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Abstract
Artificial Neural Networks (ANNs) mirror the analytical functions of human neural networks. The performance of smart 
healthcare systems has been limited to the increasing size and intricacy of information. Several ANN architectures help in the 
analysis of EEG signals for the identification of epileptic seizures. However, real-time performance needs to be accurate and 
very quick. Consequently, it is important to design efficient ANN models without compromising the feasibility of hardware 
realization. Since, CPUs and GPUs are based on conventional bus-system architectures, processing large complex datasets 
decreases the efficiency, scalability and versatility of the systems. To counter the bottlenecks of the bus-based architectures, 
Network-on-Chip has been efficient for complex computations. In this paper, we develop NoC-based feed-forward neural 
network and convolutional neural network models for the identification of epileptic seizure by analysis of continuously 
monitored EEG signal. The trained neural network models are mapped onto the Network-on-Chip to increase the throughput, 
power efficiency, parallelism and scalability of the architecture. The performance of all models is thoroughly explored in 
terms of throughput, energy, latency and identification accuracy of an epileptic seizure.
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Introduction

With rapid advancement in science and technology, large 
sets of data are being processed. Processing such complex 
datasets reflects the bottlenecks and inefficiency of present 
computing systems. A versatile and efficient computing 
framework is required to process such ‘big data’ on a real-
time platform.

Artificial Neural Networks (ANNs) have led to the 
advancement by computing large datasets efficiently at a 
smaller footprint. It has found various real-world applica-
tions in speech recognition, image processing, etc. [1]. ANN 
can be efficiently used in disease classification and pattern 
recognition by complex non-linear modeling between inputs 
and outputs [2].

In this paper, we propose in designing an efficient NoC-
based ANN platform for classification of epileptic seizures. 
According to World Health Organization, Epilepsy is an 
ongoing central nervous system disorder affecting the life 
of over 50 million individuals around the world [3–7]. It is a 
fast, capricious, and temporary change in the electrical activ-
ity of the brain that influences functions of human beings 
of all age groups [8–10]. It might be a partial occurrence 
in the left or right hemisphere of the brain or could affect 
both of them.

Brain wave patterns can effectively be tracked and 
recorded with the help of Electroencephalogram (EEG). 
These EEG records are then examined and analyzed thor-
oughly by neurologists for detection and then categorization 
of epilepsy diseases [6]. The EEG assessment is a visual 
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cycle and long time is required to inspect and analyze 
recording of even small time.

These urge the researchers to develop epileptic seizure 
recognition system based on machine-learning methodolo-
gies, utilizing epileptic multi-channel EEG signals including 
EEG signal procurement, pre-processing, feature extraction 
and classification [4, 7]. The majority of the proposed frame-
works depend on feature extraction process for differentia-
tion of normal and epileptic EEG signals. Performance of 
such systems is influenced by discriminative feature selec-
tion [8]. Deep neural network shows exceptional capabilities 
of learning on the dataset without any domain information 
necessary for feature set construction.

Deep learning enables multilayered computational mod-
els to learn inherent information with different abstraction 
levels directly from the available data. Models computing 
such large datasets would require higher number of nodes, 
which challenges the hardware implementation of ANN. 
Hence, the design of an ANN accelerator becomes difficult. 
Mostly, ANN is simulated over CPUs, GPUs and FPGAs. 
The traditional architecture of CPUs and GPUs limits the 
computations of such large datasets. The bottlenecks of the 
conventional architectures lead to increased power consump-
tion and traffic within the system, which results in an inef-
ficient computation [11]. FPGAs get restricted from using 
its reconfigurable feature, due to its limited logic and storage 
resources while mapping large nodes of ANN. Hence, an 
efficient platform is required to process complex real-time 
activities.

