
Vol.:(0123456789)

SN Computer Science (2021) 2:373 
https://doi.org/10.1007/s42979-021-00755-w

SN Computer Science

ORIGINAL RESEARCH

Tandem Deep Learning Side‑Channel Attack on FPGA Implementation 
of AES

Huanyu Wang1   · Elena Dubrova1

Received: 20 April 2021 / Accepted: 17 June 2021 / Published online: 9 July 2021 
© The Author(s) 2021

Abstract
Side-channel attacks have become a realistic threat to implementations of cryptographic algorithms, especially with the 
help of deep-learning techniques. The majority of recently demonstrated deep-learning side-channel attacks use a single 
neural network classifier to extract the secret from implementations of cryptographic algorithms. The potential benefits of 
combining multiple classifiers using the ensemble learning method have not been fully explored in the side-channel attack’s 
context. In this paper, we propose a tandem approach for the attack in which multiple models are trained on different attack 
points but are used in parallel to recover the key. Such an approach allows us to considerably reduce (33.5% on average) the 
number of traces required to recover the key from an FPGA implementation of AES by power analysis. We also show that 
not all combinations of classifiers improve the attack efficiency.

Keywords  Side-channel attack · Deep learning · Tandem model · FPGA · AES

Introduction

Deep-learning Side-Channel Attacks (DL-SCAs) utilize 
deep-learning models to bypass the theoretical strength of 
cryptographic algorithms. Many attacks on software imple-
mentations of Advanced Encryption Standard (AES) have 
been demonstrated recently. In [1–3], the effect of changing 
hyper parameters of deep-learning models for side-channel 
attacks are investigated. Afterwards, Wu et al. [4] and Rijs-
dijk et al. [5] provide two different approaches for tuning 
neural networks’ hyperparameters automatically. In [6], a 
monobit-model technique to improve the attack efficiency is 
presented. To explore how board diversity affects the attack 
accuracy of the trained deep-learning models, Wang et al. 
[7] show to extend which a model trained for one device can 
lead to successful attacks on another device. To mitigate 
the effect caused by the board diversity, References [8–10] 

propose a cross-device approach, which trains models on 
traces captured from multiple devices. Besides, in [11], the 
newly proposed federated learning framework [12] is applied 
to improve the attack efficiency to break an 8-bit ATx-
mega128D4 microcontroller implementation of AES-128.

However, software implementations of AES are relatively 
easy to break using side-channel analysis because instruc-
tions are computed sequentially [13]. In hardware implemen-
tations, computations are performed in parallel. Therefore, 
DL-SCAs for hardware implementations is inherently more 
difficult, especially in advanced technologies. Power traces 
of two well-known public datasets, DPA contest V2 [14] 
and AES_HD [15], are captured from Xilinx Virtex-5 FPGA 
series. Many attacks are demonstrated based on these two 
datasets. In [15], Random Forest (RF) technique requires 
more than 5000 traces to recover a subkey. Masure et al. 
[16] investigate the theoretical soundness of Convolutional 
Neural Networks (CNNs) in the context of side-channel, 
References [17–19] demonstrated successful attacks on 
Virtex-5 FPGAs using CNNs. On a lightweight implemen-
tation of AES on Artix-7 FPGA [20], a non-profiled attack is 
able to recover the key with 3700 traces. Apart from FPGA, 
[21] shows the effectiveness of CNN-based side-channel 
attacks on ASICs. Table 1 shows a summary of previous 
attacks on hardware implementations of AES. To the best 
of authors’ knowledge, previous works did not consider the 

This article is part of the topical collection “Hardware for AI, 
Machine Learning and Emerging Electronic Systems” guest 
edited by Himanshu Thapliyal, Saraju Mohanty and VS Kanchana 
Bhaaskaran.

 *	 Huanyu Wang 
	 huanyu@kth.se

1	 KTH Royal Institute of Technology, Stockholm, Sweden

http://orcid.org/0000-0001-9630-5869
http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-021-00755-w&domain=pdf


	 SN Computer Science (2021) 2:373373  Page 2 of 12

SN Computer Science

potential of combining multiple deep-learning classifiers in 
DL-SCAs on hardware implementations. When traces are 
particularly noisy, an ensemble of multiple models is capa-
ble of outperforming the single classifier. Also, it is neces-
sary to test models on devices manufactured using advanced 
technologies.

To address these limitations and to further improve the 
attack efficiency, we propose a tandem deep-learning side-
channel attack. It is inspired by a machine learning meta-
algorithm called Adaptive Boosting (AdaBoost) [22], which 
is a subset of ensemble learning [23]. In AdaBoost, different 
classifiers (weak classifiers) are trained on the same training 
set. These weak classifiers are combined to form a boosted 
classifier (strong classifier). In our approach, several differ-
ent, separately trained deep-learning models are used in an 
ensemble and we multiply models’ outputs to reduce the 
generalization error. Since different models usually do not 
make the same errors on the test set, an ensemble of multi-
ple models is expected to perform better than its members 
[24]. To reduce the generalization error, we train different 
classifiers (weak classifiers) on different training sets, which 
are labeled by different attack points. These weak classifiers 
are combined to form a boosted classifier (tandem model), 
which is able to achieve a more efficient attack.

In this paper, we show that while our best single CNN 
classifier requires 251 traces on average for a successful 
attack, the number for the tandem model is 167, which is 
a 33.5% reduction. In summary, our main contributions are 
as follows:1

1.	 Designing tandem model attacks which uses 33.5% 
fewer traces on average than single-model DL-SCAs to 
recover the key. To avoid the overestimation of classifi-
cation accuracy, we train and test the tandem model on 
traces captured from different devices.

