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Abstract
Research on reversible logic gained momentum in the past decade owing to its utility in emerging areas such as quantum 
computing, optical computing and low power circuit implementation, etc. Reversible circuits synthesized using existing 
techniques often tend to be sub-optimal; thus, post-synthesis optimization techniques are usually employed to reduce the 
‘circuit cost’, a metric used to compare the reversible circuits. In this paper, a set of optimization techniques is proposed 
to minimize the circuit cost. These techniques rely on classifying a pair of reversible gates in a given circuit based on their 
structural similarity. An algorithm that maps the classifications with the optimization techniques to improve the cost of a 
circuit is also proposed. Results obtained for a set of benchmark reversible circuits confirm that the proposed methodology 
performs better in terms of circuit cost when compared to those available in the literature.

Keywords  Reversible Logic · Optimization · Synthesis · Optimization Techniques · Reduction Rules

Introduction

Research on reversible logic has been motivated by its appli-
cations in emerging technologies like quantum computing 
because unitary transformation in quantum computing was 
shown to be reversible [1], optical computing [2–4] and the 
need for ultra low power design [5–7]. Since a reversible 
logic function has one-to-one and onto mapping between its 
inputs and outputs, it rules out fan-out and feedback which 
are used extensively in conventional logic circuits. This lead 
to research on synthesis techniques exclusively for revers-
ible logic in the past decade [8, 9]. These techniques can 
be categorized broadly as (i) exact and (ii) heuristic. Exact 
techniques search for optimal solutions to generate mini-
mum cost circuits but are applicable only for small functions 
(where number of variables typically does not exceed 6) [9]. 
For functions with a large number of variables, heuristic 

techniques have been proposed. These however generate 
circuits that are sub-optimal in terms of cost and thus have 
scope for improvement. Thus, post-synthesis optimization 
techniques [10–14] have been developed to reduce the cost 
of synthesized reversible circuits.

The technique presented in [14] reduces the cost of a 
reversible circuit with the help of additional lines. However, 
the increase in the number of lines directly affects the com-
plexity of its implementation [15]. Technique described in 
[10, 16] uses template-based local optimization to reduce the 
cost of the circuit. In these approaches, different templates 
are applied on a set of gates. However, this method involves 
a search for templates, which becomes complex as the cir-
cuit size increases. Rule-based optimization algorithms have 
been presented in [11–13, 17], a simulated annealing-based 
approach using transformation rules has been developed in 
[18] and a shared cube-based approach is presented in [19]. 
In all of these approaches, a group of gates is replaced with 
a lesser cost gate netlist using a set of rules. However when 
a pair of gates is considered, these techniques are applicable 
only for a few combinations of gate pairs.

A lookup table (LUT)-based hierarchical synthesis 
approach is presented in [20] where the Boolean logic is 
synthesized using k input LUT (termed as k-LUT) net-
work. These LUTs are converted to reversible circuits using 
techniques such as Exclusive-OR Sum-of-Product (ESOP) 
decomposition [21] and reduce the cost of the circuit by 
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applying rule-based techniques. Recently some optimisation 
technique has been proposed in [22, 23] to map the k-LUTs 
to a equivalent set of gates targeting to reduce the Clifford+T 
gates, a quantum gate library which is a more popular metric 
currently because of its application in fault tolerant quantum 
computing.

In the existing optimization techniques, the rules or trans-
formations are applicable only to a few combinations of gate 
pairs. In this paper, a framework that includes transforma-
tions that are applicable for several combinations of gate 
pairs is proposed. In this framework, initially a methodology 
to classify a pair of gates in a reversible circuit is proposed. 
This methodology is then used to identify the gate pairs that 
can be optimized using the existing techniques as opposed to 
those that cannot be. For these gate pairs that cannot be opti-
mized further, techniques to transform them to equivalent 
lower cost gate netlists are proposed. Finally, an algorithm 
that uses these techniques to reduce the total cost of the 
reversible circuit is presented. A set of benchmark reversible 
circuits has been employed to evaluate the performance of 
this framework.

Background

Reversible Logic Circuits

A function f is called a reversible logic function if there is a 
one-to-one correspondence, i.e, bijective mapping between 
inputs and outputs. A reversible logic circuit for a function 
can be realized by cascading reversible gates like NOT, 
CNOT, Toffoli and multiple-control Toffoli (MCT) gates 
[24]. The standard representation of basic reversible gates 
and a cascade of these gates to form a reversible circuit is 
shown in Fig. 1. An MCT gate is represented as MCT(C; t) 
where C is a set of control lines and t is the target line. When 
all the positive (negative) control lines of the gate, repre-
sented as ∙(◦) , are set to ‘1’ (‘0’), an MCT gate inverts the 
target line that is represented as ⊕ . MCT gates with control 
lines as 0, 1 and 2 are termed as NOT, CNOT and Toffoli 
gates, respectively.

Definitions used in this paper for different lines of a 
reversible circuit are given below: 

Control Connection	� The control connection 
defines the state of a con-
nection, i.e., positive or 
negative, of a given control 
line in a gate.

Equal Control Line	� A line having same control 
connection and same value 
for a set of gates is termed 

as the equal control line 
(ECL).

Complementary Control Line	� A line having positive con-
trol connection on one gate 
and negative control con-
nection on another gate is 
termed as complementary 
control line (CCL) for the 
gate pair.

Unused Line	� A line which is neither a 
control line nor a target 
line of a gate is termed as 
unused line for that gate.

Cost Metrics

Typically, two different cost models are used to evaluate and 
compare reversible circuits, (i) NCT library cost model and 
(ii) quantum cost model.

NCT Library Cost Model

The NCT library consists of NOT, CNOT and Toffoli gates. 
MCT gates in a reversible circuit with more than two control 
lines are decomposed into NCT gates using the approach 
presented in [25]. The cost of an MCT gate in terms of Tof-
foli gates is given in Eq. (1) where c and n denote the num-
ber of control lines of a gate and the total number of lines 
in a circuit, respectively. The NCT cost of an entire circuit 
is therefore the sum of all the NCT gates after decomposing 
each gate.

(a) (b)

(c) (d)

(e)

Fig. 1   Reversible gates and reversible circuit
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Quantum Cost Model

The Quantum Cost (QC) of a reversible gate is the number 
of primitive quantum gates required to implement the gate 
functionality. The primitive gates of quantum library used 
in this paper are NOT, CNOT, controlled V and controlled 
V+ gates [25]. The QC of a reversible gate is calculated 
using RevLib [26] and is given in Table 1 where c denotes 
the number of control line and n denotes the total number of 
lines in the circuit. When all control lines of an MCT gate 
are negative, QC is increased by a value of 2.

QC of each gate in a circuit is summed up to calculate the 
QC of that circuit. As an example, QC of the circuit shown 
in Fig. 1e is 1 + 5 + 13 + 1 = 20.

