
Vol.:(0123456789)

SN Computer Science (2021) 2:352 
https://doi.org/10.1007/s42979-021-00738-x

SN Computer Science

SURVEY ARTICLE

A Theoretical and Experimental Comparison of Large‑Scale Join 
Algorithms in Spark

Anh‑Cang Phan1   · Thuong‑Cang Phan2 · Thanh‑Ngoan Trieu2 · Thi‑To‑Quyen Tran3

Received: 11 March 2021 / Accepted: 8 June 2021 / Published online: 23 June 2021 
© The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2021

Abstract
Currently, the estimated amount of data created daily have reached the threshold of petabytes or even zettabytes globally. 
It is no wonder that traditional data processing technologies cannot process and manage extremely large volumes of such 
data. However, these massive and various data can be used to deal with business problems that we would not have been able 
to tackle before. To discover their value, it is necessary to effectively perform query operations in a parallel and distributed 
manner. One of the standard and common query operations is an expensive join operation. This research systematically 
presents a theoretical and experimental comparison of the prominent join algorithms in the Spark environment. At first, this 
study shows the details of important strategies of two-way joins and recursive joins. Then, it exposes the advantages and dis-
advantages of each approach. Especially, the work provides mathematical cost models to make a more convince comparison 
of the joins before verifying by experiments. The results show that the comparison using the cost models is consistent with 
that using the experiments. Generally, the two-way and recursive joins using filters are the best choices while performing 
in the Spark environment.

Keywords  Join operation · Big data analytic · Spark · MapReduce · Bloom filter

Introduction

Big data processing is a very important requirement for 
many applications in a wide range of fields such as com-
merce, scientific research, health care, security, customer 
behavior, natural disasters, etc. Processing large datasets 
requires compatible systems to work in a parallel and 

distributed manner. The idea is to divide a computation into 
small tasks that can be executed on a cluster of computers. 
The main model to handle the problem is MapReduce [12], 
which works with two main operations: Map and Reduce. 
The Map functions transform and organize data while the 
Reduce functions aggregate data. This model proposed by 
Google in 2004 and has become the current standard and the 
most popular model for handling large datasets on parallel 
and distributed systems.

A typical and frequently used operation in data analysis is 
a join operation. The join operation combines data from two 
or more different datasets with a key join and results a new 
dataset. This is a complex and costly operation when imple-
mented in the MapReduce environment. The join operation 
in MapReduce goes through two phases, map and reduce, 
with expensive shuffling costs (moving data from mapper to 
reducer). Therefore, executing join queries on large datasets 
in MapReduce presents great challenges for researchers. One 
of the solutions for reducing costs of join computation is 
removing redundant elements that are not involved in the 
join operation.

There are several types of join operations such as two-way 
join, multi-way join [27], chain join [17], and recursive join 

This article is part of the topical collection “Future Data and 
Security Engineering 2020” guest edited by Tran Khanh Dang.

 *	 Anh‑Cang Phan 
	 cangpa@vlute.edu.vn

	 Thuong‑Cang Phan 
	 ptcang@cit.ctu.edu.vn

	 Thanh‑Ngoan Trieu 
	 ttngoan@cit.ctu.edu.vn

	 Thi‑To‑Quyen Tran 
	 thi-to-quyen.tran@irisa.fr

1	 Vinh Long University of Technology Education, 
Vinh Long City, Vietnam

2	 Can Tho University, Can Tho City, Vietnam
3	 IRISA, University of Rennes 1, Lannion City, France

http://orcid.org/0000-0002-1470-5496
http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-021-00738-x&domain=pdf


	 SN Computer Science (2021) 2:352352  Page 2 of 16

SN Computer Science

[24]. Currently, many researches have been done on two-
way join operations in MapReduce with Apache Hadoop1 
[8, 15, 23]. The join algorithms investigated mainly include 
Map-side join [8, 15], Broadcast join [8] that is considered 
to be a Hash join [11, 21], and Reduce-side join [15, 31] 
that is similar to a Repartition join [8]. In addition, a number 
of algorithms is developed to improve the effectiveness of 
join operations. Most of these algorithms focus on solving 
the problem of removing redundant data before performing 
join operations such as Parallelize set-similarity joins [21], 
Bloom join [10, 16, 18, 20, 23], and Intersection filter-based 
Bloom join [23, 25]. Recently, with the popularity of Apache 
Spark2, there have been a few studies on join activities but 
mainly done based on the support of database systems such 
as NoSQL [28], Hive [19], or queries made directly from 
Spark SQL [5]. The join algorithms in MapReduce has been 
analyze in several studies [3, 4, 24]. The study [3] has shown 
a survey on join algorithms in Spark.

A recursive join is also called a fix-point join, which 
repeats the join operations until a fix-point is reached. It 
computes the transitive closure of a relation with repeated 
join operations. There are two types of algorithms dealing 
with the problem of computing transitive closure: direct cal-
culation algorithms (such as Warshall [30] and Warren [29]) 
and iterative algorithms (such as Naive [6], Semi-Naive [7], 
and Smart [1]). However, not all of these these algorithms 
are appropriate to implement in MapReduce. The results 
in study [13] show that Semi-Naive can be the best choice 
to process recursive join in MapReduce. Shaw et al. [26] 
proposed a solution for recursive join in Hadoop MapRe-
duce environment using Semi-Naive algorithm. The research 
repeats two type of jobs, which are join job and incremental 
computing dataset job.

Since Hadoop framework has slow processing speed 
than Apache Spark [32], our study conducts experiments 
on Spark for the commonly used join algorithms. As a sci-
entific basis, this study provides an overview of common 
two-way join algorithms and recursive join with Semi-Naive 
in MapReduce. We evaluate the algorithms based on general 
cost models and experiments in Spark. This research extends 
our previous work [22]. The new contributions include a 
more complete and systematic presentation on the two-way 
join algorithms; and a comparative study on complexly 
recursive join algorithms using theory and empirical models 
in Spark. We use some abbreviations described in Table 1.

