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Abstract
In this paper, a serial architecture for acceleration and implementation of Decision Tree (DT) training algorithm has been 
proposed. This architecture is compatible with 32-bit integer as well as fixed-point training data. In the worst case scenario, 
the FPGA implementation of the proposed architecture for Two Means DT (TMDT) algorithm is proved to run at least 28× 
faster than conventional C4.5 training algorithm widely used in many machine learning classifications. The proposed archi-
tecture is implemented on FPGA platform operating at maximum frequency of 62 MHz. Further, the hardware implementa-
tion is proved to run at least 10× faster than the software implementation in worst condition. This design has been tested on 
five binary datasets of variable size and dimension. Thus, the proposed hardware realisation is compatible to wide range of 
training datasets.
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Introduction

Decision Tree (DT) algorithms are widely used for clas-
sification and regression in many Machine Learning (ML) 
applications. Due to simplicity, DT is more suited to low 
power and low cost applications as compared to more com-
plex algorithms such as neural networks (NNs) or support 
vector machines (SVMs) [1]. The basic structure of this 
algorithm comprises of tree with split or decision nodes and 
leaf or label nodes. It partitions data in top–down approach. 
The data first enters through the root node and are continu-
ously classified by decision nodes and sent to appropriate 
child node till it arrives at a leaf node where it is assigned 

a label. This algorithm has two phases, training and infer-
ence. In the training phase, the tree parameters are tuned 
according to the data space [14]. During training, growth of 
the tree is controlled by termination condition. Then prun-
ing is applied to the full-grown tree to avoid over-fitting 
or memorisation of data. Over-fitting results in poor gener-
alisation and thus affects tree performance for unseen data. 
Several DT training algorithms have been reported in the 
literature [6, 9, 10, 12, 19]. Quadratic-neuron-tree (QUANT) 
proposed by in [19], implemented a quadratic neuron in the 
each node of the tree at the cost of increased complexity. 
The adaptive high-order neural tree (AHNT) [9] could clas-
sify a large set of multi-dimensional data. Each node in 
the tree either had higher order perceptrons (HOPs) which 
divided the data space arbitrarily or had first order nodes 
which used hyper-planes to divide the input space which 
produced very large trees for complex data-sets. Davey et al. 
proposed a stochastic competitive evolutionary neural tree 
in [6], which could hierarchically classify unlabelled multi-
dimensional data and the number and structure of competi-
tive nodes could be self determined by the tree. But it had 
an inferior performance for reduced dimension data-sets. A 
self-organizing neural tree has been discussed in [12], where 
growth processes are applied to construct the tree. In these 
process, the structure and performance is optimised based 
on the classification efficiency of one or several nodes. The 
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structure-parameter-adaptive (SPA) tree proposed in [10] is 
able to adapt to a changing environment both structurally 
and parametrically. The SPA tree growth is enhanced by new 
concepts and the tree shrinks at disposition of old concepts. 
Song et al. in [18] proposed a Structurally Adaptive Intel-
ligent Neural Tree (SAINT). This tree performs hierarchical 
partition of input pattern space using tree structured net-
works which consist of sub-networks with topology preserv-
ing mapping ability. This tree is able to automatically detect 
the size and structure suitable for classification of large set of 
data. These algorithms are highly complex and implemented 
in software which results in larger run-time.

So, there has been a shift towards hardware implementa-
tion of classification algorithms in recent years [13]. It has 
increased the speed and thus resulted in a much faster train-
ing [15]. The DT training consumes greater amount of time 
as compared to classification. So, speeding up the training 
phase is very much important for efficient implementation 
of DT algorithms. Moreover, the software executes the code 
sequentially which leads to longer training time. Hardware 
implementation is a good solution to speed up the execution 
due to provision of higher parallelism which reduces the exe-
cution time. Furthermore, training on hardware would offer 
possibilities of on-device training and reduce the security 
risk of data leak which happens in case of training on cloud.