Quadruple Representation for a Pair of Gates

Several techniques exist in the literature to reduce the quan-
tum cost of a given gate pair. These techniques are chosen 
based on the control connections of gate pair control lines. 
However, there exists no methodology by which a pair of 
gates can be classified into different classes based on the 
control connections of each gate in that pair. Such a clas-
sification helps in identifying gate pairs to which existing 
optimization techniques can be applied as opposed to those 
that do not have optimization defined on them yet. In this 

(1)Cost
T
(MCT) =

⎧
⎪⎨⎪⎩

8(c − 3) if c >

�
n+1

2

�

4(c − 2) if c ≤

�
n+1

2

�
.

paper, we propose a representation named quadruple repre-
sentation (QR) to classify gate pairs, as given below:

The QR for a gate pair, gi and gj , is denoted as 
QR(gi, gj) = (�, �, � , �) where,

•	 � : Number of equal control lines in the gate pair.
•	 � : Number of complementary control lines in the gate 

pair.
•	 � : Number of control lines that have control connection 

only in the gate gi.
•	 � : Number of control lines that have control connection 

only in the gate gj.

For a gate pair gi and gj , the sets which contain control con-
nections corresponding to �, �, � and � are defined as K, C, P 
and Q, respectively. QR can be understood with the help of 
following example:

Example 1  Consider two gates g1 and g2 shown in Fig. 2. 
The gates have two equal control lines, K = {x0, x3} , one 
complementary control line, C = {x1} , a line with control 
connection only on gate g1 , that is, P = {x2} and a line with 
control connection only on gate g2 , that is, Q = {x4} . Thus, 
according to the QR given above,

Lemma 1 stated below provides the possible number of 
classifications for a gate pair when at least one of the ele-
ments of the QR is not equal to zero. If all the elements in 
the QR of a gate pair are zero, then the gate pair is a cascade 
of two NOT gates that can be removed from the circuit.

Lemma 1  In a reversible circuit, there exist 15 classifica-
tions for a gate pair gi and gj , where at least one of the ele-
ments in QR(gi, gj) is a non-zero element.

Proof  The QR(gi, gj) is a quadruple with four elements �, �, � 
and � . Depending on the elements that are either zero or non-
zero, there exist 24 = 16 unique classifications. Of these, one 
classification has all its elements as zero. Thus, the number 
of classifications in which at least one of the elements is 
non-zero is 16 − 1 = 15 . □

QR(g1, g2) = (2, 1, 1, 1).

Table 1   Quantum Cost of an MCT gate

where c is number of control lines in an MCT gate; n is total number 
of lines in the circuit

c QC

(n − (c + 1)) ≥

0 1 c − 2

0 1
1 1
2 5
3 13
4 29 26
5 61 52 38
6 125 80 50
7 253 100 62
8 509 128 74
9 1021 152 86
> 9 2c+1 − 3 24(c + 1) − 88 12(c + 1) − 34

Fig. 2   Example for quadruple 
representation (QR)
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An example for each of the classifications along with their 
QR is shown in Fig. 3.

There exist several rules in the literature to optimize some 
or a subset of few QR classifications as given below: 

Rule R1	� If QR(gi, gj) = (�, 0, 0, 0) , then the gates are iden-
tical and can be removed from the circuit using 
the deletion rule presented in [27].

Rule R2	� If QR(gi, gj) = (�, �, 0, 0) or (0, �, 0, 0) , then 
the gates can be decomposed into a network of 
smaller gates by applying the rule based optimi-
zation presented in [11].

Rule R3	� I f  QR(gi, gj) = (�, 1, 0, 0) or  (�, 0, 1, 0) or 
(�, 0, 0, 1) , then the gates can be merged into a 
single gate using the merging rule presented in 
[12].

Rule R4	� If QR(gi, gj) = (�, 1, 1, 0) or (�, 1, 0, 1) , then the 
gates can be replaced with a lesser cost gate 
netlist using the replacement rule presented in 
[12].

Rule R5	� If QR(gi, gj) = (�, 0, � , 1) or (�, 0, 1, �) , then the 
cost of the gate pair can be reduced using the 
cube pairing technique presented in [17].

An example for each of the rules discussed above is given 
in Fig. 4. As mentioned earlier, these rules can be applied 
only on a few QR classifications. For example, classifications 
like (�, �, � , �) , (�, �, � , 0) , (�, �, 0, �) , (�, 0, � , �) , (�, 0, � , 0) 
and (�, 0, 0, �) do not have any optimization defined on them. 
In what follows new optimization techniques that are appli-
cable to most of the classifications are described.

Optimization Techniques for Different QR 
Classifications

The first technique is based on a decomposition rule that 
decomposes a pair of gates into a network of smaller gates. 
This technique can be applied on the classifications where 
equal control lines are present between a pair of gates, i.e., 
𝛼 > 0 . Further, a complementary control line (CCL) trans-
formation technique is presented to reduce the number of 
CCLs in a given gate pair. This technique is then used to 

Fig. 3   Examples for different 
QR classifications

(a) (b)

(c) (d)

(e)

Fig. 4   Examples for Existing Optimization Rules
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transform the pair of gates with � = 0 such that the decom-
position rule can be applied. Finally, a set of optimization 
techniques is proposed for specific QR classifications.

Optimization Technique for QR(gi, gj) = (˛,ˇ,
,ı) 
when ̨ > 0

This technique is based on a decomposition rule that decom-
poses a pair of gates using the number of equal lines ( � ) 
between the gate pair. This rule is described by Lemma 2 
given below and is applicable for QR classifications in which 
𝛼 > 0 , i.e., (�, 0, � , 0) , (�, 0, 0, �) , (�, 0, � , �) , (�, �, � , 0) , 
(�, �, 0, �) and (�, �, � , �).

