
Vol.:(0123456789)

SN Computer Science (2021) 2:360
https://doi.org/10.1007/s42979-021-00748-9

SN Computer Science

ORIGINAL RESEARCH

Efficient Hardware Implementation of Decision Tree Training
Accelerator

Rituparna Choudhury1 · Shaik Rafi Ahamed1 · Prithwijit Guha1

Received: 15 April 2021 / Accepted: 12 June 2021 / Published online: 26 June 2021
© The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2021

Abstract
In this paper, a serial architecture for acceleration and implementation of Decision Tree (DT) training algorithm has been
proposed. This architecture is compatible with 32-bit integer as well as fixed-point training data. In the worst case scenario,
the FPGA implementation of the proposed architecture for Two Means DT (TMDT) algorithm is proved to run at least 28×
faster than conventional C4.5 training algorithm widely used in many machine learning classifications. The proposed archi-
tecture is implemented on FPGA platform operating at maximum frequency of 62 MHz. Further, the hardware implementa-
tion is proved to run at least 10× faster than the software implementation in worst condition. This design has been tested on
five binary datasets of variable size and dimension. Thus, the proposed hardware realisation is compatible to wide range of
training datasets.

Keywords Machine learning · Decision Tree · FPGA · Serial architecture · Training accelerator

Introduction

Decision Tree (DT) algorithms are widely used for clas-
sification and regression in many Machine Learning (ML)
applications. Due to simplicity, DT is more suited to low
power and low cost applications as compared to more com-
plex algorithms such as neural networks (NNs) or support
vector machines (SVMs) [1]. The basic structure of this
algorithm comprises of tree with split or decision nodes and
leaf or label nodes. It partitions data in top–down approach.
The data first enters through the root node and are continu-
ously classified by decision nodes and sent to appropriate
child node till it arrives at a leaf node where it is assigned

a label. This algorithm has two phases, training and infer-
ence. In the training phase, the tree parameters are tuned
according to the data space [14]. During training, growth of
the tree is controlled by termination condition. Then prun-
ing is applied to the full-grown tree to avoid over-fitting
or memorisation of data. Over-fitting results in poor gener-
alisation and thus affects tree performance for unseen data.
Several DT training algorithms have been reported in the
literature [6, 9, 10, 12, 19]. Quadratic-neuron-tree (QUANT)
proposed by in [19], implemented a quadratic neuron in the
each node of the tree at the cost of increased complexity.
The adaptive high-order neural tree (AHNT) [9] could clas-
sify a large set of multi-dimensional data. Each node in
the tree either had higher order perceptrons (HOPs) which
divided the data space arbitrarily or had first order nodes
which used hyper-planes to divide the input space which
produced very large trees for complex data-sets. Davey et al.
proposed a stochastic competitive evolutionary neural tree
in [6], which could hierarchically classify unlabelled multi-
dimensional data and the number and structure of competi-
tive nodes could be self determined by the tree. But it had
an inferior performance for reduced dimension data-sets. A
self-organizing neural tree has been discussed in [12], where
growth processes are applied to construct the tree. In these
process, the structure and performance is optimised based
on the classification efficiency of one or several nodes. The

This article is part of the topical collection “Hardware for AI,
Machine Learning and Emerging Electronic Systems” guest
edited by Himanshu Thapliyal, Saraju Mohanty and VS Kanchana
Bhaaskaran.

 * Rituparna Choudhury
 ritup176102101@iitg.ac.in

 Shaik Rafi Ahamed
 rafiahamed@iitg.ac.in

 Prithwijit Guha
 pguha@iitg.ac.in

1 Indian Institute of Technology Guwahati, Guwahati, India

http://orcid.org/0000-0002-1273-009X
http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-021-00748-9&domain=pdf

 SN Computer Science (2021) 2:360360 Page 2 of 10

SN Computer Science

structure-parameter-adaptive (SPA) tree proposed in [10] is
able to adapt to a changing environment both structurally
and parametrically. The SPA tree growth is enhanced by new
concepts and the tree shrinks at disposition of old concepts.
Song et al. in [18] proposed a Structurally Adaptive Intel-
ligent Neural Tree (SAINT). This tree performs hierarchical
partition of input pattern space using tree structured net-
works which consist of sub-networks with topology preserv-
ing mapping ability. This tree is able to automatically detect
the size and structure suitable for classification of large set of
data. These algorithms are highly complex and implemented
in software which results in larger run-time.

