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Abstract
Current Continuous Integration (CI) processes face significant intrinsic cybersecurity challenges. The idea is not only to 
solve and test formal or regulatory security requirements of source code but also to adhere to the same principles to the CI 
pipeline itself. This paper presents an overview of current security issues in CI workflow. It designs, develops, and deploys 
a new tool for the secure deployment of a container-based CI pipeline flow without slowing down release cycles. The tool, 
called SecDocker for its Docker-based approach, is publicly available in GitHub. It implements a transparent application 
firewall based on a configuration mechanism avoiding issues in the CI workflow associated with intended or unintended 
container configurations. Integrated with other DevOps Engineers tools, it provides feedback from only those scenarios that 
match specific patterns, addressing future container security issues.
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Introduction

There are plenty of tools to analyze and secure the creation 
of container images. Besides that, several organizations have 
developed guidelines to assist developers in the creation of 
such images with a certain degree of security. For instance, 
focusing on Docker [18], it is possible to find the Docker 
Benchmark tool released by the Center for Internet Security 
(CIS) [9] or the Ultimate Benchmark for Container Image 
Scanning (UBCIS) [2]; both containing guides that analyze 
every single dangerous step involved during the image-
building process.

However, there are different local exploitation issues 
associated to the continuous integration (CI) workflow 
that needs to be secured. The problem here is that some 

containerization solutions  (like Docker)  have different 
exploits that allow an attacker to override some of the image 
specifications; which is done by providing new ones at the 
very moment the container is created. Furthermore, open-
ing ports are always a security risk if it is controlled by a 
low level user in the system (like a developer in a DevOps 
server).

Thus, this study focuses on developing a tool called Sec-
Docker that enhances the cybersecurity pipeline when inte-
grating containerization in the CI workflow [27]. SecDocker 
is a wrapper, specifically an application firewall for Docker, 
that allows system administrators to block the capabilities 
offered by Docker in the run command. By doing so, any 
dangerous actions performed during the creation or execu-
tion of a container, such as deploy container images with 
malicious code, download malicious payload at runtime 
within the container of the host, or get sensitive information 
from the Docker log (to name a few), can be blocked before 
they even get executed.

But CI environments are, by definition, completely auto-
mated, which suggests a security approach that can deal with 
the underlying workflow. This creates a need for security 
administrators to apply tools that perform security checks 
at the processes that shape the CI. SecDocker adds a layer 
of security to CI environments, allowing the complete use 

This article is part of the topical collection “New Paradigms of 
Software Production and Deployment” guest edited by Alfredo 
Capozucca, Jean-Michel Bruel, Manuel Mazzara and Bertrand 
Meyer.

 *	 David Fernández González 
	 dferng@unileon.es

1	 University of León, Campus de Vegazana, 24071 León, 
Spain

http://orcid.org/0000-0002-8400-7079
http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-021-00939-4&domain=pdf


	 SN Computer Science (2022) 3:8080  Page 2 of 13

SN Computer Science

of Docker to developers and users, regardless of whether 
they use the system correctly. Right now, a CI user could 
potentially create security threats if they use the platform 
incorrectly. SecDocker aims to solve such cases by simply 
removing the possibility of creating them from the users. It 
controls every request performed by the CI to the container 
platform, providing a secure use for Docker pipelines.

Below, the research question and main contribution are 
presented. The remainder of the paper presents the elements 
for answering the Research Question. Section “Background” 
overviews the state of the art in containerization and con-
tinuous integration workflow. Section “Container Layer in 
CI” presents the developer’s and attacker’s schemes to the 
containerized CI layer. Section “Proposed Solution” pre-
sents SecDocker tool: its design, architecture and usage. 
Section “Empirical Validation” validates with the results 
of SecDocker from two different experiments carried out 
in this research measuring performance and the operational 
flow. Section “Discussion” discusses enumerating pros and 
cons of SecDocker and finally sect. “Conclusion” provides 
conclusions about the processes and solutions presented in 
this paper.

Research Question and Contribution

CI is a cornerstone methodology that automatically 
addresses several processes previously faced by software 
developers. However, the CI workflow also needs to meet 
the security mechanisms that will guarantee flexibility, pro-
ductivity, and efficiency during the Software Development 
Life Cycle. Thus, this paper aims to frame a set of elements 
that are addressed within the next Research Question (RQ): 
RQ: Which are the mechanisms for avoiding and minimizing 
cybersecurity and misconfiguration issues in a CI container-
based deployment system?

This RQ scales to a new level when the containerization 
tool is Docker. Most parts of current automation servers and 
processes are supported on Docker containers. However, its 
engine shows critical points that can lead to a crashed CI 
pipeline due to malicious users or unaware DevOps engi-
neers. Working with an erroneous configuration would 
promote a bad system behavior, with the manpower and 
economical costs associated. There are three main phases 
when using Docker containers in the CI workflow: (1) issues 
associated with image retriever; (2) issues associated with 
image builder; and (3) issues generated when the image is 
deployed.