Lemma 2  (Rule R6—Decomposition Rule) : Consider 
a pair of gates gi and gj with a same target line xt . The 
QR(gi, gj) = (�, �, � , �) and the sets of control lines are rep-
resented as K, C, P and Q. If an unused line ‘ xu ’ is avail-
able, then the gate pair can be decomposed into a network 
of smaller gates as follows:

Proof  The gates gi  and gj  are represented as 
gi = MCT(K ∪ C ∪ P;xt) and gj = MCT(K ∪ C ∪ Q;xt)

According to [25], an MCT gate of size m (where m ⩾ 5 ) 
can be decomposed into a network of two gates of size p 
and two gates of size m − p + 1 placed alternatively, given at 
least one unused line in the circuit. Considering xu as unused 
line, the gates gi and gj can be decomposed as follows:

(2)

gi◦gj =MCT
(
C ∪ P;xu

)
◦MCT

(
K ∪ {xu};xt

)

◦MCT
(
C ∪ P;xu

)
◦MCT

(
C ∪ Q;xu

)
◦MCT

(
K ∪ {xu};xt

)
◦MCT

(
C ∪ Q;xu

)
Therefore, cascading gates gi and gj are given as below:

According to the deletion rule given in [27], a 
pair of gates which is equal and adjacent can be 
removed from the circuit. Thus the cascade of gates, 
MCT(K ∪ {xu};xt)◦MCT(K ∪ {xu};xt) , above is removed 
and the reduced circuit is given as,

gi =MCT
(
K ∪ C ∪ P;xt

)
=MCT

(
C ∪ P;xu

)
◦MCT

(
K ∪ {xu};xt

)
◦MCT

(
C ∪ P;xu

)
◦MCT

(
K ∪ {xu};xt

)
gj =MCT

(
K ∪ C ∪ Q;xt

)

=MCT
(
K ∪ {xu};xt

)
◦MCT

(
C ∪ Q;xu

)
◦MCT

(
K ∪ {xu};xt

)
◦MCT

(
C ∪ Q;xu

)

(3)

gi◦gj =MCT
(
K ∪ C ∪ P;xt

)
◦MCT

(
K ∪ C ∪ Q;xt

)

=MCT
(
C ∪ P;xu

)
◦MCT

(
K ∪ {xu};xt

)
◦MCT

(
C ∪ P;xu

)
◦MCT

(
K ∪ {xu};xt

)
◦MCT

(
K ∪ {xu};xt

)
◦MCT

(
C ∪ Q;xu

)
◦MCT

(
K ∪ {xu};xt

)
◦MCT

(
C ∪ Q;xu

)

(4)

gi◦gj =MCT
(
C ∪ P;xu

)
◦MCT

(
K ∪ {xu};xt

)

◦MCT
(
C ∪ P;xu

)
◦MCT

(
C ∪ Q;xu

)
◦MCT

(
K ∪ {xu};xt

)
◦MCT

(
C ∪ Q;xu

)
.

Fig. 5   Example for QR(g
i
, g

j
) = (�, �, � , �) = (2, 2, 1, 1)

Fig. 6   Example for QR(g
i
, g

j
) = (�, �, � , 0) = (2, 2, 1, 0)

Fig. 7   Example for QR(g
i
, g

j
) = (�, �, 0, �) = (2, 2, 0, 2)
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□

Figures 5, 6, 7, 8, 9 and 10 illustrate the decomposition 
rule R6 when applied to the gate pairs belonging to different 
classifications. The gate pairs are decomposed such that they 
generate redundant gates which are then removed from the 
circuit resulting in final gate netlist.

It can be seen from Table 2 that there is a reduction in 
quantum cost in each case after applying this decomposi-
tion rule.

It should be mentioned that the decomposition rule results 
in reduced quantum cost only if the number of unequal con-
trol lines in the gate pair, i.e., � + � or � + � , is less than half 
the total number of lines in the circuit. If this is not the case, 

then the rule results in a higher-cost gate netlist when com-
pared with the quantum cost of individual gates. This result 
can be proved with the help of following lemma:

Lemma 3  In a reversible circuit that has n lines, consider 
two gates gi and gj with same target line xt and an unused 
line xu . The QR(gi, gj) = (�, �, � , �) and the sets of control 
lines corresponding to �, �, � and � are defined as K, C, P 
and Q respectively. The decomposition rule results in a 
higher-cost gate netlist when compared with the cost of indi-
vidual gates under the following conditions:

1. � + � ≤ ⌈ n+1

2
⌉ , � + � ≤ ⌈ n+1

2
⌉ and � ≤ 1.

2. 𝛽 + 𝛾 > ⌈ n+1

2
⌉ and/or 𝛽 + 𝛿 > ⌈ n+1

2
⌉ .

Proof  The cascade of gates gi and gj can be given as:

Considering 𝛼 + 𝛽 + 𝛾 > ⌈ n+1

2
⌉ and 𝛼 + 𝛽 + 𝛿 > ⌈ n+1

2
⌉ , the 

NCT cost (Eq. (1)) to implement the gate pair gi and gj is

The decomposed gate netlist after applying the decomposi-
tion rule on this pair can be given as:

The pair of gates can be replaced only when the decomposed 
gate netlist will result in lesser cost when compared with the 
cost of the gate pair. The NCT cost (Eq. (1)) of the decom-
posed gate netlist for different cases is as given below:

Case 1: If � + � ≤ ⌈ n+1

2
⌉ , � + � ≤ ⌈ n+1

2
⌉ and 𝛼 > ⌈ n+1

2
⌉ 

then the NCT cost of the decomposed gate netlist is

(5)gi◦gj = MCT
(
K ∪ C ∪ P;xt

)
◦MCT

(
K ∪ C ∪ Q;xt

)
.

(6)
8(� + � + � − 3) + 8(� + � + � − 3)

= 16� + 16� + 8� + 8� − 48.

(7)

gi◦gj =MCT
(
C ∪ P;xu

)
◦MCT

(
K ∪ {xu};xt

)
◦

MCT
(
C ∪ P;xu

)
◦MCT

(
C ∪ Q;xu

)
◦

MCT
(
K ∪ {xu};xt

)
◦MCT(C ∪ Q;xu)

Fig. 8   Example for QR(g
i
, g

j
) = (�, 0, � , �) = (3, 0, 2, 1)

Fig. 9   Example for QR(g
i
, g

j
) = (�, 0, � , 0) = (3, 0, 3, 0)

Fig. 10   Example for QR(g
i
, g

j
) = (�, 0, 0, �) = (3, 0, 0, 3)

Table 2   Quantum Cost reduction for different classifications after 
applying decomposition Rule R6

QR(g
i
, g

j
) Illustration Quantum Cost (QC)

Initial gate pair Effect of 
applying 
rule R6

(�, �, � , �) = (2, 2, 1, 1) Figure 5 104 78
(�, �, � , 0) = (2, 2, 1, 0) Figure 6 78 62
(�, �, 0, �) = (2, 2, 0, 2) Figure 7 106 88
(�, 0, � , �) = (3, 0, 2, 1) Figure 8 78 64
(�, 0, � , 0) = (3, 0, 3, 0) Figure 9 93 78
(�, 0, 0, �) = (3, 0, 0, 3) Figure 10 93 78
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The pair of gates can be replaced with the decomposed gate 
netlist only when the cost computed by Eq. (8) is less than 
that computed by Eq. (6)

Thus, it follows from the above inequalities that the gate pair 
can be replaced by the decomposed gate netlist.