So, there has been a shift towards hardware implementa-
tion of classification algorithms in recent years [13]. It has
increased the speed and thus resulted in a much faster train-
ing [15]. The DT training consumes greater amount of time
as compared to classification. So, speeding up the training
phase is very much important for efficient implementation
of DT algorithms. Moreover, the software executes the code
sequentially which leads to longer training time. Hardware
implementation is a good solution to speed up the execution
due to provision of higher parallelism which reduces the exe-
cution time. Furthermore, training on hardware would offer
possibilities of on-device training and reduce the security
risk of data leak which happens in case of training on cloud.

Some classification architectures for C4.5 and their
implementation on FPGA are presented in [3, 11, 16, 17,
20, 22]. The architecture proposed in [3] is used to filter
the sensor data. Here a serial architecture implemented on
both FPGA and Von-Neumann CPU is compared and FPGA
architecture is found to be less power hungry as compared to
software counterpart but at the cost of decrease in through-
put. Saqib et al. in [16] proposed a pipelined architecture to
achieve faster classification. Tong et al. proposed one archi-
tecture which provided balanced classification in shorter
time and another architecture produced an optimised tree
with less area in [20]. The resource constrained architec-
ture for seizure detection proposed by Shoaran et al. in [17]
reduced the resource consumption and thus consumed very

less power. Thus FPGA is a more convenient implementa-
tion platform due to its low power and re-configurability
feature. These features makes them ideal for implementing
training of classification algorithm. Moreover, FPGA can be
easily re-trained to suit new data while improving classifica-
tion performance at lower cost. The hardware architecture
for texture sea-state classification proposed in [11] performs
automatic texture recognition of sea-states. It allows to select
an appropriate algorithm for target detection. The hardware
proposed by Yang et al. in [22] proposes a spike classifica-
tion SOC to reduce the data rate of a brain-machine inter-
face. The classification was realised using a decision tree
based classification which acquired an accuracy comparable
to methods based on L1 distance.

The design proposed in [4] implemented k-means algo-
rithm classification parallely on multiple FPGA to achieve
10× speed-up as compared to software implementation.
The Euclidean distance calculation in k-means algorithm
was replaced by Manhattan and Max distance in [8] which
enabled the implementation without multipliers. The
k-means tree implementation proposed in [21] realises a
kd-tree pruning on the search space. This pruning leads to
almost 5 × lesser computation as compared to conventional
k-means classification. The FPGA implementation of Clas-
sification and Regression Tree (CART) training algorithm
on Convey HC-1 server proposes a parallel and pipelined
architectural design[5]. A speed-up by a factor of 2 is
achieved by running five FPGAs in parallel to process the
data. However, this method requires more resources. To
achieve better speed-up without increasing resource con-
sumption, in this paper, we proposed a serial 32-bit archi-
tecture and its FPGA-based implementation or training of
TMDT algorithm. This algorithm is similar to k-means
algorithm. The rest of the paper is arranged as follows.
“Proposed TMDT Algorithm” elaborates the TMDT algo-
rithm. “Proposed Hardware Architecture” describes the
proposed design. “Results and Discussion” presents the
results and discussion. “Conclusion and Future Work”
presents the future work and conclusion.

SN Computer Science (2021) 2:360 Page 3 of 10 360

SN Computer Science

Proposed TMDT Algorithm

This work proposes a training hardware for binary classifica-
tion using TMDT algorithm. This is derived from a competi-
tive tree algorithm proposed in [2]. The TMDT

hierarchically partitions the input space in a top–down man-
ner as shown in Fig. 1. These partitions are achieved by
decision functions hosted by split nodes of the tree. The tree
terminates at leaf nodes. Each split node hosts two means.

