
Vol.:(0123456789)

SN Computer Science (2022) 3:38
https://doi.org/10.1007/s42979-021-00899-9

SN Computer Science

ORIGINAL RESEARCH

Software Product System Model: A Customer‑Value Oriented,
Adaptable, DevOps‑Based Product Model

Haluk Altunel1,2  · Bilge Say3 

Received: 30 March 2021 / Accepted: 21 September 2021 / Published online: 2 November 2021
© The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2021

Abstract
DevOps pipelines have brought notable advantages, such as fast and frequent software delivery to software production
paradigms, but dynamically dealing with quality attributes desired by the customer employing a DevOps pipeline remains a
challenge. This work aims to define the design of a systems thinking inspired model, called Software Product System Model
(SPSM), applying a customer-value oriented, holistic approach for implementing quality requirements, and its application
and evaluation in a large software house. The main features include dynamic control of quality gates, the parameters of
which are driven by customer requirements and feedback from surveys. All of the inputs are collected in a product backlog
and fed forward to the quality gates over the DevOps pipeline. SPSM was successfully deployed in a large software house
extending a DevOps pipeline with an accompanying improvement of customer-value oriented key performance indicators
for projects. In a 2-year-long case study, security and code quality were the main quality attributes, with the metrics on
security vulnerabilities and unit test coverage. At the end of the 2020, the DevOps pipeline within SPSM provided a 69.50%
decrease of security vulnerabilities of all software products, and a 29.43% increase in unit test coverage for the whole code
base for increasing code quality. At the end of 2020, the project completion ratio was measured to be 99.50% and the Sched-
ule Performance Index (SPI) was measured to be 99.78% as the average of 762 projects delivered. The flexibility of SPSM
allowed the software house to adapt to changing customer expectations. A checklist is provided for the replicability of the
model application.

Keywords  DevOps · Software Product System Model · Systems thinking · Software attributes · Customer value · Software
metrics · Software product management

Introduction

DevOps has become a popular paradigm and introduced
a major paradigm change in the software development
world over the last decade [1, 2]. Software product devel-
opment may include DevOps pipelines within a product
management perspective. Within the product manage-
ment boundaries, customer-value oriented software
quality attributes such as reliability, security, robustness,
etc. should also be adequately integrated into software
product systems. Software development business models
have been evolving from tailor-made, customer-specific
projects to software products [3]. Like any other product,
software products also have life-cycles with their own
stages of development, introduction, growth, maturity,
and decline [4]. Software product management covers the
pre-development phase, where the product is defined with
its vision, strategy and roadmap. Software development

This article is part of the topical collection “New Paradigms of
Software Production and Deployment” guest edited by Alfredo
Capozucca, Jean-Michel Bruel, Manuel Mazzara and Bertrand
Meyer.

 *	 Haluk Altunel
	 altunel@bilkent.edu.tr

	 Bilge Say
	 bilge.say@atilim.edu.tr

1	 Softtech Inc., Ankara, Turkey
2	 Department of Computer Engineering, Bilkent University,

Ankara, Turkey
3	 Department of Software Engineering, Atilim University,

Ankara, Turkey

http://orcid.org/0000-0003-1103-3644
http://orcid.org/0000-0001-9276-729X
http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-021-00899-9&domain=pdf

	 SN Computer Science (2022) 3:3838  Page 2 of 11

SN Computer Science

is well known for its agile and waterfall methodologies.
Deploying a software into a production environment is
not the end, rather it is the birth of the product. After
that point, post-development life starts. That means the
new born product needs care to survive and grow like
an infant. For healthy growth, it needs to be monitored
carefully and to be fed with new features, such as new
product versions. Moreover, collecting and using product
performance and customer satisfaction data become even
more important for durable products across all of life-
cycle stages. The holistic product view of the software is
the first of the driving forces of the DevOps model and
its application to be presented in this paper.

Due to complex engineering problems within DevOps,
the mainstream research is concentrated on tool chains,
architecture and organizational issues between develop-
ers and operation experts. Many applications and tools
have been introduced into the industry for implement-
ing and orchestrating software development pipelines [5,
6]. Although DevOps has been supported by a variety of
tool chains for continuous integration and delivery, most
of them focus on maximizing the efficiency and speed
of software delivery. This approach assumes the faster
the production pipeline is, the better it is for the whole
system in terms of time-to-market. However, production
speed cannot be the main focus alone for every indus-
try and every product. As stated above, other attributes
of software as a product can become dominant, such as
usability, robustness, correctness, and security. Moreover,
the importance of the attributes can change with time.
Therefore, a static DevOps pipeline designed for faster
production may not provide flexibility for other attributes
required by the software products. The second driving
force for the model emergence is the need for adaptability
based on customer-driven product values.

In this study, a cross-disciplinary interaction between
systems thinking and software engineering disciplines
is put into use to define and design what is called the
Software Product System Model (SPSM). The model
suggests extending the boundary of the system to cover
all life-cycle stages of software products including pre-
development, development and post-development phases.
The model proposes to optimize the whole system based
on the product attribute that is determined by the dura-
bility and success of the product. Customer-value is the
key here to determine the leading attribute. The model
is applied over an extended period in a large software
development company. We will first review related prob-
lems and approaches in the literature, then introduce the
conceptual design of the features of the model and finally,
present its application and evaluation in a large software
company, ending with a discussion of the validity and
implications of the approach.

Problem Identification and Related Work

The motivation behind the adaptation of systems thinking
principles into developing a DevOps based product devel-
opment model is to produce a product line that dynami-
cally manages and monitors the requirements for software
products through automation and the visibility provided by
the pre-development, development and post-development
tool chain while enjoying the more obvious gains brought
along with continuous integration and shorter develop-
ment cycles by DevOps. Before introducing the design of
the suggested model, current approaches to DevOps from
a perspective of quality will be briefly evaluated. Then
the application of systems approach in software product
development will be briefly reviewed.