Some classification architectures for C4.5 and their 
implementation on FPGA are presented in [3, 11, 16, 17, 
20, 22]. The architecture proposed in [3] is used to filter 
the sensor data. Here a serial architecture implemented on 
both FPGA and Von-Neumann CPU is compared and FPGA 
architecture is found to be less power hungry as compared to 
software counterpart but at the cost of decrease in through-
put. Saqib et al. in [16] proposed a pipelined architecture to 
achieve faster classification. Tong et al. proposed one archi-
tecture which provided balanced classification in shorter 
time and another architecture produced an optimised tree 
with less area in [20]. The resource constrained architec-
ture for seizure detection proposed by Shoaran et al. in [17] 
reduced the resource consumption and thus consumed very 

less power. Thus FPGA is a more convenient implementa-
tion platform due to its low power and re-configurability 
feature. These features makes them ideal for implementing 
training of classification algorithm. Moreover, FPGA can be 
easily re-trained to suit new data while improving classifica-
tion performance at lower cost. The hardware architecture 
for texture sea-state classification proposed in [11] performs 
automatic texture recognition of sea-states. It allows to select 
an appropriate algorithm for target detection. The hardware 
proposed by Yang et al. in [22] proposes a spike classifica-
tion SOC to reduce the data rate of a brain-machine inter-
face. The classification was realised using a decision tree 
based classification which acquired an accuracy comparable 
to methods based on L1 distance.

The design proposed in [4] implemented k-means algo-
rithm classification parallely on multiple FPGA to achieve 
10× speed-up as compared to software implementation. 
The Euclidean distance calculation in k-means algorithm 
was replaced by Manhattan and Max distance in [8] which 
enabled the implementation without multipliers. The 
k-means tree implementation proposed in [21] realises a 
kd-tree pruning on the search space. This pruning leads to 
almost 5 × lesser computation as compared to conventional 
k-means classification. The FPGA implementation of Clas-
sification and Regression Tree (CART) training algorithm 
on Convey HC-1 server proposes a parallel and pipelined 
architectural design[5]. A speed-up by a factor of 2 is 
achieved by running five FPGAs in parallel to process the 
data. However, this method requires more resources. To 
achieve better speed-up without increasing resource con-
sumption, in this paper, we proposed a serial 32-bit archi-
tecture and its FPGA-based implementation or training of 
TMDT algorithm. This algorithm is similar to k-means 
algorithm. The rest of the paper is arranged as follows. 
“Proposed TMDT Algorithm” elaborates the TMDT algo-
rithm. “Proposed Hardware Architecture” describes the 
proposed design. “Results and Discussion” presents the 
results and discussion. “Conclusion and Future Work” 
presents the future work and conclusion.
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Proposed TMDT Algorithm

This work proposes a training hardware for binary classifica-
tion using TMDT algorithm. This is derived from a competi-
tive tree algorithm proposed in [2]. The TMDT 

hierarchically partitions the input space in a top–down man-
ner as shown in Fig. 1. These partitions are achieved by 
decision functions hosted by split nodes of the tree. The tree 
terminates at leaf nodes. Each split node hosts two means. 

Fig. 1  Illustrating the flow of 
TMDT. The split node q is 
initialised with two mean vec-
tors �0

ql
 and �0

qr
 . �� first updates 

the two mean vectors then it 
is routed by these two mean 
vectors. The input is routed to 
the left child if it is closer to �ql 
and to right, otherwise. Thus �� 
is split into two sets ��+� and 
��+� which are assigned to the 
two child nodes of q , i.e., (q+1) 
and (q+2)
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The decision function at each split node uses these means to 
route the node inputs to appropriate children nodes.

Let �q = {(�(i)
q
, y(i)

q
); i = 1,… nq} , ( � ∈ R

m,y ∈ {0, 1} ) be 
the input to the split node q. This training dataset contains 
nq data instances with labels ( y = 0 or y = 1 ). The two means 
at the split node are initialized as mean vectors �(0)

ql
= �

0
q
 and 

�
(0)
qr

= �
1
q
 . These initial mean vectors �0

q
 and �1

q
 are calculated 

as average of data instances with label 0 and 1 respectively. 
In the second stage, the instances of �q are again passed 
through the node to update the mean vectors. The training 
data �(k)

q
 ( k = 1,… nq ) updates its closest mean vector 

between �(k)

ql
 and �(k)

qr
 using an update rate � ∈ (0, 1) (Equa-

tion 1). The value of � is empirically chosen as 0.8 for maxi-
mizing performance over different datasets.

The mean update stage is followed by the split-
ting of node input dataset �q . The dataset �q is 
split into left and right children datasets �ql and �qr 
( 
[

�ql ∪ �qr = �q

]

∧

[

�ql ∩ �qr = �

]

 ) for further processing 
by the respective left ( qL ) and right ( qR ) child node of q. The 
splitting is performed using the following decision function.

