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Abstract
Visualization of spectral images and interaction with them is still a challenge. We demonstrate an edge-computing, web-tech-
nology based solution to handle spectral mage data and allow real-time interaction with it. The solution is flexible, efficient 
and applicable. It includes visualization strategies based on color science, image processing and statistics. An example of 
use is provided through a collaboration with a domain knowledge expert for an application related to vegetation inspection.

Keywords Spectral imaging · Data visualization · Real-time spectral image processing · Web technologies · Plant 
phenotyping

Introduction

Over the past 10 years, web browser has become a major 
visualization tool for a very wide variety of image contents. 
However, only Jpeg, PNG, GIF and WebP formats in RGB 
are supported. In the case of spectral images, there is not 
only a lack of standard image format, but also a challenging 
difficulty to cope with the high dimensionality of the infor-
mation they contain.

In a previous conference communication [14], we pro-
posed a new online visualization tool dedicated to multi- 
and hyper-spectral reflectance images. The proof of concept 
undertaken showed that it is possible to use the capabilities 
offered by modern web browsers to visualize and interact 
in real time with complex spectral images. This allowed us 
to demonstrate that these browsers, which normally allow 
to manipulate standard multimedia files (RGB images, vid-
eos, etc.), can also be adapted, with the help of standardized 
Web technologies (WebAssembly, WebGL, etc.), to other 
advanced image contents while having processing times 
close to those obtained by native applications.

In this article we present the methodology we have imple-
mented to develop this tool. We worked on visualization 
techniques jointly developed with a domain knowledge 
expert of the scientific problem to be solved. To achieve 
this, we first detail how we built the foundations (data struc-
tures, algorithms and software techniques) needed to enable 
modern web browsers to manipulate and visualize multi- 
and hyper-spectral reflectance images using an edge com-
puting approach. Then in a second step, we investigate the 
usability of this tool, by confronting it to specific purposes 
related to the spectral analysis of plants, in collaboration 
with a domain knowledge expert. And thus, we define new 
functionalities to upgrade our tool so that it fully meet the 
expectations of the expert. One of the major observation 
related to the evaluation of the techniques used is that the 
visualization of custom gradients computed on the spectra 
appears to be a very efficient approach.

This article is part of the topical collection “Advances on Signal 
Image Technology and Internet based Systems” guest edited by 
Albert Dipanda, Luigi Gallo and Kokou Yetongnon.
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The first section of this paper presents the types of spec-
tral images that can be handled, as well as a state of the art 
on visualization methods. It is followed by a second section 
dedicated to a description of our tool and the demonstrator 
we have made available online. The third section presents 
the methodology we have applied to a practical use case, 
related to the spectral analysis of plants. This paper ends 
with a conclusion and perspectives that such a tool can offer 
to the scientific community.

Spectral Images

Spectral Reflectance Images

Reflectance is the fraction of light reflected from the surface 
of a material. It is defined as the ratio of reflected light flux 
to incident light flux. The reflectance of a surface gener-
ally varies according to the wavelength of the incident light. 
The curve representing the reflectance is a function of wave-
length called a spectral reflectance.

It is possible, with specific sensors (filter wheels [8, 39], 
Spectral Filter Arrays (SFA) [28], diffraction gratings [6, 
18], liquid crystal tunable filter [21], etc.) or by reconstruc-
tion from RGB images [3, 35], to produce reflectance images 
where each pixel contains a spectral reflectance. These spec-
tral images are useful to analyze the nature of the materials 
that compose an object. However, one of the challenge for 
their use is the lack of standard image format, which should 
be solved soon attended the recent initiatives, e.g. the one 
reported in [1].

The very large variety of sensors and techniques to obtain 
spectral reflectance images generate a multitude of image 
types with various resolutions, numbers of spectral bands, 
and sensitivities. A Silios CMS-C multispectral camera 
based on SFA captures images of size 1280 × 1024 pixels 
with 9 bands, between 430 and 700 nm, and 10-bit coded 
information (this kind of image requires to use specific 
demosaicing algorithm [44]). A HySpex VNIR-1800 cam-
era scans lines of 1800 pixels with 186 bands, between 400 
and 1000 nm, and 16-bit coded information using diffrac-
tion gratings; A SpecimIQ hyperspectral camera, produces 
with an integrated scanner that uses diffraction grating, a 
512 × 512 pixels image with 202 bands, between 400 and 
1000 nm, with 16-bit encoded information. A HySpex 
VNIR-1800 camera placed on two translation axes X and 
Y, scanning 10 cm stripes, will generate for a painting of 
the size of Leonardo da Vinci’s Mona Lisa ( 77 × 53 cm) 
an image of size 13860 × 9540 pixels with 182 double-byte 
coded strips which would represent 48.130 GB of data. For 
the same painting, the multispectral camera Silios CMS-C 

will produce an image of 1.64 MB of data, with a much 
lower spatio-spectral resolution.

We see that the amount of information that needs to be 
treated to process and/or display such images can be very 
large, making it difficult to handle them. It is therefore essen-
tial to have data structures adapted to their use. Due to the 
large number of possible radiance related data captured by 
any camera, our proposal assumes that the user has already 
transformed raw data from their specific devices to stand-
ardised reflectance data.

Spectral Image Visualization

In addition to the technical difficulties related to handling 
a huge amount of information, the visualization of spectral 
image data is also challenging. The standard representation 
for color image data is RGB values, i.e., a tri-dimensional 
information related to a visual and cognitive interpretation 
of color; while the number of bands of a spectral image is 
not directly related to any intuitive encoding process related 
to visualization.

Attempts to visualize spectral images are originally based 
on a gray-level representation of the scene, and related to a 
pixel manipulation, e.g., visualization of the spectrum for a 
specific pixel, band-based, information-based or target-based 
image processing, such as [25].

Another typical way to look at spectral images is to 
encode them in a standard colorspace. This can be done 
through several concepts:

– The selection of three of the spectral bands and their link 
to the three dimensions of the colorspace. The choice of 
the bands and their relation to a specific color dimension 
can be based on priors [5, 29, 32, 43]. This can be fol-
lowed by an image enhancement process [36] to improve 
the visibility in the resulting image.