This study presents an overview to the latter step, as well 
as the design and development of a tool called SecDocker 
for minimizing issues associated with container deployment. 
Besides, the tool introduces expansion capabilities for solv-
ing the first and second steps using plugins.

Background

CI is one of many software development practices aimed 
at helping organizations to accelerate their development 
and delivery of software features without compromising 
quality [11]. According to Fitzgerald and Stol [8], it can 
be defined as “a process which is typically automatically 
triggered and comprises inter-connected steps such as com-
piling code, running unit and acceptance tests, validating 
code coverage, checking compliance with coding standards 
and building deployment packages”. For Shahin et al. [22], 
alongside Continuous Delivery or CDE (ensure the package 
is always at a production-ready state after tests) and Con-
tinuous Deployment or CD (deploy the package to produc-
tion or customer environments), CI is considered part of the 
continuous software engineering paradigm which includes 
the popular term “DevOps” [8].

DevOps is a mix of the words Development and Opera-
tions and, although there is no common definition for it, 
some literature reviews exist to date that addresses this 
point [5, 12, 23]. For instance, Jabbari et al. [12] define 
it as “a development methodology aimed at bridging the 
gap between Development (Dev) and Operations (Ops), 
emphasizing communication and collaboration, continuous 
integration, quality assurance and delivery with automated 
deployment utilizing a set of development practices”. To 
enable such concepts or practices, and thus aid developers 
in materializing them, DevOps relies on using a range of 
tools [5, 16], from source code management to monitoring 
and logging, as well as configuration management. Together, 
these tools allow the creation of a pipeline that automates the 
processes of compiling, building and deploying the source 
code into a production platform [11].

But as a relative young methodology, integrating and 
maintaining these tools or managing the infrastructure in 
which they run automatically may pose a challenge [22]; 
especially for CI and CD. As Leite et al. discuss in their liter-
ature review [16], concepts like “infrastructure as code”, vir-
tualization, containerization or cloud services are solutions 
currently known to be used for these types of issues. Among 
all of them, containerization is perhaps the most popular 
solution in DevOps environments at the moment. With a 
platform as a service focus, it is used for delivering software 
in a portable and streamlining way by providing a platform 
that allows developing, running and managing applications 
without worrying about the infrastructure needed [20].

Technically speaking, containerization is a type of 
lightweight OS-level virtualization technology that allows 
running multiple isolated systems (in terms of processes, 
resources, network, etc) while sharing the same host OS. 
Such systems or containers, hold packaged, self-contained 
applications and, if necessary, binaries and libraries required 
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to run them [3]. Moreover, they have been around for some 
time in various forms: from chroot, FreeBSD jails or Solaris 
zones to Linux-based solutions relying on kernel support 
like LXC or OpenVZ [3, 7, 20, 26]. But over time, con-
tainerization has become a major trend thanks to tools like 
Docker [16, 19].

Docker is an open-source platform that facilitates the 
management of containers using a client-server architecture 
through a CLI tool, a daemon and a REST API [19, 26]. It 
relies on the concept of images to build containers, that is, a 
specification of the collection of layered file systems, their 
corresponding execution environment and some metadata; 
making them portable, shareable and also updatable [20]. 
Regarding their usage, Docker containers can be used either 
as a microservice (to host a single service), as a way of ship-
ping complete virtual environments (to reproduce and auto-
mate the deployment of applications) or even as a platform 
as a service (to cope with security and infrastructure integra-
tion issues) [7, 18].

From a security perspective, Docker provides different 
levels of isolation, host hardening capabilities and some 
countermeasures related to network operations [6, 7, 18]. 
Nevertheless, it is not exempt from security threats nor vul-
nerabilities, such as ARP spoofing, DoS attacks, privilege 
escalation, etc. This is due to the nature of containeriza-
tion itself because an attack on the host OS may expose 
all containers and their network traffic. To address these 
cybersecurity risks, it is necessary to take similar actions to 
DevOps; especially where pipeline automation is a require-
ment (as in CI or CD). Such actions can be understood as 
best practices or recommendations that aim to establish a 
Secure Software Development Life Cycle. Examples of this 
can be found in reports like DevSecOps: How to Seamlessly 
Integrate Security Into DevOps  [17] or DoD Enterprise 
DevSecOps Reference Design [15], where container hard-
ening is contemplated.

Container Layer in CI

Containers are used in CI processes to isolate and automate 
the creation of an application into one single self-contained 
virtual environment. This solution simplifies DevOps man-
power, as it allows to split a large application development 
project into several smaller work units. Having said that, this 
section describes the role of CI from the point of view of two 
actors (DevOps engineers and attackers) and also presents 
the scenarios likely to be vulnerable.