An input data �(k)
q

∈ �q is routed to �ql (or �qr ) if it is closer 
to �ql ( �qr ). This process of dataset splitting and split node 
mean update starts from the root node and is recursively 
continued until the termination at the leaf nodes. A fully 
grown binary decision tree (two children of split nodes) of 
depth d (root node is considered to be at zero depth) has 
2d leaf nodes and 2d − 1 split nodes. This work allows the 
decision tree to grow to its full depth (decided by user). 
Afterwards, pruning conditions are applied for prevention 
of over-fitting of tree.

This work uses two post pruning conditions for removing 
nodes from a tree. First, pruning due to insufficient input data 
to node. Here, the node q is not subjected to further splitting 
if its input dataset size ∣ �q ∣ = nq is lesser than a certain 
threshold � . The threshold � signifies the sufficient number 
of data instances required to perform a split. The second 
pruning condition uses a node purity criterion. The decision 
tree hierarchically partitions the input space into different 
regions. The leaf nodes correspond to such partitions. Ide-
ally, these regions must contain data instances from either 
class y = 1 or y = 0 . Practically, these partitions contain a 
mixture of data instances coming from both classes. How-
ever, in most cases, these regions have a dominant category. 
Let, p0

q
 and p1

q
 be the respective fractions of data instances 

from categories y = 0 and y = 1 respectively in node q. The 
node q is declared a leaf node if max(p0

q
, p1

q
) > 𝜃p . Here, �p is 

(1)�
(k)
q

= (1 − �)�
(k−1)
q

+ ��k

(2)�(k)
q

∈

{

�ql ∣∣ �(k)
q

− 𝜇ql ∣∣2<∣∣ �
(k)
q

− 𝜇qr ∣∣2

�qr ∣∣ �(k)
q

− 𝜇ql ∣∣2>∣∣ �
(k)
q

− 𝜇qr ∣∣2

a purity threshold. For example, �p = 0.95 signifies that the 
dominant category should have more than 95% instances to 
form a leaf node. Each leaf node is tagged by the class label 
(y) of its dominant category.

An input data instance � traverses a learned two means 
decision tree to reach the leaf nodes through split nodes. 
Each split node q evaluates the distance of input � from 
�ql or �qr and accordingly routes it to the next left or right 
child node. The input traverses a particular branch of the tree 
and reaches a terminal leaf node hosting a category label. 
Finally, � is classified with the category label of the leaf 
node.

The complexity of TMDT algorithm is much less as com-
pared to C4.5 Decision Tree. The C4.5 algorithm requires 
nq × m × log nq number of sort operations in each node to 
determine the split criteria for nq × m dimension dataset for 
a node q. In contrast, TMDT requires only 4 × nq compare 
(2 compare operations each for update and split phase) and 
nq update operations only for the same dataset. Thus the 
TMDT runs much faster than the C4.5 algorithm for the 
same dataset.

Proposed Hardware Architecture

Overall Architecture

In this section, we developed a novel 32-bit hardware archi-
tecture as shown in Fig. 2. In order to implement the pro-
posed TMDT algorithm discussed in “Proposed TMDT 
Algorithm”, this architecture is designed in serial fashion 
to optimise resource consumption and minimise power. In 
this architecture, the first block is mean initialisation module 
where, for each iteration, the data is loaded from the data 
memory and added to �

l
 or �

r
 obtained from previous itera-

tion and result is forwarded to node memory after processing 
complete data stored in data memory. If the data label is 0, 
then it is added to left mean �

l
 otherwise, to �

r
 . The data 

number counter is compared to total node data. When data 
number equals the total node data, then the final value of �

l
 

and �
r
 is obtained by dividing �

l
 and �

r
 by total number of 

data in that node belonging to class 0 and 1 respectively to 
obtain the average. This division operation is executed using 
shifters to speed up the division. To divide a number X by 
2G , X is shifted by G bits which do not incur any accuracy 
loss as 2G << X . If the divisor cannot be decomposed into 
power of 2, then it is approximated to nearest value of 2G . In 
this way, two means for each node is calculated and stored 
as initial means in the node memory which constitutes the 
MEAN INITIALISATION MODULE. This module consists 
of a multiplexer to select the nearest mean. The select line 
of the multiplexer is connected to output of comparator. The 
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input to this comparator is TOTAL NODE DATA and cur-
rent data number under consideration (DATA NUM COUN-
TER). The output of the comparator activates the multiplexer 
if current data number is less than TOTAL NODE DATA 
otherwise the final mean is calculated and stored in NODE 
MEMORY. In the subsequent phase, mean update and split 
module is executed for the node. In the MEAN UPDATE 
MODULE, either �

l
 or �

r
 is updated by the data-instance. 