Fig. 1 Illustrating the flow of
TMDT. The split node q is
initialised with two mean vec-
tors �0

ql
 and �0

qr
 . �� first updates

the two mean vectors then it
is routed by these two mean
vectors. The input is routed to
the left child if it is closer to �ql
and to right, otherwise. Thus ��
is split into two sets ��+� and
��+� which are assigned to the
two child nodes of q , i.e., (q+1)
and (q+2)

 SN Computer Science (2021) 2:360360 Page 4 of 10

SN Computer Science

The decision function at each split node uses these means to
route the node inputs to appropriate children nodes.

Let �q = {(�(i)
q
, y(i)

q
); i = 1,… nq} , (� ∈ R

m,y ∈ {0, 1}) be
the input to the split node q. This training dataset contains
nq data instances with labels (y = 0 or y = 1). The two means
at the split node are initialized as mean vectors �(0)

ql
= �

0
q
 and

�
(0)
qr

= �
1
q
 . These initial mean vectors �0

q
 and �1

q
 are calculated

as average of data instances with label 0 and 1 respectively.
In the second stage, the instances of �q are again passed
through the node to update the mean vectors. The training
data �(k)

q
 (k = 1,… nq) updates its closest mean vector

between �(k)

ql
 and �(k)

qr
 using an update rate � ∈ (0, 1) (Equa-

tion 1). The value of � is empirically chosen as 0.8 for maxi-
mizing performance over different datasets.

The mean update stage is followed by the split-
ting of node input dataset �q . The dataset �q is
split into left and right children datasets �ql and �qr
(
[

�ql ∪ �qr = �q

]

∧

[

�ql ∩ �qr = �

]

) for further processing
by the respective left (qL) and right (qR) child node of q. The
splitting is performed using the following decision function.

An input data �(k)
q

∈ �q is routed to �ql (or �qr) if it is closer
to �ql (�qr). This process of dataset splitting and split node
mean update starts from the root node and is recursively
continued until the termination at the leaf nodes. A fully
grown binary decision tree (two children of split nodes) of
depth d (root node is considered to be at zero depth) has
2d leaf nodes and 2d − 1 split nodes. This work allows the
decision tree to grow to its full depth (decided by user).
Afterwards, pruning conditions are applied for prevention
of over-fitting of tree.

This work uses two post pruning conditions for removing
nodes from a tree. First, pruning due to insufficient input data
to node. Here, the node q is not subjected to further splitting
if its input dataset size ∣ �q ∣ = nq is lesser than a certain
threshold � . The threshold � signifies the sufficient number
of data instances required to perform a split. The second
pruning condition uses a node purity criterion. The decision
tree hierarchically partitions the input space into different
regions. The leaf nodes correspond to such partitions. Ide-
ally, these regions must contain data instances from either
class y = 1 or y = 0 . Practically, these partitions contain a
mixture of data instances coming from both classes. How-
ever, in most cases, these regions have a dominant category.
Let, p0

q
 and p1

q
 be the respective fractions of data instances

from categories y = 0 and y = 1 respectively in node q. The
node q is declared a leaf node if max(p0

q
, p1

q
) > 𝜃p . Here, �p is

(1)�
(k)
q

= (1 − �)�
(k−1)
q

+ ��k

(2)�(k)
q

∈

{

�ql ∣∣ �(k)
q

− 𝜇ql ∣∣2<∣∣ �
(k)
q

− 𝜇qr ∣∣2

�qr ∣∣ �(k)
q

− 𝜇ql ∣∣2>∣∣ �
(k)
q

− 𝜇qr ∣∣2

a purity threshold. For example, �p = 0.95 signifies that the
dominant category should have more than 95% instances to
form a leaf node. Each leaf node is tagged by the class label
(y) of its dominant category.

An input data instance � traverses a learned two means
decision tree to reach the leaf nodes through split nodes.
Each split node q evaluates the distance of input � from
�ql or �qr and accordingly routes it to the next left or right
child node. The input traverses a particular branch of the tree
and reaches a terminal leaf node hosting a category label.
Finally, � is classified with the category label of the leaf
node.

The complexity of TMDT algorithm is much less as com-
pared to C4.5 Decision Tree. The C4.5 algorithm requires
nq × m × log nq number of sort operations in each node to
determine the split criteria for nq × m dimension dataset for
a node q. In contrast, TMDT requires only 4 × nq compare
(2 compare operations each for update and split phase) and
nq update operations only for the same dataset. Thus the
TMDT runs much faster than the C4.5 algorithm for the
same dataset.