In this paper, we propose an efficient and low-cost NoC-
based ANN platform to classify epileptic seizure using EEG 
signals. We employ Network-on-Chip (NoC) to improve the 
computational flexibility. Within heterogenous multi-core 
systems, Network-on-Chip is proven to be efficient to pro-
cess complex data, providing higher throughput, scalability 
and parallelism over any conventional architectures [12, 13]. 
In this work, we map feed-forward and convolutional neural 
network over NoC and report in terms of classification accu-
racy, throughput and latency. The models are first trained 
and then mapped onto NoC for real-time classification. The 
convolutional neural network is flattened after training and 
then mapped onto NoC. We utilize time slicing mechanism 
and power gating technique within the architecture to reduce 
complexity and static power dissipation of the architec-
ture, respectively. The nodes of the neural network model 
are clustered and mapped within the processing elements 
(PEs) of the NoC architecture, where various computations 
are performed and outputs are packetized which are stored 
within temporary memory and are retrieved when required. 
The Artificial Neural Network (ANN) efficiently processes 
the large complex sets of data used for classification of epi-
leptic seizure and Network-on-Chip (NoC) provides the 

versatility and reliability in communicating to various nodes 
within the architecture.

The salient contributions of this paper are:

•	 Development of an efficient and low-cost feed-forward 
and convolutional neural network models for accurate 
epileptic seizure classification.

•	 Designing a low-power and efficient Network-on-Chip-
based ANN accelerator for processing real-time continu-
ous activities.

•	 Utilizing time slicing and power gating technique within 
the architecture to reduce complexity and power con-
sumption of the accelerator.

•	 Exploring the performance of the accelerator in terms of 
classification accuracy, throughput, latency and energy.

The rest of the paper is organized as follows—the next 
section reviews the background and related works on design-
ing neural network accelerators. The third section gives the 
dataset description for classification of epileptic seizures 
using EEG signals. In the fourth section, we discuss the pro-
posed NoC-based ANN architecture. The fifth section gives 
the details of the performance of the architecture explored 
in terms of classification accuracy, latency, throughput and 
energy. The last section is the conclusion.

Background and Related Works

Different works that map Artificial Neural Networks (ANNs) 
on Network-on-Chip Architecture are thoroughly investi-
gated. In the SpiNNaker project [14], each hub is made of 
18 ARM9 centers and loads are put away in DDR SDRAM. 
Aim of this project is parallel simulation of neurons on NoC 
Architectures. [15] clarifies how an ANN can be emulated 
on FPGA based on NoC framework. SyNapse [16], a project 
by IBM for wide range of cognitive and sensory applica-
tions, uses ANN having 2D arrangement of neurons.

While EMBRACE [17] has come up with FPGA execu-
tion of Spiking Neural Network communication inside a 
NoC system Application, an NoC-based interconnection of 
Spiking Neural Network is examined by the DhyANA [18]. 
An analog neuromorphic computing platform suitable for 
implementation of any type of neural network is proposed 
by the FACETS [19]. NoC-based ANN models for specific 
applications have likewise been proposed, for example, Kak-
oulli et al. likewise planned an ANN architecture dependent 
on NoC for hotspot prediction [20] inside the framework to 
maintain sustainability in performance of NoC architecture; 
Wang et al. planned an ANN-dependent admission controller 
[21], capable of predicting the packet injection rate at every 
hub for productive communication.
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There has been no significant work till now that has for-
mulated any NoC-based ANN framework for identification 
or characterization of any health disfunction. Certain NoC-
based ANN [22], CNN [23] and DNN [24] test systems have 
been proposed for simulating of NoC-based Neural Net-
works. In this paper, we would examine about the techniques 
for mapping different types of ANN to the NoC framework, 
development of the ANN models capable of classification 
of EEG signals and identification of different stages of epi-
leptic seizure and look into the performance parameters of 
the proposed architectures.

Dataset Description

The various labels and their significance are described in 
Table 1. Different types of signals present in the original 
dataset are depicted in Fig. 1 and the distribution of seizures 

and other non-seizure signals in the dataset is shown in 
Fig. 2.

