
Vol.:(0123456789)

SN Computer Science (2021) 2:323 
https://doi.org/10.1007/s42979-021-00715-4

SN Computer Science

ORIGINAL RESEARCH

Sentential Semantic Dependency Parsing for Vietnamese

Tuyen Thi‑Thanh Do1 · Dang Tuan Nguyen2 

Received: 16 March 2021 / Accepted: 19 May 2021 / Published online: 5 June 2021 
© The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2021

Abstract
Semantic dependency parse is the dependency graph of a sentence. This graph shows the grammatical dependencies between 
words in a sentence clearer than the dependency parse because it can present dependencies in which one word is possibly the 
dependant in two or more dependencies in a sentence. Therefore, it has been used to represent the meaning of a sentence. To 
represent the meaning of a sentence in Vietnamese, a method of parsing the sentence into semantic dependencies is proposed 
in this paper. This rule-based method transforms the result of Vietnamese dependency parser using semantic constraints 
defined in a lexicon ontology called Vietnamese lexicon ontology (VLO). The test result shows that the proposed method 
can capture more dependencies than the state-of-the-art Vietnamese dependency parser with the precision of 0.5328 and of 
0.3113, respectively, and it can capture the indirect object dependency type which Vietnamese dependency parser cannot 
capture in our test.

Keywords  Semantic dependency parsing · Rule-based dependency parsing · Semantic representation · Lexicon ontology

Introduction

Semantic dependency parse is similar to dependency parse 
[1] except that it is a graph instead of a tree. It has been used 
to represent the semantic of the sentence [2–4] because it is 
able to represent more dependencies of a sentence than the 
dependency parse. Therefore, the semantic of a sentence 
can be identified by parsing the sentence into semantic 
dependency parse. At this time, the state-of-the-art Viet-
namese dependency parser [5] can parse a Vietnamese 
sentence into dependency parse. Thus, a research question 

is how to transform a dependency parse into a semantic 
dependency parse to identify the semantic of a Vietnamese 
sentence. For conveniences, we will use SDP, DP, D-parser 
and SD-parser for semantic dependency parse, dependency 
parse, dependency parser and semantic dependency parser, 
respectively.

Figure 1 shows the differences between the DP and the 
SDP of the same Vietnamese sentence “Hayes và Lighthill 
đã đề_xuất một mô_hình vật_lý” (“Hayes and Lighthill pro-
posed a physic model”). In Fig. 1, (a) and (b) are the DP and 
SDP of the sentence, respectively. The DP has a depend-
ency “conj(và-2, Lighthill-3)” which means “Lighthill” is 
the dependant of “và” (and) in “conj” dependency. This 
dependency did not present the true role of “Lighthill” which 
is a subject of verb “đề_xuất” (proposed) in the sentence. 
Therefore, the SDP of the sentence should be identified to 
present the true dependencies of the sentence.

The SDP of a sentence is possibly generated using an 
enhanced dependency parser [6, 7] or by transforming the 
DP of the sentence. The SDP of a Vietnamese sentence has 
to present all semantic relations, therefore, if a SDP is gener-
ated from a DP, many semantic dependencies will be gener-
ated from DP. However, the invalid dependencies are pos-
sibly generated if we do not have any semantic constraints 
between two words. This is the open problem addressed 
by Schuster [4] when converting dependency treebanks 

This paper is a revised and expanded version of our paper entitled 
“Sentential Semantic Dependency Parsing for Vietnamese” 
presented at 7th International Conference on Future Data and 
Security Engineering, Quy Nhon, Binh Dinh, Vietnam, November 
25–27, 2020.

This article is part of the topical collection “Future Data and 
Security Engineering 2020” guest edited by Tran Khanh Dang.

