19.	 Merkel D. Docker: lightweight linux containers for consistent
development and deployment. Linux J. 2014;2014(239):2.

	20.	 Pahl C. Containerization and the PaaS cloud. IEEE Cloud Com-
put. 2015;2(3):24–31. https://​doi.​org/​10.​1109/​MCC.​2015.​51.

	21.	 Prandl S, Lazarescu M, Pham DS. A study of web application
firewall solutions. In: Jajoda S, Mazumdar C, editors. Information
systems security. Cham: Springer; 2015. p. 501–10.

	22.	 Shahin M, Babar MA, Zhu L. Continuous integration, delivery
and deployment: a systematic review on approaches, tools, chal-
lenges and practices. IEEE Access. 2017;5:3909–43. https://​doi.​
org/​10.​1109/​ACCESS.​2017.​26856​29.

	23.	 Smeds J, Nybom K, Porres I. DevOps: A definition and perceived
adoption impediments. In: International conference on agile soft-
ware development. Springer; 2015. pp 166–177 https://​doi.​org/​
10.​1007/​978-3-​319-​18612-2_​14.

	24.	 Souppaya M, Morello J, Scarfone K. Application container secu-
rity guide. National Institute of Standards and Technology: Tech
Rep; 2017.

	25.	 Tesfatsion SK, Klein C, Tordsson J. Virtualization techniques
compared: performance, resource, and power usage overheads
in clouds. In: Proceedings of the 2018 ACM/SPEC international
conference on performance engineering; 2018. pp. 145–156

	26.	 Turnbull J. The Docker book: containerization is the new virtual-
ization. James Turnbull 2014

	27.	 Vase T. Integrating Docker to a Continuous Delivery pipeline:
a pragmatic approach. Master’s thesis, University of Jyväskylän
(2016). https://​jyx.​jyu.​fi/​handle/​12345​6789/​52756. Accessed Mar
2021

Publisher's Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1016/j.jss.2015.06.063
https://doi.org/10.1016/j.jss.2015.06.063
https://www.cisecurity.org/benchmark/docker
https://www.cisecurity.org/benchmark/docker
https://doi.org/10.1145/3106237.3106270
https://doi.org/10.1145/3106237.3106270
https://doi.org/10.1145/2962695.2962707
https://doi.org/10.1109/IC2E.2016.26
https://doi.org/10.1145/1774088.1774480
https://doi.org/10.1145/1774088.1774480
https://dodcio.defense.gov/Portals/0/Documents/DoDEnterprise%20DevSecOps%20Reference%20Design%20v1.0_Public%20Release.pdf
https://dodcio.defense.gov/Portals/0/Documents/DoDEnterprise%20DevSecOps%20Reference%20Design%20v1.0_Public%20Release.pdf
https://dodcio.defense.gov/Portals/0/Documents/DoDEnterprise%20DevSecOps%20Reference%20Design%20v1.0_Public%20Release.pdf
https://doi.org/10.1145/3359981
https://doi.org/10.1016/j.comcom.2018.03.011
https://doi.org/10.1016/j.comcom.2018.03.011
https://doi.org/10.1109/MCC.2015.51
https://doi.org/10.1109/ACCESS.2017.2685629
https://doi.org/10.1109/ACCESS.2017.2685629
https://doi.org/10.1007/978-3-319-18612-2_14
https://doi.org/10.1007/978-3-319-18612-2_14
https://jyx.jyu.fi/handle/123456789/52756

	SecDocker: Hardening the Continuous Integration Workflow
	Abstract
	Introduction
	Research Question and Contribution

	Background
	Container Layer in CI
	DevOps Engineers Scheme
	Attacker Scheme

	Proposed Solution
	Software architecture
	Usage

	Empirical Validation
	Software Implementation
	Experiment Description
	Performance Testing
	Functional Testing
	SecDocker in the CI Flow

	Discussion
	Research Perspective
	Software Perspective

	Conclusion
	Acknowledgements
	References