DevOps Engineers Scheme

From a developers perspective, CI is used to guaran-
tee the quality, consistency and viability across different 

environments [10]. But as CI systems are vulnerable to secu-
rity attacks and misconfigurations [22], DevOps engineers 
frequently rely on containers to create such environments 
as they provide isolation without much effort to them. Gen-
erally, this has been achieved by technologies like Docker 
which allow them to treat infrastructures as code [13].

Regarding CI, Docker has ease DevOps engineers in the 
replication of environments for building automation pipe-
lines. Particularly, as Boettinger et al. point in their work [4], 
it has solved common issues encountered by end-users like 
managing dependencies (through images), imprecise docu-
mentation (through scripts to build up such images) or code-
rot (with image versioning), along with the adoption and 
re-use of existing workflows (thanks to features like port-
ability, easy integration into local environments or public 
repositories for sharing and reusing those images).

But despite the benefits that Docker or other containeri-
zation technologies may offer to DevOps engineers in CI 
environments, the latter still face challenges related to its 
adoption; particularly associated with introducing any new 
technologies or phenomena in a given organization [10, 
22]. According to Shahin et al. [22], literature shows that, 
among the common practices for implementing CI work-
flows, DevOps engineers need to decompose development 
into smaller units and also plan and document the activities 
that comprise the automation pipeline. Having said that, it 
must be noted that there are many ways of approaching the 
design of such pipelines. But taking into account the use 
of containers and based on Bass et al. approach [1], any CI 
workflow must include the following 6 components in such 
design plan: 

1.	 Automation server. Implements the CI/CD pipeline and 
creates a local workspace in which its steps take place.

2.	 Orchestrator. Sequentially triggers each step of the pipe-
line by communicating with the remaining components. 
It should be noted that, when using containers, steps 
may require images to perform their actions. Thus, the 
same image can be used through the whole pipeline or 
in specific steps.

3.	 Code retriever. Pulls source code from repository to 
local workspace.

4.	 Unit tester. Runs automated unit tests on source code.
5.	 Artifact builder. Builds deployable artifacts from source 

code.
6.	 Image generator. Builds, verifies, stores and deploys an 

image to be used within the pipeline.

With this in mind and despite using containers, any standard 
CI workflow that establishes and defines this components 
will lower security and increase its functionality risks. To 
avoid this, different automated continuous tests could be 
applied to the whole process. However, and particularly for 
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item 6, some of the tools go toward a specific commercial 
solution. As a result, there is a need to develop a tool like 
SecDocker.

Attacker Scheme

As mentioned in sect. “Background”, containers are the 
target of different security threats or vulnerabilities. There-
fore, a containerized environment—like those created with 
Docker—may have different potential attack vectors [18]: 
host OS, network or physical systems, source code reposi-
tories, image repositories or the very own containers. Secur-
ing these vectors is not a trivial task, but the contributions 
presented in this paper are framed towards the integrity of 
container images used by CI (or CD) pipelines.

In such cases, images are frequently used to ship a com-
plete virtual environment where concrete actions from the CI 
workflow take place (e.g. build, test, run or deploy an appli-
cation). Such workflow is scripted and usually automated by 
triggering a webhook from some version control system. But 
this approach makes pipelines unreliable so, to contribute 
to its hardening, the image generator component from the 
CI process (see the previous subsection) is an element that 

needs to be hardened somehow. Regarding this process and 
based on Bass et al. approach [1], it is possible to distinguish 
four components involved in it (see Fig. 1): 

1.	 Builder. Builds a container image according to some 
specifications. This image comprises the virtual environ-
ment or workspace where some or all workflow actions 
will take place.

2.	 Verifier. Computes a checksum to verify the authentica-
tion of the image was just built.

3.	 Archiver. Stores the image in a registry or repository so 
it can be retrieved later.

4.	 Deployer. Deploys the image into a testing or produc-
tion environment in order to execute the CI workflow or 
some of its scripted actions.

This study considers the last component to be one of the 
most important. The reason is that a correct configuration 
will minimize the impact of an issue in the previous three 
components. A container with no root or bounded CPU will 
guarantee minimal resource exploitation to the host machine. 
Thus, a runtime check for the detection of common secu-
rity and configuration weaknesses against a compliance 
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Fig. 1   Attacker scheme: Vulnerability points during container deployment
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configuration pattern defined by DevOps engineers seems 
to meet the requirements for production environments.

Proposed Solution

SecDocker is an application firewall for Docker. It must be 
noted that, nowadays, such firewalls are frequently used to 
control the traffic of web applications [21]; for instance, as a 
reverse HTTP proxy that decides whether a token requires to 
replace any suspicious parts found in requests [14]. Bearing 
this in mind, SecDocker shares the same purpose as any web 
application firewall: prevent users from performing danger-
ous or unexpected actions on the application.

