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Abstract
We propose to train neural networks on top of support vector machine (SVM) classifiers learned from various visual features 
for efficiently classifying fingerprint images. Real datasets of fingerprint images are collected from students at the Can Tho 
University. The SVM algorithm learns classification models from the handcrafted features such as the scale-invariant feature 
transform (SIFT) and the bag-of-words (BoW) model, the histogram of oriented gradients (HoG), and the deep learning 
of invariant features (e.g., Inception-v3, Xception, VGG, ResNet50), extracted from fingerprint images. Followed which, 
neural networks are learned on top of SVM classifiers trained on these diverse visual features, making improvements of 
the fingerprint image classification. The empirical test results show that the proposed approach is more accurate than SVM 
classifiers trained on any single visual feature type. On average, a neural network trained on top of SVM-ResNet50, SVM-
HoG, and SVM-SIFT-BoW improves 36.47, 12.30, and 8.74% classification accuracy against SVM-ResNet50, SVM-HoG, 
and SVM-SIFT-BoW, separately.

Keywords Fingerprint image classification · Visual features · Stacking classifiers

Introduction

Fingerprint images are uniqueness and durable over time, 
making them ideal as long-term markers of individual iden-
tity. The recognition of fingerprint images is one of the most 
popular and useful methods for identifying individuals. It 
is successfully applied to both government and civilian 
applications, including suspect and victim identifications, 
the recovery of partial fingerprints from a crime scene in 
forensic science, border control, employment background 
checks, and secure facility entrance [28, 29, 40].

Our previous work in [48] proposed to combine SVM 
[57] models learned from different visual features, such as 
SIFT-BoW [4, 34, 37, 38, 53], HoG [14], and pre-trained 

deep learning network such as Xception [11], for efficiently 
classifying fingerprint images. In this paper, we develop its 
extension to train neural networks on the top of SVM clas-
sifiers learned from diverse visual handcrafted feature types, 
SIFT-BoW, HoG, and invariant features extracted by pre-
trained deep neural networks, including VGG16, VGG19 
[52], ResNet50 [26], Inception-v3 [56], and Xception [11], 
making improvements for the fingerprint image classifica-
tion. First, we collect fingerprint image datasets. And then, 
we study visual feature extraction techniques for fingerprint 
images, including two classical handcrafted features like the 
SIFT-BoW, the HoG, and deep features learned by popu-
lar deep networks such as VGG16, VGG19, ResNet50, and 
Inception-v3, Xception. SVM classifiers are learned from 
separately the single visual feature type to classify finger-
print images. And then, we propose to train neural networks 
on the top of SVM classifiers, offering a full complement of 
diverse visual feature types in the fingerprint image recog-
nition. The empirical test results on real fingerprint image 
datasets show that training neural networks on top of SVM 
classifiers learned from SIFT-BoW, HoG, and deep features 
improves classification correctness compared to the ones 
trained on any single visual feature type. An example of the 
proposed approach’s effectiveness on average is that a neural 
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network trained on top of SVM-ResNet50, SVM-HoG, and 
SVM-SIFT-BoW improves 36.47%, 12.30%, and 8.74% 
classification accuracy of SVM-ResNet50, SVM-HoG, and 
SVM-SIFT-BoW, respectively.

The remainder of this paper is organized as follows: Sec-
tion 2 briefly presents the related work. Section 3 illustrates 
our proposal for classifying fingerprint image datasets. Sec-
tion 4 shows the experimental results before conclusions and 
future work presented in Sect. 5.

Related Work

The review papers [28, 29, 40] summarize related works in 
fingerprint recognition: techniques, accomplishments, chal-
lenges, and opportunities.

The classification system of fingerprint images in Fig. 1 
follows the usual framework for the classification of images. 
Building a system for the image classification includes three 
main works: 

1. collecting the dataset of fingerprint images;

2. extracting visual features from fingerprint images and 
representing them;

3. training SVM classifiers.