– In the visible range, we can use standard colorimetry 
rules to compute, or estimate, the colorimetric values 
in each pixel related to the acquired spectrum. This can 
be done in real time by the use of GPGPU [12]. Limita-
tions related to this approach are due to: metamerism; 
settings of the display media that require calibration [13, 
16, 46]; impact of illumination [23, 24]; etc. Alternative 
approaches using metameric blacks to emphasize meta-
meric samples were recently proposed [45].

– Another approach is the dimension reduction based on 
information theory to three relevant dimensions, then 
related to a colorspace encoding with false colors. Those 
techniques include PCA [49] or wavelet [42] decomposi-
tion.

– It is possible to implement the fusion of several bands 
or information channels until convergence to a color or 
a panchromatic image [27]. Tentative techniques that 
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map the spectral information space to color space while 
keeping the content relevant for human observers were 
proposed: manifold alignment [31], moving least squares 
[30], etc.

The limitation of those approaches is the assumption of a 
working space of lower dimensionality than the spectral 
space used to visualize the data (i.e. 3 dimensions), and the 
combination of those spectral dimensions while encoded 
into a colorspace. To address this issue, other visualization 
strategies were proposed, e.g., to consider the spectral image 
as a volume [37] or to look at information in a color space 
[15]. Those proposals are alternatives to the image format, 
setting up the problem toward general information visualiza-
tion, using graphs or other hierarchical structures.

The underlying statement for our research is that a certain 
level of dynamic interaction is required in some study cases 
to investigate the spectral image data visually. This interac-
tion must be fast and fairly intuitive, even if the process is 
conducted by imaging experts. To satisfy this expectation, 
we propose to enhance our tool with a colorimetric visuali-
zation option allowing to play with the illumination proper-
ties, including a band selection visualization process and a 
gradient-based color visualization. These features seem to 
be new, as far as we could see in this technological domain.

Online Visualization

The choice of an online visualization system is interesting 
because it allows any user using a web browser (Mozilla 
Firefox, Apple Safari, Microsoft Edge, Google Chrome, ...) 
to interact with spectral data located on remote servers with-
out having to install any specific software. In this section, we 
describe an innovative online visualization tool that provides 
solutions to various problems inherent to the manipulation 
of spectral images: reduced IT infrastructure required for its 

deployment; reduced bandwidth needed to transmit images; 
ability to modify multiple parameters with a real-time results 
visualization for an optimal user experience.

In the following sections, we describe various techniques 
and technologies we have implemented within our stand-
ards-only web tool based on HTML5, WebAssembly and 
WebGL. The Fig. 1 shows the different modules we had to 
create for our online visualization tool.

Edge Computing

Edge Computing is a form of IT architecture that provides 
an alternative to Cloud Computing [47]. Rather than trans-
ferring the calculated data from a server in a data center, 
the data to be processed are sent in an optimized way to 
clients which process them interactively using specialized 
software or a Web browser. Edge Computing allows us to 
overcome problems which may be encountered with Cloud 
Computing: server saturation; insufficient bandwidth; high 
latency.

It also provides a way to deploy powerful processing 
and visualization tools without having to invest in very 
expensive computing infrastructure. We thus selected this 
IT architecture for our viewer. Our spectral data are stored 
in an optimal way, using specific data structures, on our 
server as well as by our software, which is executed in the 
user’s web browser. To speed up the calculations that are 
performed by the web browser, we have chosen to imple-
ment all the required algorithms with WebAssembly (for 
complex algorithms) and WebGL (for intensive real-time 
calculations) technologies.

Fig. 1  Hierarchical description 
of the several modules compos-
ing the system. Those modules 
are described along Section 
“Online Visualization”
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Data Structure

Spectral Reflectance Images

The data is multi- or hyper-spectral images, depending 
on the dimensionality and the nature of the images. The 
reflectance estimation is based on a calibration process 
based on a standard reference. This calibration process 
allows to produce a reflectance factor image which can be 
considered as reflectance image only in the case of Lam-
bertian surfaces (therefore perfectly diffuse, this hypoth-
esis is never fully verified but is assumed in this paper).

Hierarchical Transformation of the Information

Spatial resolution We use a Gaussian pyramid that enables 
us to have a multi-resolution representation of our images. 
This representation lets us select the level of detail we want 
to manipulate or display [11]. Each level l of this pyramid 
has a resolution divided by 2 compared to level l − 1 , level 
l = 0 containing the original image. Depending on the usage, 
it is sometimes interesting to decompose the image into tiles. 
This representation is particularly interesting when we want 
to visualize images in very high resolution (VHR) [33] from 
a server. This representation mode is particularly well suited 
for dynamic client/server visualization processes where the 
client only requests the subparts of the image that he/she 
needs for his/her process while keeping the still visible parts 
of the image.

Spectral dimension The spectral information that we 
manipulate with these images is highly correlated. This 
allows to use different techniques to simplify the interaction 
with the huge data. We can consider different information 
hierarchies based on dimensionality reduction techniques 
[41]. For this, we implemented a global principal component 
analysis (PCA) [2]. An image with reflectance dimension of 
m can thus be represented by an image of dimension k (with 
k ≤ m ), with minimum loss.

Metadata

To facilitate its manipulation, it is possible to add metadata 
to a complex and voluminous data structure. We integrate 
metadata that quantify the quality of the spectral and color 
reconstructions according to the number of dimensions used 
as a result of the PCA. For this, we used the eigenvalues 
(sorted in descending order) and 2 metrics described in [22]: 
the �E00 [34] on color reconstructions and the root mean 
square error (RMS error) on spectral reconstructions. This 
allows us to produce a set of 5 indicators: 

1. The sum of the k first eigenvalues (k varying from 1 to 
m).

2. The average �E00 values between the color reconstruc-
tion, with a D65 illuminant, of the pixels in the original 
image (encoded on m dimensions) and those recon-
structed with k dimensions of the PCA, k varying from 
1 to m.