The rest of this paper is organized as follows. Section 2 
presents the theoretical background of Apache Spark and 
filters. Section 3 shows the join algorithms in MapReduce. 
Section 4 provides a comparison of join algorithms through 

cost models and experiments. The conclusion of the paper 
is presented in Sect. 5.

Background

MapReduce

MapReduce [12] is a programming model that processes 
large amounts data in a parallel and distributed manner. 
MapReduce was first developed at Google by Jeffrey Dean 
and Sanjay Ghemawat. Their motivation comes from a mul-
titude of calculations involving a large amount of input data 
that are performed daily at Google. The input data to the 
calculations is enormous and requires distributed processing 
across hundreds or thousands of machines to get results in a 
reasonable amount of time. When the system is distributed, 
some problems with distributed data and parallel comput-
ing occur that make it difficult for programmers to focus 
on simple calculations. Therefore, MapReduce is a solution 
that helps programmers focus on performing computations 
without regard to the complexities of distributed systems 
such as fault tolerance, load balancing, and data partitioning.

The MapReduce model consists of two main functions: 
map and reduce. A map function processes the input data to 
generate the intermediate data in form of key-value pairs. A 
reduce function will work on a list of values with the same 
key to produce the results. An example of using MapReduce 
model to process the word-count is presented in Fig. 1.

Apache Spark

Apache Spark [32] is an open source computing framework 
on a cluster, used for fast data analysis that satisfies two cri-
teria, which are fast in execution and fast in read/write data. 
Spark was first developed in 2009 by AMPLab at the Univer-
sity of California. In 2013, Spark was donated to the Apache 
Software Foundation. Spark does not have its file system 
thus it uses other distributed file systems such as Hadoop 

Table 1   List of abbreviation

Abbreviation Algorithm

MSJ Map-side join
RSJ Reduce-side join
BCJ Broadcast join
BFJ Bloom join
IBJ Intersection bloom join
RRS Recursive join (with reduce-side join)
RIB Recursive join (with intersection bloom join)

1  https://​hadoop.​apache.​org.
2  https://​spark.​apache.​org.

https://hadoop.apache.org
https://spark.apache.org


SN Computer Science (2021) 2:352	 Page 3 of 16  352

SN Computer Science

HDFS3, Cassandra4, Hbase5, and Amazon S36. Spark allows 
dividing tasks into small pieces to run in memory of differ-
ent computing nodes to exploit the fast processing speed.

Spark has several components (Fig. 2), in which Spark 
Core is the main component to build all other functions on 
it. Spark Core supports the most basic functions such as 
scheduling tasks, managing memory, and error recovery. 
It provides in-memory computing capabilities to provide 
speed, a general execution model to support a wide range of 
applications, and provides APIs for popular programming 
languages such as Java, Scala, and Python. Spark SQL is 
a Spark module for handling structured data. It provides a 
programming abstraction called DataFrames and can also 
act as a distributed SQL query engine. Spark Streaming 
enables powerful interactive and analytical applications on 
both streaming and batch data. It easily integrates with many 
popular data sources, including HDFS, Flume7, Kafka8, and 
Twitter9. Spark MLlib is a scalable machine learning library 
that supports to build higher-level algorithms. GraphX is a 

new component that allows users to build interactions, trans-
form, and interpret graphical data.

Spark solves memory management issues by using Resil-
ient Distributed Datasets (RDDs) with two types of opera-
tions (Transformations and Actions). A transformation gen-
erates RDDs from existing RDD and an action will return 
the results to the driver program after performing computa-
tions on RDDs. Transformation is a “lazy” operation that 
does not execute intermediately. A lineage graph is incre-
mentally built when applying transformations. It includes all 
the parents RDD and the final RDD. Once a related action is 
performed, the transformations are executed.

An RDD will be re-initializes in each action so that it 
will take a lot of time if we encounter a case that an RDD is 
reused many times. Therefore, Spark supports a mechanism 
called persist or cache. Persisting an RDD, the nodes con-
taining the RDD partitions will store it in memory, and that 
node will only calculate once. Spark uses a concept called 
“storage level” to manage the storage level of data. Spark 
will recalculate the missing parts of RDD if necessary.

Bloom filter and Intersection Bloom Filter

Bloom Filter (BF) [9] was introduced in 1970 by Burton 
Bloom, is a probability data structure used to check whether 
an element belongs to a collection or not. A BF structure 
consists of an array of m bits and k independent hash func-
tions with each function hashes elements to a position in the 
m bits array. An example of a bloom filter is presented in 
Fig. 3 with m = 12 and k = 3 . To test element z belongs to 
the collection S or not, we need to check all k hash positions 
of z in the m bits array. If all the values at those positions are 

Fig. 1   Example of MapReduce 
processing model

Fig. 2   Spark components

Fig. 3   Bloom filter with m = 12 and k = 3

3  https://​hadoop.​apache.​org.
4  https://​cassa​ndra.​apache.​org.
5  https://​hbase.​apache.​org.
6  https://​aws.​amazon.​com/​s3/.
7  https://​flume.​apache.​org.
8  https://​kafka.​apache.​org.
9  https://​twitt​er.​com.

https://hadoop.apache.org
https://cassandra.apache.org
https://hbase.apache.org
https://aws.amazon.com/s3/
https://flume.apache.org
https://kafka.apache.org
https://twitter.com


	 SN Computer Science (2021) 2:352352  Page 4 of 16

SN Computer Science

1 then z ∈ S . Otherwise, if there exist at least one of these 
positions with a value of 0 then z ∈ S.

In some cases, a hash function for multiple elements may 
return the same value thus an element that does not exist in 
the collection can also have a position with value 1. For this 
reason, a BF can return false positive elements, but it never 
returns false negative elements. A false positive element is 
the one identified by the BF as belonging to S, but actually 
it is not. A false negative element is the one identified by 
the BF as not in the S but in fact it does. The false positive 
probability of a bloom filter is calculated with Eq. 1.