There are public benchmarks such as FVC datasets [20], 
and SD datasets [23]. The international Fingerprint Verifi-
cation Competitions released FVC datasets in 2000, 2002, 
2004, and 2006. The National Institute of Standards and 
Technology (NIST) created SD datasets in 2012-2018 to 
evaluate measure accuracy of biometric identification. A 
benchmarking fingerprint [12] consists of 40,000 syntheti-
cally generated images. Recent work [45] used a Generative 
Adversarial Network (GAN [24]) to synthesize 100 million 
fingerprint images.

As illustrated in Fig. 1, the usual approach for the finger-
print image classification includes two tasks. The training 
task consists of two main stages: extracting features from 
images and training classifiers. In the classification task, 
the resulting classifier receives the features extracted from 
a new fingerprint image to predict the class label for this new 
fingerprint image.

For a long time, the classical approaches commonly 
used minutiae (e.g., ridge ending, ridge bifurcation, etc.) 
as features and the matching method between minutiae 
of fingerprint images [8, 28, 29, 40, 41]. The proposal in 
[46] trains a deep convolutional neural network on texture 
features extracted from fingerprint images. The fingerprint 
image classification in [16] is performed by support vector 
machines (SVM [57]), random forest of oblique decision 
trees (RF-ODT [17]), models being trained on visual fea-
tures such as the scale-invariant feature transform (SIFT [37, 
38]), and the bag-of-words model (BoW [4, 34, 53]).

More recent techniques aim to train deep convolutional 
neural networks (CNN [33]) and fine-tuning pre-trained deep 
neural networks to recognize fingerprint images. The CNN-
based approach illustrated in Fig. 2 benefits from the ability 
to learn visual features (low-level, mid-level, and high-level) 
from images and the softmax classifier in an unified frame-
work. The CNN-based approach is more accurate than the 
classical one. Shrein [51] proposed a CNN architecture to 
recognize fingerprint images. FingerNet [44] fine-tunes pre-
trained ResNet50 [26] to recognize fingerprint images. Do and 
his colleagues [19] proposed to fine-tune recent pre-trained 
deep learning models such as VGG16, VGG19 [52], ResNet50 
[26], Inception-v3 [56], and Xception [10] for classifying fin-
gerprint images. Militello et al. [42] showed the performance 
of pre-trained CNNs, including AlexNet [31], GoogLeNet 
[55], and ResNet [26] for the fingerprint image classification. 
DeepPrint network [21] learns alignment and minutiae from 
fingerprint images, making fixed-length fingerprint represen-
tations of only 200 bytes. Kai and Anil [5] proposed a CNN 
to learn an orientation field dictionary for fingerprint align-
ment. An most interesting work in [6] used CNNs for ridge 
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Fig. 1  Framework for classifying fingerprint images
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flow estimation and minutiae descriptor extraction. MinuNet 
and MinuNetLatent [7] train convolutional autoencoders to 
detect minutiae. A survey [43] presents the state-of-the-art 
deep learning works on fingerprint recognition.

Proposed Methods

Datasets of Fingerprint Images

Public fingerprint databases for the performance evaluation are 
summarized in [2, 3]. FVC datasets [20] consist of 1800 fin-
gerprint images from 150 individuals. SD datasets [23] contain 
8871 fingerprint images of 888 individuals.

Our investigation aims at studying the classification of large 
fingerprint image datasets. Therefore, we start with the collec-
tion of fingerprint image datasets. In 2016, 2017, and 2018, we 
used Microsoft Fingerprint Reader (optical fingerprint scanner, 
resolution: 512 DPI, image size: 355x390, colors: 256 levels 
grayscale) to capture fingerprint images from our students and 
colleagues at the College of Information Technology, Can Tho 
University. And then, we obtain three real fingerprint datasets 
named FP-235, FP-389, and FP-559, which include fingerprint 
images of 235, 389, and 559 individuals, respectively. There 
are from 15 to 20 fingerprint images captured for each indi-
vidual (class label). Three datasets are described in Table 1.