2.	 Demonstrating successful attacks against AES-128 
implemented on Xilinx Artix-7 FPGAs. The Artix-7 
FPGAs are manufactured using 28 nm process technol-
ogy, which makes the attack particularly difficult.

3.	 Investigating how different combinations of classifiers 
can affect the tandem model. We show that utilizing 
different attack points makes the tandem model more 
efficient.

Paper organization The rest of the paper is organized as 
follows. The next section provides background information 
on software and hardware implementations of AES, and 
reviews how deep-learning-based side-channel attacks work. 
The third section reviews existing deep-learning side-chan-
nel attacks on two well-known publicly available datasets for 
hardware implementations of AES. The fourth section shows 
the equipment used in the experiments. The fifth section 
explains how different deep-learning models are used in a 
tandem. The sixth section presents the experimental results. 
The last section concludes this paper.

Background

In this section, we start by reviewing AES-128 and compar-
ing hardware and software implementations of AES. After-
wards, we review deep-learning techniques and CNN.

AES‑128

AES-128 [27] is a symmetric encryption algorithm, which 
takes a 128-bit block of plaintext and a 128-bit key as inputs. 
Figure 1 shows the flow of the AES-128 algorithm and three 
attack points used in our experiments. AES-128 contains 10 
rounds in total. Except for the last round, each round has 4 
steps: SubBytes, ShiftRows, MixColumns and AddRound-
Key. The last round does not mix columns. The SubBytes 
procedure is a byte-to-byte substitution using a lookup table 
called Substitution Box (SBox).

Table 1   Summary of DL-SCAs 
on hardware implementations 
of AES

SCAs Hardware Process technology Number of clas-
sifiers

Number of traces 
required to recover 
the key

[21] ASIC 180 nm Single ≈ 1300

[15] Virtex-5 FPGA 65 nm > 2500

[17] ≈ 25000

[18] ≈ 200

[19] > 2000

[20] Artix-7 FPGA 28 nm ≈ 3700

This work 251
This work Multiple 167

1  A preliminary version of this work has appeared in [25].



SN Computer Science (2021) 2:373	 Page 3 of 12  373

SN Computer Science

As any block cipher, AES can be used in several modes of 
operation. In this paper we use Electronic Codebook (ECB) 
mode, in which the message is divided into blocks and each 
block is encrypted separately.

Hardware vs. Software Implementations of AES

In software implementations of AES, leakage is time-
dependent and samples are less noisy since instructions are 
carried out one by one [18]. This makes deep-learning mod-
els easier to learn features from traces. On the other hand, 
hardware implementations of AES execute instructions in 
parallel. Therefore, traces captured from hardware imple-
mentations overlap features of all subkeys, which makes 
side-channel analysis inherently more difficult, especially in 
advanced technology. For example, Fig. 2a, b shows power 
traces captured from an 8-bit ATxmega128D4 microcon-
troller and a Xilinx Artix-7 FPGA implementations of AES-
128, respectively, during the execution of Sbox operations of 
the first round of AES. In the trace from the microcontroller, 
16 SBox computations are executed sequentially. To recover 
each key byte, an attacker can build a specialized model on 
the specific part of the trace. However, FPGAs execute all 
16 SBox computations in parallel and a model built for only 
one subkey needs to handle the overlap caused by other 15 
SBox computations. This makes the single-model attack less 
efficient.

Deep‑Learning Side‑Channel Attacks

Deep learning [24] is a subset of machine learning which 
uses neural networks to explore different levels of repre-
sentative features of data for classification or prediction. 
Deep-learning models start with simple features and by the 

layer-by-layer combination continuously explore more com-
plex features. Given the training data and a certain set of 
parameters, deep-learning models are able to demonstrate 
some particular tasks such as classification [28].

The aim of DL-SCAs is to use deep-learning models to 
classify a set of power traces T = T1, T2,…Tm based on their 
labels to derive the secret key, where m is the number of 
traces and Ti denotes a single trace. The corresponding label 
of trace Ti is denoted as l(Ti) ∈ L , where L = {0, 1, … , 255} 
is the set of intermediate data processed at the attack point. 
To recover the full 128-bit key K of AES-128, typically a 
divide-and-conquer strategy is applied in which the key K 
is divided into 8-bit parts Kk ∈ K , called subkeys, and the 
subkeys are recovered independently, for k ∈ 1, 2, ...., 16 , 
where K = {0, 1, … , 255}.

In most cases, deep-learning side-channel attacks are usu-
ally composed of two stages: the profiling stage (Fig. 3a) and 
the attack stage (Fig. 3b).

At the profiling stage, the attacker first uses the profil-
ing device to encrypt a large number of plaintexts using 
known keys and captures traces. The model is trained on 
the labeled traces to learn the correlation between traces 
and keys. A neural network can be viewed as a mapping 
N ∶ ℝ

n
→ 𝕀

|L| , which maps a trace Ti ∈ ℝ
n into a score vec-

tor Si = N(T) ∈ �
|L| whose elements si,j represent the prob-

ability that label l(Ti) has the value j ∈ {0, 1, ..., 255} , where 
n is the number of data points in Ti.

At the attack stage, the attacker uses the victim device 
to encrypt a small number of plaintexts and records corre-
sponding traces. Using the trained model to classify traces 
captured from the victim device, the attacker is able to 
obtain the corresponding intermediate data and hence derive 
the subkey. The process mapping from the label to the sub-
key can be described as a retrieve function F ∶ �

|L|
→ �

|K| . 