The original dataset [25] consists of 5 different folders, 
each folder has 100 files, and each folder represents a sepa-
rate subject/person. Each entry is a count of 23.6 s of brain 
activity. When sampling the time series, there are 4097 data 
points. Each of them is a measure of EEG recorded at dif-
ferent points in time. This means that 500 people have 4097 
data points, and data points for each person are registered 
in 23.5 s. These 4097 data points are split and mixed into 
23 blocks. Each block contains 178 data points per second, 

Table 1   Present classes Of EEG signal

Original class representation Description

1 Recording of seizure activity
2 Recording of the tumor location
3 Identify tumor location and EEG 

recording from healthy part of 
brain

4 Eyes closed during recording
5 Eyes open during recording

Fig. 1   EEG signal representa-
tion for different classes

Fig. 2   Distribution of various classes within the dataset
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and each data point is an estimate of the EEG record at a 
different point in time. This complete operation provides 
23 × 500 = 11,500 information bits (rows), each row contains 
178 data points in 1 s (column), and the last column gives 
the label. The different categories are represented by inte-
gers. 1 means epileptic seizure record. All other classes have 
no seizures. However, our goal is to complete the task of 
classifying multiple categories so that other health diseases 
and seizures can be identified.

NoC‑Based Neural Network Architecture

In this following section, we describe our proposed NoC 
framework for ANN computation. An efficient and low-
cost architecture is designed for ANN. The framework con-
sists of nodes which act as processing elements and NoC is 
used to facilitate communication among the nodes within 
the architecture. We have used a 20 X 20 mesh-based NoC 
framework for mapping ANN. Figure 3 describes the design 
methodology for generating NoC-based ANN framework.

The section is divided into various segments: Network-
on-Chip Architecture, Computational Algorithms for feed-
forward and convolutional neural networks, the time slicing 
mechanism, clustering and mapping of ANN onto NoC and 
the routing technique.

A.	 Network-on-Chip architecture

	   Network-on-Chip act as a communication infrastruc-
ture for the processing elements (PEs) which are inter-
faced via network interfaces and routers. The router is 
the key unit within NoC architecture. It consists of five 
bi-directional ports, where four ports: North, South, East 
and West ports are used for communicating with the 
neighboring routers interfacing the neighboring PEs. 
The fifth local port is used to communicate with the 
PE. The router contains various components: arbiters, 
crossbar and virtual channels (VCs). Arbiters solves the 
issue when multiple input ports demand a same output 
port for communication [26]. A group of buffers form a 
virtual channel, which is used to store incoming packets 
coming as input when the output links are occupied. The 
arbiters and VCs increase throughput and parallelism 
within the NoC framework. The crossbar switch con-
nects the input and output ports. The network interface 
(NI) acts as an interface between PE and router. It also 
decodes the incoming packets [27].

B.	 Computational algorithm
	   Artificial Neural Network has made it possible to 

develop efficient deep-learning architectures capable of 
doing complicated tasks such as identification of sei-
zure activity from EE signals accurately. Here, we have 
deployed a feed-forward neural network model and a 
1D-CNN based model. In both the experiments, our 
focus has been building efficient neural network archi-
tectures which at the same time can easily be imple-
mented on NoC.

Fig. 3   Design process for NoC-based ANN framework generation
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	   Feed-Forward Neural Network: In a feed-forward 
neural network, every neuron of a layer is connected to 
every neuron of its previous and next layer. Multilayer 
feed-forward neural networks have one input layer, one 
output layer and one or more hidden layers [28]. This 
type of networks is trained by back propagation algo-
rithm.

	   The deployed model is a fully connected feed-forward 
neural network consisting of the 5 hidden layers. The 
input layer consists of 256 nodes, followed by a hid-
den layer having 128 nodes. The detailed architecture is 
shown in Fig. 4. Input and all hidden layers have ReLU 
(rectified linear unit) activation function [29]. For 5 class 
classification purpose, the output layer has 5 nodes with 
SoftMax activation function. Categorical cross-entropy 
loss function has been used for calculating loss along 
with Adam optimizer.

	   ReLU does not alter the input if it is positive and pro-
vides zero output otherwise. This is not only supposed to 
produce better result but also make computation simple.