Current Perspectives Relating DevOps to Software
Quality

Although the DevOps mindset and its evolution seems
to have emphasized quality, reliability and correctness
of software in its core definitions [1], empirical stud-
ies focusing on the challenges of DevOps practices with
respect to systemic views of software, that involves the
entire ecosystem of the software as a product in a holistic
manner, has been relatively rare [7]. This observation is
also affected by the fact that DevOps Maturity Models
of process improvement emphasizing continuous quality
improvement and behavior monitoring with feedback and
optimization mechanisms have been proposed but not yet
fully implemented [8]. An ISO/IEC standard for Agile
and DevOps Principles and Practices under Software and
Systems Engineering is still under development (ISO/
IEC AWI TR 24586). However, there is an increase in the
number of recent works of research that strive to empiri-
cally understand, measure and improve the full impact of
DevOps on software product quality.

A recent systematic literature review, aligned with the
model of ISO/IEC 25010 Systems and Software Qual-
ity Requirements and Evaluation standard, covering 31
articles in a span of 10 years on DevOps product quality
emphasizes the challenges to several aspects of product
quality [9]. Additional benefits to reliability and maintain-
ability brought along by mechanisms such as deployment
or test automation are marked by challenges to security,
all considered as part of quality attributes in the empiri-
cal studies evaluated. Although technical guides and pro-
posals for improving specific quality aspects of DevOps
such as dependability and security are available [10–12],
research in software industry involving empirical design
and evaluation of overall quality processes within DevOps

SN Computer Science (2022) 3:38	 Page 3 of 11  38

SN Computer Science

are still needed. A recent multi-case study of five com-
panies using agile and DevOps practices emphasizes the
perceived difficulties by practitioners, of striking the right
balance between speed of deploying new functionality ver-
sus quality concerns and possible conflicts raised in moni-
toring with suitable metrics [7]. In a case study, Handl
et al. [10] propose and evaluate an extension to the QUA-
MOCO quality meta-model for integration of dynamic
nonfunctional requirements at individual feature levels as
required by DevOps practices. A recent survey on DevOps
practitioners reveal that lessening complexity and smooth
integration with existing tools in the DevOps pipeline is
an enabler for performance engineering for quality [13].
The motivation of the present study is to contribute to this
body of knowledge by describing a conceptual framework
of a systems-based approach to quality in DevOps and its
implementation as an industrial case study.

Holistic System Approach in Software Development

Systems approach to software development have been
inspired by seminal works, such as Weinberg [14] (origi-
nally published in 1975) and Senge [15] (originally pub-
lished in 1990). Research exploring the system view in cur-
rent paradigms of software development exist, such as agile
methods within Weinberg’s system view [16] or changes
brought about by lean approaches to system elements [17].
The current study is inspired by a wish to extend the sys-
tematic explorations of Senge’s work to enhancing Software
Product System Model with DevOps. Senge’s emphasis on
learning as an organization with the joint responsibility of
all parties involved as well as system thinking approach that
integrates the interdependent parts comply well with the
DevOps philosophy.

Another holistic implementation perspective of DevOps
practices is introduced by Google as Site Reliability Engi-
neering (SRE) [18]. SRE includes principles and practices
for developing and operating large scale distributed software
systems. It is an extension of the current DevOps best prac-
tices and SRE is realized with Site Reliability Engineers. It
includes governance practices, such as training, meetings
and metrics for managerial purposes. Although SRE has
been utilized in large scale Google products, the product
management perspective is not the primary focus. Moreover,
reliability may not be the main concern for every customer.
Our model is differentiated by the flexible optimization focus
based on customer expectations that may change by time.

The present study reports the design, implementation
and evaluation of a DevOps pipeline model in a large soft-
ware house for creating customer-value for complex and
dynamic quality issues with a system thinking perspec-
tive. The applicability of system thinking principles have
been stated in DevOps literature before. We will cite a few

ranging from DevOps principles, to DevOps metrics and to
DevOps leadership. Kim et al. [19] introduce “The Three
Ways” of DevOps: the systems thinking in the flow rising
from seeing the whole complex system as creating business
value; shortening and amplifying the feedback loops particu-
larly between development and operations and a continuous
learning and experimentation cycle, where risk taking and
faults are dealt with positively within the culture of learn-
ing. Forsgren and Kersten [20] detail and justify how using
systems based metrics jointly with survey based metrics can
help attain a holistic systems view. Maroukian and Gulliver
[21] cite “holistic systems thinking” as one of the prominent
leadership skills for DevOps in an analysis of thirty inter-
views with an international sample of DevOps practitioners.
To overcome the quality problems stated in the previous
section, a system thinking approach [22] is also adopted in
this study for designing the DevOps pipeline used in a large
software house with an eye for product management.

Software Product Management

Software product management is a multidisciplinary area
lying at the intersection of business, engineering and user
experience [23]. Product management is not restricted to
development, rather it covers the entirety of product life-
cycle management. Product life-cycle management is valid
for software products as well, and projects planned for the
product have to consider the life-cycle stage of the product
[4].

Companies focusing on software products target product-
based growth by managing software assets from a business
point of view. This is why software product management has
become one of the most challenging and rewarding domain
in software industry [24]. Since software products need
planning new versions and frequent releases of them dur-
ing products life cycle, DevOps is an important backbone
of such software systems [25]. An attempt to integrate a
product life cycle view with DevOps has, for example, been
done in a business process architecture framework in [26];
our work is to present such a product-oriented conceptual
framework and its application in an enterprise setting from
a systems point of view.