Fig. 1   AES-128 algorithm and three attack points we used to train CNN models [26]



	 SN Computer Science (2021) 2:373373  Page 4 of 12

SN Computer Science

Fig. 2   Power traces from ATx-
mega128D4 microcontroller 
and Artix-7 FPGA implementa-
tions of AES

Fig. 3   An overview of how 
deep-learning-based side-chan-
nel attacks work



SN Computer Science (2021) 2:373	 Page 5 of 12  373

SN Computer Science

From the one-to-one mapping process F  , a guess vec-
tor Pi can be obtained from the score vector Si . Each 
Pi = {pi,0, pi,1, ..., pi,255} contains the probability pi,j ∈ [0, 1] 
of each subkey candidate Kk = j , where 

∑255

j=0
pi,j = 1.

Let � =

∏m

i=1
Pi = {p̃0, p̃1, ..., p̃255} denote the cumula-

tive guess vector, which is an element-wise multiplication 
for all guess vectors generated by classifying m traces. The 
attacker can find the subkey Kk = j which has the largest 
probability in �:

We use K∗

k
 to denote the real subkey. Once Kk = K∗

k
 , the 

subkey is recovered successfully.
Since instructions of hardware implementations of AES 

are executed in parallel, traces captured from FPGAs are 
particularly noisy. In this scenario, CNN-based side-channel 
attacks seem to be powerful to handle noisy traces. CNN was 
originally introduced for image, speech, time series process-
ing and document recognition [29]. The strength of a CNN 
network is that different network layers can learn features 
of the input data at different levels. A typical CNN network 
contains three types of layers: convolutional layers for filter-
ing, pooling layers for down sampling and Fully-Connected 
(FC) layers for projection. CNNs have been successfully 
applied to bypass the trace misalignment and to overcome 
jitter-based countermeasures [30]. CNNs were also used to 
break protected AES [31–33].

Previous Work

This section reviews some existing deep-learning side-chan-
nel attacks on two well-known publicly available datasets 
for hardware implementations of AES, called DPA v2 and 
AES_HD.

The DPA Contest v2 [14] was organized by the VLSI 
research group from the COMELEC department of the Télé-
com ParisTech french University. The acquisitions have been 
performed on a SASEBO GII board [38] implementation 
of AES-128. The board features the Xilinx Virtex-5 [39] 
LX30/LX50 as the target FPGA for implementation evalua-
tion. For the AES_HD dataset [15], it consists of EM meas-
urements of an unprotected AES-128 implementation on 
Xilinx Virtex-5 FPGA of a SASEBO GII evaluation board. 
The implementation is written in VHDL in a round based 
architecture that takes 11 clock cycles for each encryption. 
The dataset has 500K traces in total with 500K randomly 
generated plaintexts and each trace contains 1250 samples.

Deep-learning techniques were first used to assist power 
analysis in 2013 [40] when a three-layer MLP network was 
trained to break a Smart Card implementation of AES-128 
which contains an 8-bit microcontroller PIC16F84 [41].

Kk = argmax
0≤j≤255

p̃j.

Apart from MLPs, Maghrebi et al. [18] investigate how 
other types of deep-learning models could make the side-
channel attacks more efficient based on three different data-
sets. To break an Virtex-5 FPGA implementation of AES 
(DPA v2 dataset), the CNN and Autoencoder (AE)-based 
approaches in [18] require roughly 200 traces on average to 
recover the secret key. When it comes to the case of template 
attack, the result becomes about 400 traces.

To pursue the line of works on CNN-based power analy-
sis, Cagli et al. [30] apply the CNN with a data augmenta-
tion technique [42] to bypass the trace misalignment and to 
overcome the jitter-based countermeasures. Cagli et al. [30] 
first point out that the conventional template attack strategy 
suffers from the difficulty to deal with the trace misalign-
ment, which forces the attacker to have a critical realignment 
of the captured traces. Afterwards, they experimentally show 
that the CNN-based strategy greatly facilitates the attack 
roadmap since it waives the requirement for trace realign-
ment and precise selection of points of interest.

To further improve the attack efficiency to break hardware 
implementation of AES, Jin et al. [36] introduce an attention 
mechanism, which is called Convolutional Block Attention 
Module (CBAM). Afterwards, they incorporate the proposed 
CBAM module into their CNN architecture, which helps 
the model to find the informative points of traces. In their 
experiments, the enhanced CNN model requires 2100 traces 
to recover a subkey from an Virtex-5 FPGA implementation 
of AES (AES_HD dataset).

To explain the role of each hyperparameters of neural 
networks during the feature selection phase in the side-
channel attacks’ context, Zaid et al. [37] use three visuali-
zation techniques to show the inner-workings of models, 
which are Weight Visualization [43], Gradient Visualization 
[44] and Heatmaps [45]. With the help of these visualiza-
tion approaches, Zaid et al. [37] need 1050 traces to recover 
a subkey from an Virtex-5 FPGA implementation of AES 
(AES_HD dataset).

In [6], to train neural networks, each bit of the intermedi-
ate data processed at the attack point is used as one label. 
Thus, when considering a subkey which is a byte, there are 
8 labels in total. This technique is presented to overcome the 
curse of class imbalance since each bit is nearly uniformly 
distributed compared to the Hamming weight (HW) leakage 
model. To break an Virtex-5 FPGA implementation of AES 
(AES_HD dataset), the multi-label model in [6] uses 831 
traces to recover a subkey.