Case 2: If � + � ≤ ⌈ n+1

2
⌉ , � + � ≤ ⌈ n+1

2
⌉ and � ≤ ⌈ n+1

2
⌉ 

then the NCT cost of the decomposed gate netlist is

To replace the pair of gates with the decomposed gate netlist, 
the cost computed by Eq. (9) should be less than the cost 
computed by Eq. (6)

From the above inequalities, it is clear that the gate pair can 
be replaced by the decomposed gate netlist only if 𝛼 > 1 
proving the first condition of the lemma.

Case 3: If 𝛽 + 𝛾 > ⌈ n+1

2
⌉ , 𝛽 + 𝛿 > ⌈ n+1

2
⌉ and � ≤ ⌈ n+1

2
⌉ 

then the NCT cost of the decomposed gate netlist is

To replace the pair of gates with the decomposed gate netlist, 
the cost computed by Eq. (10) should be less than the cost 
computed by Eq. (6)

In this case, the minimum value of � + � (and � + � ) and the 
maximum value of � , in terms of n are ⌈ n+1

2
⌉ + 1 and ⌈ n+1

2
⌉ 

respectively. Substituting these value in Eq. (11) results in 
n < 9 . Thus, for the maximum value of n, i.e., 8, excluding 
target line and the unused line, a maximum of 6 control lines 
is possible for a given gate. However for n = 8 , the minimum 
value of � + � is 6 which is the maximum number of control 
lines allowed in this case resulting in � = 0 . The condition 
for applying decomposition rule R6 is 𝛼 > 0 and thus prov-
ing the second condition of the lemma. □

(8)
2(4(� + � − 2) + 4(� + � − 2) + 8(� + 1 − 3))

=16� + 16� + 8� + 8� − 64

⟹ 16𝛼 + 16𝛽 + 8𝛾 + 8𝛿 − 64 <

16𝛼 + 16𝛽 + 8𝛾 + 8𝛿 − 48

− 64 < −48

(9)
2(4(� + � − 2) + 4(� + � − 2) + 4(� + 1 − 2))

=8� + 16� + 8� + 8� − 40

⟹ 8𝛼 + 16𝛽 + 8𝛾 + 8𝛿 − 40 <

16𝛼 + 16𝛽 + 8𝛾 + 8𝛿 − 48

𝛼 > 1

(10)
2(8(� + � − 3) + 8(� + � − 3) + 4(� + 1 − 2))

=8� + 32� + 16� + 16� − 104

(11)

⟹ 8𝛼 + 32𝛽 + 16𝛾 + 16𝛿 − 104 <

16𝛼 + 16𝛽 + 8𝛾 + 8𝛿 − 48

𝛼 + 7 < 2𝛽 + 𝛾 + 𝛿

𝛼 + 7 < (𝛽 + 𝛾) + (𝛽 + 𝛿)

The above lemma shows that if 𝛽 + 𝛾 > ⌈ n+1

2
⌉ and 

𝛽 + 𝛿 > ⌈ n+1

2
⌉ then the decomposition rule can not obtain 

the cost reduction. However, if the values of � + � and � + � 
are reduced such that � + � ≤ ⌈ n+1

2
⌉ and � + � ≤ ⌈ n+1

2
⌉ then 

the proposed decomposition rule can be applied to achieve 
the cost reduction. In order to reduce the values of � + � and 
� + � we propose a transformation technique explained in 
the following sub-section.

Complementary Control Line (CCL) Transformation 
Technique for Reducing ˇ

This transformation technique converts complementary con-
trol lines (CCLs) ( � ) to equal control lines (ECLs) ( � ) by 
adding extra gates to the circuit. It is explained in Lemma 4 
given below and the transformation rules used in this lemma 
can be described as follows: 

T1	 MCT
(
X ∪ {xi , xj};xt

)
= MCT

(
{xi};xj

)
◦MCT

(
X ∪ {xi , xj};xt

)
◦MCT

(
{xi};xj

)

T2	 MCT
(
X ∪ {xi , xj};xt

)
= MCT

(
{xi};xj

)
◦MCT

(
X ∪ {xi , xj};xt

)
◦MCT

(
{xi};xj

)

T3	 MCT
(
X ∪ {xi , xj};xt

)
= MCT

(
{xi};xj

)
◦MCT

(
X ∪ {xi , xj};xt

)
◦MCT

(
{xi};xj

)

T4	 MCT
(
X ∪ {xi , xj};xt

)
= MCT

(
{xi};xj

)
◦MCT

(
X ∪ {xi , xj};xt

)
◦MCT

(
{xi};xj

).

These transformation rules can be derived using the axioms 
presented in [28]. For example, the derivation of rule T1 is 
illustrated in Fig. 11. Similarly other three rules (T2, T3 and 
T4), illustrated in Fig. 12, can also be derived using these 
axioms.

Fig. 11   Derivation of Transformation Rule T1

(a) (b) (c)

Fig. 12   Illustration of Transformation Rules
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Lemma 4  (CCL Transformation Rule R7)  Con-
sider a pair of gates gi and gj with same target line xt . 
QR(gi, gj) = (�, �, � , �) while the sets of control lines are 
represented as K, C, P and Q. Consider two lines xi, xj ∈ C 
such that the control connection of lines xi and xj in the gates 
gi and gj are positive and negative, respectively. The sets X 
and Y contain the control lines of gates gi and gj excluding 
lines xi and xj respectively. The complementary control line 
xj can be transformed to equal control line using two extra 
CNOT gates and the resulting cascade of gates, gi and gj , 
is given as:

Proof  The gates gi and gj can be represented as:

The transformation rules, T1, T2, T3 and T4 are applied 
to the gates depending on the control connections of lines 
xi and xj . Since gate gi has {xi, xj} ∈ C and gate gj has 
{xi, xj} ∈ C , the transformation rules T1 and T4 are applied 
on the gates gi and gj , respectively, resulting in

The cascade of gates, gi and gj , using Eqs. (12) and (13) is 
shown below:

The third and fourth gate in the above gate netlist are the 
same and thus can be removed. The resulting gate netlist is 
given as:

From Eq. (14), the control line xj is transformed to ECL 
using two CNOT gates. It may be noted however that the 
line xi can not be transformed to ECL because it has to be 
used as a control line for the CNOT gates that are added. □

gi◦gj = MCT
(
{xi};xj

)
◦MCT

(
X ∪ {xi, xj};xt

)
◦

MCT
(
Y ∪ {xi, xj};xt

)
◦MCT

(
{xi};xj

)

gi =MCT
(
X ∪ {xi, xj};xt

)

gj =MCT
(
Y ∪ {xi, xj};xt

)

(12)
gi = MCT

(
{xi};xj

)
◦MCT

(
X ∪ {xi, xj};xt

)

◦MCT
(
{xi};xj

)

(13)
gj = MCT

(
{xi};xj

)
◦MCT

(
Y ∪ {xi, xj};xt

)

◦MCT
(
{xi};xj

)
.

gi◦gj =MCT
(
{xi};xj

)
◦MCT

(
X ∪ {xi, xj};xt

)

◦MCT
(
{xi};xj

)
◦MCT

(
{xi};xj

)

◦MCT
(
Y ∪ {xi, xj};xt

)
◦MCT

(
{xi};xj

)
.