Intersection Bloom Filter (IBF) [23, 24] is a probability 
data structure designed to represent the intersection of data-
sets. It is used to identify common elements of collections 
with a false positive probability. A false positive element 
is the element defined by IBF as belonging to the intersec-
tion two datasets but in fact it does not. There are three 
approaches to build up an IBF for two datasets S1 and S2.

–	 Approach 1: Using two BFs
	   Use BFS1 for S2 to select the common elements of S2 ; 

and use BFS2 for S1 to select the common elements of S1 . 
The combinings of the above results are the common ele-
ments of both datasets. The advantage of this approach 
is that it does not require the two filters to have the same 
size m and the same k hash functions.

–	 Approach 2: Using the intersection of two BFs
	   This approach requires two BFs to have the same size 

m bits and k hash functions (Figs. 4 and 5). To build the 
IBF, we calculate the intersection of the two filters BFS1 
and BFS2 by an AND bit operation ( IBF(S1,S2) = BFS1 
AND BFS2).

–	 Approach 3: Using the intersection of two partitioned 
BFs

	   Partitioned Bloom filter [14] is a variant of the stand-
ard BF, defined by an array of m bits divided into k 

(1)f = (1 − p)k =

(
1 −

(
1 −

1

m

)kn
)k

≈
(
1 − e

−
kn

m

)k

separated sub-arrays with size mp = m∕k bits. Similar to 
approach 2, the IBFS1,S2 is generated by an AND opera-
tion of BFS1 and BFS2.

Join Algorithms in MapReduce

Join is an operation that combines tuples from different data-
sets with several conditions. It is essentially a connection 
between two or more datasets based on matching columns. 
Most data queries include the join operations as the basic 
operations. Thee three main types of join operations are two-
way join, multi-way join, and recursive Join.

Two-way join: Given two datasets R and L, a two-way 
join ( R ⋈k1=k2

L ) denotes tuples r ∈ R and l ∈ L such that 
r.k1 = l.k2 where k1 and k2 are the join keys in R and L.

Multi-way join: Given n datasets R1,R2, ...,Rn , a multi-
way join is the two-way joins in pair ( R1 ⋈ R2 ⋈ ... ⋈ Rn).

Recursive join: Given a relation K(x, y) encoding a graph, 
a recursive join computes the transitive closure of the rela-
tion K. It requires an initialization operation and the itera-
tions until now new result found. Recursive join repeats the 
join operations until the iteration no longer produces new 
results.

Of the three types of join above, two-way join is the most 
commonly used in data queries. To illustrate the two-way 
join operation in MapReduce, we consider the join operation 
of two datasets R and L. The join computation in MapRe-
duce will be performed as depicted in Fig. 6 with the tuples 
of R(B, F), (D, E), (A, C) and L(A, D), (A, B), (B, C). The 
map phase is responsible for reading the input data blocks 
of R and L. Three mappers are created as shown in Fig. 6 to 
process three data blocks (each block will consist of several 
tuples). Mappers will convert the tuples into key-value pairs, 
which are the intermediate data.

–	 {(B, F), (D, E), (A, C)} → {(B, F), (D, E), (A, C)}
–	 {(A, D)} → {(D, A)}
–	 {(A, B), (B, C)} → {(B, A), (C, B)}

Intermediate datasets with the same key are sent to the same 
reducer. A simple reduce function will take each intermedi-
ate tuple of R combined with an intermediate tuple of L to 
produce the results.

{
(Initialization)A(x, y) = K(x, y)

(Iteration)A(x, y) = A(x, z) ⋈ K(z, y)

Fig. 4   IBF Using the intersection of two BFs

Fig. 5   IBF Using the intersection of two partitioned BFs



SN Computer Science (2021) 2:352	 Page 5 of 16  352

SN Computer Science

Map‑Side Join

Map-side join [15, 31] is similar to sort-merge join in Rela-
tional Database Management Systems—RDBMS. The 
operation is done by joining two datasets at the map stage 
without shuffle and reduce stages. However, this algorithm 
requires that the input datasets must be arranged in the order 
of the join keys and all datasets with the same join key must 
be brought together in a partition. The flow diagram of the 
Map-side join algorithm is in Fig. 7.

The MSJ algorithm does not generate intermediate data 
and does not cost for the shuffle and reduce stages since it 

only runs through the input data and performs join opera-
tion in the map stage. However, this algorithm requires 
strict input data, which means that the datasets must have 
the same number of partitions sorted by the join key. In 
order words, this can be the most efficient algorithm if the 
input datasets meet all requirements. Otherwise, this algo-
rithm will cost for pre-processing the input data in accord-
ance with the requirements. Furthermore, the algorithm 
needs to have two buffers containing all the same key sets 
of the input data, which can lead to memory overflow at 
computational nodes.

Fig. 6   Join operation in MapRe-
duce

Fig. 7   Map-side join algorithm 
flowchart



	 SN Computer Science (2021) 2:352352  Page 6 of 16

SN Computer Science

Reduce‑Side Join

Reduce-side join [8, 15, 31] is known as a “re-partition 
join”, which will be performed at the reduce stage. The algo-
rithm maps the input datasets to have intermediate data in 
form of key-value pairs and shuffles the data to the reducers 
for performing join operation. All key-value pairs with the 
same key join must be sent to the same reducers and sorted 
by the key join. The reducers then perform a combination 
of values with the same key. The RSJ algorithm flowchart 
is presented in Fig. 8.

This algorithm uses the natural way of MapReduce 
framework to process join operation. It is more general 
than the MSJ since it has no requirements on input datasets. 
It limits the case of memory overflow in MSJ algorithm 
since the buffer only contains tuples that participate in join 
operation of one dataset. However, this algorithm will cost 
more on I/O and shuffling data since it creates intermediate 
data at the map stage and transfers over the network. The 
RSJ can encounter memory overflow in case of skewed 
data.