3. The 99 percentile of the �E00 values between the color 
reconstruction, with an illuminant D65, of all pixels in 
the original image (encoded in m dimensions) and the 
pixels reconstructed with k dimensions of the PCA, k 
varying from 1 to m.

4. The average value of the root mean square error for all 
pixels in the original image (encoded on m dimensions) 
with the corresponding reconstructed pixels with k 
dimensions of the PCA, k varying from 1 to m.

5. The 99 percentile of the root mean square error for all 
pixels in the original image (encoded on m dimensions) 
with the corresponding reconstructed pixels with k 
dimensions of the PCA, k varying from 1 to m.

Usage Scenarios

The benefits of the metadata are multiple because they allow 
to have a report on the analysis of the accuracy of the recon-
struction according to the number of dimensions chosen. 
They also allow to define scenarios for the usage of the spec-
tral images stored in this way. For example, we can define 
a colorimetric scenario based on the 99 percentile of the 
�E00 that will indicate the number of dimensions required to 
have a maximum value of 1.0 or a spectral and colorimetric 
scenario that defines the dimension necessary to have an 
average RMS error value below 0.003 and an average �E00 
below 1.0.

For a given image, the chosen usage scenario permits to 
define the number of dimensions k′ to be read on the avail-
able k. This allows limiting the network bandwidth required 
and the memory used while maintaining the digital quality 
of the reconstruction.

Data Structure

The basic element of our data structure is the tile (see 
Fig. 2). It has a fixed size t × t pixels. A tile contains m 
PCA_Image (see “Spectral Reflectance Images”) with values 
that are either floating numbers in single (4 bytes) or half 
(2 bytes) precision. The values of a tile are the ones of a 
spectral band at a position and level of our given pyramid.

Standard formats, such as JPEG2000 or TIFF, can be used 
to store this kind of data structure, but unfortunately it is 
currently impossible to decode these files in a web browser. 
We therefore had to choose a simple proprietary format that 
was easy to decode.
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The tiles are stored successively (see Fig. 3), for a given 
image, in one or more files (several files can be used if the 
size of the structure is so large that it is not desired to han-
dle it as a single large file). All metadata as well as data 

related to resolution, spectral dimension, PCA eigenvectors, 
pyramid size, coding of the information used (half or single 
precision) are stored in the file headers.

Calculations

The PCA and metadata values are calculated from the origi-
nal image, with m spectral dimensions. For this, we use a 
double-precision algorithm which allows us to process very 
large hyper-spectral images. The processing time consumed 
by PCA computation depends on the image size and on the 
algorithm used. We used a separable algorithm to avoid limi-
tation related to memory. To do this calculation on very large 
images we perform the computation of the covariance matrix 
by splitting the spectral image to be processed in tiles.

For each of the eigenvalues, sorted in descending order, 
we project each of the spectra contained in the pixels of the 
image using the corresponding eigenvector. Each compo-
nent resulting from these projections generates an image that 
is used as basis for calculating a Gaussian pyramid that is 
decomposed into tiles of size t × t pixels, starting from the 
top left corner of the corresponding level in the pyramid, 
before being stored in the destination file(s).

The 5 indicators that constitute the metadata appear as 
5 arrays of size m, the spectral dimension of the original 
image. The values of the indicators that form these arrays 
are, for a given index, calculated from the same spectral 
reconstruction. For the i-index of these tables, the recon-
struction is calculated from the first ith components of the 
PCA.

Test Images

We have chosen the 2 following hyperspectral images Fig. 4 
to illustrate our metadata calculations.

Metadata calculation results 
In Tables 1 and 2 , we can see the values of the calculated 

metadata (with k = 1, 4, 8, 12, 32, 64 ) for test images 1 and 2.
The values obtained indicate that it is not necessary to 

store the information with a single precision (float) encod-
ing because the gain in terms of accuracy, compared to 

Fig. 2  The last two levels of the data structure (the top of the pyra-
mid)

Fig. 3  Data storage in the file(s)
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half-float, is negligible for a storage twice large. We also 
see that the gain is marginal for a k value higher than 32. For 
the two test images, 9 dimensions are enough to obtain a 99 
percentile of the �E00 lower than 1.0.

Conversion Tool

We currently have a converter tool that can handle multi-
spectral images from the CRISATEL project as well as 
hyper-spectral images from the SpecimIQ. This tool, 
implemented in C++, is cross-platform (Mac OS, Linux 
and Windows) and can be modified to support other multi- 
or hyper-spectral image formats. It is also in charge of the 
metadata computation and we can, if we want, add new sta-
tistics (metadata) in our files (for this it will be necessary 

to reconvert all the original spectral images). This tool is 
optimized to handle very high resolution multi- and hyper-
spectral images.

Web‑Based Viewer

In this section, we present the multiple functionalities and 
implementation methods of our Web visualization tool. This 
tool is dedicated to process and display the images described 
in the previous section It has been designed to integrate 
basic and evolutive functionalities.

Basic Functionalities

We have chosen to include the following basic functionali-
ties in our visualization tool:

Fig. 4  Test images - Color 
reconstruction: with a D65 illu-
minant and a sRGB ICC profile

(a) Test image 1. (b) Test image 2.