The mean closer to data, depending on the distance calcu-
lated by distance calculator left and distance calculator right, 
parallely, is updated according to mean update equation (1). 
The details of distance calculator architecture is presented 
in next sub-section. The multiplexer (MUX) selects the 
mean closer to the data. The select line of this MUX is con-
nected to the output of comparator comparing left and right 

mean distance with data-instance (DIST CALC LEFT and 
RIGHT respectively). Once the mean update is done then 
the updated mean is stored back to the NODE MEMORY. 
Once all the data belonging to that node is passed for mean 
update, then the same distance calculators are re-used to 
calculate the distance between the updated mean stored in 
node memory and the node data in the split module using 
a switch. This switch is implemented using a multiplexer 
whose control signal is connected to completion signal of 
splitting module. Once splitting is complete then the switch 
is connected to update module. This minimises resource uti-
lisation as distance calculator uses a huge number of multi-
ply and addition operations.

In the SPLIT MODULE, depending on whether the data 
is closer to �

l
 or �

r
 , the data is either sent to the left child 

Fig. 2  Proposed Hardware Architecture for TMDT Algorithm
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or right child node selected by the multiplexer. The select 
line of this multiplexer is connected to the same distance 
comparator used in MEAN UPDATE MODULE through a 
switch. Then the node number of data and node memory is 
updated accordingly with the corresponding node number. 
Once the mean update and splitting is done, then the NODE 
MEMORY and DATA MEMORY is updated for that node 
and the initial means of it’s child nodes are calculated in the 
MEAN INITIALISATION module. The node counter is then 
incremented and compared with the termination condition. 
If the termination condition is satisfied, then the PRUN-
ING MODULE starts execution. Otherwise, next node is 
loaded in the mean update module. Then, SPLIT MODULE 
and MEAN INITIALISATION MODULE is executed for 
the node and its child nodes respectively. This process is 
repeated for all the nodes till the maximum depth is reached. 
In the pruning module, discussed later, the two post-pruning 
conditions as discussed in “Proposed TMDT Algorithm” are 
tested and nodes which satisfies the pruning conditions are 
set as leaf nodes and their children nodes (if any) are pruned 
or removed from NODE MEMORY.

Distance Calculator

The parallel hardware architecture for distance calcula-
tor module is shown in Fig. 3. The distance calculator is 
parallelised to the subtraction and squaring used in euclid-
ean distance calculation simultaneously. Then all squared 
components are added to compute final distance using 
minimum number of clock cycles.

Pruning Module

As shown in Fig. 4, in pruning module, two comparators 
are used parallely to compare the purity of corresponding 
node data with purity threshold �p and the total node data 
nq with data threshold � . The output of comparator is then 
fed into the OR gate. The output of OR gate is connected 
to multiplexer which sets the node as either split node 
or leaf node in tree memory and accordingly updates the 
children node.

Fig. 3  Hardware architecture for 
distance calculator

Fig. 4  Hardware architecture for 
pruning module
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After all the nodes are processed and the termination 
condition is satisfied then the pruning module is executed 
to check the split condition for decision nodes. The deci-
sion nodes which do not satisfy the split condition are 
labelled as leaf node and their child nodes are deleted 
from node memory. Then the tree structure is updated and 
stored in the memory. Once this split condition check is 
completed for all decision nodes, then the training is com-
plete and hardware is ready for classification.