Tables 2 and 3 summarize some existing deep-learning 
side-channel attacks on Virtex-5 FPGA implementations of 
AES. In this work, we go one step further to focus on an 
Xilinx Artix-7 FPGA implementation of AES-128. Unlike 
Virtex-5 FPGAs which are manufactured using 65 nm pro-
cess technology, Artix-7 FPGAs are manufactured using 28 
nm process technology. Advanced manufacturing process 



	 SN Computer Science (2021) 2:373373  Page 6 of 12

SN Computer Science

technique makes the attack particularly difficult. Besides, all 
existing works do not take the impact caused by the board 
diversity into consideration. They train deep-learning mod-
els on traces captured from the victim device, which requires 
an unlimited access to the target. Clearly, this condition is 
unlikely in a real attack scenario. In our experiments, we 
train and test deep-learning models on traces captured from 
different devices to mitigate the effect caused by the board 
diversity.

Experimental Setup

Figure 4 shows two Xilinx Artix-7 FPGAs manufactured 
using 28 nm High-K Metal Gate (HKMG) process technol-
ogy. In the sequel, we call these two boards FPGA1 and 
FPGA2 respectively. They are programmed to the same ver-
sion of AES-128 in Electronic Codebook (ECB) mode of 
operation. We use ChipWisperer Lite [46] with a 40 MHz 
sampling rate for trace capture. In our experiments, FPGA1 
is used as the profiling board and FPGA2 is the victim board.

Tandem Deep‑Learning Side‑Channel Attack

Figure 5 shows an overview of the 3-classifier tandem 
model. The tandem model aims to combine the classifica-
tion results of 3 local classifiers to reduce the generaliza-
tion error. To provide enough diversity, local classifiers are 
trained on traces labeled by different attack points.

Attack Point

An attack point is a selected intermediate state which can 
be used to describe the power consumption. To form the 
proposed 3-classifier tandem model, three attack points 
are selected from the last round of AES-128 since the 
last round does not have the Mixcolumn procedure (see 
Fig. 1). It only has 3 operations: SubBytes, ShiftRows and 
AddRoundKey. The SubBytes procedure is a byte-to-byte 
substitution using a lookup table called Substitution Box 
(SBox). We denote these three attack points as x1, x2 and 
x3:

Table 2   Summary of side-channel attacks on DPA v2 dataset

Year Work Classifier Result Train and test on 
different devices

2016 [18] CNN ≈ 200 traces No
2018 [19] Naive Bayes ≥ 2K traces No
2019 [34] Autoencoder 

+ Template 
Attack

450 traces No

Table 3   Summary of side-channel attacks on AES_HD dataset

Year Work Classifier Result Train and test on 
different devices

2018 [15] Pooled Template ≈ 2.5K traces No
2019 [35] CNN ≈ 25K traces No
2019 [6] CNN 831 traces No
2020 [36] CNN ≈ 2.1K traces No
2020 [37] CNN 1050 traces No

Fig. 4   Two Xilinx Artix-7 FPGAs and ChipWisperer

Fig. 5   The 3-Classifier Tandem Model



SN Computer Science (2021) 2:373	 Page 7 of 12  373

SN Computer Science

where Ck represents the kth 8-bit ciphertext, sft_row−1
() and 

SBox−1() denote the inverse of SubBytes and ShiftRows, 
respectively. Attack point x1 is the input of the last round, x2 
is the output of the shift row operation, and x3 is the XORed 
value between the input and output of the last round. Note 
that x3 represents switching activity, which is known to be 
the dominant fraction of the total power consumed by a 
CMOS device.

Model Structure

CNNs have been successfully applied to bypass trace mis-
alignment and to overcome jitter-based countermeasures [30]. 
Layer structures of our local CNN classifiers are shown in 
Table 4. We use the identity model as the power model, which 
assumes that the power consumption is proportional to the data 
processed at the attack point. Three CNN classifiers, referred 
as classifier 1, 2 and 3, are trained on traces labeled by attack 
point x1 , x2 and x3 , respectively. We use categorical cross-
entropy loss to quantify the classification error and use the 
RMSprop optimizer to tune internal parameters.

Tandem Deep‑Learning Model

As shown in Fig. 5, three CNN classifiers are trained on same 
traces, but labeled by different attack points. To retrieve the 
subkey Kk from x1 , x2 and x3 , we define three different retrieve 
functions R1 , R2 and R3:

x1 = SBox−1
(
sft_row−1

(Kk ⊕ Ck)

)

x2 = Kk ⊕ Ck

x3 = SBox−1
(
sft_row−1

(Kk ⊕ Ck)

)
,⊕Ck

Kk = R1(x1) = str_row
(
SBox(x1)

)
⊕ Ck

Kk = R2(x2) = x2 ⊕ Ck

Kk = R3(x3) = str_row
(
SBox(x3 ⊕ Ck)

)
⊕ Ck.

During the attack stage, 3 local classifiers are used to clas-
sify traces captured from the victim board individually 
and obtain their own cumulative guess vectors �1 , �2 , �3 , 
which represent the classification results of 3 local classi-
fiers. Afterwards, we multiply these classification results and 
obtain the final guess vector �̃ = �1 × �2 × �3 to form the 
tandem model.

Estimation Metrics

Rank The rank of a key K, Rank(K) , is the number of keys 
with a higher probability than K:

Guessing Entropy The Guessing Entropy is the expected 
rank among all possible keys: GE = �

K∈K
(Rank(K)) . If sub-

keys are recovered individually, then the entropy is guessed 
for each subkey Kk separately and Partial Guessing Entropy, 
PGE, is used as the estimation metric [47].