	   Convolutional Neural Network: Since we have a 
sequence of records as each training sample, a deep 
1-dimensional convolutional neural network [30] has 
been employed for this 5-class classification task. Con-
ventional 2D CNN performs extremely well for images 
and similar 2D data. They are modified to make 1D 
CNN which for forward and backward propagation 
instead of matrix operations, require array operations. 
Being comparatively shallow and having less computa-
tional requirements than 2D CNN, 1D CNN are suitable 
for real-time and low-cost applications especially hand-
held devices or mobiles.

	   For this application, a deep 1D CNN network has been 
built with the output layer being a dense layer with 5 
neurons. It has 6 1D CNN layers including the input 
layers. The 6th layer is followed by 1D max pooling 
layer and the output is flattened before passing through 
output layer. Output dense layer has SoftMax activation 
function. The loss function used is categorical cross-
entropy along with Adam optimizer function. The com-
plete model is depicted in Fig. 5.

C.	 Time slicing mechanism
	   To map a larger ANN over NoC for complex com-

putations, either the size of NoC should be enlarged or 
the processing capability of the architecture should be 
increased. Enlarging NoC will increase the number of 
nodes within the architecture and enhancing the process-
ing efficiency will allow processing elements to handle 
computations of bigger neuron sizes. Both the methods 
are possible, but not feasible while real-time identifica-
tion of epileptic seizures.

	   To address the computational bottleneck for larger 
ANN, time slicing mechanism is adopted [24]. The 
mechanism is shown in Fig. 6, where the computations 
are performed layer-by-layer at various time instants. At 
an instant, all nodes of a layer or more layers should be 
mapped over NoC and computed. The output of the nodes 
is converted to data packets and are stored within tem-
porary memory, which are retrieved at next time instant. 
The clustering and mapping of the nodes for feed-forward 
neural network over NoC utilizing the slicing method is 
depicted in Fig. 7. We use a controller for the mapping 
and slicing operations within the NoC architecture. The 
algorithm of the controller is shown in Algorithm 1.

Fig. 4   Feed-forward neural network model
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At any instant of time, the unused nodes of the NoC 
framework utilize power-gating technique (Fig. 7) to reduce 
static power consumption [31]. In power gating technique, 
PMOS switches are utilized within the architecture to switch 
off the unused routers and PEs to reduce the static power 
consumption [32]. A gating controller is used to switch 
off the unused nodes at any slicing instant. As depicted in 
Fig. 8, it utilizes PMOS transistors in the pull-up part of the 
network, which is switched on/off by the gating controller. 
Upon switching off the PMOS transistor, the unused router 
gets turned off, hence, minimizing the static power con-
sumption. The algorithm of the gating controller is shown 
in Algorithm 2.

Fig. 5   Convolution neural network model

Fig. 6   Flowchart for time slicing mechanism
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For convolutional neural network, the network is first 
flattened using Fig. 9 [24]. After flattening, as it consists 
of large number of nodes which increases the traffic con-
siderably, hence two nodes are clustered and mapped to a 
single PE within NoC architecture to reduce the network 
traffic load.

Depending upon the processing efficiency of the archi-
tecture, the slicing, clustering and mapping techniques are 
carried out to increase the throughput of the system [22, 
24, 33]. Further, the throughput can be boosted using a 

Fig. 7   Time slicing mechanism of feed-forward neural network

Fig. 8   Implementation of the power gating technique in NoC-based 
neural network architecture

D.	 Clustering and mapping of ANN

For feed-forward neural network, each node of ANN is 
mapped to a single processing element within NoC frame-
work. At the end of each computation, the outputs of each 
PE are converted to data packets and further processed. The 
clustering of nodes depends upon the processing capability 
of the architecture. As for feed-forward neural network, we 
have considered two time slices for computation, the traffic 
is comparatively less than computing with higher number of 
nodes, thus we have mapped single node to a single PE [33].
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3D-stacked NoC architecture as given in [34], where nodes 
are connected in a hierarchical fashion [35].