Software Product System Model
as a Conceptual Framework

In this section, the conceptual and architectural elements of a
systems thinking inspired, DevOps based model is outlined.
The model focuses on software product management from
a customer-value perspective. There are three main factors
that differentiate the model from other models of software
production. The first is the software product management

	 SN Computer Science (2022) 3:3838  Page 4 of 11

SN Computer Science

focus. Since products have strategies and roadmaps covering
middle and long-term goals as well as short-term deliveries,
product-focused software production is more concentrated
on what should be implemented. The follow-up question of
how should it be implemented and delivered is addressed in
development phase and in the DevOps pipeline. The second
factor is the systems thinking perspective that helps us to
combine product management and software development
into a single system. This leads to an extended re-definition
of the system boundaries. The third is its adaptability to
the changing focus of customers. Customers use software
for their own business requirements that change frequently.
These changes should be met by the software products they
use. Static products that do not have the necessary flexibility
to meet the needs of customers cannot survive for a long
period of time. Thus, adaptability is the most important fac-
tor of our framework.

In the way we envision the system, the system bound-
ary is extended to cover all the steps of software product
development, including product management, requirements
engineering, design, development, integration, testing,
and deployment. We named this systems-thinking based
approach Software Product System Model or SPSM for
short. SPSM covers the end-to-end software development
life-cycle from a product perspective, as shown in Fig. 1.
In this model, optimization problems are considered in the
context of the whole system rather than dealing with them on
a local scale. Hence as part of SPSM, DevOps is designed in
a dynamic mode for the solution of optimization problems.

SPSM is designed for customer-value orientation in
the core. Its roots are coming from the large-scale agile
approach, product-based transformation and DevOps
transformation. The proposed model uses the continuous
improvement concept of System Kaizen which requires
system-level addressing of continuous improvement of prob-
lems over a long period [27]. Metrics are specified for the
improvement of model.

Customer-value oriented, DevOps based SPSM is shown
with its details in Fig. 2. The main roles are categorized as
product manager, product development & operations team,
product support team, and customers & users. The product
manager can be a single person or group of people who are
responsible for larger products. This role is mainly responsi-
ble for the success of the product. Setting the product vision
and strategy, defining and updating the product roadmap
and prioritizing the product backlog are the pre-develop-
ment activities led by the product manager. Monitoring and
approving the product version after the development phase
are their two main responsibilities during development.
The product manager is active during the post-development
period as well, focusing on customer satisfaction and the
performance of the product with data collected based on the
metrics. The data is fed back, as it is in systems thinking, to
revise the product strategy and roadmap when required. The
product life-cycle stage is another important parameter that
should be taken into account when managing the product.

The product development & operations team is the mul-
tidisciplinary team composed of different roles depending
on the size and industry of the software product. For each
product there may be a single dedicated team or a group of
teams, such as a tribe or a scrum of scrums depending on the
methodology. For convenience we will call this role simply a
“team” from this point on, independent of the structure and
size of the development team. This team should be capa-
ble of analyzing the requirements of the software in detail,
designing the software architecture, implementing the soft-
ware, and testing the software. The team must be competent
in DevOps practices to manage continuous integration and
continuous deployment. Technical skills based on building
the DevOps pipeline, such as Infrastructure as Code, Cloud
Competency, Kubernetes knowledge and similar, depends
on the DevOps pipeline implementation and they are not
within the scope of our framework. This team is responsible
for monitoring the development and post-development of
the software product. The performance metrics are defined
based on the product optimization attributes and are col-
lected throughout the products life-time.

The product support team, whose members are separate
from the product development & operations team except
for the product manager and the developers working on the
production issues, is responsible for the incidents occurring
during the post-development phase. These incidents can be
handled based on the Information Technology Infrastructure
Library (ITIL) framework [28]. ITIL defines incidents as
the unplanned interruption or reduction in the quality of a
software service that is in a production environment. The
data gathered during the post-development phase are based
on customer satisfaction and product performance based
metrics.

Fig. 1   SPSM as a systems process

SN Computer Science (2022) 3:38	 Page 5 of 11  38

SN Computer Science

Customers and users are the last group of people, the
group that needs and uses the software product. Their inter-
action with the software product provides valuable informa-
tion to the product manager for how to update the product
roadmap and backlog. They can also discover new require-
ments during their use of the product.

SPSM is composed of three main phases: pre-devel-
opment, development and post-development. The holistic
approach taken from system thinking to define the system
boundaries, the from-customer-to-customer system, is
introduced into the SPSM. The from-customer-to-customer
system is crucial for definition and solving the system opti-
mization problems. The attributes should be defined for the
whole system and the system optimization problems should
be defined based on the customer’s expectations and solved
within the system boundaries as a software product. If SPSM
is divided into sub-systems, such as backlog management,
pipeline management, and maintenance; then, each sub-sys-
tem will be optimized for local parameters, such as optimum
backlog management, optimum DevOps pipeline manage-
ment or optimum maintenance management. The collection
of local optimums will be different from the whole system

optimum; therefore, in SPSM, we focus on the whole system
optimum [14].

In SPSM, the customer defines the business requirements
with their business impact. These requirements are collected
by the product manager and used in the product roadmap and
product backlog. Items from the product backlog are pulled
by the product development & operations team based on the
priorities and used for the phase/iteration planning. The team
can use either a waterfall or an agile methodology based on
their choice for the software development principles. SPSM
supports mainstream agile methodologies as Scrum, Kanban
and Scrumban [29]. If the team adopts a waterfall approach,
then the planning phase of the project is based on the items
in the product backlog. If the team adopts an agile approach,
e.g., Scrum, then release and iteration planning is done. In
either case, the output of the planning session is the list of
items chosen from the product backlog and the new version
plan of the product.