Experimental Results

In this section, we first evaluate how non-profiling attacks 
such as Correlation Power Analysis (CPA) [48] perform 
on traces captured from Artix-7 FPGA implementations 
of AES. Afterwards, we investigate the average number of 
traces required to recover the key using a single CNN clas-
sifier without the tandem approach. Next, we test to which 
extend the 2-classifier and 3-classifier tandem models can 
improve the attack efficiency. Afterwards, for completeness, 
we investigate how the result changes if tandem models are 
built by combining classifiers trained on the same attack 
point.

Correlation Power Analysis

To show the reader how non-profiling attacks such as CPA 
perform on an Artix-7 FPGA implementation of AES, in 
this section we present CPA results for 5K traces. We use 
three different attack points with the identify power model. 
Figure 6a–c shows the correlation results for all 16 subkeys 
for attack point x1 , x2 and x3 , respectively.

As we can see from the PGE plots in Fig. 6a, b, the CPA 
cannot recover any subkey for all selected attack points 
within 5K traces without the key enumeration. The attack 
point x3 achieves the best CPA result, in which the minimum 
rank is 1 and the maximum is 249. Notice that once the rank 
achieves 0, the key is recovered.

Rank(K) = ||{K
�
∈ K ∶ Pr[K|T] < Pr[K�|T]}||

Table 4   Architecture of CNN classifiers

Layer type Output shape Parameter #

Input Layer (None, 10, 1) 0
Conv1D (None, 10, 10) 110
Average Pooling (None, 5, 10) 0
Flatten (None, 50) 0
Dense 1 (None, 64) 3264
Dense 2 (None, 32) 2080
Dense 3 (None, 32) 1056
Output (Dense) (None, 256) 8448
Total Parameters: 14,958



	 SN Computer Science (2021) 2:373373  Page 8 of 12

SN Computer Science

Single‑Classifier Model

In this section, our experiments are designed to show how 
many traces are required to recover the key using single-
classifier models trained on traces labeled by different 
attack points. For each attack point, we train classifiers 
with the learning rate 0.0001, no learning rate decay, no 
dropout, and the batch size 256. The CNNs are trained 
using RMSprop optimizer. To select a best number of 
epochs, for each of the three classifiers we trained 10 mod-
els using e epochs, for e ∈ {10, 20,… , 100} . At each itera-
tion, the model is stored instead of being overwritten. The 
resulting best numbers of epochs are shown in Table 5.

Classifier 1, 2 and 3 are trained on 1,000K traces cap-
tured from FPGA1 labeled by attack point x1 , x2 and x3 , 
respectively, with 200K traces randomly set aside for vali-
dation. We have two different test sets of the same size, 
the first one contains 50K traces captured from FPGA1 
and another one is from FPGA2. For a single test, 1K 

Fig. 6   CPA results for 5K traces captured from FPGA1

Table 5   The best number of epochs for different classifiers

Model Attack point # epochs

Classifier 1 1 60
Classifier 2 2 80
Classifier 3 3 50



SN Computer Science (2021) 2:373	 Page 9 of 12  373

SN Computer Science

traces are randomly selected to calculate the PGE. For 
each classifier, we repeat 500 tests to compute the aver-
aged key guess. Following [26], we use min-max scaling 
[49] to map the amplitude of all traces to the interval [0,1]. 
Given a set of traces T  , each trace T = (�1,… , �m) ∈ ℝ

m 
of T  is mapped into T �

= (��
1
,… , ��

m
)[0, 1]m such that, for 

all i ∈ {1,… ,m},

where �min and �max are the minimum and the maximum data 
points in T.

Figure 7a–c shows the PGE of classifier 1, 2 and 3 
tested on traces captured from FPGA1 and FPGA2 
respectively. Classifier 1 is able to recover the key using 
524 traces captured from FPGA1, and 815 traces from 
FPGA2 on average. For classifier 2, the result becomes 
to 533 and 672 traces. Classifier 3 is the best model 
which can recover the key using 251 traces captured from 
FPGA1, and 342 traces from FPGA2. These results are 
concluded in Table 6. Classifier 3 uses fewer traces to 
recover the key than other classifiers, which indicates 
that x3 is more efficient than other attack points to break 
both FPGA1 and FPGA2. This is an expected result since 
classifier 3 uses the attack point defined by the Ham-
ming distance between two states, while classifiers 1 and 
2 use the attack points defined by the values of the states 
themselves (identity power model). It is known that, for 
hardware implementations, the Hamming distance is a 
better power model than the identify since the total power 
consumption is dominated by the dynamic power con-
sumption which, in turn, is determined by the switching 
activity of logic gates [50]. A larger Hamming distance 
implies a higher switching activity.

Next, we combine classifiers into a tandem.

�
�

i
=

�i − �min

�min − �max

,

2‑Classifier Tandem Model

The 2-classifier tandem model is built by combining 2 of 
3 CNN classifiers. Figure 8 shows the PGE results and 
Table 6 shows the average number of traces used by 2-clas-
sifier tandem models to break both FPGA1 and FPGA2.

We notice that, except the tandem model built by com-
bining classifiers 1 and 2, all other 2-classifier tandem 
models use fewer traces than the classifiers they include. 
Compared to our best single classifier (classifier 3), the 
tandem model with a combination of classifier 1 and 
3 uses 30.7% fewer power traces to recover the key of 
FPGA1 and 21.1% for FPGA2. Also, the tandem model 
with a combination of classifier 2 and 3 uses 33.5% of 
fewer power traces to recover the key of FPGA1 and 11.4% 
for FPGA2. However, the tandem model which combines 
classifier 1 and 2 needs to use 10.9% more traces to break 
FPGA2 than classifier 1, which is the best local classifier 
of this tandem model. Our explanation is that attack point 
1 and 2 do not provide enough diversity.