 *	 Dang Tuan Nguyen 
	 dangnt@sgu.edu.vn

	 Tuyen Thi‑Thanh Do 
	 tuyendtt@uit.edu.vn

1	 University of Information Technology, VNU-HCM, 
Ho Chi Minh City, Vietnam

2	 Saigon University, Ho Chi Minh City, Vietnam

http://orcid.org/0000-0002-1664-9328
http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-021-00715-4&domain=pdf


	 SN Computer Science (2021) 2:323323  Page 2 of 18

SN Computer Science

into dependency graphbanks. In this paper, which is the 
extended version of our paper [8], we would like to present 
our transformation-based approach in generating the SDP of 
a Vietnamese sentence with semantic constraints to solve the 
problem of generating invalid dependencies and the prob-
lem of correcting the wrong dependencies. In our approach, 
we use semantic constraints defined in a lexicon ontology 
for dependency validation and use transformation rules for 
generating semantic dependencies and correcting wrong 
dependencies from DP. The sentential semantic parsing 
for Vietnamese method proposed in this paper can identify 
implicit predicate argument dependencies, especially direct 
object and indirect object dependencies, while the Vietnam-
ese dependency parser [5] rarely captures the indirect object 
dependencies and cannot present all semantic dependencies 
as shown in this paper. This is the main contribution of this 
paper.

This paper presents the sentential semantic parsing for 
Vietnamese method in five following sections. The first sec-
tion introduces the problem to be solved in this paper. The 
second section presents backgrounds of semantic depend-
ency parsing. Th third section proposes the sentential seman-
tic dependency parsing method for Vietnamese. The fourth 
section presents the evaluation of the proposed method 

in comparison with the Vietnamese dependency parsing. 
Finally, some conclusions and future works are presented 
in the last section.

Backgrounds

Semantic Dependency Parsing

Semantic dependency parsing [2, 3] is the task of generat-
ing the semantic dependencies which are the relation of a 
word pair in a sentence. The types of semantic dependency 
are defined differently from each representation scheme 
such as Abstract Meaning Representation [9], Bilexical 
Semantic Dependency [10] and Universal Dependency 
[11, 12]. However, there are three types of dependency in 
common.

The first type of dependency is the predicate argument 
dependency. Predicate argument dependency type presents 
the argument structure of a verb in a sentence. There are 
three sub-types which are the subject dependency, direct 
object dependency and indirect object dependency indicat-
ing the relation between a verb and its subject, the relation 

Fig. 1   a The DP with [5] and b the SDP of the same Vietnamese sentence



SN Computer Science (2021) 2:323	 Page 3 of 18  323

SN Computer Science

between a verb and its object and the relation between verb 
and its indirect object, respectively.

The second type of dependency is the modifier depend-
ency. The modifier dependency type presents the relation 
between a word and its modifiers in a sentence. There are 
many sub-types of the modifier dependency type such as 
adjective modifier and adverb modifier [11, 12].

The third type of dependency is the complement depend-
ency. The complement dependency type presents the relation 
between a word and its complement in a sentence. There are 
also many sub-types of the complement dependency type 
such as object of preposition and adjective complement [11, 
12].

The types of semantic dependency are very similar to 
types of dependency as in Universal Dependency (UD) [11, 
12], therefore, semantic dependency parsing can be seen 
as the extension of dependency parsing which identifies all 
dependencies in a sentence [13] according to the meaning 
of that sentence. For example, the DP (a) in Fig. 1 contains 
only one subject type dependency sub(đề_xuất-5, Hayes-
1) while the SDP (b) in Fig. 1 contains two subject type 
dependencies sub(đề_xuất-5, Hayes-1) and sub(đề_xuất-
5, Lighthill-3) because both Hayes and Lighthill are the 
author of the proposal according to the meaning of the 
sentence.

Although the semantic representation schemes are dif-
ferent, the semantic dependency parsers (SD-parser) are 
very similar in building process. Herschcovich et al. [13, 
14] proposed parsers for Universal Conceptual Cogni-
tive Annotation (UCCA) [15] scheme, Dozat [16] and Qi 
[7] proposed parsers for Universal Dependency scheme. 
These parsers are transition-based parsers trained on 
appropriate semantic dependency graphbanks. These 
graphbanks can be built on scratch or converted from 
dependency treebanks [4]. When converting dependency 
treebanks into dependency graphbanks, it is very impor-
tant to ensure that the converted dependencies satisfy the 
semantic constraints between their governor and depend-
ant in the way of Head-driven Phrase Structure Grammar 
[17, 18]. This is the problem that Schuster [4] has left to 
future works and we would like to solve this problem in 
this paper.