Proposed Hardware Architecture

Overall Architecture

In this section, we developed a novel 32-bit hardware archi-
tecture as shown in Fig. 2. In order to implement the pro-
posed TMDT algorithm discussed in “Proposed TMDT
Algorithm”, this architecture is designed in serial fashion
to optimise resource consumption and minimise power. In
this architecture, the first block is mean initialisation module
where, for each iteration, the data is loaded from the data
memory and added to �

l
 or �

r
 obtained from previous itera-

tion and result is forwarded to node memory after processing
complete data stored in data memory. If the data label is 0,
then it is added to left mean �

l
 otherwise, to �

r
 . The data

number counter is compared to total node data. When data
number equals the total node data, then the final value of �

l

and �
r
 is obtained by dividing �

l
 and �

r
 by total number of

data in that node belonging to class 0 and 1 respectively to
obtain the average. This division operation is executed using
shifters to speed up the division. To divide a number X by
2G , X is shifted by G bits which do not incur any accuracy
loss as 2G << X . If the divisor cannot be decomposed into
power of 2, then it is approximated to nearest value of 2G . In
this way, two means for each node is calculated and stored
as initial means in the node memory which constitutes the
MEAN INITIALISATION MODULE. This module consists
of a multiplexer to select the nearest mean. The select line
of the multiplexer is connected to output of comparator. The

SN Computer Science (2021) 2:360 Page 5 of 10 360

SN Computer Science

input to this comparator is TOTAL NODE DATA and cur-
rent data number under consideration (DATA NUM COUN-
TER). The output of the comparator activates the multiplexer
if current data number is less than TOTAL NODE DATA
otherwise the final mean is calculated and stored in NODE
MEMORY. In the subsequent phase, mean update and split
module is executed for the node. In the MEAN UPDATE
MODULE, either �

l
 or �

r
 is updated by the data-instance.

The mean closer to data, depending on the distance calcu-
lated by distance calculator left and distance calculator right,
parallely, is updated according to mean update equation (1).
The details of distance calculator architecture is presented
in next sub-section. The multiplexer (MUX) selects the
mean closer to the data. The select line of this MUX is con-
nected to the output of comparator comparing left and right

mean distance with data-instance (DIST CALC LEFT and
RIGHT respectively). Once the mean update is done then
the updated mean is stored back to the NODE MEMORY.
Once all the data belonging to that node is passed for mean
update, then the same distance calculators are re-used to
calculate the distance between the updated mean stored in
node memory and the node data in the split module using
a switch. This switch is implemented using a multiplexer
whose control signal is connected to completion signal of
splitting module. Once splitting is complete then the switch
is connected to update module. This minimises resource uti-
lisation as distance calculator uses a huge number of multi-
ply and addition operations.

In the SPLIT MODULE, depending on whether the data
is closer to �

l
 or �

r
 , the data is either sent to the left child

Fig. 2 Proposed Hardware Architecture for TMDT Algorithm

 SN Computer Science (2021) 2:360360 Page 6 of 10

SN Computer Science

or right child node selected by the multiplexer. The select
line of this multiplexer is connected to the same distance
comparator used in MEAN UPDATE MODULE through a
switch. Then the node number of data and node memory is
updated accordingly with the corresponding node number.
Once the mean update and splitting is done, then the NODE
MEMORY and DATA MEMORY is updated for that node
and the initial means of it’s child nodes are calculated in the
MEAN INITIALISATION module. The node counter is then
incremented and compared with the termination condition.
If the termination condition is satisfied, then the PRUN-
ING MODULE starts execution. Otherwise, next node is
loaded in the mean update module. Then, SPLIT MODULE
and MEAN INITIALISATION MODULE is executed for
the node and its child nodes respectively. This process is
repeated for all the nodes till the maximum depth is reached.
In the pruning module, discussed later, the two post-pruning
conditions as discussed in “Proposed TMDT Algorithm” are
tested and nodes which satisfies the pruning conditions are
set as leaf nodes and their children nodes (if any) are pruned
or removed from NODE MEMORY.