Visual Approaches for Classifying Fingerprint 
Images

The visual framework for the classification of images con-
sists of two main stages. The first stage is to extract and 
depict visual features from images. And then, the second 
stage is to train SVM models for classifying images.

At the first stage, we propose to study two most popular 
methods to produce handcrafted features, including the 
scale-invariant feature transform (SIFT [37, 38]) and the 
bag-of-words model (BoW [4, 34, 53]), the histogram of 
oriented gradients (HoG [14]).

Scale‑Invariant Feature Transform and Bag‑of‑Words

The SIFT descriptors [37, 38]) extracted from images and 
the bag-of-words model (BoW) are the most habitual rep-
resentation for tasks of images’ classification [4, 34, 53]. 
The SIFT method detects the appearance of the object at 
particular interest points in images, invariant to image 
scale, rotation, and also robust to changes in illumination, 
noise, and occlusion. Clustering SIFT descriptors is to 
form visual words. A fingerprint image is then represented 
by the frequencies of the visual words, i.e., BoW.

Histogram of Oriented Gradients

The HoG descriptors proposed by [14] are used to detect 
the human. The HoG technique tries to describe local 
object appearance and shape within an image, by comput-
ing the distribution of local intensity gradients or edge 
directions to. And then, it combines the distributions to 
form the image representation. The HoG descriptor is 
invariant to geometric and photometric transformations, 
except for object orientation.

In last years, the researchers propose deep neural net-
works including VGG16, VGG19 [52], ResNet50 [26], 
Inception-v3 [56], and Xception [11] for efficiently per-
forming the large-scale image classification. These deep 
neural network models are pre-trained on ImageNet data-
set [15], achieving most accurate classification results. We 
also propose to use them to extract deep features from 
fingerprint images at the first stage of the visual classifica-
tion framework.

Feature maps Feature maps Feature maps

Feature learning Classifer learning

FP image

ŷ

...

......

...

Fig. 2  Convolutional neural network (CNN) for classifying fingerprint images

Table 1  Description of fingerprint image datasets

ID Dataset #Datapoints #Classes

1 FP-235 3485 235
2 FP-389 6306 389
3 FP-559 10270 559
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VGG16 and VGG19

The VGG network architecture proposed by [52] consists 
of two parts. The first one stacks several VGG block mod-
ules (convolutional and pooling layers as shown in Fig. 3) to 
learn visual features from images. The second one includes 
fully connected layers to train classifiers.

The VGG block module uses 3 × 3 convolutional layers 
stacked on top of each other to develop depth. The 2 × 2 max 

pooling layer is used to reduce volume size. Furthermore, 
the VGG architectures are designed, so that every convolu-
tional layer captures the spatial information from images, 
consecutively increasing the access to a larger spatial con-
text. VGG architectures to prevent the spatial feature of the 
image. VGG-16 and VGG-19 consist of 16 and 19 VGG 
block modules for the large-scale image classification of 
ImageNet dataset.

Inception‑v3

The Inception-v3 network proposed by [56] is used to deal 
with ImageNet dataset. Its architecture stacks 11 inception 
modules and global average pooling to learn multi-level fea-
tures for the image classification. An inception module (in 
Fig. 4) consists of 1 × 1 , 3 × 3 convolutions to learn invariant 
features from different spatial sizes, in which 1 × 1 convolu-
tions are used to reduce the volume size. These Inception 
modules are stacked on top of each other. Maximum and 
average pooling layers aim to to reduce the dimension in the 
Inception-v3. The network architecture aims to capture the 
spatial information from images.

ResNet50

The ResNet50 network architecture proposed by [26] devel-
ops extremely deep networks for classifying ImageNet 
dataset.

The well-known failure of extremely deep networks is the 
vanishing gradient problem during the learning process of 
deep network. It is the motivation for He and his colleagues 
[26] to propose a new residual block (in Fig. 5), to overcome 
this issue. The residual block includes convolutional layers. 
Each convolutional layer is followed by a batch normali-
zation layer and a ReLU activation function. Furthermore, 
an identity mapping is added on the output from the last 
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. . .