(14)
gi◦gj = MCT

(
{xi};xj

)
◦MCT

(
X ∪ {xi, xj};xt

)

◦MCT
(
Y ∪ {xi, xj};xt

)
◦MCT

(
{xi};xj

)

The rule R7 is applied recursively to transform � CCLs 
to � − 1 ECLs. The transformation when � = 3 is illustrated 
in the following example:

Example 2  Consider the gate pair g1 and g2 shown in 
Fig. 13a. QR(g1, g2) = (0, 3, 0, 0) and the set which contains 
control lines corresponding to � is C = {x0, x1, x2} . The 
gates g1 and g2 are transformed using Lemma 4 resulting in 
a gate netlist shown in Fig. 13b which consists of g3 , g4 and 
two CNOT gates. The line x1 which was CCL for g1 and g2 
is transformed to ECL for gate pair, g3 and g4 . Hence, the 
QR for the gates g3 and g4 is (1, 2, 0, 0) where C = {x0, x2} . 
Applying Lemma 4 on the gate pair g3 and g4 results in a 
gate netlist shown in Fig. 13c. It can be seen from Fig. 13 
that the gate pair g1 and g2 with QR(g1, g2) = (0, 3, 0, 0) is 
transformed to a netlist with four CNOT gates and a pair of 
gates, g5 and g6 where QR(g5, g6) = (2, 1, 0, 0).

Since the proposed CCL transformation technique 
changes the number of equal and complementary control 
lines, it modifies QR of a gate pair. For example, con-
sider a gate pair gi and gj with QR(gi, gj) = (�, �, � , �) . 
This technique converts � CCLs to � − 1 equal con-
trol lines resulting in � + � − 1 ECLs and one CCL, i.e., 
QR(gi, gj) = (� + � − 1, 1, � , �) . If the modified QR satisfies 
the condition in Lemma 3, then the decomposition rule can 
be applied to reduce the cost of the circuit. This process of 
applying the transformation rule to modify QR such that the 
proposed decomposition rule can be applied, is explained 
with the help of example given below:

Example 3  Consider two gates g1 and g2 as shown in Fig. 14a. 
The QR(g1, g2) = (1, 3, 2, 1) . According to Lemma 3, the 
decomposition rule does not result in a reduced cost when 
applied on this gate pair. The CCL transformation technique 
is applied on this gate pair resulting in a modified gate pair 

(a) (b)

(c)

Fig. 13   Illustration of Example 2
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ga and gb with QR(ga, gb) = (3, 1, 2, 1) as shown in Fig. 14b. 
From this modified QR , it is evident that � + � ≤ ⌈ n+1

2
⌉ , 

� + � ≤ ⌈ n+1

2
⌉ , � ≤ ⌈ n+1

2
⌉ and according to Lemma 3, this 

results in a reduced gate netlist after applying the decom-
position rule. The final decomposed gate netlist is shown in 
Fig. 14c where it can be seen that there is a reduction of the 
cost from 132 to 92.

So far, QR classifications with 𝛼 > 0 have been covered 
with the proposed decomposition and transformation tech-
niques. In the next section, the optimization technique for 
QR classifications with � = 0 is discussed.

Optimization Technique for QR(gi, gj) = (0,ˇ,
,ı)

The technique presented in the previous section cannot be 
applied directly on QR classifications of the type (0, �, � , �) , 
(0, �, 0, �) and (0, �, � , 0) . However all these classifications 
have � CCLs which can be converted to equal control lines 
using the proposed CCL transformation technique. After this 
transformation, QR types are modified as given in Table 3 
below:

It can be seen from the table that the QR classifications 
after CCL transformation have 𝛼 > 0 and hence are a sub-
set of QR classifications discussed in Section “Optimiza-
tion Technique for QR(gi, gj) = (�, �, � , �) when 𝛼 > 0”. The 
following example illustrates the process of applying the 
proposed transformation rule to modify the QR such that the 
decomposition rule can be applied.

Example 4  Consider two gates g1 and g2 shown in Fig. 15a 
where QR(g1, g2) = (0, 4, 1, 1) . The CCL transformation 
technique is applied on this gate pair resulting in a modified 
gate pair ga and gb with QR(ga, gb) = (3, 1, 1, 1) as shown 
in Fig. 15b. The decomposition rule can now be applied to 
obtain the final reduced gate netlist as shown in Fig. 15c. It 
is evident that there is a reduction in the cost from 104 to 
78. Similar pattern can be observed with other classifica-
tions also.

Optimization Techniques for Specific QR 
Classifications

In this section, different optimization techniques are pre-
sented for specific QR classifications.

For QR(gi , gj) = (˛,ˇ, 0, 0) and QR(gi , gj) = (0,ˇ, 0, 0)

The gate pairs that fall under QR classifications of type 
(�, �, 0, 0) and (0, �, 0, 0) can be reduced by applying rule 
R2. However, the CCL transformation technique can fur-
ther reduce the cost of the gate pair. This is achieved by 
converting � − 1 CCLs to ECLs which modifies the QR 
from (�, �, 0, 0) and (0, �, 0, 0) to (� + � − 1, 1, 0, 0) and 
(� − 1, 1, 0, 0) , respectively. From the modified QRs, it is 

(a) (b)

(c)

Fig. 14   Illustration of Example 3

Table 3   QR transformation

Before CCL transformation After CCL transformation

(0, �, � , �) (� − 1, 1, � , �)

(0, �, � , 0) (� − 1, 1, � , 0)

(0, �, 0, �) (� − 1, 1, 0, �)

(a) (b)

(c)

Fig. 15   Illustration of Example 4
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evident that the rule R3 can be applied to reduce the result-
ant gate netlist. This process is explained with the following 
example:

E xa m p l e  5   C o n s i d e r  a  p a i r  o f  ga t e s  w i t h 
QR(g1, g2) = (0, 4, 0, 0) shown in Fig. 16a. The reduction 
of this pair using rule R2 results in the gate netlist as shown 
in Fig. 16b. Applying CCL transformation on the gate pair 
modifies the QR to (3, 1, 0, 0) as shown in Fig. 16c. The 
modified gate pair can be merged into a single gate using 
the rule R3 as given in Fig. 16d. From the figure it can be 
seen that while the cost of the circuit reduces to 52 from 58 
as a result of applying rule R2, the same reduces to 19 after 
applying CCL transformation with rule R3.