E.	 Routing algorithm

The feed-forward and flattened convolutional neural net-
works are mapped onto NoC architecture interconnected in 
a 2D-mesh topology [35]. Packet-based transmission proto-
col is adopted for communication. Within the packet-based 
approach, a packet is composed of three parts: head, tail and 
the payload. The message’s source and destination addresses 
are constituted within the header. The output of a node is 
constituted within the payload of the corresponding packet. 
The end of the packet is designated as the tail.

The proposed mesh NoC-based ANN architecture uti-
lizes XY routing algorithm for communication [36]. In XY 
algorithm, the packet moves first in X-direction and then in 
Y-direction to reach to the destination node.

Performance Analysis and Experimented 
Results

In this section, we describe the simulation setup and dis-
cuss the evaluated parameters explored in terms of latency, 
energy and throughput of the NoC-based ANN framework. 
The classification accuracy and evaluation metrices of ANN 
are also discussed.

A.	 Simulation setup

Python and Python based libraries are utilized for experi-
mental purpose and data processing. Deep-learning model 
has been developed with Keras and Tensorflow 2.0 [37]. 
Experimental data have been divided into training and test-
ing data in 80:20 ratio. Training process is carried out for 
500 epochs with batch size being 100.

Training dataset is further divided into training and vali-
dation data in 80:20 ratio. Since there is imbalance in the 
dataset the distribution of different classes in the training 
dataset is calculated and accordingly class weight parameter 
is provided to address the imbalance. When class weight 
is assigned, model gives more importance in accurately 
identifying signal types which are less common. This helps 
improve the performance of the deployed model.

The NoC communication infrastructure of the proposed 
architecture was simulated using NOXIM [38] upon Trans-
action Level Modelling (TLM) [22]. The traffic pattern and 
the node parameters of the ANN models is mapped with the 
NoC topology [27]. We have considered a 20 X 20 mesh-
based NoC topology for our simulation. One node of feed-
forward neural network and two nodes of convolutional 
neural network were mapped to a single processing element 
within the architecture to maintain the complexity. The vari-
ous simulated parameters are described in Table 2.

Fig. 9   Flowchart for flattening 
CNN model
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B.	 Evaluation metrics

The considered task is 5-class classification. While dis-
tributing training, testing and validation data, it may hap-
pen that some types of signals are present more and some 
are present less in the training dataset. Therefore, deployed 
model is not equally exposed to all types of signals. Consid-
ering the difficulty of 5 class classification task, it is evident 
that model cannot identify all classes of signals with equal 
efficiency. Performance of models in such cases cannot be 
judged only based on accuracy. Therefore, some evaluation 
metrics are calculated to get idea of the performance of the 
deployed model in identification of individual classes.

Some standard evaluation metrics are utilized for perfor-
mance evaluation. Among the retrieved instances, the rel-
evant fraction of instances is precision. The fraction which is 
retrieved among all the relevant instances is recall. F1 score 
is the harmonic mean of precision and recall.

Precision =
[(Relevant Instances) ∩ (Retrieved Instances)]

Retrived Instances
.

Recall =
[(Relevant Instances) ∩ (Retrieved Instances)]

Relevant Instances
.

CNN model training and validation, accuracy is 91.15% 
and 89.45%, respectively. Testing accuracy for this model 
is 87.32% which is better than that of feed-forward neural 
network model. Values of evaluation metrics for each class 
are shown in Table 4. It shows overall better performance 
than feed-forward neural network model in identifying each 
class of signals. However, the classes which were difficult to 
identify for feed-forward neural network, have also proven to 
be challenging to recognize for the 1D CNN model.

D.	 Latency analysis

The delay in transmitting data packets from source node 
to destination node due to increased traffic is referred as 
latency. The variation of normalized latency with packet 
injection rate for time-slice 1 and time-slice 2 is depicted in 
Figs. 10a and 11a, respectively.

The latency for CNN model is higher than feed-forward 
neural network model as CNN encompasses higher rate of 
computation at the nodes of the architecture which increases 
the traffic. Further, with increase in rate of injection, traffic 
increases within the system, forcing the latency to increase 
exponentially [39].