Fig. 8   Reduce-side join algorithm flowchart

Fig. 9   Broadcast join algorithm flowchart



SN Computer Science (2021) 2:352	 Page 7 of 16  352

SN Computer Science

Broadcast Join

Broadcast join [8] is similar to the algorithm that uses hash 
join in RDBMS. It is a special case of the MSJ algorithm but 
it does not require strictly structured input data. This algorithm 
is applicable when the size of one dataset is much smaller than 
the other ( |R| << |L| ). The smaller dataset will be broadcast 
to all mappers. An in-memory hash table will be used to store 
the small dataset and using table lookup for matching key join.

In this algorithm, the map stage does not produce inter-
mediate data and does not cost for shuffle and reduce stages. 
The algorithm is not affected by the problem of skewed data 
since the smaller dataset is broadcasted to each mapper and 
each mapper process one partition of the larger dataset that 
can be fitted in memory. However, in this algorithm, one of 
the two input datasets is very small to be able to broadcast 
to all mappers (Fig. 9).

Fig. 10   Bloom join algorithm flowchart

Fig. 11   Intersection bloom join algorithm flowchart



	 SN Computer Science (2021) 2:352352  Page 8 of 16

SN Computer Science

Bloom Join

Bloom join (BFJ) [16, 20, 23] is a join algorithm improved 
from RSJ algorithm using Bloom filter, an effective space-
efficient data structure. The algorithm is also derived from 
the Bloom Join approach in the RDBMS, which is an 
improvement of the semi-join method by using filters. The 
BFJ algorithm can be implemented by using two MapRe-
duce jobs. One is building BFL storing all keys of the dataset 
L. The other is using BFL to filter non-join tuples in R before 
processing join operation (Fig. 10).

This algorithm has achieved certain efficiency for filtering 
unnecessary data from one of the two input datasets that are 
not involved in the join operation. The size of the filter does 
not depend on the number of join keys. However, there is a 
need of pre-processing step to build up the filter by scanning 
one input dataset, which presents extra costs. In particular, 
this approach also accepts a false positive probability (Eq. 1) 
for filtering data in one dataset (Fig. 11).



SN Computer Science (2021) 2:352	 Page 9 of 16  352

SN Computer Science

Intersection Bloom Join

Intersection filter-based Bloom join [23] is an improved 
algorithm from BFJ algorithm with the use of Intersection 

Bloom Filter (IBF) instead of the standard Bloom filter. The 
IBJ algorithm can be implemented by using two MapReduce 
jobs. One is building IBFR,L , which is the intersection of 
two filters BFL and BFR . The other is using IBFR,L to filter 
non-join tuples in the two datasets before processing join 
operation.

This algorithm uses the IBF to filter data on both input 
datasets to eliminate most of the tuples that are not par-
ticipating in join operation. In consequence, it significantly 
reduces the costs of join operation. It has been shown to be 
more efficient than other join algorithms [24]. Therefore, 
the IBJ will be the most optimal algorithm compared to the 
current join algorithms.

Table 2   Semi-Naive algorithm
(1) F = K,�F = K;

(2) while �F ≠ 0 do
(3)       O = �F ⋈ K;

(4)       �F = O − F;

(5)       F = F ∪ �F;

(6) end



	 SN Computer Science (2021) 2:352352  Page 10 of 16

SN Computer Science

Recursive Join

Semi-Naive is a common and suitable algorithm for per-
forming recursive join in MapReduce. The Semi-Naive 
algorithm for computing transitive closure is presented in 
Table 2. K denotes the original graph and F will contains 
all tuples in the transitive closure of the graph until the end 
of the algorithm. �F contains the new tuples found in the 
previous iteration. The input data of the algorithm is dataset 
K with the join columns k1 and k2 . The output are the tuples 
combined by t1 ∈ K and t2 ∈ K such that t1.k1 = t2.k2.

The evaluation of recursive join using Semi-Naive algo-
rithm consists of two repeated jobs, which are join job and 
incremental computing dataset job. In each iteration, the 

join job will perform join operation between �F and K to 
generate a result set O ( �F ⋈ K ). The incremental com-
puting dataset job will eliminate the duplicated tuples in O 
will all the tuples founded ( O − F ). In line (3) of the algo-
rithm, we can see that the dataset K is unchanged over itera-
tions. Thus, this dataset can be cached using Spark caching 
mechanism to speed up the computation. In addition, there 
is the appearance of two-way join in the same line. In this 
work, we use two approaches for processing recursive join 
with Semi-Naive algorithm: Recursive join with Reduce-
side join (RRS) and Recursive join with Intersection Bloom 
Join (RIB). The intersection bloom filter is used to eliminate 
redundant data in the join job between �F and K.

Table 3   Parameters use in cost 
model

Parameters Meaning

|R| Size of dataset R
|L| Size of dataset L
cl Cost for read/write data locally
cr Cost for read/write data remotely
ct Cost for transferring data from node to node
eR Number of executors for dataset R
eL Number of executors for dataset L
e = eR + eL Total number of executors
B + 1 Size of sorting buffer on pages
m Size of Bloom filter (bits)
fL False positive probability of BF L
f(R,L) False positive probability of IBF between R and L
�L, �R Join rate of two datasets R, L
|D| Size of intermediate dataset for join task
|O| Size of result dataset for join task
Cpre Total number cost for pre-processing task
Cread Total cost for read data
Ctr Total cost for transferring data
Cwrite Total cost for writing data
|K| Size of dataset K
|F| Size of dataset F
|�Fi| Size of the incremental dataset at iteration i
|Di| Size of intermediate dataset of join job Ji
|D+

i
| Size of intermediate dataset of incremental computing job Ii

|Oi| Size of intermediate result dataset of join job at iteration i
l The number of iterations
Cread(Ji) Total cost of reading incremental dataset �F for join job
Ctr(Ji) Total cost of transmitting intermediate data between nodes for join job
Ccache(Ji) Total cost of reading data partitions of K cached at the reducers
Cread(Ii) Total cost of reading result dataset Oi for incremental computing job
Ctr(Ii) Total cost of transmitting intermediate results
Ccache(Ii) Total cost for local reading data partitions of Fi−1 at the reducers
Cwrite(Ii) Total cost for writing final result to HDFS



SN Computer Science (2021) 2:352	 Page 11 of 16  352

SN Computer Science

Evaluation

Cost Model for Two‑Way Join

Join computation cost is the total cost of several stages 
including cost for pre-processing task ( Cpre ), cost for read-
ing data ( Cread ), cost for transferring data ( Ctr ), and cost for 
writing data ( Cwrite ). The general cost model for join com-
putation of two datasets can be described as in Eq. 2. The 
algorithms are implemented in a general model without any 
restrictions on input datasets. The parameters of the cost 
model are clarified in Table 3.