When the team starts the next phase or iteration, the items
chosen for the new version are moved to the Product Board.
The Product Board should include at least the main soft-
ware development life-cycle steps such as analysis, design,

Fig. 2   Process flow in SPSM

	 SN Computer Science (2022) 3:3838  Page 6 of 11

SN Computer Science

development, functional system test, user acceptance test,
and the final step named as done corresponding for the com-
pliance with the definition of done. After the user acceptance
test is completed, the next step is the deployment of the new
version of the product into production. Depending on the
granularity required for tracking, other steps can be added.
The steps are connected to the DevOps pipeline. The new
version of the product is planned in the DevOps pipeline.
All software development activities are based on this ver-
sion. Software components and their own versions are linked
with the product version. This way, a holistic configuration
management is executed for the product covering all of the
artifacts and their related footprints in SPSM. Thus, any
product version can be linked with the software component
versions and product documentation versions as well as the
Backlog items. Code repositories are managed based on this
versioning approach.

The DevOps pipeline must provide at least the develop-
ment, integration and user acceptance test environments.
More environments such as staging and performance test-
ing can also be included based on the nature of the product.
There can be quality gates between these environments to
satisfy the pre-requisite of the next environment. When the
user acceptance test is finished, there should be a quality
gate before deployment into the production. In this gate,
the new version of the product is approved for release into
the production. This gate should include control elements to
check the version for its readiness for production. The con-
trol elements are related to the SPSM attributes, and should
have threshold levels to open the gate. For example, unit test
coverage ratio can be a control element, and if the threshold
level is set to 70%, then each new version will be will only
pass the gate once they satisfy this level. Control elements
can be defined on the DevOps pipeline and values can be
collected automatically with the pipeline tools. Throughout
the DevOps pipeline, in the development phase, the metrics
are defined and collected based on the system attributes and
related control elements. In the post-development phase, the
product performance metrics are collected in a manner simi-
lar to the development phase. All the collected data through-
out these two phases are based on the product optimization
attributes. Therefore, SPSM supports a dynamic DevOps
pipeline based on the chosen attributes. The prerequisites
between the pipeline environments and the quality gate at the
end are defined dynamically. For example, if the customer is
concerned about the quality of the product, test related met-
rics can be added into the control elements, such as unit test
coverage. If the customer wants more reliability, the unit test
coverage ratio can be increased to 90%. If cyber-attacks are
getting frequent, then security becomes the leading attribute
and vulnerability measurement via proxy metrics will be
the new focus. Here the term vulnerability is used for defi-
cits in the specifications, development, or configuration of a

software that, if it occurs, violates the security policy of the
software [30]. Moreover, vulnerability-related code metrics
will be added into the control elements. If the customer has
time-to-market concerns, then production speed becomes
the leading attribute and cycle-time will be measured and
optimized for the whole SPSM.

After releasing the new product version and deploying it
into production, customer satisfaction level is collected with
regular surveys. The surveys are organized as questionnaires
with electronic survey tools available in the marketplace.
Answers for the questions are collected numerically with the
help of a Likert-type scale. The last part of the survey is used
for the computation of the net promoter score [31]. The out-
comes are then fed into the product backlog. The change in
the customer satisfaction level after new versions should be
analyzed for any correlation with any of the SPSM metrics.
The product quality results coming from questionnaires are
then compared with the DevOps pipeline metrics. If a survey
indicates a decrease in the product quality from customer point
of view, then pipeline metrics for quality should be analyzed
according to the discovered correlation. If a metric shows a
meaningful correlation with survey results, then that metric
will have higher contribution to the pipeline quality gates.

Besides customer survey metrics, the product is also
monitored in production and data is collected. Typically, in
the production environment availability related metrics are
monitored. However, in SPSM, the leading system attribute
needs feedback from the production environment as well. If
quality is the leading attribute, then a change in the severity
and density of incidents after the release of the new versions
will provide valuable feedback into SPSM. The correlation
between incident data and SPSM quality metrics will help
SPSM to adjust the control elements at the gate. Moreover, if
any corrective or preventive action is required, the corrective
or preventive action should be sent to the product backlog with
measurements. The operations required for the product in the
production environment are traced and send into the product
backlog. This data driven feedback mechanism will let the
product improve continuously.

The main components of SPSM in the DevOps pipeline is
shown in Fig. 3. During software development, software qual-
ity is monitored via tools. There are a variety of tools in the
market that can be integrated to the DevOps pipeline. Another
component is software security which can be realized with
the help of tools in the market and can also be integrated to
the pipeline. Test monitoring is the third main component for
tracking the system, integration and other tests. The fourth
component is user acceptance as part of getting formal vali-
dation from customers or their representatives. The last com-
ponent is labeled as product documentation which may vary
sector to sector. These five components form the minimum set.
Other components can be inserted depending on the customer
value orientation of SPSM.

SN Computer Science (2022) 3:38	 Page 7 of 11  38

SN Computer Science

Implementation and Deployment
into the DevOps Cycle

The SPSM model was realized with pilot implementations
during 2016–2017 and was put into widespread use in 2018
in a large-scale software company. The usage of SPSM was
within a software company with 19 product groups and 56
product development and operations teams in the banking
and finance industry and a work force of around 900 people
working on the product development pipeline. The company
was developing web-based enterprise applications as well
as mobile applications in Android and iOS environments.
The leading software language was Java, followed by C#.net.
There were other languages and software development
frameworks as well but their shares were small compared to
the leading languages. Product development and operations
teams were composed of a team lead, a product architect,
back-end and front-end developers, business analysts, test
experts, and a DevOps engineer. Each team was between 5
and 12 people. The average team size was 8 people with a
mean age of 34.2 years. The teams were responsible for a
single product or part of a large enterprise product. Teams
were equipped with the technical skills that were required for
the development and deployment of the software. In 2019,
there was an enterprise level agile transformation, mainly
scrum with its practices. The adoption of the agile method-
ologies finished in July 2019. Since that point, every team

has been using scrum with product backlog and boards in
Jira™. Each team also has a volunteer scrum master within
the team focusing on scrum practices as well.