For QR(gi , gj) = (˛,ˇ, 1, 0) and QR(gi , gj) = (˛,ˇ, 0, 1)

Rule R4 can be applied on the classifications of type 
(�, �, 1, 0) and (�, �, 0, 1) only if � = 1 . However, if 𝛽 > 1 
then the CCL transformation can be used to modify 
the QR classifications from (�, �, 1, 0) and (�, �, 0, 1) to 
(� + � − 1, 1, 1, 0) and (� + � − 1, 1, 0, 1) , respectively. This 
enables the use of rule R4 on the modified QRs which is 
explained in the following example:

E xa m p l e  6   C o n s i d e r  a  p a i r  o f  ga t e s  w i t h 
QR(g1, g2) = (1, 3, 1, 0) as shown in Fig. 17a. Applying CCL 
transformation on the gate pair modifies QR to (3, 1, 1, 0) 
as shown in Fig. 17b. Rule R4 can now be applied on the 
modified gate pair and the resulting gate netlist is shown in 
Fig. 17c. It can be seen that there is a reduction in the cost 
from 78 to 69.

For QR(gi , gj) = (˛,ˇ, 1, 1)

An optimization technique is presented in this sub-
section to reduce the cost of a gate pairs,gi and gj , with 
QR(gi, gj) = (�, 1, 1, 1) . This technique decomposes the gate 
pair into a network of smaller gates which is explained with 
the help of following lemma:

Lemma 5  (Swap Rule R8) Consider two gates gi and gj with 
same target line xt . QR(gi, gj) = (�, �, � , �) and the sets of 
control lines corresponding to �, �, � and � are defined as 
K, C, P and Q respectively. If �, � and � are equal to 1, 
C = {xC},P = {xP} and Q = xQ , then the gate pair gi and gj 
can be decomposed using the following rule:

Proof  The gates gi  and gj  are represented as 
gi = MCT(K ∪ C ∪ P;xt) and gj = MCT(K ∪ C ∪ Q;xt) , 
respectively. If �, � and � are equal to 1, then there exists 
only one control line in the sets C, P and Q, respectively, i.e., 
C = {xC},P = {xP} and Q = xQ . Assuming the control line 
xC has a positive control connection in gate gi and a negative 
control connection in gate gj , they can be written as:

Gate gj can be decomposed into two gates using the rules 
presented in [11] which is given as follows:

The cascade of gate pair gi and gj is given as,

Using rule R5, the first two gates in the above netlist can be 
decomposed into a network of three gates as,

gi◦gj = MCT
(
{xQ};xP}

)
◦MCT

(
{xC} ∪ {xP};xQ

)

◦MCT
(
K ∪ {xC} ∪ {xP};xt

)
◦MCT

(
{xC} ∪ {xP};xQ

)
◦MCT({xQ};xP}).

gi =MCT
(
K ∪ {xC} ∪ {xP};xt

)
gj =MCT

(
K ∪ {xC} ∪ {xQ};xt

)
.

gj = MCT
(
K ∪ {xC} ∪ {xQ};xt

)
◦MCT

(
K ∪ {xQ};xt

)
.

gi◦gj = MCT
(
K ∪ {xC} ∪ {xP};xt

)

◦MCT
(
K ∪ {xC} ∪ {xQ};xt

)

◦MCT
(
K ∪ {xQ};xt

)
.

(a) (b)

(c) (d)

Fig. 16   Illustration of Example 5

(a) (b) (c)

Fig. 17   Illustration of Example 6
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The position of last two gates can be interchanged using the 
moving rule presented in [27] and the resulting gate netlist 
is given as,

The second and third gates in the above netlist can be decom-
posed into a network of three gates using rule R5 and the 
resulting netlist is given as follows thus proving the lemma.

□

The following example illustrates the above lemma:

E xa m p l e  7   C o n s i d e r  a  p a i r  o f  ga t e s  w i t h 
QR(g1, g2) = (1, 1, 1, 1) as shown in Fig. 18a. The set of con-
trol lines corresponding to this QR are K = {x0} , C = {x1} , 
P = {x2} and Q = {x3} . According to Lemma 5, the gate 
pair is decomposed into a gate netlist as shown in Fig. 18b 
where it can be seen that there is a reduction in the QC from 
26 to 17.

gi◦gj = MCT
(
{xQ};xP}

)
◦MCT

(
K ∪ {xC} ∪ {xP};xt

)

◦MCT
(
{xQ};xP}

)
◦MCT

(
K ∪ {xQ};xt

)
.

gi◦gj = MCT
(
{xQ};xP}

)
◦MCT

(
K ∪ {xC} ∪ {xP};xt

)

◦MCT
(
K ∪ {xQ};xt

)
◦MCT

(
{xQ};xP}

)
.

gi◦gj = MCT
(
{xQ};xP}

)
◦MCT

(
{xC} ∪ {xP};xQ

)

◦MCT
(
K ∪ {xC} ∪ {xP};xt

)
◦MCT

(
{xC} ∪ {xP};xQ

)
◦MCT

(
{xQ};xP}

)
.

Although Rule R8 adds two Toffoli and two CNOT gates, 
the gate pair is merged into a single gate with reduced con-
trol lines thereby reducing the cost of the gate pair. This 
technique can be applied only if � = 1 but not when 𝛽 > 1 . 
Thus, if the gate pair has QR(gi, gj) = (�, �, 1, 1) then the 
CCL transformation technique can be applied to modify the 
QR classifications to QR(gi, gj) = (� + � − 1, 1, 1, 1) . This 
enables the use of Rule R8 to reduce the cost of the gate pair. 
This process is illustrated in the following example:

E xa m p l e  8   C o n s i d e r  a  p a i r  o f  ga t e s  w i t h 
QR(g1, g2) = (1, 2, 1, 1) as shown in Fig. 19a. Since Lemma 
5 can be applied only on gate pair with � = 1 , CCL trans-
formation is applied on this gate pair and the modified gate 
netlist is shown in Fig. 19b such that the QR is modified to 
(2, 1, 1, 1). From the modified QR, Rule R8 can be applied 
on this gate netlist and the resulting circuit is shown in 
Fig. 19c. From the figure, it is evident that the cost of the 
gate pair is reduced from 52 to 27.

There can be no optimization technique that covers QR 
classifications of type (0, 0, � , 0) , (0, 0, 0, �) and (0, 0, � , �) 
because the gate pairs do not have any equal or complemen-
tary control lines. Table 4 summarizes the QR classifications 
and the appropriate combination of optimization techniques 
that can be applied on a given gate pair to improve the cost.

Post‑Synthesis Optimization Algorithm

A ‘greedy’ algorithm for post-synthesis optimization is pre-
sented in Algorithm 1. This algorithm takes a reversible gate 
netlist G as an input and gets an optimized gate netlist G′ as 
output. Initially, the gate netlist G is traversed and the gates 
with equal control lines but different target lines are merged 
using the function target_merging [29]. This avoids regen-
eration of the same gate for different target lines.