–	 The cost of pre-processing task will be depended on the 
algorithms used for join operation.

–	 The cost of reading data includes the cost of remotely 
reading R and L.

–	 The cost of writing data is the cost of remotely writing 
the result O.

–	 Them cost of transferring data between nodes is the cost 
of transferring intermediate dataset D. The intermediate 
dataset will be calculated depending on the type of two-
way join algorithms.

where: 

–	 Cread = cr.|R| + cr.|L|
–	 Ctr = ct.|D|
–	 Cwrite = cr.|O|
–	 |D| : depending on join algorithms
–	 Cpre: depending on join algorithms

In comparing the effectiveness of the join algorithms, we 
will consider the cost of pre-processing task Cpre and the 
intermediate dataset D since the other costs stay the same.

Map‑Side Join

MSJ splits two datasets into the same partitions and sort 
in order of the join keys before performing join operation. 
The pre-processing task needs to transfer tuples of the two 
datasets to the same partitions.

where: 

–	 Cpre = cl.|D|.2.([logB|D| − logB(e)] + logB(e))

–	 Ctr = ct.|D|

(2)C = Cpre + Cread + Ctr + Cwrite

(3)C(MSJ) = Cpre + Cread + Ctr + Cwrite

–	 |D| = |R| + |L|

Reduce‑Side Join

RSJ implements join operations by joining data of the tuples 
with the same keys in reduce stage. There is no need for pre-
processing task however the intermediate data (key-value 
pairs) of both dataset needs to be transferred to the reducers.

where: 

–	 Cpre = 0

–	 Ctr = ct.|D|
–	 |D| = |R| + |L|

Broadcast Join

BCJ join two datasets by broadcasting all the records of the 
small dataset to all reducers. This is a special case that hav-
ing a dataset, which is much smaller than the other dataset. 
We assume that |R| >> |L| . The whole dataset |L| needs to 
be sent to all reducers.

where: 

–	 Cpre = 0

–	 Ctr = ct.|L|

Bloom Join

BFJ implements join operation by filtering redundant data 
in one of the two datasets using Bloom filter.

where: 

–	 Cpre = 2.ct.m.eL
–	 Ctr = ct.|D|
–	 |D| = |L| + �L.|R| + fL.(1 − �L).|R|

The pre-processing task calculates the BF for a dataset, e.g. 
L. Each executor for dataset L adds keys to the m bits BF 
and sends the BF to Spark driver. The driver performs OR 
operation to combine the BF from eL executors and then 
broadcast the final BF to the executors. Since there is a BF 
of L, we use that BF for filtering dataset R. The intermediate 
data of BFJ is now the whole dataset L plus the tuples from 
dataset R that can participate in join operation with a false 
positive probability of fL.

(4)C(RSJ) = Cpre + Cread + Ctr + Cwrite

(5)C(BCJ) = Cpre + Cread + Ctr + Cwrite

(6)C(BFJ) = Cpre + Cread + Ctr + Cwrite



	 SN Computer Science (2021) 2:352352  Page 12 of 16

SN Computer Science

Intersection Bloom Join

IBJ joins two datasets by filtering redundant data in both 
datasets with IBF.

where: 

–	 Cpre = 2.ct.m.e

–	 Ctr = ct.|D|
–	 |D| = �

L
.|R| + f(R,L).(1 − �

L
).|R| + �

R
.|L| + f(R,L).(1 − �

R
).|L|

The pre-processing task calculates the IBF for both dataset 
L and R. The number of executors e adds keys to the m bits 
BFL and BFR . The IBF of the two dataset is a combination 
of the two BF with AND operation, IBF = BFL AND BFR . 
The IBF will be sent to Spark driver. The driver broadcasts 
the final IBF to the executors. The intermediate data of BFJ 
includes the tuples from dataset L plus the tuples from data-
set R. Those tuples can be participated in join operation with 
a false positive probability of f(R,L).

Analyze the Cost Model of Join Algorithms

The MSJ performs pre-processing task that sorts the join 
keys of all datasets in order and all the same keys must be 
put on the same partitions. The RSJ does not have pre-pro-
cessing cost however it costs for the shuffling data between 
nodes. From formula 3 and formula 4, the total costs of the 
two algorithms are almost the same except that the MSJ 
needs to have a cost for sorting data in pre-processing task. 
Thus, the total cost for computing MSJ is larger than that of 
RSJ, C(MSJ) > C(RSJ).

It is the same case in comparison MSJ and BCJ. The MSJ 
has a pre-processing task for sorting join keys while BCJ 
does not. Thus, the total cost for computing MSJ is larger 
than BCJ, C(MSJ) > C(BCJ) . In comparing between RSJ 
and BCJ, we can base on the intermediate data transferring 
over the network. The intermediate data generated by RSJ 
is |D| = |R| + |L| while that of BCJ is |D| = |L| . Therefore, 
we can conduct that C(RSJ) > C(BCJ) . However, it should 
be noted that the BCJ is only applicable if the dataset |L| is 
much smaller than the other.