Table 1  Metadata results for test image 1. We can see the values of the calculated metadata (with k = 1, 4, 8, 12, 32, 64)

PCA (float) Number of PCA dimensions, k

1 4 8 12 32 64

sum(�) 0.8659 0.9964 0.9994 0.9998 0.9999 0.9999

X(�E00)
19.306 4.5692 0.2691 0.1061 0.01882 0.01359

P99%�E00 54.60 16.715 1.2437 0.4597 0.07398 0.05358

X(RMSE) 0.1228 0.01808 0.00748 0.00472 0.00291 0.00186

P99% RMSE 0.2518 0.06098 0.02416 0.00992 0.00440 0.00305

PCA (half) Number of PCA dimensions, k

1 4 8 12 32 64

sum(�) 0.8659 0.9964 0.9994 0.9998 0.9999 0.9999

X(�E00)
19.306 4.5692 0.2696 0.1072 0.02205 0.01757

P99%�E00 54.609 16.715 1.2437 0.4598 0.08469 0.07138

X(RMSE) 0.1228 0.01808 0.00748 0.00472 0.00291 0.00186

P99% RMSE 0.2518 0.06098 0.02416 0.00992 0.00440 0.00305
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PCA visualization: We have raw data which are available 
as images composed of decimal numbers corresponding to 
the k first planes (sorted in decreasing order of eigenval-
ues) that result from the principal component analysis of 
our original hyper-spectral image. It seemed interesting in 
some study cases to visualize these images composed of 
positive or negative decimal values with variable dynamics.

Color reconstruction: The purpose of color reconstruc-
tion is to define for each pixel of the image the CIEXYZ 
tri-stimulus values generated when illuminated by a virtual 
light L. Once reconstructed, the colors are displayed on the 
screen using a color management process. The numerical 
values for the pixel below the mouse cursor are displayed in 
a dedicated information frame at the bottom left of the dis-
play window. This information box displays the calculated 
CIEXYZ values as well as the corresponding CIELAB values 
(under illuminant L) and the RGB values calculated during 
the color management.

Spectral reconstruction: The purpose of spectral recon-
struction is to generate by interpolation, for a given wave-
length, a reflectance image. We provide the possibility to 
simultaneously display 3 reflectance images (for 3 given 
wavelengths) assigned to the R, G and B channels of the 
displayed image which gives us a false color visualization. 
The wavelengths associated with the R, G and B channels 
of the pixel below the mouse cursor are displayed in the 
information frame (the spectrum will be available soon).

Color management and out-of-gamut color display: Color 
management consists in a controlled transformation between 
the color representations of different devices. In the context 
of a color reconstruction, the calculated CIEXYZ values are 
transformed into an RGB triplet with a complex transforma-
tion managed by the color management module (CMM). 

Since screens can only display a limited number of colors, 
we have also set up a specific display mechanism for the so-
called “out of gamut” colors (not directly displayable on the 
screen) with a color code that assesses the distance between 
these colors and the gamut surface of the target screen. The 
gamut corresponds to the surface of the 3D shape containing 
all the colors displayable by a screen. When a color is out 
of the gamut, we bring it back to the gamut surface using 
a gamut clipping technique. The out-of-gamut distance is 
then defined by the Euclidean distance in the CIELAB space 
between the original color and the one on the surface of the 
gamut.

Reflectance factor gradient visualization (RFG): The 
gradient of a 1D-function at a given point C is a value that 
characterises the variability of this function in the neigh-
bourhood of this point. It can be approximated by the dif-
ference between 2 values of this function which are respec-
tively located to the right and to the left of this point. If we 
consider that the spectral reflectance in a pixel of our image 
can be modeled by a multi-dimensional function R(�) we 
can compute for each of its pixels the value of this gradient 
corresponding to the wavelength �C and thus obtain:

– An image of the gradients that can be directly displayed 
as false colors.

– An image of the normalized differences.
– An image containing the values of the angles of the tan-

gent slopes corresponding to this wavelength.

Implementation

Our implementation is mainly based on 2 Web technolo-
gies. WebAssembly allowed us to transpose our C++ library 

Table 2  Metadata results for test image 2. We can see the values of the calculated metadata (with k = 1, 4, 8, 12, 32, 64)

PCA (float) Number of PCA dimensions, k

1 4 8 12 32 64

sum(�) 0.9195 0.9995 0.9998 0.9999 0.9999 0.9999

X(�E00)
22.951 1.5975 0.34817 0.19544 0.08743 0.05218

P99%�E00 45.696 6.3196 1.7967 0.9407 0.37329 0.2129

X(RMSE) 0.1006 0.00677 0.00373 0.00332 0.00229 0.00156

P99% RMSE 0.2400 0.02650 0.00741 0.00553 0.00397 0.00289

PCA (half) Number of PCA dimensions, k

1 4 8 12 32 64

sum(�) 0.9195 0.9995 0.9998 0.9999 0.9999 0.9999

X(�E00)
22.951 1.5976 0.3485 0.1961 0.08908 0.05478

P99%�E00 45.701 6.3191 1.7970 0.9395 0.3744 0.2145

X(RMSE) 0.1006 0.00677 0.00373 0.00332 0.00229 0.00157

P99% RMSE 0.2400 0.02650 0.00741 0.00553 0.00397 0.00289
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which manages our spectral data files (and the associated 
data structures) as well as our color management functions 
as modules that can be accessed directly through JavaS-
cript. WebAssembly allows us to have execution times that 
are close to those we can have with native applications. 
WebGL 1.0 allowed us to access to the computing power 
of the graphics card used to execute the web browser, via 
graphic shaders, and to transfer the image data as textures 
that are also stored in the graphics card’s memory for maxi-
mum efficiency.

The heterogeneity in the sources of the reflectance spectra 
that we have to process (cf. subsection “Spectral Reflectance 
Images”) requires to standardize the sampling of these spectra. 
Our color and spectral reconstructions are based on tabulated 
data available with a 1nm spectral sampling, so we have cho-
sen to use this sampling. To do this, all the reflectance spectra 
we use for our pre-calculations are resampled using an Akima 
interpolation [4].

PCA visualization: Different strategies can be used for 
displaying the images corresponding to the k first planes 
from the PCA (images composed of positive or negative 
decimal values with variable dynamics):

– Scaling with grayscale visualization: the minimum value 
is set to 0 and the maximum to 1.

– Scaling of absolute values with visualization as gray-
scale: same as the previous method but with absolute 
value scaling.

– Use of pseudo-color shading with a maximum limit.