Distance Calculator

The parallel hardware architecture for distance calcula-
tor module is shown in Fig. 3. The distance calculator is
parallelised to the subtraction and squaring used in euclid-
ean distance calculation simultaneously. Then all squared
components are added to compute final distance using
minimum number of clock cycles.

Pruning Module

As shown in Fig. 4, in pruning module, two comparators
are used parallely to compare the purity of corresponding
node data with purity threshold �p and the total node data
nq with data threshold � . The output of comparator is then
fed into the OR gate. The output of OR gate is connected
to multiplexer which sets the node as either split node
or leaf node in tree memory and accordingly updates the
children node.

Fig. 3 Hardware architecture for
distance calculator

Fig. 4 Hardware architecture for
pruning module

θp

max(p0q, p
1
q)

ζ

nq

SPLIT NODE LEAF NODE

TREE

MEMORY

NO
DE

YRO
ME

M

MUX

RO
TA

RA
P

MO
C

RO
TA

RA
P

MO
C

SN Computer Science (2021) 2:360 Page 7 of 10 360

SN Computer Science

After all the nodes are processed and the termination
condition is satisfied then the pruning module is executed
to check the split condition for decision nodes. The deci-
sion nodes which do not satisfy the split condition are
labelled as leaf node and their child nodes are deleted
from node memory. Then the tree structure is updated and
stored in the memory. Once this split condition check is
completed for all decision nodes, then the training is com-
plete and hardware is ready for classification.

Results and Discussion

This hardware was implemented on xcvu13p-flga2577-3-e
Virtex Ultrascale+ FPGA board which uses 16nm technol-
ogy. The design was implemented using Verilog HDL in
Vivado 2017 and no high-level synthesis tool was used.
All hardware results are post-implementation results. The
maximum operating frequency of this design is 62 MHz.
This hardware is able to support 32-bit fixed-point data.
The software implementation was done on Intel core i5
processor running at 3.20 GHz. The design was tested
for five balanced binary datasets, viz., skin, occupancy,
activity recognition 1, activity recognition 2 and mam-
mography [7]. The skin dataset has 38k data points each
having four attributes, i.e., R, G, B pixel and binary value
corresponding to skin or non-skin data. The occupancy
has 10.124k data points each having six attributes, CO2,
relative humidity, temperature, light, humidity ratio and
whether the room is occupied. The activity recognition1
and activity recognition2 datasets has 14.39k data points
each and distinguishes between whether a person is lying
or sitting and whether a person is walking or standing
respectively. The classification is done depending on six
attributes, viz., five mean of reading from sensors placed
in chest and ankles of subject and a binary number indicat-
ing whether the person is lying or sitting in case of activ-
ity recognition 1 and a binary number indicating walking
or standing in case of activity recognition 2. The mam-
mography dataset consists of 793 data points each having
six attributes, size, shape, margin, density, severity and
whether the tumor is benign or malignant.

In this design, the max depth d was set as 3 (consider-
ing node 0 at depth 0). For these datasets, after experi-
mentation, the impurity threshold �p was set as 0.95 and
the minimum number of data points for a node to be split
node, i.e., � was set as 20. The update factor � was fixed at
0.8 for this architecture. The distribution of data for Skin

dataset attribute or dimension 0 and 1 from parent node
to child node till depth 2 is shown in Fig. 5. As shown
in the graph, the separability of data for class 0 and 1
increases with increase in depth. The bar plot of com-
parison of accuracy and time consumption for TMDT and
C4.5 when implemented in Python platform for the five
datasets is shown in Fig. 6. It is observed that TMDT has
much lower latency as compared to C4.5 while accuracy
of TMDT is slightly lower as compared to C4.5 which
becomes comparable with increase in dataset size. Thus
TMDT gives comparable performance while running 28×
faster than C4.5 in worst case comparison. The time con-
sumption comparison for these 5 datasets for C, Python
and hardware implementation (Verilog HDL) is reported
in Table 1. The software implementations were found to
have higher training latency as compared to the hardware
implementation. The fastest implementation on C took 224
msec whereas FPGA implementation took only about 24
msec which is almost 10× faster for the largest dataset
skin. Thus, the hardware implementation was observed to
reduce the training latency further. The hardware utilisa-
tion comparison of the proposed training architecture with
conventional and optimised k-means classification archi-
tecture is discussed in Table 2. This training accelerator
hardware utilises only 6.488k FF and 0.228k BRAM for
38k data-instances as compared to the optimised k-means
classification hardware proposed in [21] which utilised
24k FF and 0.24k BRAM for only 16.384k data-instances.
But the LUT and DSP consumption is little higher in this
design due to higher computational complexities as com-
pared to classification. Thus dynamic power consumption
for this design is 3W only.