Docker is commonly used in a local environment when 
configured and managed by end users. But for those Docker 
platforms set up in a system different from the one where 
commands are executed, network traffic is a topic to be dis-
cussed. In this context, it is important to highlight that the 
Docker CLI sends an HTTP request to the Docker daemon 
and the latter processes it and answers with the correspond-
ing results.

Therefore and, broadly speaking, SecDocker filters TCP 
traffic and works by monitoring the Docker commands. Its 
main goal is to evaluate all the requests meant for the Docker 
daemon by standing between it and the user (see Fig. 2). 
This workflow can be described in four steps: 

1.	 Send Docker command. The workflow starts when the 
end user sends a new HTTP request through a Docker 
command. As the CLI is configured to send commands 

to a Docker daemon located in a different system, the 
CLI just crafts the HTTP request and sends it to the 
daemon.

2.	 Inspect Docker command.  Whenever a new HTTP 
request aiming for the run API endpoint reaches the 
firewall, the IP packet is intercepted, opened and the 
request parameters from the Docker command (i.e. ports 
request, user, image name, etc) are loaded from its data 
section. If IP packets are encrypted the same actions 
are applied, but in this case, SecDocker needs to be 
configured with the same TLS/SSL certificates used by 
the Docker daemon in order to be able to decrypt and 
inspect their content; otherwise, the IP packet will not 
even be intercepted by SecDocker as its contents can-
not be read. Finally, if the request contains a command 
different than run, it simply forwards it to the Docker 
daemon.

3.	 Check packet against security profile. After the inspec-
tion, the request parameters are checked against a 
security profile (previously configured by the DevOps 
engineer) in order to prevent unauthorized actions com-
ing from the container itself. This profile is part of a 
configuration file and contains a set of constraints for 
the parameters of the Docker command; for instance, 
the list of banned ports, forbidden mounted volumes or 
restricted container images. If at least one of the param-
eters in the packet contains a value present within the 
security profile, the packet is considered as "not valid". 
Hence, it is discarded and a new one is created and sent 
back as a response to the end user, notifying him about 
the use of a forbidden option.

SecDocker

Client
 

Inspect Docker
command

Check packet
against security

profile

Yes

No

Is it 
valid?

Apply restrictions to
Docker command

Security
profile

Discard packet

General
restrictions

Send response

IP packet

Send Docker
command

Config 

Docker

Fig. 2   SecDocker general workflow
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4.	 Apply restrictions to Docker command. If the packet is 
valid (i.e. no matches were found in the security pro-
file during the packet verification), SecDocker is able 
to append or modify the requested parameters to suit 
some general purpose restrictions for creating or run-
ning any container from the server hosting the Docker 
daemon. These restrictions (also previously specified by 
the DevOps engineer as part of the same configuration 
file containing the security profile), are meant to limit 
all containers with settings such as: memory or CPU 
usage limit, users forbidden to run containers or envi-
ronment variables meant to omit. Having a single con-
figuration file allows SecDocker to define an additional 
security layer in the server, ensuring that all containers 
run under the same settings. Once the restrictions have 
been applied, the packet is recreated and sent back to the 
Docker daemon to finally perform the requested action.

In addition, it should be noted that since SecDocker runs 
in parallel to Docker, this workflow is pseudo-transparent 
in terms of performance to commands other than run. This 
ensures that the tool acts as a web application firewall and 
only filters traffic from processes in isolated containers.

Software architecture

SecDocker is written in Go and is publicly available in 
GitHub.1 It features a modular and extensible design com-
posed of 5 components at its core: 

1.	 Security. Performs validation against the user-supplied 
options.

2.	 Config. Loads user’s information into the firewall in real-
time.

3.	 Docker. Performs tasks related to how Docker processes 
information.

4.	 HTTPServer. Manages and performs actions against 
HTTP data (e.g. loading the body of the requests, craft-
ing new requests/responses, etc.).

5.	 TCPIntercept. Handles packages at the TCP level, so 
the communication looks transparent for the end-user. 
It also maintains the communications and gathers data 
for the HTTPServer module. Additionally, it must be 
noted that this module is based on Trudy,2 a transparent 
proxy that can modify and drop TCP traffic.

Its functionality can also be expanded by third-party appli-
cations thanks to a dedicated component named Plugins. 

For its basic workflow, SecDocker delegates some extra 
functionality to two plugins:

–	 Anchore.3 Inspects, analyzes and applies user-defined 
acceptance policies.

–	 Notary.4 Ensures the integrity of a trusted collection of 
Docker images.

Likewise, an accountability component based on logs is also 
included with SecDocker. This logging component relies on 
Logrus,5 an external logger package for Go that provides 
structured logs.