Each product had a product manager responsible for
the product strategy, roadmap, backlog management as
well as customer satisfaction. Product managers were also
tasked with approving the product before deploying it into
the production environment. Each product had a support
expert or support team responsible for the solution of inci-
dent tickets occurring in the production. Security was con-
sidered a common knowledge base for all development &
operations teams. Therefore, every team member was given
basic software security training. Besides that, there was a
separate security team which is located as a security center
of excellence that answers security related questions from
team members and advising and monitoring security related
topics.

The model is implemented with two main parts: the
product-based production process and the DevOps pipeline.
Continuous deployment is exercised for all products of the
company. The DevOps pipeline is established on premise
with centrally decided tools. Tools are connected and made
ready for the usage of development & operations team before
SPSM model is utilized. All codebase is managed on the
premise’s central repo in Nexus™. The process is built on
Jira™, where customers could send and track their requests
for the products. This process is connected to the DevOps
pipeline which is built on the XebiaLabs™ product family

Fig. 3   SPSM system architecture

	 SN Computer Science (2022) 3:3838  Page 8 of 11

SN Computer Science

for the coordination of releases and automated deployment,
Team Foundation Server™ for configuration management
and Jenkins™ for automated building in the security step.
Due to the security requirements of the main customer which
is one of the largest banks in Turkey, the whole of SPSM has
been optimized to provide more secure software products.
To manage the pipeline application security levels, the static
code analysis tool Checkmarx™ has been integrated. Since
the security checks of the software components took time,
the tool is adjusted to trace the code base asynchronously on
Jenkins. The security metrics are reported via pipeline dash-
board automatically on a regular basis. The product teams
can monitor their findings and fix them during their develop-
ment period. Once a new code is developed, the continuous
integration steps of DevOps pipeline added the code to the
products code base. The code base is traced regularly and
detected security vulnerabilities are prioritized by the tool as
high, medium and low according to Open Web Application
Security Project (OWASP) and reported in the pipeline dash-
board [32]. Product teams are responsible to resolve them.
In addition, a DevOps security control element is added into
the gate which is located just before the new product ver-
sion is approved for release into the production. If SPSM is
focused on software security, then this control element can
be activated. In this control element, high level vulnerabili-
ties of each software product are compared with their previ-
ous versions, and if any increase is detected, then gate is
closed. That means, the new version of the software product
is automatically rejected to be deployed into the production
until the high-level vulnerabilities are less or equivalent to
the previous version. In other words, this control element
in the gate forces product teams to focus on security as the
main attribute in SPSM for this particular software produc-
tion environment, whereas other attributes could become the
main focus for another environment.

Other control elements are also defined according to
Cobit standards which defines the regulations for informa-
tion technology governance of the banks in Turkey [33].
These include the two control elements for verifying whether
the tests are completed and user acceptance from the cus-
tomer side is achieved. Besides that, extra control elements
are defined for validating the product versioning and related
documents. In these control elements, each product is
checked for the main set of documents; analysis, architec-
ture, and user manual being the minimum set of documents
for each product.

The implementation phase within the company required
the integration of tools for the control elements. For the
internal quality of the software, Sonarqube™ is utilized with
the measurements on unit test coverage and rule compli-
ance index. This control element checks the level of these
two metrics; however, it does not act as the show stopper
for the pipeline. The product teams can monitor their unit

test coverage automatically for each new deployment. If for
another customer SPSM is focused on unit testing, then this
control element can act as the main gate for the deploy-
ment for rejecting the product versions with lower unit test
coverage than the customer defined value. This value may
change depending on the customer and there is no industry
standard [34].

The customer satisfaction level is measured by the sur-
veys as introduced in the previous section. The surveys are
composed of four parts and have a total of 12 questions with
multiple choices reflecting the customer satisfaction level.
Surveys are organized to measure in the form of system
usability scale (SUS) [35]. The surveys have five choices
with the help of a Likert-type scale. The questions cover the
fulfillment of requirements, product quality, product support
quality, and company reputation. Overall satisfaction level is
measured by the survey responses to each question.

Evaluating the Use of SPSM

In this section, we evaluate the use SPSM within the com-
pany’s DevOps cycle for 2 years with relevant metrics as
well as discussing the present case study from the perspec-
tive of empirical validity.

Monitoring and Improving the Use of SPSM

During 2019, this pipeline was utilized and operated for all
the products of the bank with the goal of improving their
security level. The outcome of this utilization is a 60.39%
decrease of security vulnerabilities of all software products
delivered to the bank at the end of 2019. This decrease cov-
ers all the vulnerabilities of the code base of products that
have been developed over many years. The code base is
around 25 million lines with different coding languages with
two main groups in Java and C#. Around 20% of the code
base is greenfield, meaning that it is a newly developed prod-
uct with no legacy code, while others are mainly additional
features for live products that are in one of the introduction,
growth, maturity, or decline stages.

The security focus as a quality attribute has had almost
no negative effect on the timely and complete delivery of
contracted software products. At the end of 2019, project
completion ratio was 98.11% with a Schedule Performance
Index (SPI) of 99.23% as the average of 684 projects deliv-
ered. Major decrease in security vulnerabilities as well as
successful delivery of the products can be explained by
effectiveness of the security focus in SPSM implementa-
tion in the company. Since security is the main goal and the
control element is adaptable as explained in the previous

SN Computer Science (2022) 3:38	 Page 9 of 11  38

SN Computer Science

section, all product teams should focus on vulnerabilities
before pushing the code in the pipeline into the production.