Conclusion and Future Work

This paper proposes a 32-bit serial architecture running
at 62 MHz to implement the training of TMDT algorithm
on FPGA which provides re-configurability thus allowing
dynamic training. As the proposed hardware is capable to
test 5 binary data-sets each having different dimensions and
size, it can be used to train wide variety of datasets. The
TMDT algorithm implemented on this hardware runs at
least 28× faster and has lower complexity than the widely
used conventional C4.5 algorithm. This architecture have
been shown to achieve at least 10× speed-up as compared to
software implementations for same datasets by introducing

 SN Computer Science (2021) 2:360360 Page 8 of 10

SN Computer Science

Fig. 5 Node data separation
from parent node to children
nodes in TMDT as visualised
above for Skin dataset for the
split nodes. The data overlap is
gradually reduced from parent
node to children nodes. The
node impurity as indicated in
the figure is observed to drop
gradually with increase in depth

Fig. 6 Bar plots showing com-
parison of latency and accuracy
for all datasets for C4.5 and
TMDT algorithm

SN Computer Science (2021) 2:360 Page 9 of 10 360

SN Computer Science

some extent of parallelism. In the future works, the parallel
and pipelined versions of the design will be implemented.

Declarations

Conflict of interest The authors declare that they have no conflicts of
interest.

Data availablility The data are available publicly at https:// archi ve. ics.
uci. edu/ ml/ index. php .

References

 1. Ahmad MW, Mourshed M, Rezgui Y. Trees vs neurons: Com-
parison between random forest and ANN for high-resolution
prediction of building energy consumption. Energy Build.
2017;147:77–89.

 2. Behnke S, Karayiannis NB. Competitive neural trees for pattern
classification. IEEE Trans Neural Netw. 1998;9(6):1352–69.

 3. Buschjäger S, Morik K. Decision tree and random forest imple-
mentations for fast filtering of sensor data. IEEE Trans Circuits
Syst I Regular Pap. 2017;65(1):209–22.

 4. Canilho J, Véstias M, Neto H. Multi-core for k-means clustering
on FPGA. In: 2016 26th International Conference on Field Pro-
grammable Logic and Applications (FPL), IEEE; 2016, pp. 1–4.

 5. Chrysos G, Dagritzikos P, Papaefstathiou I, Dollas A. HC-CART:
A parallel system implementation of data mining classification
and regression tree (cart) algorithm on a multi-fpga system. ACM
Trans Archit Code Optim (TACO). 2013;9(4):1–25.

 6. Davey N, Adams R, George SJ. The architecture and performance
of a stochastic competitive evolutionary neural tree network. Appl
Intell. 2000;12(1–2):75–93.

 7. Dua D, Graff C. UCI machine learning repository; 2017. http://
archi ve. ics. uci. edu/ ml.

 8. Estlick M, Leeser M, Theiler J, Szymanski J.J. Algorithmic
transformations in the implementation of k-means clustering
on reconfigurable hardware. In: Proceedings of the 2001 ACM/
SIGDA ninth international symposium on Field programmable
gate arrays; 2001, pp. 103–10 .

 9. Foresti G.L, Dolso T. An adaptive high-order neural tree for pat-
tern recognition. IEEE Transactions on Systems, Man, and Cyber-
netics, Part B (Cybernetics) (2004);34(2), 988–996.

 10. Li T, Tang YY, Fang L. A structure-parameter-adaptive (spa) neu-
ral tree for the recognition of large character set. Pattern Recognit.
1995;28(3):315–29.