The intermediate data (|D|) is an important parameter in 
comparing the join algorithms since the data transferring 
through the network will affect the cost of the algorithms. 
We have:

|D|RSJ = |L| + |R| (*)
|D|BFJ = |L| + �L.|R| + fL.(1 − �L).|R| (**)
|D|

IBJ
= �

R
.|L| + f(R,L).(1 − �

R
).|L| + �

L
.|R| + f(R,L).(1 − �

L
).|R| 

(***)

(7)C(IBJ) = Cpre + Cread + Ctr + Cwrite

In comparing between RSJ and BFJ, it is clearly seeing 
that the intermediate data generated by RSJ is greater than 
that of BFJ. The value of false positive probability of BF 
( fL ) is much smaller than 1 (0.001 in our experiments) and 
the join rate between two datasets is usually small so that 
𝛿L.|R| + fL.(1 − 𝛿L).|R| << |R| . Thus, from (*) and (**) we 
can conduct that C(RSJ) > C(BFJ).

Similarly, the intermediate data generated from IBJ is 
smaller tha BFJ. The value of false positive probability of 
IBF is much smaller than 1 (0.001 in our experiments). The 
redundant data is filer out in both datasets L and R instead 
of one dataset as in BFJ ( 𝛿R.|L| + f(R,L).(1 − 𝛿R).|L| << |L| ). 
Thus, from (**) and (***) we can conclude C(BFJ) > C(IBJ)

.
After analyzing the cost model between algorithms on 

general datasets, we can conclude that:

In special case, the dataset L is much smaller than the dataset 
R, we will use the BCJ algorithm and this will cost less than 
the other algorithms.

Cost Model for Recursive Join

The general cost model for recursive join in Spark is pre-
sented in Eq. 9. The total cost includes costs for preprocess-
ing, join job, incremental computing dataset job, and writing 
results. The meaning of parameters used in the cost model is 
also shown in Table 3.

where:

–	 Cpre = cr.|K| + cl.|K| + ct.|K| + cl.|K|
–	 Cread(Ji) = cl.|�Fi−1|
–	 Ctr(Ji) = ct.|Di|

(8)C(MSJ) > C(RSJ) > C(BFJ) > C(IBJ)

(9)

C =Cpre +

l∑

n=1

(Cread(Ji) + Ctr(Ji) + Ccache(Ji))

+

l∑

n=1

(Cread(Ii) + Ctr(Ii) + Ccache(Ii)) + Cwrite

Table 4   Datasets used in the experiments

Input Dataset 1 (GB) Dataset 2 (GB) Total (GB)

Test 1 5 10 15
Test 2 10 10 20
Test 3 10 20 30
Test 4 20 20 40
Test 5 1 10 11
Test 6 1 20 21



SN Computer Science (2021) 2:352	 Page 13 of 16  352

SN Computer Science

Fig. 12   Intermediate results in records

Fig. 13   Execution time in seconds

Fig. 14   Recursive join algorithms



	 SN Computer Science (2021) 2:352352  Page 14 of 16

SN Computer Science

–	 Ccache(Ji) = cl.|Oi|
–	 Cread(Ii) = cr.|Oi|
–	 Ctr(Ii) = ct.|D+

i
|

–	 |D+
i
| = |�Fi| = |Oi|

–	 Ccache(Ii) = cl.|�Fi|
–	 Cwrite = cr.|F|

The cost for preprocessing is the total cost to read, map, 
shuffle, and cache dataset K at the reducers since this 
dataset is unchanged over the iterations. The Cx(Ji) repre-
sents costs for join job and the Cx(Ii) represents costs for 
incremental computing dataset job. We will consider the 
cost of recursive join with reduce-side join C(RSS) and 
the cost of recursive join with intersection bloom join 
C(RIB). The different between this two approaches is the 
join job. The intermediate data |Di| of the two approaches 
are as follows:

|Di|RSS = |�Fi−1|
|Di|RIB = �K .|�Fi−1| + f(�Fi−1,K)

.(1 − �K).|�Fi−1|

The use of intersection bloom filter will eliminate the 
redundant data not participating in join operation. Thus, 
we can conclude that the cost of RIB is smaller than the 
cost of RSS.

Experiments

Experiments with the join algorithms presented above will 
be performed on a Spark cluster. The goal of the experi-
ments is to evaluate the efficiency of the join algorithms on 
large-scale datasets in MapReduce. The efficiency of these 
algorithms depends on the amount of intermediate data gen-
erated during join computation. The amount of intermediate 
data will determine the communication cost, which is the 
biggest cost that affects the execution time of the join algo-
rithms. Therefore, we discover the amount of intermediate 
data generated from the join algorithms in the experiments 
and decide the suitability of the experimental results with 
the cost model that we have proposed.

Spark Cluster

The experiments are conducted on a cluster of 14 computing 
nodes (1 master and 13 slaves). Each computer is configured 
with 4 CPUs Intel Core i5 3.2 Ghz with 4 GB RAM, and 
500 GB HDD. A node is installed Ubuntu 14.04 LTS 64 bits 
operating system. The installed applications are Java 1.8, 
Hadoop 2.7.1, and Spark 2.1. This cluster is provided by 
The Mobile Network and Big Data Laboratory of College of 

(10)C(RSS) > C(RIB)

Information and Technology, Can Tho University. The Spark 
cluster is configured with 13 executors, 3 cores per executor, 
and 2.5 GB memory per executor.

The data used for the experiments is the standard data 
generated by PUMA: Purdue MapReduce Benchmarks Suite 
[2]. The datasets are stored in a text file format with each 
line has a maximum of 39 fields separated by commas, each 
field with 19 characters. The join keys used in the experi-
ments are the 5th column (the first dataset) and the 4th col-
umn (the set second dataset).

Results

The experiments use five algorithms, which are Map-side 
join, Broadcast join, Reduce-side join, Bloom join, and 
Intersection Filter-based Bloom join. We have six test data-
sets that is described in Table 4. For each algorithm, we 
conduct experiments twice to have the average execution 
time and the number of intermediate data.