Usage

As mentioned at the beginning of this section, SecDocker 
workflow involves routing TCP packages in a similar way to 
a firewall. In a nutshell, it listens to all incoming TCP traffic 
and only monitors those packets involving HTTP data and 
which body contains requests to the Docker Engine API (e.g. 
list containers, create containers, start a container, etc). Con-
sequently, it should be placed in top of the server responsible 
for handling requests to Docker. This is done either to main-
tain the original destination port of the Docker daemon or 
to perform some alteration to redirect the traffic to the right 
port by applying some firewall rules so the traffic can be 
intercepted by SecDocker.

Once installed, a configuration file written in YAML 
is used to filter the HTTP data (see Listing 1). This file 
contains a list of plugins to be enabled, the location of the 
Docker daemon and a security profile. With regard to the 
latter, an aggregation of rules must be specified. These rules 
define a set of parameters that allow DevOps engineers to 
set up some security features related to the Docker image 
and its execution. On the one hand, there are restrictions or 
rules that forbid the use of specific parameters; that is, if a 
packet contains one parameter listed there, the packet will 
be dropped. On the other hand, there are general rules that 
apply to all requests; for example, if we want to restrict the 
amount of RAM to 1GB per container, we can set a rule to 
force it (as in Listing 1).

1  https://​github.​com/​ulero​botic​sgroup/​Secdo​cker/.
2  https://​github.​com/​praet​orian-​inc/​trudy/.

3  https://​ancho​re.​com/.
4  https://​docs.​docker.​com/​notary/​getti​ng_​start​ed/.
5  https://​github.​com/​sirup​sen/​logrus/.

https://github.com/uleroboticsgroup/Secdocker/
https://github.com/praetorian-inc/trudy/
https://anchore.com/
https://docs.docker.com/notary/getting_started/
https://github.com/sirupsen/logrus/
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In addition, Table 1 collects a list of the current available 
parameters supported by SecDocker. The definition of these 
features (or parameters) resembles those from the official 
Docker Compose tool, meaning that a minimal understand-
ing of Docker parameters is required. With this in mind, 
writing a security profile like the one shown in Listing 1 
is relatively easy. Thus, any DevOps engineer may create 
one attending to company policies, NIST suggestions for 
resourcing allocation [24] or even for performance as sug-
gested by Tesfatsion, Klein and Scarfone [25].

Regarding its output, SecDocker starts to listen on port 
8999 and logs all packets and their related data to the 

Table 1   Configurable features supported by SecDocker 

Feature type Setting Description

Docker options Ports Port number(s) used by the container
Users Username(s) or uid(s) running the container
Mounts Mounted volume(s) (file or directory) from the host filesystem
Environment List of environment variables (KEY=VAL) used within the container
Security policies Adds or drops Linux capabilities
Images Name(s) of container image(s) to monitor
Privileged Whether the containers has granted capabilities in its host machine

General restrictions Memory Maximum amount of memory usage
CPU Number of CPU resources
User Username or uid (in host) allowed to run the container
Environment Environment variables of the container

p lug in s :

dockerapi : " / var / run / d o c k e r . s o c k "

r e s t r i c t i o n s :
port s :

− 22
− 25

mounts:
− / root
− /

user s :
− root

environment :
− USER=0

images :
− ubuntu: 1 6 . 0 4

p r i v i l e g e d : true

genera l :
memory: " 1 g "
cpu: 0 . 2 5
user : " 1 0 0 0 "
environment :

− " M Y _ E N V = t r u e "

Listing 1 Example of a SecDocker configuration file

standard output by default. A separated log file is also cre-
ated containing all the requests; whether they were allowed 
or not and why. Furthermore, any external plugins can have 
their logs to output their own results.

Empirical Validation

This section presents SecDocker software metrics and the 
results from three experiments that were conducted to assess 
its performance, its own workflow and also its role in the CI 
workflow.
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Software Implementation

SecDocker has 1834 lines of code (LOC) distributed among 
the different functions of four files: tcpintercept 
(tcpproxy.go), commandline (command.go) docker 
(security.go) and httpserver_test (server_test.go). 
Moreover, a set of software metrics is presented to provide 
some sort of assessment to the tool implemented in this 
study. These metrics can be used to define its maintainabil-
ity and code quality but also can give details about how 
easy is to debug, maintain or integrate new functionalities 
to it. They were measured against version v0.1-beta of the 
application and using SonarQube6 and Golint7 as code qual-
ity tools. Additionally, SecDocker has a total number of 35 
test cases—aggregated in 13 test functions that are grouped 
by table-driven tests—, defining an 87% of test coverage. 
Lastly, and regarding code quality, Golint detects 31 issues 
(28 related to naming and comments and 3 to coding struc-
tures) while SonarQube detects only 12 code smells and no 
bugs, vulnerabilities nor security hotspots.