Semantic Constraints

Words of the same syntactic category may have different 
combinations in a phrase or in a sentence because of seman-
tic constraints. In the example of Schuster [4], the sentence 
“the store buys and sells cameras” implies that “cameras” 
is the object of “buys” and “sells” while the sentence “she 
was reading or watching a movie” shows that “a movie” is 
the object of “watching” only. These two example sentences 

show that two sentences having identical syntactic structures 
may have different semantic dependency structures because 
the different words have different semantic constraints. In 
this case, “buys cameras”, “sells cameras” and “watching 
a movies” satisfy the semantic constraints while “reading 
a movie” does not.

Head-driven Phrase Structure Grammar (HPSG) [17, 
18] is a framework to ensure the semantic constraints in the 
syntactic parse tree of a sentence. In HPSG, every lexicon 
is represented in a syntactic–semantic combination struc-
ture, called typed feature structure (TFS). In TFS, syntactic 
and semantic constraints are explicitly presented. A HPSG 
parser uses respective TFSs to decide which words are pos-
sible to make syntactic relations and which word is the head 
(governor) in every syntactic relation. To define the TFS, 
an ontological category [18] containing semantic labels is 
needed to specify the sense of every word. These senses are 
the core of semantic constraints.

Sentential Semantic Dependency Parser 
for Vietnamese

The approach of this paper is to define rules to transform 
the DPs of Vietnamese D-Parser [5] into SDPs because 
there are not any large Vietnamese graphbanks to train a 
SD-parser at this time. Besides, the SDP can be generated 
from DP [4] if there are semantic constraints to confirm 
the validity of the generated semantic dependencies. There-
fore, we would like to utilize the Vietnamese dependency 
parser [5] for reducing the cost of building a SD-parser from 
scratch. Another reason of studying transformation rules 
for converting DPs into SDP is that these transformation 
rules are possibly applied to build large graphbanks from 
Vietnamese dependency treebanks [19] to train SD-parser 
with deep-learning models.

In our approach, the SDP of Vietnamese sentence may 
contain up to five types of dependency which are hasAc-
tor, hasDObj, hasIDObj, hasPComp and hasMod. These 
dependency types have corresponding relations described 
in Vietnamese Lexicon Ontology (VLO), which will be 
described in “Vietnamese lexicon ontology”. All types of 
dependency in Universal Dependency [11, 12] except con-
junct dependency are possibly converted into these five types 
with a mapping table. Similarly, all types of dependency 
used in Vietnamese D-parser [5] are possibly converted into 
five types of dependency using Table 1.

We use only the five types of dependency in SDP for 
two reasons. First, they can present all important rela-
tion between word senses in a sentence without losing the 
semantic of the dependencies. Second, a small number of 



	 SN Computer Science (2021) 2:323323  Page 4 of 18

SN Computer Science

dependency label is better for annotating graphbanks and 
parsing.

To parse Vietnamese sentence to SDP, we need an onto-
logical category to present the Vietnamese word senses 
and the semantic constraints to ensure the validity of every 
semantic dependency.

Vietnamese Lexicon Ontology

Vietnamese Lexicon Ontology (VLO) [20, 21], demon-
strated in Fig. 2, is an ontology of word senses. In VLO, 
individuals are word senses and similar senses are grouped 
into classes, called semantic classes. VLO is used as onto-
logical category in HPSG [18] as following:

•	 Semantic classes are used for annotating the meaning 
of words instead of word senses because the number 
of word senses is noticeably larger than the number of 
semantic classes and the semantic class are appropriate 
to annotate the meaning of synonyms. In Fig. 2, the two 
words “rượt” (chase, a dialect of South Vietnam) and 
“đuổi” (chase, a dialect of North Vietnam) are annotated 
by semantic class “Đuổi” although their senses, respec-
tively, are “w_Rượt” and “w_Đuổi”.

•	 The relations between semantic classes are semantic con-
straints. The semantic constraints are defined at build-
ing VLO stage and possibly inferred from the relations 

Table 1   Mapping from types of dependency used in [5] to types of 
semantic dependency

Ord Types of dependency used in [5] Types of 
semantic 
dependency

1 All types of dependency except the 
below types of dependency

hasMod

2 pob hasPComp
3 sub hasActor
4 dob hasDObj
5 idob hasIDObj

Fig. 2   The demonstration of VLO including words, word senses, semantic classes and relations (semantic constraints) of the sentence “mèo nhỏ 
đuổi chuột nhỏ” (“a small cat chases a small mouse”)



SN Computer Science (2021) 2:323	 Page 5 of 18  323

SN Computer Science

between word senses. In the latest version V1.1 of VLO 
[21], there are eight important types of relation which 
cover the verb frame dependencies, conjunction depend-
ency, modifier dependencies and complement dependen-
cies:

–	 hasActor(sensea, senseb) is the relation between the 
sense of a verb sensea and the sense of its subject 
senseb. In Fig. 2, there is a relation hasActor(w_
Đuổi, w_Mèo) indicating that the word “mèo” (cat) 
is possibly a subject of the verb “đuổi” (chase).