3 × 3 Conv, pad 1

2×2 MaxPool, stride 2

Fig. 3  VGG block module

Fig. 4  Inception module Input
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convolutional layer before the final ReLU activation func-
tion. The identity mapping allows to skip one or many layers 
in the network. The ResNet50 is designed with the depth of 
50 layers in blocks.

Xception

The Xception network proposed by [10] is an extension of 
the Inception architecture. The network architecture includes 
Xception modules being also stacked on top of each other. 
The Xception module (Fig. 6) replaces the standard depth-
wise separable convolution (the depthwise convolution fol-
lowed by a pointwise convolution) in Inception modules 

with depthwise separable convolutions. This new modifi-
cation does not need any intermediate activation being the 
pointwise convolution followed by a depthwise convolution.

Pre-trained deep networks VGG16, VGG19, Inception-
v3, ResNet50, and Xception are used to extract invariant 
visual features from fingerprint images.

Followed the first stage for the feature extraction, the Sup-
port vector machine (SVM [57]) algorithm is used to train 
classifiers for recognizing fingerprint images.

Support Vector Machines

For a linear binary classification problem depicted in Fig. 7, 
the SVM algorithm proposed by [57] tries to find the best 
separating plane furthest from both class +1 and class −1 . To 
pursue this aim, the training SVM algorithm simultaneously 
maximizes the margin (or the distance) between the support-
ing planes for each class and minimizes errors.

The SVM algorithm uses various kernel functions [13] 
to handle non-linear classification tasks. The commonly 
non-linear kernel functions can be a polynomial function of 
degree d, a radial basis function (RBF).
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x
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x

identity

Weight layer

+

F(x) + x
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Fig. 5  Residual block
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The SVM learning algorithm can be extended for han-
dling the multi-class problems (c classes, c ≥ 3 ). The main 
idea is to decompose multi-class into a series of binary 
SVMs, including One-Versus-All [57], One-Versus-One 
[30]. The One-Versus-All strategy (as illustrated in Fig. 8) 
trains c different binary SVM models where the ith one 
separates the ith class from the rest. The One-Versus-One 
strategy (as illustrated in Fig. 9) trains c(c − 1)∕2 binary 
SVM models for all the binary pairwise combinations of 
the c classes. The class is then predicted with the largest 
distance vote. In practice, the One-Versus-All strategy is 
implemented in LIBLINEAR [22] and the One-Versus-One 
technique is also used in LibSVM [9].

Training Neural Networks on Top of SVM Models

Classical classification of images usually trains the SVM 
model on a single visual feature type extracted from fingerprint 
images. Therefore, the classification correctness is restricted, 
because any visual feature type has advantages and disad-
vantages. The handcrafted feature descriptors like SIFT and 
HoG have several advantages, including invariant to image 
scaling, geometric and photometric transformations, robust to 
noise, small distortions, and changes in illumination [14, 37, 
38, 50]. As illustrated in [58, 61], local features extracted by 

SIFT are more robust than global features produced by HoG, 
under severe conditions. However, SIFT ignores global infor-
mation of the image; this leads to a negative impact. Further-
more, deep neural networks are efficient techniques among 
feature extractors to learn invariant visual features (low-level, 
mid-level, and high-level features) from images [32]. How-
ever, training deep neural networks requires huge amounts 
of resource (data, hardware). Our investigation aims to com-
bine the strength of SVM models learned from diverse visual 
feature types for improving the classification of fingerprint 
images. Last idea [36, 60] is to fuse deep features to enhance 
image classification. Nevertheless, the nature of these visual 
features are different. Therefore, it cannot combine visual fea-
tures before training for the SVM classifier. Instead of this, 
we propose to train the neural network on top of SVM mod-
els learned from SIFT-BoW, HoG, and deep visual features 
(as illustrated in Fig. 10) to complement each other. To avoid 
tuning by hand weights in habitual voting scheme [18, 59] 
between the prediction of each visual classifier, our proposed 
scheme is to automatically learn weights with the simple neu-
ral network as follows: 
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Fig. 8  Multi-class SVM (One-Versus-All)
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However, the training process of the such neural network 
usually occurs the overfitting problem, making the poor per-
formance in the classification. To address this problem, we 
propose to use a sampling layer in which it is to randomly drop 
units (along with their connections). This is a simple way to 
significantly reduces overfitting as illustrated in [54].