Fig. 7   Average PGE of CNN classifiers tested on traces captured from FPGA1 and FPGA2. To compute the average, 500 tests were performed 
for each classifier. For each test, 5000 traces were randomly selected from 50K traces

Table 6   Average number of traces to recover target subkey

Model Attack point Number 
of traces 
FPGA1

Number 
of traces 
FPGA2

Classifier 1 1 524 815
Classifier 2 2 533 672
Classifier 3 3 251 342
Classifier 1 and 2 1 and 2 501 745
Classifier 1 and 3 1 and 3 174 270
Classifier 2 and 3 2 and 3 167 303
Classifier 1 and 2 and 3 1 and 2 and 3 172 219



	 SN Computer Science (2021) 2:373373  Page 10 of 12

SN Computer Science

3‑Classifier Tandem Model

Our 3-classifier tandem model is built by combining clas-
sifier 1, 2 and 3, which utilizes all available attack points. 
Figure 8(d) shows the PGE result and Table 6 shows the 
average number of traces. Compared to the results of 2-clas-
sifier models, adding one more classifier indeed improves 
the attack efficiency when the target device is different from 
the profiling device. The 3-classifier model uses 172 traces 
to recover the key of FPGA1 and 219 traces for FPGA2, 
on average. Compared to our best single classifier, it uses 
31.5% fewer traces to break FPGA1 and 36.0% fewer traces 
for FPGA2.

Table 6 shows that a tandem with a larger number of clas-
sifiers seems to be more robust to manufacturing process 
variations since it needs the fewest number of traces for the 

attack on the FPGA2. We can also see that, for the FPGA1, 
all tandems with the classifier based on the attack point 3 
achieve comparable results.

Besides, since it is easier to attack the device which was 
used for training, the experimental results for FPGA1 can be 
treated as the lower bound on the number of traces required 
for a successful attack. Attacking another device is more 
difficult due to manufacturing process variations.

Tandem Model with the Same Attack Point

To verify that it is important to use different attack points to 
train classifiers for building a tandem model, we further train 
4 CNN classifiers on attack point 3 with different number 
of epochs. Then, we combine them into tandem. Table 7 
shows the average number of traces required to recover the 

Fig. 8   Average PGE of three 2-classifier and 3-classifier tandem models tested on traces captured from FPGA1 and FPGA2



SN Computer Science (2021) 2:373	 Page 11 of 12  373

SN Computer Science

key using tandem models with different number of classifiers 
trained on the same attack point. From Table 7, we can con-
clude that building tandems from multiple classifiers trained 
on the same attack point is not a good strategy.

Conclusion

By combining multiple deep-learning classifiers trained 
on different attack points, the proposed tandem model is 
able to achieve a more efficient attack on an Artix-7 FPGA 
implementation of AES. Compared to the conventional 
single-classifier attack, the tandem model with multiple 
attack points can significantly improve the attack efficiency. 
We show that, one of our 2-classifier tandem models is 
able to use 33.5% fewer traces to break the profiling device 
(FPGA1). We also show that our 3-classifier tandem model 
is able to use 31.5% fewer traces to break the victim device 
(FPGA2). Finally, we show that it is important to use differ-
ent attack points to build the tandem model.

Acknowledgements  This work was supported in part by the research 
grant 2018-04482 from the Swedish Research Council and by the Vin-
nova Competence Center for Trustworthy Edge Computing Systems 
and Applications at KTH Royal Institute of Technology.

Funding  Open access funding provided by Royal Institute of 
Technology.

Declarations 

Conflict of Interest Statement  On behalf of all the authors, the corre-
sponding author states that there is no conflict of interest.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

	 1.	 Benadjila R, Prouff E, Strullu R, Cagli E, Dumas C. Study of deep 
learning techniques for side-channel analysis and introduction to 
ASCAD database. In: ANSSI, France & CEA, LETI, MINATEC 
Campus. Online verfügbar unter, 2018 https://​eprint.​iacr.​org/​
2018/​053.​pdf. Accessed 13 Apr 2021.

	 2.	 Maghrebi H. Deep learning based side channel attacks in practice. 
Tech. rep., IACR Cryptology ePrint Archive 2019;578: 2019.

	 3.	 Weissbart L. Performance analysis of multilayer perceptron in 
profiling side-channel analysis. In: International Conference on 
applied cryptography and network security, 2020; p. 198–216, 
Springer.

	 4.	 Wu L, Perin G, Picek S. I choose you: automated hyperparameter 
tuning for deep learning-based side-channel analysis. Cryptology 
ePrint Archive, Report 2020/1293, 2020.

	 5.	 Rijsdijk J, Wu L, Perin G, Picek S. Reinforcement learning for 
hyperparameter tuning in deep learning-based side-channel analy-
sis. Cryptology ePrint Archive, Report 2021/071, 2021.

	 6.	 Zhang L, Xing X, Fan J, et al. Multilabel deep learning-based side-
channel attack. In: IEEE Transactions on Computer-Aided Design 
of Integrated Circuits and Systems, 2020;40(6):1207–1216.

	 7.	 Wang H, Brisfors M, Forsmark S, Dubrova E. How diversity 
affects deep-learning side-channel attacks. In: 2019 IEEE Nordic 
Circuits and Systems Conf. (NORCAS), 2019; p. 1–7.