Figure 12a and b show the amount of intermediate data 
that needs to be transported across the network of the join 
algorithms. These results clearly show the effectiveness 
between join algorithms and conform the proposed cost 
models. As presented in the two figures, the amount of inter-
mediate data of MSJ is equal to that of RSJ ( |D| = |L| + |R| ) 
and greater than the amount of intermediate data of BFJ after 
filter out redundant data in one dataset (R). At the same time, 
IBJ has the smallest amount of intermediate data since it sig-
nificantly reduces the amount of redundant data that does not 
participate in the join operation on both datasets (R, L). BCJ 
always has the same amount of intermediate data because it 
broadcasts the smaller dataset (L) to all mappers.

The amount of intermediate data transmitted over the net-
work affect communication cost, which will affect the execu-
tion time of the join algorithms. MSJ is the best option in 
case that we have datasets partitioned and sorted in advance. 
However, in Fig. 13a and b, MSJ has a longer execution 
time. It is because the datasets used in the experiments are 
the standard datasets without sorting and partitioning in 
advance. These two tasks degrade the overall performance of 
the algorithm. RSJ has smaller execution time than MSJ and 
has longer execution time than BFJ. The IBJ is the one with 
the best performance. It is reasonable since this algorithm 
uses the intersection bloom filter to significantly reduce the 
redundant data. Regarding formula 8, the experiment results 
are appropriate with the cost models presented above. The 
cost models can be used as a scientific basis for estimation 
and prediction before implementations.

We also conduct experiments with the recursive join with 
two approaches, RSS and RIB. The datasets for the experi-
ments have the size of 5 GB, 10 GB, 20 GB, and 30 GB. 
Figure 14a shows the intermediate data to be transmitted 



SN Computer Science (2021) 2:352	 Page 15 of 16  352

SN Computer Science

over the network. It is clear that the reduce of redundant 
data by intersection bloom filter helps to reduce the inter-
mediate data. Figure 14b shows the different between the 
two approaches in term of processing time. This result is 
appropriate with the cost models as can be seen in formula 
10. The larger datasets give better performance since it is 
costly for processing filters in small datasets.

Conclusion

There are many algorithms that are proposed for perform-
ing join operations on large-scale datasets. Therefore, it is 
necessary to provide users an overview and evaluations on 
these join algorithms. This study fully evaluates common 
two-way joins and recursive joins in MapReduce with Spark. 
This work provides: (1) an investigation of common join 
algorithms on large datasets in MapReduce using Spark, 
with the advantages and disadvantages pointed out; (2) the 
cost models for the join algorithms in Spark which is an 
important theoretical basis for evaluating and comparing the 
algorithms; (3) the experiments of the two-way joins and 
recursive joins in Spark.

A join operation on large datasets often is a costly, time-
consuming, and resource-intensive operation but commonly 
used in Spark, so it is worth making this evaluation. Through 
the cost models and the experiments, we have demonstrated 
the advantages and disadvantages of the current join algo-
rithms and the common recursive join algorithm. In general, 
joins based on Intersection Bloom Filters dominate over the 
other joins because they require no special input data and 
minimize non-joining data as well as communication costs. 
It is also worthy to consider the context of skewed data since 
it is common in data science.

Declarations 

Conflict of interest  The authors declare that they have no conflict of 
interest.

References

	 1.	 Afrati FN, Ullman JD. Transitive closure and recursive datalog 
implemented on clusters. In: Proceedings of the 15th International 
Conference on Extending Database Technology, EDBT ’12, pp 
132–143. ACM, New York, NY, USA 2012. https://​doi.​org/​10.​
1145/​22475​96.​22476​13.

	 2.	 Ahmad F. Puma benchmarks and dataset downloads 2011. 
URL https://​engin​eering.​purdue.​edu/​~puma/​datas​ets.​htm. Last 
Accessed: 05 Apr 2019.

	 3.	 Al-Badarneh A. Join algorithms under apache spark: Revisited. 
In: Proceedings of the 2019 5th International Conference on 

Computer and Technology Applications, ICCTA 2019. Associa-
tion for Computing Machinery, New York, NY, USA 2019, pp 
56–62.

	 4.	 Al-Badarneh AF, Rababa SA. An analysis of two-way Equi-join 
algorithms under Mapreduce. J King Saud Univ Comp Inform Sci. 
2020. https://​doi.​org/​10.​1016/j.​jksuci.​2020.​05.​004.

	 5.	 Armbrust M, Xin RS, Lian C, Huai Y, Liu D, Bradley JK, Meng 
X, Kaftan T, Franklin MJ, Ghodsi A, et al. Spark sql: Relational 
data processing in spark. In: Proceedings of the 2015 ACM SIG-
MOD International Conference on Management of Data, SIG-
MOD 15. Association for Computing Machinery, New York, NY, 
USA 2015, pp. 1383–1394.

	 6.	 Bancilhon F. Naive evaluation of recursively defined relations. In: 
On knowledge base management systems. Berlin: Springer; 1986. 
p. 165–78.

	 7.	 Bancilhon F, Ramakrishnan R. An amateur’s introduction to recur-
sive query processing strategies. SIGMOD Rec. 1986;15(2):16–
52. https://​doi.​org/​10.​1145/​16856.​16859.

	 8.	 Blanas S, Patel JM, Ercegovac V, Rao J, Shekita EJ, Tian Y. A 
comparison of join algorithms for log processing in mapreduce. 
In: Proceedings of the 2010 ACM SIGMOD International Con-
ference on Management of Data, SIGMOD 10. Association for 
Computing Machinery, New York, NY, USA 2010, pp 975–986.

	 9.	 Bloom BH. Space/time trade-offs in hash coding with allowable 
errors. Commun ACM. 1970;13(7):422–6.

	10.	 Bratbergsengen K. Hashing methods and relational algebra opera-
tions. In: Proceedings of the 10th International Conference on 
Very Large Data Bases, VLDB 84. Morgan Kaufmann Publishers 
Inc., San Francisco, CA, USA 1984, pp 323–333.