And then, the network fuses SVM models trained on SIFT-
BoW, HoG, and deep visual features to classify fingerprint 
images.

Experimental Results

In this section, we present experimental results of differ-
ent visual approaches for classifying fingerprint images. We 
implement them in Python using library Keras [10] with 
backend Tensorflow [1], library Scikit-learn [47], and library 
OpenCV [27]. All experiments are conducted on a machine 
Linux Fedora 27, Intel(R) Core i7-4790 CPU, 3.6 GHz, 4 
cores, and 32 GB main memory and the Nvidia GeForce 
GTX 960M 2GB GPU.

Three fingerprint image datasets are presented in Table 1. 
Datasets are randomly split into the trainset (80% fingerprint 
images) and the testset (20% fingerprint images). We use the 
trainset to build visual classification models. Then, results 
are reported on the testset using the resulting visual clas-
sification models.

Tuning Parameters

With methods for feature extractor and image representation, 
only handcrafted features SIFT and BoW model needs tun-
ing the number of clusters (visual words) well known as the 
parameter of kmeans algorithm [39]. The number of visual 
words are varied from 1000 to 3000. And then, experimental 
results are unchanged while increasing the number of visual 
words over 2000. Therefore, we use 2000 visual words for 
the BoW model.

With SVM models, we propose to use RBF kernel 
functions, because it is general and efficient [35]. There 
is need to tune the hyper-parameter � of RBF function 
[ K⟨xi, xj⟩ = exp(−���xi − xj��

2) ] and the cost C (a trade-off 
between the margin size and the errors) to obtain the best 
correctness. Finally, we find out best parameters’ SVM in 
Table 2 for visual classification models.

For our proposed training neural networks on top of SVM 
models in Sect. 3, we tried to tune for the good neural net-
work architecture. It consists of the number of neurons for 
the hidden layer (Full Connected) and the probability for the 
Sampling layer. The best configuration is with 128 neurons 
for the Full Connected and a probability of 0.5 for the Sam-
pling layer. The number of epochs for training is set to 200.

FP image

SIFT-BoW HoG Deep Features

× . . .
o . . .
o . . .

o . . .
× . . .
o . . .

o . . .
o . . .
× . . .

SVMs SVMh SVMd

Input ⇒ Full Connected ⇒ Sampling ⇒
Full Connected ⇒ Softmax

ŷ

Fig. 10  Training neural networks on top of SVM models for classify-
ing fingerprint images

Table 2  Hyper-parameters for training SVM models

No Feature extraction method � C

1 SIFT and BoW 0.00005 100000
2 HoG 0.025 100000
3 Deep features 0.001 100000
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Classification Results

We obtain the classification accuracy of visual approaches 
in Tables 3, 4, 5 and Figs. 11, 12, 13. In tables, the highest 
accuracy is bold-faced and the second one is in italic. The 
SVM model learned from visual features extracted by the 
feature extraction method (feature extractor) is denoted by 
SVM-Feature-Extractor.

In the comparison among visual classification approaches, 
we can see that the SVM models trained on the single type 
of features are not suited for classifying fingerprint images. 
SVMs using deep features extracted by the ResNet50 (denoted 
by SVM-ResNet50) give lowest correctness. The SVM mod-
els learned from features performed by SIFT-BoW or Xcep-
tion give competitive classification results compared to among 
SVM classifiers trained on the other single feature type.