(a) (b)

Fig. 18   Illustration of Example 7

Fig. 19   Illustration of Example 
8

(a) (b) (c)
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Table 4   Summary of optimization techniques for different QR classifications

QR(g
i
, g

j
) Conditions Optimization techniques

(0, 0, 0, 0) – Deletion Rule R1
(�, 0, 0, 0) – Deletion Rule R1
(�, �, 0, 0) , (0, �, 0, 0) � = 1 Rule R3

𝛽 > 1 Proposed CCL transformation Rule R7+ Rule R3
(0, 0, � , 0) , (0, 0, 0, �) , (0, 0, � , �) – No reduction technique
(�, �, � , �) , (�, �, � , 0) , 
(�, �, 0, �) , (�, 0, � , �) , 
(�, 0, � , 0) , (�, 0, 0, �)

(� = 0 , � = 0 and � = 1 ) or
(� = 0 , � = 1 and � = 0)

Rule R3

(� = 1 , � = 1 and � = 0 ) or
(� = 1 , � = 0 and � = 1)

Rule R4

(𝛽 > 1 , � = 0 and � = 1 ) or
(𝛽 > 1 , � = 1 and � = 0)

Proposed CCL transformation Rule R7+ Rule R4

(� = 0 , � = 1 and 𝛿 > 0 ) or
(� = 0 , 𝛾 > 0 and � = 1)

Cube Pairing Rule R5

(� = 1 and � = 1) Proposed Swap Rule R8

� + � ≤ ⌈ n+1

2
⌉ , � + � ≤ ⌈ n+1

2
⌉ and 𝛼 > 1 Proposed Decomposition Rule R6

𝛽 + 𝛾 > ⌈ n+1

2
⌉ , 𝛽 + 𝛿 > ⌈ n+1

2
⌉ , � ≤ ⌈ n+1

2
⌉,1 + � ≤ ⌈ n+1

2
⌉ 

and 1 + � ≤ ⌈ n+1

2
⌉

Proposed CCL transformation Rule R7 + Pro-
posed Decomposition Rule R6

𝛽 + 𝛾 > ⌈ n+1

2
⌉ , 𝛽 + 𝛿 > ⌈ n+1

2
⌉ , � ≤ ⌈ n+1

2
⌉,1 + 𝛾 > ⌈ n+1

2
⌉ 

and 1 + 𝛿 > ⌈ n+1

2
⌉

No reduction technique

(0, �, � , �) , (0, �, � , 0) , (0, �, 0, �) � + � ≤ ⌈ n+1

2
⌉ , � + � ≤ ⌈ n+1

2
⌉ and 𝛽 > 2 Proposed CCL transformation Rule R7 + Pro-

posed Decomposition Rule R6
𝛽 + 𝛾 > ⌈ n+1

2
⌉ , 𝛽 + 𝛿 > ⌈ n+1

2
⌉ , 𝛽 > 2,1 + � ≤ ⌈ n+1

2
⌉ and 

1 + � ≤ ⌈ n+1

2
⌉

𝛽 + 𝛾 > ⌈ n+1

2
⌉ , 𝛽 + 𝛿 > ⌈ n+1

2
⌉ , 1 + 𝛾 > ⌈ n+1

2
⌉ and 

1 + 𝛿 > ⌈ n+1

2
⌉

No reduction technique
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Each gate Gi is paired with every other gate Gj in GN 
and is given to the translate function. This function takes a 
gate pair, classifies it using the proposed representation and 
checks for the possibility of reduction using the optimiza-
tion techniques presented in Table 4. If a possibility exists 
to optimize that pair, the function returns Status as True, the 
optimized gate netlist as Gt and its cost as NewCost. Also, 
the gate netlist Gt and its cost NewCost are added to the 
CostTable(Gi) and the flag is set to True.

After Gi is paired with every other gate Gj in GN, the 
status of flag is checked. If the flag is False, it indicates that 
there is no optimization possible for the gate Gi when paired 
with any other gate in the circuit and the gate Gi is added 

to the output gate netlist G′ . If it is True then the function 
LeastCost scans the CostTable(Gi) and returns a gate Gp that 
results in maximum possible reduction when paired with 
Gi . This function also returns Gnew which is the reduced gate 
netlist for the gate pair Gi and Gp . If the gate netlist Gnew 
consists of a single gate then the gate is added to the initial 
netlist GN else it is added to the output gate netlist G′ . Gate 
Gp is subsequently removed from the netlist GN. This pro-
cess is repeated for each of the gates in the netlist. Thus, for 
‘n’ number of gates in a netlist, the algorithm complexity 
is O(n2).
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Simulation Results

The post-synthesis optimization algorithm is implemented 
in Python on Intel Xeon workstation (with 8 GB of RAM 
and 1.7 GHz operating frequency) running Windows 10. 
This algorithm is applied on different benchmark reversible 
circuits obtained from RevLib library [26] to evaluate its 
efficiency in terms of cost. The quantum cost metric used 
in this work for the purpose of comparison is based on the 
NCV gate library but not Clifford+T gate library. This is 
because a major body of the literature contains papers based 
on NCV library.

Table 5 presents a comparison of the proposed optimi-
zation algorithm with existing post-synthesis optimization 
techniques presented in [12, 13]. The first column gives 
the name of the benchmark while second, third, fourth and 
fifth columns indicate the number of qubits, quantum cost 
of original gate netlist from RevLib and two existing tech-
niques, respectively. Sixth column gives the quantum cost of 
final gate netlist obtained after applying the proposed opti-
mization algorithm. Seventh, eighth and ninth columns give 

the percentage improvement over original gate netlist and 
the existing techniques. It can be seen from Table 5 that in 
the best case, there is a considerable reduction of quantum 
cost of up to 78.5%. An average cost improvement of about 
47% is observed over all the benchmarks mentioned in the 
table. This is because, the proposed optimization techniques 
optimize more number of QR classifications of gate pairs 
(as seen from Table 4) when compared to the techniques 
presented in [12, 13].