	11.	 Chen S, Ailamaki A, Gibbons PB, Mowry TC. Improving hash 
join performance through prefetching. ACM Trans Database Syst. 
2007;32(3):17.

	12.	 Dean J, Ghemawat S. Mapreduce: simplified data processing on 
large clusters. Commun ACM. 2008;51(1):107–13.

	13.	 Gribkoff E. Distributed algorithms for the transitive closure 2013.
	14.	 Kirsch A, Mitzenmacher M. Less hashing, same performance: 

building a better bloom filter. Random Struct Algorithms. 
2008;33(2):187–218.

	15.	 Lee KH, Lee YJ, Choi H, Chung YD, Moon B. Parallel 
data processing with Mapreduce: a survey. SIGMOD Rec. 
2012;40(4):11–20.

	16.	 Lee T, Kim K, Kim HJ. Join processing using bloom filter in 
Mapreduce. In: Proceedings of the 2012 ACM Research in 
Applied Computation Symposium, RACS 12. Association for 
Computing Machinery, New York, NY, USA 2012, pp 100–105.

	17.	 Lin X, Orlowska ME. An efficient processing of a chain join with 
the minimum communication cost in distributed database systems. 
Distrib Parallel Databases. 1995;3(1):69–83.

	18.	 Mackert LF, Lohman GM. R* optimizer validation and perfor-
mance evaluation for distributed queries. In: Proceedings of the 
12th International Conference on Very Large Data Bases, VLDB 
86. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA 
1986, pp 149–159.

	19.	 Mehta T, Mangla N, Guragon G. A survey paper on big data ana-
lytics using map reduce and hive on hadoop framework a survey 
paper on big data analytics using map reduce and hive on hadoop 
framework 2016.

	20.	 Michael L, Nejdl W, Papapetrou O, Siberski W. Improving dis-
tributed join efficiency with extended bloom filter operations. In: 
Proceedings of the 21st International Conference on Advanced 
Networking and Applications, AINA 07. IEEE Computer Society, 
USA 2007, pp 187–194.

	21.	 Mishra P, Eich MH. Join processing in relational databases. ACM 
Comput Surv. 1992;24(1):63–113.

https://doi.org/10.1145/2247596.2247613
https://doi.org/10.1145/2247596.2247613
https://engineering.purdue.edu/%7epuma/datasets.htm
https://doi.org/10.1016/j.jksuci.2020.05.004
https://doi.org/10.1145/16856.16859


	 SN Computer Science (2021) 2:352352  Page 16 of 16

SN Computer Science

	22.	 Phan AC, Phan TC, Trieu TN. A comparative study of join algo-
rithms in spark. In: International Conference on Future Data and 
Security Engineering. Springer, 2020, pp 185–198.

	23.	 Phan TC, d’Orazio L, Rigaux P. Toward intersection filter-based 
optimization for joins in Mapreduce. In: Proceedings of the 2nd 
International Workshop on Cloud Intelligence, Cloud-I 13. Asso-
ciation for Computing Machinery, New York, NY, USA 2013.

	24.	 Phan TC, d’Orazio L, Rigaux P. A theoretical and experimental 
comparison of filter-based equijoins in mapreduce. In: Transac-
tions on Large-Scale Data-and Knowledge-Centered Systems 
XXV. Springer 2016, pp 33–70.

	25.	 Rababa S, Al-Badarneh A. Optimizations for filter-based join 
algorithms in Mapreduce. J Intell Fuzzy Syst. 2021;40:1–18 
(Preprint).

	26.	 Shaw M, Koutris P, Howe B, Suciu D. Optimizing large-scale 
semi-naïve datalog evaluation in hadoop. In: International Datalog 
2.0 Workshop. Springer 2012, pp 165–176.

	27.	 Tan KL, Lu H. A note on the strategy space of multiway join query 
optimization problem in parallel systems. ACM SIGMOD Rec. 
1991;20(4):81–2.

	28.	 Van Hieu D, Smanchat S, Meesad P. Mapreduce join strategies for 
key-value storage. In: 2014 11th International Joint Conference 
on Computer Science and Software Engineering (JCSSE), 2014, 
pp 164–169.

	29.	 Warren HS Jr. A modification of Warshall’s algorithm for 
the transitive closure of binary relations. Commun ACM. 
1975;18(4):218–20. https://​doi.​org/​10.​1145/​360715.​360746.

	30.	 Warshall S. A theorem on Boolean matrices. J ACM. 
1962;9(1):11–2. https://​doi.​org/​10.​1145/​321105.​321107.

	31.	 White T. Hadoop: the definitive guide. 4th ed. Newton: O’Reilly 
Media Inc; 2015.

	32.	 Zaharia M, Chowdhury M, Franklin MJ, Shenker S, Stoica I. 
Spark: cluster computing with working sets. In: Proceedings of 
the 2nd USENIX Conference on Hot Topics in Cloud Computing, 
HotCloud’10. USENIX Association, USA 2010, p 10.

Publisher’s Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1145/360715.360746
https://doi.org/10.1145/321105.321107

	A Theoretical and Experimental Comparison of Large-Scale Join Algorithms in Spark
	Abstract
	Introduction
	Background
	MapReduce
	Apache Spark
	Bloom filter and Intersection Bloom Filter

	Join Algorithms in MapReduce
	Map-Side Join
	Reduce-Side Join
	Broadcast Join
	Bloom Join
	Intersection Bloom Join
	Recursive Join

	Evaluation
	Cost Model for Two-Way Join
	Map-Side Join
	Reduce-Side Join
	Broadcast Join
	Bloom Join
	Intersection Bloom Join
	Analyze the Cost Model of Join Algorithms

	Cost Model for Recursive Join
	Experiments
	Spark Cluster
	Results


	Conclusion
	References