Table 3  Overall classification accuracy for FP-235

No Visual approach Accuracy (%)

1 SVM-SIFT-BoW 89.38
2 SVM-HoG 82.78
3 SVM-ResNet50 57.82
4 SVM-VGG16 81.06
5 SVM-VGG19 80.92
6 SVM-Inceptionv3 84.79
7 SVM-Xception 87.39
8 SVM-ResNet50, SVM-HoG, SVM-SIFT-BoW 95.84
9 SVM-VGG16, SVM-HoG, SVM-SIFT-BoW 96.27
10 SVM-VGG19, SVM-HoG, SVM-SIFT-BoW 95.84
11 SVM-Inceptionv3, SVM-HoG, SVM-SIFT-

BoW
96.70

12 SVM-Xception, SVM-HoG, SVM-SIFT-BoW 96.70

Table 4  Overall classification accuracy for FP-389

No Visual approach Accuracy (%)

1 SVM-SIFT-BoW 87.19
2 SVM-HoG 86.01
3 SVM-ResNet50 62.50
4 SVM-VGG16 85.46
5 SVM-VGG19 85.52
6 SVM-Inceptionv3 85.46
7 SVM-Xception 87.75
8 SVM-ResNet50, SVM-HoG, SVM-SIFT-BoW 96.35
9 SVM-VGG16, SVM-HoG, SVM-SIFT-BoW 97.28
10 SVM-VGG19, SVM-HoG, SVM-SIFT-BoW 97.22
11 SVM-Inceptionv3, SVM-HoG, SVM-SIFT-

BoW
97.71

12 SVM-Xception, SVM-HoG, SVM-SIFT-BoW 97.22

Table 5  Overall classification accuracy for FP-559

No Visual approach Accuracy (%)

1 SVM-SIFT-BoW 85.55
2 SVM-HoG 82.65
3 SVM-ResNet50 58.61
4 SVM-VGG16 84.06
5 SVM-VGG19 84.60
6 SVM-Inceptionv3 83.94
7 SVM-Xception 85.89
8 SVM-ResNet50, SVM-HoG, SVM-SIFT-BoW 96.14
9 SVM-VGG16, SVM-HoG, SVM-SIFT-BoW 96.64
10 SVM-VGG19, SVM-HoG, SVM-SIFT-BoW 96.72
11 SVM-Inceptionv3, SVM-HoG, SVM-SIFT-

BoW
97.18

12 SVM-Xception, SVM-HoG, SVM-SIFT-BoW 96.72
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As mentioned in Sect. 3, we are interested in the effec-
tiveness of training the neural network on top of SVM 
models learned from SIFT-BoW, HoG, and deep visual 
features to complement each other.

Our proposed training neural networks on top of SVM 
models achieve most classification accuracy. On aver-
age, SVM-ResNet50, SVM-HoG, and SVM-SIFT-BoW 
achieve 59.64%, 83.81%, and 87.37% classification accu-
racy but training neural networks on top of SVM-SIFT-
BoW, SVM-HoG, SVM-ResNet50 (denoted by the triplet 
<SVM-SIFT-BoW, SVM-HoG,SVM-ResNet50>) gives 
96.11% accuracy. It means that <SVM-SIFT-BoW, SVM-
HoG,SVM-ResNet50> improves 36.47%, 12.30%, and 
8.74% classification accuracy of SVM-SIFT-BoW, SVM-
HoG, and SVM-ResNet50, respectively.

The same effectiveness of training neural networks on top 
of other SVM models, the superiority of <SVM-VGG16, 
SVM-HoG, SVM-SIFT-BoW> against SVM-VGG16, SVM-
HoG, and SVM-SIFT-BoW are 13.20%, 12.91%, and 9.36%, 
accuracy.

The improvements of the triplet <SVM-VGG19, SVM-
HoG, and SVM-SIFT-BoW> over each single visual classifier 
are 12.91%, 12.78%, and 9.22%.