We have chosen to implement this third visualization method 
as it allows to have an accurate view of the values (positive 
and negative) contained locally and globally in the images. 
For this purpose we propose to use several parameters that 
can be adjusted as follow:

– A first color for the value 0.
– A second color for the maximum positive value and a 

shading for intermediate values.
– A third color for the minimum negative value and a gra-

dient for the intermediate values.
– The ability to apply a gamma, a gain, and an offset cor-

rection.

Color reconstruction: The computation of the color recon-
struction for a given spectral reflectance R(�) and a spectral 
radiance L(�) is performed in the color space CIEXYZ 1931 
or 1964 with the following formula:

where x , y and z are the color matching functions of the CIE 
1931 or 1964 standard observer, at a sampling of 1nm. In 
the case of a representation of spectral data after the PCA 
this color reconstruction is simplified because we only have 
to pre-calculate with the previous formula the CIEXYZ val-
ues for each of the eigenvectors used. The CIEXYZ values 
for a given pixel (i, j) is then, if we use k dimensions for 
reconstruction:

The transformation of the tri-stimuli so obtained into RGB 
values dedicated for the screen is then done through a 
color management process that requires to transform these 
CIEXYZ values into CIELAB values that will be used as 
input for interpolation process made with the 3D Look Up 
Table (LUT) defined bellow. Spectral reconstruction To 
compute, at a given wavelength, a reflectance image, we use 
the tabulated values coming from the interpolated eigenvec-
tors of the PCA. For this wavelength, the reflectance value 
W of a pixel (i, j) is computed with the following formula:

Color management and out-of-gamut color display: Color 
management is performed using a pre-calculated 3D LUT 
[12] with a function from our WebCMM (our JavaScript 
color management module) based on a calibration technique 
described in [13]. The implementation of this technique was 
made possible by the creation of a color characterization 
tool dedicated to Web browsers that we have described in 
[17]. The computation of the out-of-gamut distance is also 
performed with this 3D LUT which contains RGBA color 
vectors where the component A is the out-of-gamut distance. 
The CIELAB values that has been calculated in the color 
reconstruction are used as input for the computation, by a 
tri-linear interpolation inside the 3D LUT, of the RGB color 
and the A value.

Reflectance Factor Gradient (RFG) computation :  We pro-
pose a new, very general, definition to approximate a discrete 
gradient on spectra. The sensitivity and resolution of this gra-
dient are flexible. This definition is a powerful tool to look for 
spectral pattern in images, when combined to a false colour 
visualization strategy. We define the gradient of the reflec-
tance factor at a given wavelength �C as the difference of the 

⎧
⎪⎨⎪⎩

X =
∑�=760

�=400
x(�)R(�)L(�)

Y =
∑�=760

�=400
y(�)R(�)L(�)

Z =
∑�=760

�=400
z(�)R(�)L(�)

XYZ(i, j) =

d=k−1∑
d=0

PCAd(i, j) ∗ XYZeigenvectord

W(i, j) =

d=k−1∑
d=0

PCAd(i, j) ∗ eigenvectord[�]
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reflectance value V
�R

 at the right of �C with the value V
�L

 at the 
left of �C (see Fig. 5).

With :

where �RightOffset and �LeftOffset correspond to the right and left 
offsets of �C . V

�R
 and V

�L
 are then given by:

where �RightRange and �LeftRange correspond to the widths of the 
spectral bands over which the average reflectance value is 
calculated. Finally, the gradient value is given by:

For reflectance values defined between 0 and 1, the value of 
an RFG

�C
 can vary between − 1 and 1.

In the case of a representation of spectral data after the 
PCA the RFG

�C
 computation is simplified because we only 

have to pre-calculate with the previous formula for each of 
the eigenvectors used. The RFG

�C
 values for a given pixel 

(i, j) is then, if we use k dimensions for reconstruction:

�R =�C + �RightOffset

�L =�C − �LeftOffet

V
�R

=

∑�=�R+
�RightRange

2

�=�R−
�RightRange

2

R(�)

�RightRange

V
�L

=

∑�=�L+
�LeftRange

2

�=�L−
�LeftRange

2

R(�)

�LeftRange

RFG
�C

= V
�R

− V
�L

RFG
�C
(i, j) =

d=k−1∑
d=0

PCAd(i, j) ∗ RFG
�Ceigenvectord

RFG displayed in false color: The visualization technique 
we use to display RFG images is identical to the one we use 
to display PCA images without the ability to apply gamma 
or offset corrections.

Several parameters can be adjusted as follow:

– A gain that can be applied to RFG values.
– A first color C0 for the value 0.
– A second color C1 for values higher than or equal to 1, 

and a shading between C0 and C1 for values between 0 
and 1.

– A third color C2 for values lower than or equal to − 1, 
and a shading between C2 and C0 for values between − 
1 and 0.

RFG- Normalized difference displayed in false color: The 
normalized difference for a gradient is defined as follows:

As for the RFG value, the RFGN value can vary between 
− 1 and 1. To be consistent with previous methods, we have 
decided to display the RFGN images using the same method 
with the same parameters as for the RFG images.

RFG -Tangent Angle (RFG-TA) displayed in false color: 
The gradient can be computed at any point in the reflectance 
spectrum. We can therefore use its value to approximate the 
slope of a pseudo-tangent at this point and thus obtain the 
angle corresponding to this slope. It is called a pseudo-tan-
gent because the true tangent to the reflectance curve R(�) 
at a point A of abscissa �C is the limit position of the secant 
line (AB) when point B of the curve defined by R(�) tends 
to point A. It is possible to define R(�) as an interpolation 
function calculated from the N values of the spectral reflec-
tance we have in each pixel and so have the exact value of 
the slope on the tangent by calculating the derivative R�(�) . 
Instead, we chose to compute the slope of a pseudo-tangent 
as follow:

We can then determine the value of the angle correspond-
ing to the slope of this pseudo tangent by computing its 
arctangent. Instead, we have chosen to use the trigonometric 
function atan2 to calculate this angle with:

which yields angle values between −� and +� . We can use 
the same visualization technique for RFGTA

�C
 values as the 

one used for PCA visualization. To diversify our visualiza-
tion modalities and better differentiate the computed angles, 