Results and Discussion

This hardware was implemented on xcvu13p-flga2577-3-e 
Virtex Ultrascale+ FPGA board which uses 16nm technol-
ogy. The design was implemented using Verilog HDL in 
Vivado 2017 and no high-level synthesis tool was used. 
All hardware results are post-implementation results. The 
maximum operating frequency of this design is 62 MHz. 
This hardware is able to support 32-bit fixed-point data. 
The software implementation was done on Intel core i5 
processor running at 3.20 GHz. The design was tested 
for five balanced binary datasets, viz., skin, occupancy, 
activity recognition 1, activity recognition 2 and mam-
mography [7]. The skin dataset has 38k data points each 
having four attributes, i.e., R, G, B pixel and binary value 
corresponding to skin or non-skin data. The occupancy 
has 10.124k data points each having six attributes, CO2, 
relative humidity, temperature, light, humidity ratio and 
whether the room is occupied. The activity recognition1 
and activity recognition2 datasets has 14.39k data points 
each and distinguishes between whether a person is lying 
or sitting and whether a person is walking or standing 
respectively. The classification is done depending on six 
attributes, viz., five mean of reading from sensors placed 
in chest and ankles of subject and a binary number indicat-
ing whether the person is lying or sitting in case of activ-
ity recognition 1 and a binary number indicating walking 
or standing in case of activity recognition 2. The mam-
mography dataset consists of 793 data points each having 
six attributes, size, shape, margin, density, severity and 
whether the tumor is benign or malignant.

In this design, the max depth d was set as 3 (consider-
ing node 0 at depth 0). For these datasets, after experi-
mentation, the impurity threshold �p was set as 0.95 and 
the minimum number of data points for a node to be split 
node, i.e., � was set as 20. The update factor � was fixed at 
0.8 for this architecture. The distribution of data for Skin 

dataset attribute or dimension 0 and 1 from parent node 
to child node till depth 2 is shown in Fig. 5. As shown 
in the graph, the separability of data for class 0 and 1 
increases with increase in depth. The bar plot of com-
parison of accuracy and time consumption for TMDT and 
C4.5 when implemented in Python platform for the five 
datasets is shown in Fig. 6. It is observed that TMDT has 
much lower latency as compared to C4.5 while accuracy 
of TMDT is slightly lower as compared to C4.5 which 
becomes comparable with increase in dataset size. Thus 
TMDT gives comparable performance while running 28× 
faster than C4.5 in worst case comparison. The time con-
sumption comparison for these 5 datasets for C, Python 
and hardware implementation (Verilog HDL) is reported 
in Table 1. The software implementations were found to 
have higher training latency as compared to the hardware 
implementation. The fastest implementation on C took 224 
msec whereas FPGA implementation took only about 24 
msec which is almost 10× faster for the largest dataset 
skin. Thus, the hardware implementation was observed to 
reduce the training latency further. The hardware utilisa-
tion comparison of the proposed training architecture with 
conventional and optimised k-means classification archi-
tecture is discussed in Table 2. This training accelerator 
hardware utilises only 6.488k FF and 0.228k BRAM for 
38k data-instances as compared to the optimised k-means 
classification hardware proposed in [21] which utilised 
24k FF and 0.24k BRAM for only 16.384k data-instances. 
But the LUT and DSP consumption is little higher in this 
design due to higher computational complexities as com-
pared to classification. Thus dynamic power consumption 
for this design is 3W only.

Conclusion and Future Work

This paper proposes a 32-bit serial architecture running 
at 62 MHz to implement the training of TMDT algorithm 
on FPGA which provides re-configurability thus allowing 
dynamic training. As the proposed hardware is capable to 
test 5 binary data-sets each having different dimensions and 
size, it can be used to train wide variety of datasets. The 
TMDT algorithm implemented on this hardware runs at 
least 28× faster and has lower complexity than the widely 
used conventional C4.5 algorithm. This architecture have 
been shown to achieve at least 10× speed-up as compared to 
software implementations for same datasets by introducing 
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Fig. 5  Node data separation 
from parent node to children 
nodes in TMDT as visualised 
above for Skin dataset for the 
split nodes. The data overlap is 
gradually reduced from parent 
node to children nodes. The 
node impurity as indicated in 
the figure is observed to drop 
gradually with increase in depth

Fig. 6  Bar plots showing com-
parison of latency and accuracy 
for all datasets for C4.5 and 
TMDT algorithm
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some extent of parallelism. In the future works, the parallel 
and pipelined versions of the design will be implemented.
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k-means 108 54 0.100 1.062 16.384 Virtex 7 Conventional k-means clas-
sification

[21] 14 24 0.240 0.186 16.384 Virtex 7 Optimised k-means clas-
sification

Proposed design 894 6.488 0.228 0.2 38 Virtex Ultrascale+ TMDT training
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