	 8.	 Das D, Golder A, Danial J, Ghosh S, Raychowdhury A, Sen S. 
X-DeepSCA: cross-device deep learning side channel attack. In: 
Proc. of the 56th Annual Design Automation Conf. 2019, 2019; 
p. 134, ACM.

	 9.	 Wang H, Forsmark S, Brisfors M, et al. Multi-Source Training 
Deep-Learning Side-Channel Attacks. In: 2020 IEEE 50th Inter-
national Symposium on Multiple-Valued Logic (ISMVL). IEEE, 
2020:58–63.

	10.	 Golder A, Das D, Danial J, et al. Practical approaches toward 
deep-learning-based cross-device power side-channel attack. In: 
IEEE Transactions on Very Large Scale Integration (VLSI) Sys-
tems, 2019;27(12): 2720–2733.

	11.	 Wang H, Dubrova E. Federated learning in side-channel analysis. 
In International Conference on Information Security and Cryptol-
ogy. Springer, Cham, 2020:257–272.

	12.	 Yang Q, Liu Y, Cheng Y, Kang Y, Chen T, Yu H. Federated learn-
ing. Synth Lect Artif Intell Mach Learn. 2019;13(3):1–207.

	13.	 Sklavos N, Touliou K, Efstathiou C. Exploiting cryptographic 
architectures over hardware vs. software implementations: advan-
tages and trade-offs. In: Memory, 2006;13: 18.

	14.	 TELECOM T. ParisTech SEN research group. DPA contest v2. 
2010. http://​www.​dpaco​ntest.​org/​v2/. Accessed 13 Apr 2021.

	15.	 Picek S, Heuser A, Jovic A, Bhasin S, Regazzoni F. The curse of 
class imbalance and conflicting metrics with machine learning for 
side-channel evaluations. IACR Trans Cryptogr Hardw Embed 
Syst. 2018;2019(1):1–29.

	16.	 Masure L, Dumas C, Prouff E A comprehensive study of 
deep learning for side-channel analysis. In: IACR Transac-
tions on Cryptographic Hardware and Embedded Systems, 
2020(1):348–375.

	17.	 Kim J, Picek S, Heuser A, Bhasin S, Hanjalic A. Make Some 
Noise. Unleashing the Power of Convolutional Neural Net-
works for Profiled Side-channel Analysis. In: IACR Transac-
tions on Cryptographic Hardware and Embedded Systems, 
2019(3):148–179.

	18.	 Maghrebi H, Portigliatti T, Prouff E. Breaking cryptographic 
implementations using deep learning techniques. In: International 
Conference on Security, Privacy, and Applied Cryptography Engi-
neering. Springer, Cham, 2016:3–26.

Table 7   Average number of traces to recover the subkey by tandem of 
multiple classifiers trained on the same attack point

Number of clas-
sifiers

1 2 3 4 5

FPGA1 251 246 221 263 249
FPGA2 342 363 347 350 337

http://creativecommons.org/licenses/by/4.0/
https://eprint.iacr.org/2018/053.pdf
https://eprint.iacr.org/2018/053.pdf
http://www.dpacontest.org/v2/


	 SN Computer Science (2021) 2:373373  Page 12 of 12

SN Computer Science

	19.	 Picek S, Samiotis IP, Kim J, Heuser A, Bhasin S, Legay A. On the 
performance of convolutional neural networks for side-channel 
analysis. In: Int. Conf. on security, privacy, and applied crypt. 
engineering, 2018; p. 157–176, Springer.

	20.	 Ramezanpour K, Ampadu P, Diehl W. SCAUL: Power side-
channel analysis with unsupervised learning. 2020. arXiv preprint 
arXiv:​2001.​05951.

	21.	 Kubota T, Yoshida K, Shiozaki M, Fujino T. Deep learning 
side-channel attack against hardware implementations of AES. 
In: 2019 22nd Euromicro Conf. on digital system design, 2019; 
p. 261–268, IEEE.

	22.	 Freund Y, Schapire R, Abe N. A short introduction to boosting. 
J-Jpn Soc Artif Intell. 1999;14(771–780):1612.

	23.	 Opitz D, Maclin R. Popular ensemble methods: an empirical 
study. J Artif Intell Res. 1999;11:169–98.

	24.	 Goodfellow I, Bengio Y, Courville A. Deep learning. MIT Press, 
2016. http://​www.​deepl​earni​ngbook.​org. Accessed 13 April 2021.

	25.	 Wang H, Dubrova E. Tandem deep learning side-channel attack 
against FPGA implementation of AES. In: 2020 IEEE Interna-
tional Symposium on Smart Electronic Systems (iSES)(Formerly 
iNiS). IEEE, 2020:147–150.

	26.	 Wang R, Wang H, Dubrova E. Far field EM side-channel attack 
on AES using deep learning. In: Proceedings of the 4th ACM 
Workshop on attacks and solutions in hardware security, 2020; 
p. 35–44.

	27.	 Daemen J, Rijmen V. The design of Rijndael: AES-the advanced 
encryption standard. Berlin: Springer Science & Business Media; 
2013.

	28.	 Wu Y, Shen K, Chen Z, Wu J. Automatic measurement of fetal 
cavum septum Pellucidum from ultrasound images using deep 
attention network. In: 2020 IEEE International Conference on 
image processing (ICIP), 2020; p. 2511–515.

	29.	 LeCun Y, Bottou L, Bengio Y, Haffner P, et  al. Gradient-
based learning applied to document recognition. Proc IEEE. 
1998;86(11):2278–324.