RFGN
�C

=
V
�R

− V
�L

V
�R

+ V
�L

RFGS
�C

= ScalingFactor ×
RFG

�C

�RightOffset + �LeftOffset

RFGTA
�C

= atan2(ScalingFactor × RFG
�C
, �RightOffset + �LeftOffset)

Fig. 5  Image to explain the computation of RFG
�
C
 at �

C
 , from V

�
L
 

(dashed yellow) and V
�
R
 (dashed green). The characteristics of the fil-

ters used to compute V
�
L
 and V

�
R
 are based on two independent width 

and on two offsets on the left and right of �
C
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we have decided to use a completely different technique 
based on a rainbow false color LUT using the following 
algorithm:

– Step1  -  Sca l ing  t he  va lue  o f  RFGTA
�C

 : 
S(RFGTA

�C
) = 6 ×

RFGTA
�C

+�

2×�
 . The values of S will thus 

vary between 0 and 6.
– Step 2 - Generating a HSVS color from S(RFGTA

�C
) with:

– Hue = S(RFGTA
�C
)

– Saturation = 100%

– Value = 100%

– Step 3 - Color conversion from HSVS to RGBS.

Web integration:  The spectral image is associated with a 
web page through a JavaScript initialization function with 
parameters that define the resolution level l used (the level 
inside the pyramid stored in the file) as well as the dimen-
sion k of the PCA used (on the m dimensions available). 
This dimension k can be defined as a constant or computed 
by a function that we provide. This function will determine 
the value of k according to the use scenario wanted by the 
user and the metadata embedded in the file. This function 
downloads all necessary data from a server into the brows-
er’s memory, which then transfers them inside 4-dimen-
sional textures (RGBA encoded) either in single precision 
(float) or in half precision (half float) format (depending 
on the encoding of the information inside the file). The use 
of RGBA textures allows us to package our k dimensions 
inside (k − 1)∕4 + 1 textures. The limited number of texture 
units available in a graphical shader imposes this packing 
method (see 3.5).

All these calculations are integrated into a single graphi-
cal shader, a fragment shader, that is in charge of the source 
spectral image processing process. The source code of this 
shader is dynamically generated during the spectral image 
initialization in order to be adapted to the used k dimen-
sions of the PCA (and to overcome some WebGL 1.0 limita-
tions). The shader is then compiled by WebGL to be directly 
executable by the GPU of the graphics card. This shader, 
which is executed on all pixels of the source spectral image, 
generates an RGB image as a new WebGL texture (which 
have the same size as the source spectral image at the resolu-
tion level l), which is then displayed in our web page (with 
the possibility to zoom in) through the JavaScript Three.js 
framework.1

All computations related to implementation of these basic 
functionalities (see section “Hierarchical Transformation 
of the Information”) are performed within this shader even 

if, in the end, the result of only one of these visualization 
modes is displayed on the screen.

Custom Shader

In the previous subsection, all of the processing/visualiza-
tion is performed in a single graphical shader with a dynami-
cally created source code. It is therefore possible to trans-
form this shader’s code to make it perform other processing/
visualizations. It is the concept of custom shader [40] which 
we implement on the basis of a new function which will 
replace the one which implements the basic treatment/visu-
alization functions of our tool. Custom shaders make it pos-
sible to implement treatment/visualization processes adapted 
to very specific uses of spectral images (medical, heritage 
culture, etc.)

In the previous section, we indicated that the main shader 
performs all the computations related to the basic functional-
ities we have chosen to implement, even if we do not display 
all of them. We made this choice to increase the possibilities 
offered by the custom shader that will be produced for our 
visualization tool.

Visualization Examples

Examples of visualization results obtained with the image 
test 12 for these basic functionalities are illustrated after: 
Fig. 6a for PCA visualization; Fig. 6b for color reconstruc-
tion; Fig. 6c for color management: images Fig. 6c for out-
of-gamut color display; Fig. 7b for spectral reconstruction; 
Fig. 8a for reflectance factor gradient displayed in false 
colors; Fig. 8b for reflectance factor gradient - Normalized 
difference displayed in false colors; Fig. 8c for reflectance 
factor gradient - Tangent angle displayed in false colors.

Limitations

This tool depends on two web technologies which, unfortu-
nately, suffer from several limitations.

– WebGL 1.0: The maximum texture size which is gener-
ally 16384 × 16384 and therefore, the images that we can 
process / view. The number of textures usable in a shader 
which is generally 16, this limits the dimension k that we 
can use up to 64 ( 16 × 4 with our packing method). The 
instructions number that a shader can execute which may 
limit the capabilities of the custom shaders that will be 
produced.

1 https:// three js. org
2 https:// www. coule ur. org/ artic les/ SN- Compu terSc ience 2021/ pca- v2. 
html? image= data/ speci miq-1. pca& dim= 30

https://threejs.org
https://www.couleur.org/articles/SN-ComputerScience2021/pca-v2.html?image=data/specimiq-1.pca&dim=30
https://www.couleur.org/articles/SN-ComputerScience2021/pca-v2.html?image=data/specimiq-1.pca&dim=30
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Fig. 6  Visualization results 1/3

(a) PCA - Component 1 and Component 2 - blue colors correspond to negative values, red
colors correspond to positive values

(b)

(c)
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Fig. 7  Visualization results 2/3

(a) Color reconstruction with out of gamut (the out-of-gamut colors appear as a shading from
green to red) - D95 illuminant and A illuminant

(b) Wavelength reconstruction - λR=650 nm, λG=550 nm, λB=450 nm (upper left) - λR=900
nm, λG=550 nm, λB=450 nm (upper right) - λR=500 nm, λG=500 nm, λB=500 nm (bottom
left) - λR=850 nm, λG=850 nm, λB=850 nm (bottom right)
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Fig. 8  Visualization results 3/3

(a) λC=500 nm and λC=600
nm - blue colors correspond to negative values, green colors correspond to positive values

(b) λC=514 nm
and λC=656 nm - blue colors correspond to negative values, green colors correspond to positive
value

(c) λC=500 nm and
λC=600 nm - the angle value is transferred into the hue component of a HSV color and then
converted as a RGB color
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– WebAssembly: Compatibility issues with some Web 
browsers, mainly on smartphones and tablets.