–	 hasDObj(sensea, senseb) is the relation between 
the sense of a verb sensea and the sense of its 
direct object senseb. In Fig. 2, there is a relation 
hasDObj(w_Đuổi, w_Chuột) indicating that the 
word “chuột” (mouse) is possibly a direct object of 
the verb “đuổi” (chase).

–	 hasIDObj(sensea, senseb) is the relation between the 
sense of a verb sensea and the sense of its indirect 
object senseb.

–	 hasConj(sensea, senseb) is the relation indicate that 
sensea and senseb have the same category. There 
are six categories are used for confirming hasConj 

relation: nominal (including noun, proper noun, 
pronoun), verb, adjective, adverb, preposition and 
number.

–	 hasPComp(sensea, senseb) is the relation between 
the sense of a word sensea and the sense of its com-
plement senseb where the position of the word with 
senseb is on the left side of the position of the word 
with sensea in a phrase. This type of relation can be 
seen as the generalization of all types of complement 
dependency where the dependant word is on the left 
side of head (governor) word. This generalization 
will not lose the semantic of the dependency because 
the types of complement dependency are featured by 
the senses of words in the dependencies [11, 12] and 
hasPComp is used for annotating the dependency of 
two senses. This relation type is used for verifying 
hasPComp dependencies

–	 hasRPComp(sensea, senseb) is the relation between 
the sense of a word sensea and the sense of its com-
plement senseb where the position of the word with 
senseb is on the right side of the position of the word 
with sensea in a phrase. This relation type is used for 
verifying hasPComp dependencies.

Table 2   Collapsing rules for Vietnamese DP

Ord Dependencies to be converted Converted dependencies Examples

Collapsing the object of preposition dependencies
1 vmod(X, Y), pob(Y, Z) vmod(X, Z), case(Z, Y) vmod(nghiên_cứu-1, về-2), pob(về-2, đặc_tính-4)

collapsed to:
vmod(nghiên_cứu-1, đặc_tính-4), case(đặc_tính-4, về-2)

2 nmod(X, Y), pob(Y, Z) nmod(X, Z), case(Z, Y) nmod(lý_thuyết-5, của-7), pob(của-7,newton-8)
collapsed to:
nmod(lý_thuyết-5, newton-8)
case(newton-8, của-7)

3 loc(X, Y), pob(Y, Z) loc(X, Z), case(Z, Y) loc(góc-11, ở-12), pob(ở-12,đỉnh-13)
collapsed to:
loc(góc-11, đỉnh-13)
case(đỉnh-13, ở-12)

Collapsing the coord dependencies
4 coord(X, Y), conj(Y, Z) conj(X, Z), cc(Z, Y) coord(lực-16,và-19), conj(và-19,mômen-21)

collapsed to:
conj(lực-16,mômen-21)
cc(mômen-21, và-19)

Collapsing the dependencies of passive voice verb
The word “được” and “bị” (“be”) are denoted by wpass
5 R(U, wpass), Ri(wpass,X), 

vmod(wpass, Y)
R(U, Y), Ri(Y, X), vmod(Y, wpass) root(ROOT, được-3)

sub(được-3, năng_lượng-1),
adv(được-3, có_thể-2),
vmod(được-3,giải_phóng-4)
collapsed to:
root(ROOT,giải_phóng-4)
sub(giải_phóng-4, năng_lượng-1),
adv(giải_phóng-4, có_thể-2),
vmod(giải_phóng-4, được-3)



	 SN Computer Science (2021) 2:323323  Page 6 of 18

SN Computer Science

–	 hasMod(sensea, senseb) is the relation between the 
sense of a word sensea and the sense of its modifier 
senseb where the position of the word with senseb 
is on the left side of the position of the word with 
sensea in a phrase. This relation type is used for veri-
fying hasMod dependencies.