In 2020, in addition to the security focus, the bank asked
for an increase in the code quality. The reason behind this
requirement was the motivation to decrease the number of
incidents in the production environment. Unit test coverage
was chosen as an indicator of the code quality. The chal-
lenge was to increase unit test coverage for the whole code
repository. That means SPSM model needed to optimize the
system for both security and the code quality while keeping
the project completion ratio above 95%. As the first step a
dashboard was added into SPSM to show the security and
code quality metrics of each software package in real time.
This way each product team could easily monitor their pro-
gress. In addition, a self-service scan capability was added to
the dashboard that enabled product teams to start security or
quality scans synchronously. This way teams can scan their
own codes without waiting for the next deployment. At the
end of the 2020, the DevOps pipeline provided a 69.50%
decrease in security vulnerabilities of all software products,
while a 29.43% increase in unit test coverage for the whole
code base was realized. Baseline values taken at the begin-
ning of the year were 91,348 vulnerabilities and a 20.35%
unit test coverage. The number of new incidents per month
was also monitored and at the end of 2020, a 17% decrement
was realized when compared to the previous year based on
the total annual 120,000 incidents taken as the baseline at
the beginning of the year. By the end of 2020, project com-
pletion ratio was measured to be 99.50% and the Schedule
Performance Index (SPI) as 99.78% as the average of 762
projects delivered. Projects that could not be finished within
the same year were carried over to the next year and counted
as failures. Even though the ratio was small, the main reason
behind them was the inability to adapt to changing customer
values and requirements.

At the end of 2019 product satisfaction surveys reached
the value of 3.76, while at the end of 2020, the customer
satisfaction level was 4.05. Additional unit test coverage has
a positive correlation with the increment.

During the adoption period there were mainly three issues
to cope with. The first one was the cultural change of the
style of work. The formation of new teams around prod-
ucts and focusing on the same picture of customer value
and product success was challenging for the development
and operational teams that had worked separately until that
point. This issue was resolved with the help of product man-
agers who set the product goal based on customer value.
The second issue was the migration of legacy code base to
the new tool chain. Some parts of the old legacy code were
not supported by the new tool chains, which required the
legacy code to be converted to the new code base when nec-
essary. The third issue was adaptability of teams to changing
customer expectations while maintaining their pace. Even

though SPSM and tool chains promote adaptability, mental
agility takes some time to adapt to changing priorities.

Threats to Validity

The current research can be loosely positioned within the
Design Science Research paradigm [36], an industrial case
study forming the main implementation and evaluation con-
text for the suggested DevOps System Model, SPSM. In
this section, we will address the main concerns regarding
the validity and reliability of the study from an empirical
perspective [37].

Construct validity is concerned with how much the theo-
retical model and the interpretation and operationalization
of its application matches. What is assessed has to correctly
correspond to the theoretical construct [37, 38]. The primary
author of the present article was also the responsible director
for process improvement in the company forming the cur-
rent case study, thus SPSM’s implementation and evaluation
was realized over 2 years with synchronous methodological
validation and verification directly matching the conceptual
model.

Internal validity is about the strength of the causal and
logical relationship between the variables of the research
and the conclusions drawn [37]. The present case study is
about a complex software development environment with a
large code base, and a large number of developers. Clearly
distinguishing what is caused by the properties of the SPSM
deployment in contrast to other processes such as specifics
of agile processes in the company can be hard to do. We
acknowledge that the metrics chosen for the evaluation were
consistent with dynamic monitoring and the triangulation
of the data for the evaluation of the effectiveness of SPSM
in line with the policies of the company, but they were not
intended as an exclusive subset that would be relevant only
to the performance of SPSM. Moreover, some possibly con-
founding factors, such as the effect of coronavirus pandemic,
and hence, the transfer of the company to remote work dur-
ing the latter half of the application of SPSM also has to be
evaluated separately as future work.

We will treat external validity, the extent of generalizabil-
ity for a successful deployment of SPSM in other industrial
cases, and reliability, the transparency showing the correct-
ness of measurements for evaluation and mechanisms for the
replicability of the study, together, as the factors concern-
ing both are common. There are no case study protocols
and databases for the replicability of the study regarding
the nature of the company-internal information that such
empirical replicability and reliability tools would involve.
However, the company has well established procedures and
internal quality systems in accordance with ISO9001:2015
for metric collection, evaluation, and continuous improve-
ment. Moreover, we drew up a general checklist, shown in

	 SN Computer Science (2022) 3:3838  Page 10 of 11

SN Computer Science

Fig. 4, for other organizations who want to implement and
evaluate SPSM in a DevOps context to mitigate risks in rep-
licability and external validity.

Concluding Remarks: Implications of SPSM
for DevOps

We have proposed a systems-based, customer-value ori-
ented, dynamic System Model, SPSM, over a DevOps pipe-
line with quality gates and with feedback from both custom-
ers and local metrics. Our purpose is to enhance DevOps
pipelines’ interaction with software development processes
without giving up DevOps’ advantages in integration and
production speed. The implementation and evaluation of the
model over 2 years in a large software house improved the
quality needs of the particular customer focus, with further
improvement of key project performance indicators. SPSM
has allowed for a better adoption of agility concerning cus-
tomer expectations and changes in customer focus by allow-
ing dynamic fine tuning with respect to product attributes.

SPSM as a System Model overlaid on a DevOps pipe-
line has also allowed local optimums on desired attributes
to work better, being integrated to the whole system opti-
mization by bringing product log, DevOps, documentation
and maintenance all under the same framework and making
causal links explicit. The adoption of SPSM with extra qual-
ity gates has not been detrimental to delivery rates; one par-
ticular reason for that in this particular implementation has
been the firmness of the process owners in the non-flexibility
of the quality gate control levels, even though such requests
and even complaints on possibly overriding the gates in the
name of urgency of a certain feature implementation have
been presented. Such rebounds are likely to happen but man-
agement support in such an implementation is of importance
so that developer teams have a chance to adjust to expecta-
tions and will know that they cannot be bypassed.

Future work could involve more empirically controlled
application and evaluation of SPSM in other software com-
pany settings. Since the adoption and acceptance of the
model characteristics by the developer teams are crucial,

one way to go could be in the direction of making the adop-
tion of the model for the product teams easier; possibly sup-
porting how the quality emphasis in the current model could
be enhanced through alternate means, such as gamification.