	30.	 Cagli E, Dumas C, Prouff E. Convolutional neural networks with 
data augmentation against jitter-based countermeasures. In: Inter-
national Conference on Cryptographic Hardware and Embedded 
Systems. Springer, Cham, 2017:45–68.

	31.	 Perin G, Ege B, van Woudenberg J. Lowering the bar: deep learn-
ing for side channel analysis (white-paper). In: Proc. BlackHat, 
2018; p. 1–15.

	32.	 Gilmore R, Hanley N, O’Neill M. Neural network based attack on 
a masked implementation of AES. In: 2015 IEEE Int. Symp. on 
hardware oriented security and trust, 2015; p. 106–111, IEEE.

	33.	 Martinasek Z, Dzurenda P, Malina L. Profiling power analysis 
attack based on MLP in DPA contest V4.2. In: 2016 39th Int. 
Conf. on telecom. and signal processing, 2016; p. 223–26, IEEE.

	34.	 Yang G, Li H, Ming J, Zhou, Y. Cdae: towards empowering 
denoising in side-channel analysis. In: International Conference 
on information and communications security, 2019; p. 269–86, 
Springer.

	35.	 Kim J, Picek S, Heuser A, Bhasin S, Hanjalic A. Make some 
noise. unleashing the power of convolutional neural networks 
for profiled side-channel analysis. IACR Trans Cryptogr Hardw 
Embed Syst. 2019; p. 148–79.

	36.	 Jin M, Zheng M, Hu H, Yu, N. An enhanced convolutional neural 
network in side-channel attacks and its visualization. 2020. arXiv 
preprint arXiv:​2009.​08898.

	37.	 Zaid G, Bossuet L, Habrard A, Venelli A. Methodology for effi-
cient CNN architectures in profiling attacks. IACR Trans Cryptogr 
Hardw Embed Syst. 2020;2020(1):1–36.

	38.	 Satoh A. Side-channel attack standard evaluation board, sasebo. 
Project of the AIST–RCIS (Research Center for Information Secu-
rity), 2011; p. 135, http://​www.​rcis.​aist.​go.​jp/​speci​al/​SASEBO, 
Accessed 9 June 2021.

	39.	 May DS, VF pgas. Virtex-5 FPGA data sheet: DC and switching 
characteristics. 152(2013):1–65.

	40.	 Martinasek Z, Zeman V. Innovative method of the power analysis. 
Radioengineering. 2013;22(2):586–94.

	41.	 Wilmshurst T. Designing embedded systems with PIC microcon-
trollers: principles and applications. Amsterdam: Elsevier; 2006.

	42.	 Wong SC, Gatt A, Stamatescu V, McDonnell MD. Understand-
ing data augmentation for classification: when to warp? In: 2016 
International Conference on digital image computing: techniques 
and applications (DICTA), 2016; p. 1–6, IEEE.

	43.	 Bischof H, Pinz A, Kropatsch WG. Visualization methods for neu-
ral networks. In: Proceedings 11th IAPR International Conference 
on pattern recognition. Vol. II. Conference B: pattern recognition 
methodology and systems, 1992; p. 581–585, IEEE.

	44.	 Masure L, Dumas C, Prouff E. Gradient visualization for general 
characterization in profiling attacks. In: International Workshop 
on constructive side-channel analysis and secure design, 2019; p. 
145–167, Springer.

	45.	 Zeiler MD, Fergus R. Visualizing and understanding convolu-
tional networks. In: European Conference on computer vision, 
2014; p. 818–833, Springer.

	46.	 O’Flynn C, Chen ZD. Chipwhisperer: an open-source platform 
for hardware embedded security research In: Int. Work. on Con-
str. side-channel analysis and secure design, 2014; p. 243–60, 
Springer.

	47.	 Pahlevanzadeh H, Dofe J, Yu Q. Assessing CPA resistance of AES 
with different fault tolerance mechanisms In: 2016 21st Asia and 
South Pacific Design Automation Conference (ASP-DAC), 2016; 
p. 661–66, IEEE.

	48.	 Brier E, Clavier C, Olivier F. Correlation power analysis with a 
leakage model In: Int. Workshop on Cryptographic Hardware and 
Embedded Systems, 2004; p. 16–29, Springer.

	49.	 Juszczak P, Tax D, Duin RP. Feature scaling in support vector data 
description In: Proc. asci, 2002; p. 95–102, Citeseer.

	50.	 Yu Y, Marranghello F, Teijeira VD, Dubrova E. One-sided coun-
termeasures for side-channel attacks can backfire In: Proceedings 
of the 11th ACM Conference on security & privacy in wireless 
and mobile networks, 2018; p. 299–301.

Publisher’s Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

http://arxiv.org/abs/2001.05951
http://www.deeplearningbook.org
http://arxiv.org/abs/2009.08898
http://www.rcis.aist.go.jp/special/SASEBO

	Tandem Deep Learning Side-Channel Attack on FPGA Implementation of AES
	Abstract
	Introduction
	Background
	AES-128
	Hardware vs. Software Implementations of AES
	Deep-Learning Side-Channel Attacks

	Previous Work
	Experimental Setup
	Tandem Deep-Learning Side-Channel Attack
	Attack Point
	Model Structure
	Tandem Deep-Learning Model
	Estimation Metrics

	Experimental Results
	Correlation Power Analysis
	Single-Classifier Model
	2-Classifier Tandem Model
	3-Classifier Tandem Model
	Tandem Model with the Same Attack Point

	Conclusion
	Acknowledgements 
	References