Experiment Description

Two experiments were carried out to both measure SecDock-
er’s performance and check its functionality. The experi-
ments were conducted on two PCs connected to the same 
LAN. Both systems were configured using Elementary OS 
5.1.7 and had different specifications: one with an Intel(R) 
i5-3570 CPU @ 3.40 GHz and 16.0 GB memory, and the 
other with an AMD Ryzen 5 3500U CPU @ 3.60 GHz and 
8.0 GB memory. The first PC was used as a server for run-
ning Docker and SecDocker and the second as a client to 
connect to the latter and execute different Docker commands.

Performance Testing

The first experiment was carried out to evaluate SecDocker’s 
performance as timing behavior, that is, to run transparently 
from a running Docker server. The test consisted of run-
ning 100 times each of the following commands from the 
client’s PC:

It must be noted that the purpose of the first two commands 
was to test the command overhead for the third one; that is, 
to measure the processing time required by the system prior 
to executing the Docker run command. To measure these 
times, the standard Unix time tool was used. That said, 
Table 2 summarizes the experiment results after its execu-
tion without and with SecDocker.

On the one hand, the mean times for running the image 
ls and the container ls commands without SecDocker 
in the server PC were 0.134 ± 0.007 s and 0.044 ± 0.005 s, 
respectively, with an interquartile range for both commands 
of 0.01 s. Likewise, the mean times for running those same 
commands with SecDocker in the same server PC was 
0.163 ± 0.005 s and 0.066 ± 0.006 s, respectively, with an 
interquartile range of 0.01 s again for both commands. Due 
to the fact that the differences between the mean times are 
relatively low (0.029 s for image ls and 0.022 s for con-
tainer ls) and the interquartile range does not change, 
it is possible to assert that SecDocker’s overhead effect is 
negligible to commands other than run.

On the other hand, the mean time for running the run 
command when SecDocker was disabled in the server PC 
was 0.301 ± 0.013 s, with an interquartile range of 0.02 s. 
Meanwhile, the mean time when SecDocker was enabled in 
the same server was 0.479 ± 0.030 s, with an interquartile 

# ������ ����� ��

# ������ ��������� ��

# ������ ��� −� −� ���� ∶ ���� −−�� �
���� ∶ ��.��

Table 2   Statistics related to 
time taken to execute three 
different Docker commands 
(100 times each) when 
SecDocker is both enabled and 
disabled

Time elapsed (secs)

Without SecDocker With SecDocker

image ls container ls run image ls container ls run

Mean 0.134 0.044 0.301 0.163 0.066 0.479
Median 0.130 0.040 0.300 0.160 0.070 0.485
Mode 0.130 0.040 0.300 0.160 0.060 0.490
Std. deviation 0.007 0.005 0.013 0.005 0.006 0.030
Minimum 0.120 0.030 0.270 0.150 0.060 0.410
Maximum 0.160 0.060 0.350 0.180 0.080 0.560
First quartile 0.130 0.040 0.290 0.160 0.060 0.460
Third quartile 0.140 0.050 0.310 0.170 0.070 0.500
Sum 13.380 4.370 30.120 16.320 6.570 47.910

6  https://​www.​sonar​qube.​org/.
7  https://​github.​com/​golang/​lint/.

https://www.sonarqube.org/
https://github.com/golang/lint/
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range of 0.04 s. Since the differences are only 0.178 s 
between the mean times and 0.02 s between the interquartile 
ranges, it can be considered valid to state that, apparently, 
SecDocker runs transparently from Docker.

Functional Testing

The second experiment was carried out to test SecDocker 
functionality. This time, the goal was to send the following 
command from the client’s PC to perform a hypothetical 
privilege escalation attack:

To prevent this potential threat, the server PC used the same 
configuration file shown in Listing 1; which includes the 
privileged option set to true in order to drop commands 
like the one previously mentioned.

Figure 3 shows that running the proposed command for 
this test fails as expected. From SecDocker’s point of view, 
the command is processed as represented in the sequence 

# ������ ��� −−���������� ������ ∶ ��.�


diagram shown in Fig. 4. When the HTTP request derived 
from the command arrives at SecDocker, it extracts all 
parameters and checks them against the security configura-
tion loaded. In the test environment, the privileged option 
is met, so a response is sent to the user stating that it has a 
forbidden option.

SecDocker in the CI Flow

SecDocker is a standalone tool not meant to replace current 
state-of-the-art solutions. Instead, it is meant to run in paral-
lel with such tools. Hence, its impact in the CI ecosystem 
needs to be discussed and, for such task, this section com-
pares SecDocker to other tools, such as hadolint8 or Docker 
scan9.