The triplet <SVM-Inceptionv3, SVM-HoG, SVM-
SIFT-BoW> makes 12.47%, 13.38%, 9.82% classification 
accuracy better than SVM-Inceptionv3, SVM-HoG, and 
SVM-SIFT-BoW.

The triplet <SVM-Xception, SVM-HoG, SVM-SIFT-
BoW> also improves 9.64%, 12.84%, and 9.28% classifi-
cation accuracy of SVM-Xception, SVM-HoG, and SVM-
SIFT-BoW, respectively.
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Fig. 13  Overall classification accuracy for FP-559
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These empirical results illustrate that our proposed 
method improves the classification correctness against the 
SVM models trained on the single type of visual features.

However, training the neural network on top of SVM 
models learned takes additional training time, as presented 
in Tables 6, 7, 8 and Figs. 14, 15, 16. Due to the large num-
ber of features (200,704 features) extracted from VGG net-
works, triplets using VGG models have longest training 
time.

Conclusions and Future Work

We have presented the new proposal, training neural net-
works on top of SVM classifiers learned from different 
visual features for improving the fingerprint image classifi-
cation. We collect three real fingerprint image datasets from 

Table 6  Additional training time for FP-235

No Visual approach Additional 
train time 
(min)

8 SVM-ResNet50, SVM-HoG, SVM-SIFT-BoW 1.78
9 SVM-VGG16, SVM-HoG, SVM-SIFT-BoW 13.65
10 SVM-VGG19, SVM-HoG, SVM-SIFT-BoW 7.9
11 SVM-Inceptionv3, SVM-HoG, SVM-SIFT-BoW 1.85
12 SVM-Xception, SVM-HoG, SVM-SIFT-BoW 1.78

Table 7  Additional training time for FP-389

No Visual approach Additional 
train time 
(min)

8 SVM-ResNet50, SVM-HoG, SVM-SIFT-BoW 8.82
9 SVM-VGG16, SVM-HoG, SVM-SIFT-BoW 75.77
10 SVM-VGG19, SVM-HoG, SVM-SIFT-BoW 42.18
11 SVM-Inceptionv3, SVM-HoG, SVM-SIFT-BoW 8.86
12 SVM-Xception, SVM-HoG, SVM-SIFT-BoW 8.60

Table 8  Additional training time for FP-559

No Visual approach Additional 
train time 
(min)

8 SVM-ResNet50, SVM-HoG, SVM-SIFT-BoW 23.25
9 SVM-VGG16, SVM-HoG, SVM-SIFT-BoW 225.77
10 SVM-VGG19, SVM-HoG, SVM-SIFT-BoW 99.14
11 SVM-Inceptionv3, SVM-HoG, SVM-SIFT-BoW 23.99
12 SVM-Xception, SVM-HoG, SVM-SIFT-BoW 23.53
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our students and colleagues. Visual approaches train SVM 
classifiers on diverse types of visual features, including 
two most popular handcrafted features such as SIFT-BoW, 
HoG, and deep features learned by recent deep neural net-
works, including VGG16, VGG19, ResNet50, Inceptionv3, 
and Xception, to classify fingerprint images. The empirical 
test results on real fingerprint image datasets show that the 
SVM model separately trained on any single visual feature 
type is not suited for recognizing fingerprint images. Train-
ing neural networks on top of SVM classifiers offers a full 
complement of visual feature types, making improvements 
of the classification correctness given by any single one. 
An example of the proposed approach’s effectiveness on 
average is that a neural network trained on top of SVM-
ResNet50, SVM-HoG, and SVM-SIFT-BoW improves 
36.47%, 12.30%, and 8.74% classification accuracy of SVM-
ResNet50, SVM-HoG, and SVM-SIFT-BoW, respectively.

In the future, we will propose a new deep neural network 
architecture to serve the fingerprint image classification with 
feature extractors. We will focus on the transfer learning 
approach [25, 49, 62] and efficient visual models to improve 
fingerprint image classification results. We intend to provide 
more empirical test on large benchmarks.
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