For these reasons we recommend to use web browsers run-
ning on operating systems dedicated to laptops and PCs 
(Windows 10, Mac OS, Linux distributions like Ubuntu, 
etc.).

Performance

For a spectral image acquired with the SpecimIQ camera 
with k = 30 , visualized under Windows 10 (PC with an 
AMD Ryzen 9 3900X processor and a GeForce RTX 2800 
graphics card) and MacOS 10.15.7 (Intel Core i7-4980HQ 
processor with an integrated Intel Iris Pro graphics card), 
with different web browsers, we obtained the following 
execution times: 

Windows 10 - 20H2 WebCMM Loading image Shader execution

Google Chrome 86 1567 ms 145ms 0.015 ms
Mozilla Firefox 82 3591 ms 338ms 0.024 ms
Microsoft Edge 86 1573 ms 145ms 0.015 ms

Mac OS WebCMM Loading image Shader execution

Google Chrome 86 1001 ms 82 ms 0.41 ms
Apple Safari 1111 ms 142 ms 0.87 ms

 Notes: The WebCMM initialization does not depend on 
the resolution of the source image and we use a local web 
server to evaluate the processing time to load the hyper-
spectral image. The image processing time correspond to the 
shader execution and our tool is not working with Firefox on 
MacOS because texture size limitations).

Demonstrator

A demonstrator is available at the following addresses:

– https:// www. coule ur. org/ artic les/ SN- Compu terSc ience 
2021/.

– https:// ipem. univ- st- etien ne. fr/ artic les/ SN- Compu terSc 
ience 2021/.

It allows:

– The visualization of the two test images presented in 
the section 3.2.7 with several initial configurations 
where we can change:

– The number of dimensions used.
– The testing of color management settings.

– To test 2 custom shaders dedicated:

Fig. 9  Spectral image view 
window full interface

https://www.couleur.org/articles/SN-ComputerScience2021/
https://www.couleur.org/articles/SN-ComputerScience2021/
https://ipem.univ-st-etienne.fr/articles/SN-ComputerScience2021/
https://ipem.univ-st-etienne.fr/articles/SN-ComputerScience2021/
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– For color segmentation.
– For highlighting spectral properties, such as the 

infrared reflectance of an image, during its color 
reconstruction.

Each of the links presented on the home page of our 
demonstrator opens a new web page that displays the cor-
responding image with a classic or custom shader-based 
view. All spectral image view windows (see Fig. 9) have 
a control panel (see Fig. 10) that allows changing many 
display settings in real-time presented in section “Hierar-
chical Transformation of the Information”.

These spectral image view windows contain, in addition 
to the computed image and the control panel, two sub-
windows which give access to various information related 
to the current pixel (the pixel under the mouse cursor):

– the xy position of this pixel;
– the values of the reconstructed color in the RGB, 

CIELAB and CIEXYZ spaces;
– the distance to the gamut (to quantify the out-of-gamut 

error);
– the values of the 3 reconstructed wavelengths;
– the full spectrum reconstructed corresponding to this 

pixel.

Only this demonstrator is currently available. The C++ code 
of our conversion tool as well as the one used for our Web 
tool is not available, for the moment.

Application to Vegetation Inspection

This tool has been used, in collaboration with the Labora-
toire de biotechnologies végétales appliquées aux plantes 
aromatiques et médicinales (LBVpam) of University Jean 
Monnet at Saint-Etienne, for scientific purposes. As first 
application we used this tool for plant inspection.

The LBVpam is specialized in the study of the diversity 
and biosynthesis of volatile plant compounds, particularly 
in perfume, aromatic and medicinal plants. The research 
conducted by this laboratory aims to better understand the 
mechanisms of production, secretion and roles of volatile 
compounds in these types of plants. It is important to note 
that our partners at the LBVpam are not imaging specialists.

Methodology

To make the best use of our tool that contains several visu-
alization methods and a large number of adjustable param-
eters, we propose to use it in presence of two experts: one 

Fig. 10  Control panel
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in spectral imaging and another one in the field of appli-
cation studied. The expertise in the application domain is 
necessary to help identify, characterize, categorize relevant 
information from our visualization tool. Following a first 
exchange meeting with LBVpam expert, we agreed on a 
4-step strategy: 

1. Captures of hyper-spectral images with the SpecimIQ 
camera from living leaves and flower petals selected for 
analysis by the LBVpam.

2. Pre-analysis of 4 images selected by the LBVpam with 
the previous version of our visualization tool and recom-
mendation for new functionalities.

3. Implementation of the new functionalities.
4. Analysis of the images with the new functionalities 

available.

The wish-list fixed by the LBVpam were: 

1. To detect the presence of aromatic glands on leaves of 
scented Pelargonium species [7];

2. To reconstruct the structures of leaf veins;
3. To analyze the growth processes on rose petals.

Capturing images

The acquisition of the hyper-spectral images was carried out 
in a dedicated room with a lighting system composed of two 
750 W halogen sources placed on each side of the camera 
and positioned at 2 m and 45◦ from the samples. With such a 
lighting arrangement we were able to produce a good homo-
geneous illumination on the acquisition surface (surfaces 
varying from 100mm × 100mm to 140mm × 140mm . We have 
chosen to keep a white reference sample in all our captures 
to achieve an optimal calibration for acquired hyper-spectral 
images. Four plants selected by the LBVPam have been used 
for these captures and allowed us to produce several spectral 
images.

Fig. 11  Selected images

(a) Petals of Rosa chinensis (b) Leaf of scented hybrids of Pelargoniumsp- 1

(c) Leaf of scented hybrids of Pelargonium sp- 2 (d) Leaf of scented hybrids of Pelargonium sp- 3
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Pre‑analysis

From these captures we have selected four images that were 
considered interesting for this study (see Fig. 11). These 
four images, which were used to perform a pre-analysis on 
leaf and petal samples, enabled us to establish some initial 
observations.