 11. Lopez-Estrada S, Cumplido R. Decision tree based fpga-architec-
ture for texture sea state classification. In: 2006 IEEE International
Conference on Reconfigurable Computing and FPGA’s (ReCon-
Fig 2006), IEEE; 2006; pp. 1–7.

 12. Milone, D.H., Sáez, J.C., Simón, G., Rufiner, H.L.: Self-organ-
izing neural tree networks. In: Proceedings of the 20th Annual
International Conference of the IEEE Engineering in Medicine
and Biology Society. Vol. 20 Biomedical Engineering Towards
the Year 2000 and Beyond (Cat. No. 98CH36286), vol. 3, IEEE;
1998, pp. 1348–51.

 13. Qian M. Application of CORDIC algorithm to neural networks
VLSI design. In: The Proceedings of the Multiconference on”
Computational Engineering in Systems Applications”, vol. 1,
IEEE;2006, pp. 504–8.

 14. Quinlan JR. Induction of decision trees. Mach Learn.
1986;1(1):81–106.

 15. Sahin S, Becerikli Y, Yazici S. Neural network implementation in
hardware using FPGAs. In: International Conference on Neural
Information Processing; 2006, pp. 1105–12.

 16. Saqib F, Dutta A, Plusquellic J, Ortiz P, Pattichis MS. Pipelined
decision tree classification accelerator implementation in FPGA
(DT-CAIF). IEEE Trans Comput. 2013;64(1):280–5.

 17. Shoaran M, Haghi BA, Taghavi M, Farivar M, Emami-Neyestanak
A. Energy-efficient classification for resource-constrained bio-
medical applications. IEEE J Emerg Select Topics Circuits Syst.
2018;8(4):693–707.

Table 1 Latency Comparison
of Software and Hardware
Implementation

TMDT Implementation Platform Dataset

Mamm. Occupancy Activityrecog.1 Activityrecog.2 Skin

(in ms) (in ms) (in ms) (in ms) (in ms)

Python 156 1111 2334 2530 6000
C 8.76 100.93 79.3 82.07 224.5
Verilog HDL 0.494 6.4 6.27 6.26 24
Data Dimension 793 × 6 10152 × 6 14389 × 6 14389 × 6 38000 × 4

Table 2 Resource utilisation comparison with existing design

LUT (in K) FF (in K) BRAM (in K) DSP (in K) Data-points (in K) FPGA Board Algorithm implemented

k-means 108 54 0.100 1.062 16.384 Virtex 7 Conventional k-means clas-
sification

[21] 14 24 0.240 0.186 16.384 Virtex 7 Optimised k-means clas-
sification

Proposed design 894 6.488 0.228 0.2 38 Virtex Ultrascale+ TMDT training

https://archive.ics.uci.edu/ml/index.php
https://archive.ics.uci.edu/ml/index.php
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

 SN Computer Science (2021) 2:360360 Page 10 of 10

SN Computer Science

 18. Song HH, Lee SW. A self-organizing neural tree for large-set pat-
tern classification. IEEE Trans Neural Netw. 1998;9(3):369–80.

 19. Su MC, Lo HH, Hsu FH. A neural tree and its application to spam
e-mail detection. Expert Syst Appl. 2010;37(12):7976–85.

 20. Tong D, Qu YR, Prasanna VK. Accelerating decision tree based
traffic classification on FPGA and multicore platforms. IEEE
Trans Parallel Distrib Syst. 2017;28(11):3046–59.

 21. Winterstein F, Bayliss S, Constantinides G.A. FPGA-based
K-means clustering using tree-based data structures. In: 2013

23rd International Conference on Field programmable Logic and
Applications, IEEE; 2013, pp. 1–6.

 22. Yang Y, Boling C.S, Mason A.J. Power-area efficient VLSI imple-
mentation of decision tree based spike classification for neural
recording implants. In: 2014 IEEE Biomedical Circuits and Sys-
tems Conference (BioCAS) Proceedings, IEEE; 2014; pp. 380–3.

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

	Efficient Hardware Implementation of Decision Tree Training Accelerator
	Abstract
	Introduction
	Proposed TMDT Algorithm
	Proposed Hardware Architecture
	Overall Architecture
	Distance Calculator
	Pruning Module

	Results and Discussion
	Conclusion and Future Work
	References