To this end, an experiment that evaluates the system 
resources used by each of the above-mentioned tools was 

Fig. 3   SecDocker response 
when running the proposed 
Docker command

Fig. 4   Sequence diagram describing how SecDocker blocks a docker run command

8  https://​github.​com/​hadol​int/​hadol​int/.
9  https://​docs.​docker.​com/​engine/​scan/.

https://github.com/hadolint/hadolint/
https://docs.docker.com/engine/scan/
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carried out. The goal was to measure the time and cpu usage 
taken by each tool to execute 100 times. The Unix dstat 
tool was used for such task and, particularly, the following 
data were assessed: (1) user process time or amount of CPU 
time spent by the tool in user mode; (2) system process time 
or amount of CPU time spent by the tool in the kernel; (3) 
time elapsed or total time spent to finish each execution; and 
(4) percentage of CPU used during each execution.

Table 3 collects the user and system process times along 
with the time elapsed to execute each tool studied 100 times. 
First, in terms of user process time, the mean time for had-
olint was 0.019 ± 0.007 s, for scan was 0.254 ± 0.052 s 
and for SecDocker was 0.034 ± 0.009 . Similarly, their total 
time for executing 100 iterations of each tool was 1.940 s 

Table 3   Statistics related to the performance of the time taken to run hadolint, scan and SecDocker100 times

User process time (secs)

Hadolint Scan SecDocker

Mean 0.019 0.254 0.034
Median 0.020 0.255 0.030
Mode 0.020 0.270 0.030
Std. deviation 0.007 0.052 0.009
Minimum 0.000 0.130 0.010
Maximum 0.030 0.370 0.050
Sum 1.940 25.380 3.420
First quartile 0.020 0.210 0.030
Third quartile 0.020 0.290 0.040

System process time (secs)

Hadolint Scan SecDocker

Mean 0.010 0.059 0.023
Median 0.010 0.060 0.020
Mode 0.010 0.060 0.020
Std. deviation 0.007 0.015 0.009
Minimum 0.000 0.030 0.010
Maximum 0.030 0.120 0.040
Sum 1.020 5.940 2.280
First quartile 0.010 0.050 0.020
Third quartile 0.010 0.070 0.030

Time elapsed (secs)

Hadolint Scan SecDocker

Mean 1.145 4.165 0.485
Median 1.040 4.000 0.490
Mode 1.030 3.940 0.490
Std. Deviation 0.235 0.937 0.027
Minimum 0.870 3.740 0.410
Maximum 1.930 13.170 0.560
Sum 114.540 416.490 48.500
First quartile 0.970 3.930 0.470
Third quartile 1.290 4.190 0.500

Table 4   Statistics related to CPU percentage usage from executing 
100 iterations of hadolint, scan and SecDocker 

CPU (%)

Hadolint Scan SecDocker

Mean 2.970 7.370 13.110
Median 3.000 7.000 13.000
Mode 3.000 8.000 13.000
Std. deviation 0.758 1.468 0.952
Minimum 1.000 2.000 11.000
Maximum 5.000 10.000 16.000
First quartile 2.000 6.750 13.000
Third quartile 3.000 8.000 14.000
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for hadolint, 25.380 s for scan and 3.420 s for SecDocker. 
Their interquartile ranges are 0 s, 0.080 s and 0.010 s, 
respectively. These data suggest that scan is the tool which 
takes the longest time to execute, followed by SecDocker 
and then hadolint.

Second, with regard to system process time, the mean 
time for hadolint was 0.010 ± 0.007 s, for scan  was 
0.059 ± 0.015 s and for SecDocker was 0.023 ± 0.009 . 
Likewise, the total times for running each tool were 1.020 s 
(hadolint), 5.940 s (scan) and 2.280 s (SecDocker). Their 
interquartile ranges are 0 s, 0.020 s and 0.010 s, respectively. 
That said, the data suggest once more that scan is the tool 
which takes the longest time to execute, followed by Sec-
Docker and then hadolint.

Lastly, for the time elapsed, the mean times were: 
1.145 ± 0.235 s for hadolint, 4.165 ± 0.937 s for scan and 
0.485 ± 0.027 s for SecDocker. Also, the sum of time for 
hadolint was 114.540 s, for scan 416.490 s and for Sec-
Docker 48.500 s; with interquartile ranges of 0.32 s, 0.26 
s and 0.03 s, respectively. In view of the results obtained, 
SecDocker is the fastest tool followed by hadolint and then 
scan.

Continuing with the analysis, Table 4 shows the CPU 
percentage usage from executing the aforementioned tools. 
The mean percentages were 2.970 ± 0.758 % for hadolint, 
7.370 ± 1.468 % for Docker scan and 13.110 ± 0.952 % for 
SecDocker. Furthermore, their interquartile ranges were 
1%, 1.25% and 1%, respectively. These results show that 
all tools have a low impact on the CPU, with SecDocker 
being the most “demanding” (its median is 13% versus the 
3% from hadolint and the 8% from scan). However, this is 
due to being an application that runs in real time to filter all 
Docker’s traffic.

Discussion

SecDocker is a tool meant to be used for a wide variety 
of members from CI and DevOps communities. Thus, this 
section explains what this paper has presented from two dif-
ferent points of view: research and software.