Author Contributions  HA is the lead designer and the application coor-
dinator for Software Product System Model (SPSM). BS helped put
the design and deployment process into a research framework. Both
contributed to the writing of the article.

Funding  Not applicable.

Availability of Data and Materials (Data Transparency)  Not applicable.

Code Availability (Software Application or Custom Code)  Not
applicable.

Declarations 

Conflict of Interest  The authors declare that they have no conflict of
interest. Dr. Haluk Altunel has been working for Softtech Inc.as Direc-
tor of Strategy and Product Management.

References

	 1.	 Leite L, Rocha C, Kon F, Milojicic D, Meirelles P. A survey of
DevOps concepts and challenges. ACM Comput Surv. 2019.
https://​doi.​org/​10.​1145/​33599​81.

	 2.	 Ebert C, Gallardo G, Hernantes J, Serrano N. DevOps. IEEE
Softw. 2016;33(3):94–100. https://​doi.​org/​10.​1109/​ms.​2016.​68.

	 3.	 Kittlaus H, Samuel AF. Software product management. Berlin:
Springer; 2017. https://​doi.​org/​10.​1007/​978-3-​642-​55140-6.

	 4.	 Altunel H. Agile project management in product life cycle. Int
J Inf Technol Proj Manag. 2017;8(2):50–63. https://​doi.​org/​10.​
4018/​ijitpm.​20170​40104.

	 5.	 Bolscher R, Daneva M. Designing software architecture to support
continuous delivery and DevOps: a systematic literature review.
In: Proceedings of the 14th international conference on software
technologies (ICSOFT); 2019. pp. 27–39. https://​doi.​org/​10.​5220/​
00078​37000​270039.

	 6.	 Kersten M. A cambrian explosion of DevOps tools. IEEE Ann
Hist Comput. 2018;35(2):14–7. https://​doi.​org/​10.​1109/​ms.​2018.​
16613​30.

Fig. 4   Checklist for SPSM
application in DevOps Frame-
work

1. Are there quality gates representing dynamic quality features implemented in DevOps

pipeline with local metrics effecting the opening and closing of the gates?

2. Does the customer feedback find its way back into the system quantitatively to track

and monitor local and global metrics of desired quality features?

3. Can the quality gate metrics dynamically change in priority in accordance with the

customer feedback ?

4. Can the whole system improvement be observable with the metrics continously?

5. Does the product board cover all of the software development life cycle?

6. Is the versioning scheme applied for product backlog and documentation?

7. Is there a prioritized product backlog?

https://doi.org/10.1145/3359981
https://doi.org/10.1109/ms.2016.68
https://doi.org/10.1007/978-3-642-55140-6
https://doi.org/10.4018/ijitpm.2017040104
https://doi.org/10.4018/ijitpm.2017040104
https://doi.org/10.5220/0007837000270039
https://doi.org/10.5220/0007837000270039
https://doi.org/10.1109/ms.2018.1661330
https://doi.org/10.1109/ms.2018.1661330

SN Computer Science (2022) 3:38	 Page 11 of 11  38

SN Computer Science

	 7.	 Lwakatare LE, Kilamo T, Karvonen T, Sauvola T, Heikkilä V,
Itkonen J, Kuvaja P, Mikkonen T, Oivo M, Lassenius C. DevOps
in practice: a multiple case study of five companies. Inf Softw
Technol. 2019;114:217–30. https://​doi.​org/​10.​1016/j.​infsof.​2019.​
06.​010.

	 8.	 Badshah, S, Khan AA, Khan B. Towards process improvement
in DevOps: a systematic literature review. In: EASE’20: 24th
International conference on evaluation and assessment in soft-
ware engineering 2020, April 15–17, 2020. Trondheim, Norway.
https://​doi.​org/​10.​1145/​33832​19.​33832​80.

	 9.	 Céspedes D, Angeleri P, Melendez K, Dávila A. Software product
quality in DevOps contexts: a systematic literature review. In:
Trends and applications in software engineering. CIMPS 2019.
Adv Intell Syst Comput. 2020;3:51–64.

	10.	 Hsu T. Hands-on security in DevOps. Birmingham: Packt Publish-
ing; 2018.

	11.	 Düllmann TF, Paule C, van Hoorn A. Exploiting devops practices
for dependable and secure continuous delivery pipelines. In: 2018
IEEE/ACM 4th International Workshop on Rapid Continuous
Software Engineering (RCoSE), 2018. pp. 27–30.

	12.	 Haindl P, Plösch R, Körner C. An extension of the QUAMOCO
quality model to specify and evaluate feature-dependent non-func-
tional requirements. In: 45th Euromicro Conference on Software
Engineering and Advanced Applications (SEAA), Kallithea-
Chalkidiki, Greece, 2019. pp. 19–28. https://​doi.​org/​10.​1109/​
SEAA.​2019.​00012.

	13.	 Bezemer P, Eismann S, Ferme V, Grohmann J, Heinrich R,
Jamshidi P, Shang W, van Hoorn A, Villavicencio M, Walter
J, Willnecker F. How is performance addressed in DevOps? In:
Proceedings of the 2019 ACM/SPEC International conference on
performance engineering (ICPE '19). New York, NY, USA, 2019.
pp. 45–50. https://​doi.​org/​10.​1145/​32976​63.​33096​72.

	14.	 Weinberg GM. An introduction to general systems thinking. Anni-
versary edition. New York: Dorset House Publishing; 2001.

	15.	 Senge P. The fifth discipline: the art and practice of the learning
organization. 2nd ed. New York: Doubleday Press; 2006.