Detection of leaf aromatic glands:  It does not seem pos-
sible to visually highlight the aromatic glands present in the 
leaves, even in the infrared range (wavelengths above 780 
nm). The area covered by one pixel of our sensor (which has 
a resolution of 512 × 512 pixels and can only be placed at a 
minimum distance of 150mm from the samples) is too large 
compared to the size of these glands.

Reconstruction of leaf vein structures:  Methods already 
exist to produce this type of images [9] and our real-time 
analysis and visualization tool is not particularly well 
adapted to reveal this kind of information, even if it is 
partially present in some PCA images, due to the spatial 
resolution of the camera. Computations related to the vein 
structure image can nevertheless be performed simultane-
ously to our PCA calculation. The resulting image may then 
be added into the files that store the data structures of our 
hyper-spectral images.

Analyzing growth of petals:  The image corresponding to 
Fig. 11a shows three petals of the same rose (Rosa chinensis) 
with different states of growth, from the inside to the outside 
of the flower. This image was selected in order to study if 
the growth processes were colorimetrically and/or spectrally 
uniform. Possible discontinuities could be interpreted as 
chemical changes within the petals. Knowing that the color 
appearance of flower petals is based on optical models that 
can be approximated by stacking micro-structured layers and 
chemical pigments [19, 20, 26, 48] we decided to perform 
first a colorimetric study and then a spectral study.

Colorimetric analysis:  The first analysis was qualitative, 
it was based on color reconstructions visualized on a cali-
brated screen (with no “out of gamut” colors) observed by 
our two experts. Despite the use of several virtual illumi-
nants we did not perceive anything particular. The growth 
appears as a color gradient without any perceptible discon-
tinuities (see left image in Fig. 12a). The second analysis 
was quantitative with color segmentations made with our 
custom shader from reference colors taken in the gradients 
from the base of the petal to its edge (see Fig. 12b). Same 
observation, the gradients seem continuous and do not differ 
in the three petals present in the image.

Spectral analysis:  We chose to perform a qualitative 
spectral analysis by displaying spectral information as gray-
scale images for a given wavelength with wavelengths vary-
ing between 400 nm and 1000 nm. By dynamically varying 
the wavelength we were able to quickly highlight a tenuous 
phenomenon at the base of one of the petals having reached 

full maturity (red square in the left image of Fig. 12c cor-
responding to 675 nm), phenomenon that was not visible in 
our color analysis. By analyzing the reflectance spectra in 
this petal area we were able to see a valley around 675 nm 
in the spectrum (red square in the right image of Fig. 12c), 
which looked like the distortion of photosynthetic pigments 
reflectance spectra [10]. Indeed, it is known that some petals 
have some chloroplasts that developed at their basis [38]. 
This observation means that the image analysis tool makes 
it possible to study the development of chloroplasts during 
petal growth with very good precision.

Implementing the New Functionalities

Following these first promising results, we wondered about 
the implementation of a visualization method that would 
allow us to highlight this type of phenomena induced by 
changes in local curvatures in the reflectance spectrum. The 
visualization of gradients in the spectra (see gradient sec-
tion) seemed to be an appropriate answer.

Analysis of the Images According to the New 
Functionalities Available

In the Fig. 13a and 13b we can see the results of the gradient 
visualization, centered at 675 nm, for the “Reflectance Fac-
tor Gradient in false color” and “Reflectance Factor Gradient 
- Tangent Angle” modes.

The information that we were able to perceive during our 
qualitative spectral analysis is now clearly apparent. Indeed, 
the orange zone that appears in the Fig. 13b corresponds 
exactly to the zone we detected. This new visualization 
method is therefore well adapted to this problem (at least 
for this type of flower).

Demonstrator

The four hyper-spectral images that have been selected by 
the LBVPam are available here https:// www. coule ur. org/ 
artic les/ SN- Compu terSc ience 2021/ on the same web page 
dedicated to our demonstrator with a mirror page at the fol-
lowing addresses: https:// ipem. univ- st- etien ne. fr/ artic les/ 
SN- Compu terSc ience 2021/. For these four images we have 
chosen to use 30 dimensions of the PCA in order to get high 
quality spectral reconstructions.

Conclusion and Perspectives

In this paper, we presented a new online visualization tool 
dedicated to multi- and hyper-spectral reflectance images 
based on edge computing concepts. This tool, presented in 

https://www.couleur.org/articles/SN-ComputerScience2021/
https://www.couleur.org/articles/SN-ComputerScience2021/
https://ipem.univ-st-etienne.fr/articles/SN-ComputerScience2021/
https://ipem.univ-st-etienne.fr/articles/SN-ComputerScience2021/


 SN Computer Science (2022) 3:1212 Page 18 of 21

SN Computer Science

Fig. 12  Pre-analysis

(a) Color reconstruction - D50 and D95 illuminants

(b) Color segmentations

(c)
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2019 as a proof of concept, has evolved through a new sci-
entific application that we have developed with a domain 
expert. This collaboration allowed us to set up a method-
ology requiring the presence of 2 experts to guide us in 
producing new functionalities relevant for this new scien-
tific application. It will allow us to produce a specific tool 
with custom shaders and predefined parameters based on a 
simplified, customized and intuitive interface dedicated for 
some scientific communities. We are now ready to reiterate 
this process for other scientific applications than the one 
studied in this paper where spectral imaging is interesting 
(dermatology, culture heritage, etc.) and thus to continue 
enriching our visualization tool.

Currently built to allow interaction with only one image 
per web page we also want it to be able to use several images 
simultaneously within the same web page. This last point 
is essential for its transformation into a more complete tool 
for visualizing these images in a 3D environment accessible 
via augmented reality devices (smartphones and tablets), 
mixed reality devices (Magic Leap One, Hololens 2) and 

virtual reality headsets thought this will call to multi-angle 
measurements and relighting.
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