Research Perspective

This work makes the assumption that the RQ proposed in 
sect. “Research Question and Contribution” (see below) is 
appropriate, meaningful, and purposeful when facing cyber-
security issues during the CI workflow. 

RQ:	 Which are the mechanisms for avoiding and mini-
mizing cybersecurity and misconfiguration issues in a 
CI container-based deployment system?

As discussed in sect. “Attacker Scheme”, four points are 
vulnerable to attacks during the container CI workflow: (1) 
when building a container image according to some specifi-
cations; (2) when verifying the authentication of the image 
just build; (3) when storing the image in a registry or reposi-
tory; and (4) when deploying the image into some environ-
ment. SecDocker is a tool meant to secure the latter point 
by acting as an application firewall in order to prevent users 
from dangerous or unexpected actions. However, its design 
also allows to indirectly securitise other vulnerable points of 
the CI workflow. Thanks to its design, not only SecDocker’s 
functionality can be easily expanded with external tools like 
Anchore and Notary, but it also can complement Docker’s 
security at the same time as tools like hadolint or Docker 
scan without impacting their performance.

Moreover, previous sections mentioned some of the com-
mon strategies used to solve CI issues associated to this RQ, 
mainly focused on the Image Generator step. Hence, it is 
possible to present a subset of scenarios for identifying Sec-
Docker validity. Some of the answers extracted from this 
work are:

–	 Even though is commonly accepted that the CI workflow 
relies on DevOps engineers experience, it is necessary to 
avoid unaware behaviors using a transparent and auto-
mated mechanism such as SecDocker.

–	 SecDocker, which works as an application firewall, has 
no impact compared with regular Docker use.

–	 Using a deployment engine based on YAML configu-
ration files minimizes unaware deployments, simplifies 
repetitively tasks and makes more comprehensible auto-
mated monitoring process.

–	 SecDocker allows to track and audit all commands sent 
to Docker. Its logging capabilities could be used as a 
tracking system having in mind the timestamp.

These points summarize the goal of the work presented and, 
at the same time, provide a concise and clear way to answer 
the RQ posed.

Software Perspective

SecDocker offers many potential benefits regarding the CI 
process. Some of these are:

–	 Publicly available. It is an open source tool released 
under the MIT license. The tool is presented in a way that 
makes deployment easier for the DevOps community. It 
is written in Go, a popular programming language, and 
offers a middleware solution for Docker, a mainstream 
containerization solution.

–	 Flexibility, scalability and security. It should be notice-
able from DevOps and CI engineers that the current 
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release of SecDocker brings simplicity to CI and CD 
processes. Likewise, relying on different configuration 
files, makes easier to define all the requirements needed 
for an infrastructure and thus prevent misconfiguration 
issues related to last minute fixes, to reduce performance 
issues associated with lack of hardware resources or even 
software incompatibilities between versions.

–	 Installation costs. The process of downloading, compil-
ing and deploying is performed with exactly three com-
mands, as indicated in the documentation available in the 
GitHub repository.

–	 Assurance. SecDocker users do not need to consider the 
trade-off between speed and certainty. Results presented 
in Sect. “Performance Testing” show similar perfor-
mance and negligible differences when using Docker 
with or without SecDocker.

However, SecDocker also has certain shortcomings, 
including:

–	 The solution is only applicable to the deployment part 
of a CI/CD workflow; it does not cover previous steps. 
However, SecDocker architecture favors the use of 
plugins (like Anchore and Notary) in order to support 
such features.

–	 SecDocker works as an application proxy. Each time a 
client makes a Docker request, SecDocker only intercepts 
it and checks its IP and port (which need to be the ones 
associated to Docker). Currently, SecDocker does not 
route these packages, which, on the other hand, would 
add a new level of security allowing to hide connection 
elements to the user.

–	 The image provided in SecDocker’s configuration file is 
not validated. More precisely, SecDocker does not check 
if the image provided by the Docker server is legit.

–	 Unusual launch parameters (like those related to DNS or 
Input/Output) are also not checked by SecDocker.

–	 Once a container is running, SecDocker does not per-
form additional actions to test whether such container 
is executing under the defined specifications or is being 
used for the intended purpose.

Conclusion

In conclusion, it is important to harden CI workflow. We 
knew from previous experiences that corporations refuse 
to deploy new tools given the cost associated (training, 
deployment, etc). Thus, the idea of providing a firewall app 
that allows maintaining the current workflow was a key for 
designing SecDocker.

It is critical for every DevOps engineer to secure as 
much as possible their containers platforms. By developing 

SecDocker, we have learned the possible threats of a CI sys-
tem running containers, in particular the mainstream tool 
Docker. Performing a close analysis of the user input hard-
ens the systems to minimize the possible attack surface and 
the capabilities the users can access to.
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