	16.	 Wendorff P. An essential distinction of agile software develop-
ment processes based on systems thinking in software engineering
management. In: Third international conference on eXtreme pro-
gramming and agile processes in software engineering, Alghero,
Sardinia, Italy, 2002.

	17.	 Osterman C, Fundin A. A systems theory for lean describing natu-
ral connections in an XPS. TQM J. 2020;32(6):373–1393. https://​
doi.​org/​10.​1108/​TQM-​12-​2019-​0284.

	18.	 Murphy N, Beyer B, Jones C, Petoff J. Site Reliability Engineer-
ing: How Google runs production systems. Newton: O’Reilly;
2016.

	19.	 Kim G, Humble J, Debois P, Willis J. The DevOps handbook:
How to create world-class agility, reliability, and security in tech-
nology organizations, IT Revolution, 2016.

	20.	 Forsgren N, Kersten M. DevOps metrics. Commun ACM.
2018;61(4):44–8. https://​doi.​org/​10.​1145/​31591​69.

	21.	 Maroukian K, Gulliver S. Exploring the link between leadership
and Devops practice and principle adoption. Adv Comput: Int J.
2020. https://​doi.​org/​10.​5121/​acij.​2020.​11401.

	22.	 Franklin GF, Fowell JD, Emami-Naeini A. Feedback control of
dynamic systems. 8th ed. London: Pearson; 2018.

	23.	 Anon J, González de Villaumbrosia C. The product book. Product
School, 2017.

	24.	 Wagenblatt T. Software product management fundamentals.
In: Software Product Management. Management for Pro-
fessionals. Cham: Springer; 2019. https://​doi.​org/​10.​1007/​
978-3-​030-​19871-8_1.

	25.	 Feijter R, et al. Towards the adoption of DevOps in software prod-
uct organizations: a maturity model approach. Technical Report
Series UU-CS-2017–009, 2017.

	26.	 Babar Z, Lapouchnian A, Yu E. Modeling DevOps deployment
choices using process architecture design dimensions. The Prac-
tice of Enterprise Modeling. Berlin: Springer; 2015. p. 322–37.
https://​doi.​org/​10.​1007/​978-3-​319-​25897-3_​21.

	27.	 Berger A. Continuous improvement and kaizen: standardization
and organizational designs. Integr Manuf Syst. 1997;8(2):110–7.
https://​doi.​org/​10.​1108/​09576​06971​01657​92.

	28.	 ITIL, 4th Edition. https://​www.​axelos.​com/​welco​me-​to-​itil-4.
Accessed July 2021.

	29.	 Agile Alliance Web Site. https://​agile​allia​nce.​org. Accessed Mar,
2021.

	30.	 Bulut FG, Altunel H, Tosun A. Predicting software vulnerabili-
ties using topic modeling with issues. In 2019 4th International
conference on computer science and engineering (UBMK). IEEE,
2019.

	31.	 Reicheld FF, Sasser WE Jr. Zero defections. In: Lewis M, Stack
N, editors. Operations management: critical perspectives on busi-
ness and management, vol. 105. Milton Park: Routledge; 2003. p.
289–98.

	32.	 Open Web Application Security Project. https://​owasp.​org/.
Accessed Mar 2021.

	33.	 COBIT: Control Objectives for Information Technologies, an
ISACA framework. https://​www.​isaca.​org/​resou​rces/​cobit.
Accessed Mar 2021.

	34.	 Zhu H, Hall PAV, May JHR. Software unit test coverage and ade-
quacy. ACM Comput Surv. 1997;29(4):366–427. https://​doi.​org/​
10.​1145/​267580.​267590.

	35.	 Drew MR, Brooke F, Baccus WL. What does the system usability
scale (SUS) measure?. In: International conference of design, user
experience, and usability. Cham: Springer; 2018. https://​doi.​org/​
10.​1007/​978-3-​319-​91797-9_​25.

	36.	 Hevner A, Chatterjee S. Design research in information systems.
Boston: Springer; 2010.

	37.	 Wohlin C, Runeson P, Höst M, Ohlsson MC, Regnell B, Wesslén
A. Experimentation in software engineering. Berlin: Springer;
2012.

	38.	 Yin R. Case study research and applications: design and methods.
6th ed. Los Angeles: SAGE; 2018.

Publisher's Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1016/j.infsof.2019.06.010
https://doi.org/10.1016/j.infsof.2019.06.010
https://doi.org/10.1145/3383219.3383280
https://doi.org/10.1109/SEAA.2019.00012
https://doi.org/10.1109/SEAA.2019.00012
https://doi.org/10.1145/3297663.3309672
https://doi.org/10.1108/TQM-12-2019-0284
https://doi.org/10.1108/TQM-12-2019-0284
https://doi.org/10.1145/3159169
https://doi.org/10.5121/acij.2020.11401
https://doi.org/10.1007/978-3-030-19871-8_1
https://doi.org/10.1007/978-3-030-19871-8_1
https://doi.org/10.1007/978-3-319-25897-3_21
https://doi.org/10.1108/09576069710165792
https://www.axelos.com/welcome-to-itil-4
https://agilealliance.org
https://owasp.org/
https://www.isaca.org/resources/cobit
https://doi.org/10.1145/267580.267590
https://doi.org/10.1145/267580.267590
https://doi.org/10.1007/978-3-319-91797-9_25
https://doi.org/10.1007/978-3-319-91797-9_25

	Software Product System Model: A Customer-Value Oriented, Adaptable, DevOps-Based Product Model
	Abstract
	Introduction
	Problem Identification and Related Work
	Current Perspectives Relating DevOps to Software Quality
	Holistic System Approach in Software Development
	Software Product Management

	Software Product System Model as a Conceptual Framework
	Implementation and Deployment into the DevOps Cycle
	Evaluating the Use of SPSM
	Monitoring and Improving the Use of SPSM
	Threats to Validity

	Concluding Remarks: Implications of SPSM for DevOps
	References