The reversible gate netlist obtained from the Exclusive-
OR Sum of Product (ESOP)-based synthesis method pre-
sented in [21] is given as input for the optimization algo-
rithm. A comparison of costs obtained from the optimization 
algorithm with different ESOP based methods [16–19, 30] 
is presented in Table 6. First column gives the name of the 
benchmark circuit while the columns 2-6 indicate the quan-
tum cost of respective benchmark circuits realized with 
existing ESOP-based methods [16–19, 30]. Column 7 pro-
vides the quantum cost to realize that benchmark using the 
proposed optimization method. Column 8 shows the per-
centage improvement of quantum cost achieved compared 

Table 5   Comparison with 
existing post-synthesis 
optimization algorithms

Benchmark Lines (No. 
of Qubits)

Original 
Netlist [26]

[13] [12] Proposed 
Optimization

% Impr with

[26] [13] [12]

cordic_218 25 349522 348566 348532 74985 78.55 78.49 78.49
apex4_202 28 238146 237748 158095 38826 83.70 83.67 75.44
sym9_193 10 14193 12747 13090 3485 75.45 72.66 73.38
table3_264 28 80039 79326 61412 17963 77.56 77.36 70.75
in2_236 29 23814 23146 20600 7434 68.78 67.88 63.91
misex3_242 28 119177 115637 99119 38125 68.01 67.03 61.54
clip_206 14 6731 6535 6119 2354 65.03 63.98 61.53
misex3c_243 28 115190 111258 96064 39907 65.36 64.13 58.46
life_238 10 6767 5740 5744 2420 64.24 57.84 57.87
dist_223 13 7604 7288 6631 2875 62.19 60.55 56.64
sqn_258 10 2128 2041 1887 849 60.10 58.40 55.01
in0_235 26 20042 18999 16985 7761 61.28 59.15 54.31
inc_237 16 2145 2104 1745 929 56.69 55.85 46.76
apla_203 22 3444 3438 3029 1669 51.54 51.45 44.90
f51m_233 22 37417 33333 32882 18356 50.94 44.93 44.18
tial_265 22 56224 47145 47556 26644 52.61 43.48 43.97
max46_240 10 5444 4498 4538 2560 52.98 43.09 43.59
dc2_222 15 1898 1789 1688 1024 46.05 42.76 39.34
sqr6_259 18 1053 1034 876 567 46.15 45.16 35.27
decod_217 21 1746 1745 613 427 75.54 75.53 30.34
5xp1_194 17 1418 1327 1155 819 42.24 38.28 29.09
pm1_249 14 384 354 275 197 48.70 44.35 28.36
cu_219 25 1148 1054 954 702 38.85 33.40 26.42
mux_246 22 1078 804 804 598 44.53 25.62 25.62
dc1_220 11 425 419 249 187 56.00 55.37 24.90
cm150a_210 22 1096 822 822 618 43.61 24.82 24.82
frg1_234 31 15266 14737 14702 11560 24.28 21.56 21.37
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Table 6   Comparison with 
existing ESOP based methods

Bold values mentioned in Table 6 signify improvement in the cost of the respective benchmarks when the 
proposed approach isused

Bench-mark [16] [19] [30] [17] [18] Proposed 
optimization

% Impr

5xp1 1349 786 865 – 807 741 5.73
9symml 5781 10943 16487 1895 3406 2709 – 42.96
add6 6362 – 5084 2683 – 3132 – 16.73
alu2 5215 – 4476 – 3679 2685 27.02
alu3 2653 – – – 1919 1810 5.68
alu4 48778 41127 43850 – 38635 21104 45.38
apex4 256857 35840 50680 51284 – 39832 –11.14
apex5 – 33830 – – 33803 26358 22.02
apla 4051 1683 – – 1709 1607 4.52
bw – 637 – 2233 790 807 -26.69
C17 97 – – – – 74 23.71
clip 6616 3824 4484 – 3218 2184 32.13
cm150a 844 – – – – 438 48.1
con1 207 162 – – – 136 16.05
cordic 349522 187620 – – 111955 64624 42.28
cu 1332 781 – – 780 603 22.69
dc2 1956 1084 – – 1099 980 9.59
decod 1924 399 – 976 – 461 – 15.54
dist 7414 3700 – – – 2745 25.81
e64 – – – – 24345 23751 2.44
ex1010 183726 52788 – 77293 – 49490 6.25
ex2 153 – – 118 – 117 0.85
ex3 97 – – 73 – 53 27.4
f2 274 112 – 116 – 87 22.32
f51m 34244 28382 – – 25119 16850 32.92
frg2 – 112008 – – 114239 88554 20.94
in0 22196 7949 – – – 7474 5.98
majority 147 – – 106 – 134 – 26.42
max46 4432 – – 3239 – 2254 30.41
misex1 1017 332 466 - 352 360 – 8.43
misex3 122557 49076 67206 – 54132 36624 25.37
misex3c 118578 49720 85330 52600 – 38037 23.5
mlp4 3827 2496 – – – 2079 16.71
mux 826 – – 784 – 416 46.94
pm1 582 – – 290 – 188 35.17
radd 798 – – 349 – 470 – 34.67
rd84 2598 – 2062 – 1965 1371 30.23
root 3486 1811 – – 1583 1439 9.1
sao2 7893 3767 5147 – – 2561 32.01
spla – – 49419 – 45478 26251 42.28
sqn 2170 – – 1183 – 831 29.75
sqr6 1090 583 – – – 557 4.46
sqrt8 584 – 461 – – 298 35.36
squar5 476 – 251 – – 227 9.56
t481 237 – 237 – – 205 13.5
table3 86173 – 35807 – 32286 16997 47.35
urf3 – 53157 – 56766 – 48836 8.13
z4 674 489 – 260 – 310 –19.23
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to the existing methods that give the best reduction for that 
benchmark.

It can be seen from the table that there is an improvement 
of up to 48% in quantum cost. For arithmetic benchmark 
circuits like frg2, in0,max46, etc., and large benchmark cir-
cuits like misex3, table3, etc., there is a reduction in the 
quantum cost. However, for some benchmarks like add6, bw, 
z4, etc., the optimization method results in higher quantum 
cost when compared to the existing ones [17–19]. This is 
because only a small number of required gate pairs is avail-
able in these benchmarks that can be transformed using the 
algorithm and the techniques described earlier.

Briefly, the more recent LUT/ESOP-based techniques 
[20, 22, 23] focus on EPFL arithmetic benchmark circuits 
while our work focused on RevLib Library benchmark cir-
cuits. However, we would be keen to understand how our 
proposed algorithm would contribute to optimising the 
EPFL arithmetic benchmark circuits which is our on-going 
work currently.

Conclusions

In this paper, a representation has been proposed to classify 
a pair of gates in a reversible circuit based on its structural 
similarities. This classification aids in identifying the gate 
pairs that can be optimized as opposed to those that cannot 
be. In addition, a set of optimization techniques is proposed 
that can be applied on classifications that do not have any 
optimization defined on them. An optimization algorithm 
has also been presented that uses classifications and opti-
mization techniques to improve the cost of the given gate 
netlist. Simulation results show that there is a significant 
reduction in the quantum cost of benchmark circuits with a 
maximum of 78.5% and an average of 47% when compared 
to the existing techniques. Further, a comparison of the pro-
posed techniques with the existing ESOP-based ones shows 
an improvement in quantum cost of up to 48%, except in a 
few cases.
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