E.	 System throughput

The efficiency and reliability of the architecture in trans-
mitting data packets is measured by throughput. The vari-
ations of normalized global throughput with injection rate 
for time-slice 1 and time-slice 2 are represented in Figs. 10b 
and 11b, respectively. Throughput is measured in terms of 
flits/cycle/IP.

Table 2   Simulation setup

Topology 20 X 20 Mesh NoC

Routing algorithm XY
Cluster size 1 for Feed-Forward NN 

and 2 for Convolutional 
NN

Packet size 8 flits
Flit size 16 bits
Clock frequency 2.5 GHz
Buffer depth 4 for each router input
Pipeline depth 4 stages
Workload type Real

Table 3   Evaluation metrics for feed-forward neural network

Label Precision Recall F1 score

1 0.99 0.64 0.78
2 0.45 0.37 0.41
3 0.30 0.30 0.30
4 0.75 0.56 0.64
5 0.56 0.64 0.60

Table 4   Evaluation metrics for convolution neural network

Label Precision Recall F1 score

1 0.95 0.72 0.82
2 0.52 0.52 0.52
3 0.55 0.20 0.30
4 0.68 0.76 0.72
5 0.74 0.74 0.74

C.	 Performance analysis of neural models
During the training process, employed feed-forward neu-

ral network model achieves training accuracy of 88.95% and 
validation accuracy of 87.15%.

During testing, our model is capable of performing clas-
sification with 84.22% accuracy. From Table 3, it is evident 
that our model can identify different types of EEG signals. 
The class of signal having higher number of samples present 
in training data is easier to be identified accurately. Perfor-
mance of the model is equally well in identification of all 
signal. Evaluation metrics are shown in the table.For 1D 
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The variation of throughput almost remains same for both 
type of models, indicating efficient and reliable utilization of 
the architecture. With increase in injection rate, the through-
put increases linearly, but after a point it saturates indicating 
utmost utilization of the architecture [40].

F.	 Energy variation

With variation in injection rate, the static energy of the 
architecture remains constant, however, the dynamic energy 
and total energy varied linearly with the changing PIR. Fig-
ure 12 shows the variation of static and dynamic energy of 
the network for feed-forward and convolutional neural net-
work models. The energy is measured in micro-Joules (µJ).

Upon using power-gating technique, we alleviate 26.24% 
and 24.47% of static energy for feed-forward neural network 
and 1D-Convolution Neural Network, respectively, as com-
pared to using the conventional architecture.

Fig. 10   Variation of latency and throughput for time-slice 1. a Depicts the variation of global latency with PIR and b depicts the variation of 
global throughput with PIR

Fig. 11   Variation of latency and throughput for time-slice 2. a Depicts the variation of Global Latency with PIR and b depicts the variation of 
global throughput with PIR

Fig. 12   Variation of static and dynamic energy with PIR
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Conclusion

The proposed work utilizes NoC as a communication infra-
structure for real-time classification of epileptic seizures. We 
have used a feed-forward and 1D convolutional neural net-
work models for 5-class classification task. Both the models 
performed comparably with 1D CNN model slightly produce 
better results. The neural network models are mapped onto 
NoC for real-time classification of epileptic seizures. The 
architecture utilizes various techniques to reduce its com-
plexity and static power dissipation. Further, the use of NoC 
increases the reliability and versatility of the architecture. 
The performance parameters for NoC-based neural network 
models are comparable. Hence, NoC-based CNN models 
can also be used to process complex data efficiently on a 
real-time platform.

All the analysis in this paper emphasizes the fact that 
of NoC has an unparalleled ability to be used as an alter-
nate platform for acceleration of neural network models. 
Although our models performed well, considering potential 
application in health-care domain, improvement in classifi-
cation will allow the real-time platform to classify diseases 
with greater accuracy. Further, utilizing more techniques 
and mechanisms in designing the NoC framework will allow 
more complex models to be mapped for efficient compu-
tation. Our work can be considered as an important step 
towards designing low-cost, reliable and efficient NoC-based 
neural network accelerators for health-care domain.
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