–	 hasRMod(sensea, senseb) is the relation between the 
sense of a word sensea and the sense of its modifier 
senseb where the position of the word with senseb 
is on the left side of the position of the word with 
sensea in a phrase. This relation type is used for veri-
fying hasMod dependencies.

In our approach, we use VLO for verifying if two 
words worda and wordb are possibly combined in a 
dependency Rel(worda, wordb). If worda and wordb have 
their senses sensea and senseb, respectively, and there 
is a relation Rel(sensea, senseb) in VLO then depend-
ency Rel(worda, wordb) is a semantic relation and is 

possibly generated when transforming a DP into SDP. 
VLO return the result of dependency verification in three 
values. The value YES means the dependency is valid, 
the value NO means the dependency is invalid and the 
value UNKNOWN means there are not enough informa-
tion about the dependency.

An important problem when using VLO is the word 
sense identification method. When building VLO, we have 
also annotated the sense for each word in the sentences that 
we used when building VLO. The result of this annotation 
is a sense tagged dataset for Vietnamese and we have used 
this dataset to train a sense tagger for sense prediction. 
The sense tagger is a transformation-based learning model 
because the number of sense tags is big while the number 
of annotated sentences is small so that we cannot apply 
a complex sequential labelling method to build a sense 
tagger.

Transformation Rules

The transformation rules are defined follow collapsing rules 
[22] and enhanced universal dependencies in English [4]. 
There are four types of transformation rules: the collaps-
ing rule, the adjusting dependency label and head rule, the 
adjusting non-projectivity graph rule and the expanding 
dependencies rule.

The first transformation type includes collapsing rules. 
These rules are defined after the collapsing rules in English 
and Germany [22]. In DP, A constituent composed of a con-
stituent C1 with head word c1, a preposition or a conjunction 
k and a constituent C2 with head word c2 will be presented by 
two dependencies r1(c1, k) and r2(k, c2). These dependencies 
do not explicitly show the real dependency between c1 and 
c2. Therefore, the collapsing rules will be applied to DPs for 
making the dependencies containing prepositions and con-
junctions clearer in SDPs. These rules are shown in Table 2 
and the results of applying collapsing rules in dependency 
parses are illustrated in Figs. 3 and 4.

The second transformation type includes rules of adjust-
ing dependency label and head. There are dependencies with 
wrong dependency label or with wrong head word in DP 
because there is no the semantic constraints or the semantic 
restrictions when parsing a sentence to DP. Rules of this 
type will correct these errors and they are divided into three 
sub-types: the adjusting modifier verb rule, the expanding 
dependencies rule and the adjusting wrong label and head 
word rule.

The first sub-type of adjusting dependency label and head 
transformation includes adjusting modifier verb rules. There 
are dependencies showing that verb is a modifier of a noun 
but the noun is actually the subject of the verb. In this case, 
these dependencies are adjusted with the rules in following 

Fig. 3   Collapsing the object of preposition dependency and the coord 
dependency in DP of the phrase “biểu đồ của lực và mômen” (“the 
chart of force and moment”)



SN Computer Science (2021) 2:323	 Page 7 of 18  323

SN Computer Science

Fig. 4   Collapsing the dependency of the verb nghiên_cứu-8 in passive voice in the DP of the sentence “các đặc tính ổn định đã được nghiên 
cứu” (“the stable characteristics were studied”)

Fig. 5   Adjusting the dependency of modifier verb (tác_động-9) in the DP of the sentence “các lực, áp suất và mômen tác động trên thân trước 
khi chuyển động” (“the force, pressure and moment impact the body before the motion”)



	 SN Computer Science (2021) 2:323323  Page 8 of 18

SN Computer Science

Algorithm 1. The result of applying adjusting modifier verb 
rules to a DP is shown in Fig. 5.

The second sub-type of adjusting dependency label and 
head transformation includes adjusting the predicate argu-
ment rules. Subject dependencies, direct object dependen-
cies and indirect object dependencies in passive voice may 
be wrong identified because the D-parser does not have the 
semantic constraints. Therefore, the rules of this sub-type 
included in the following Algorithm 2 will correct the label 
of these dependencies. The result of applying rules of adjust-
ing the predicate argument to a DP is shown in Fig. 6.

The third sub-type of adjusting dependency label and 
head transformation includes adjusting wrong label and 
head word rules. The D-parser does not have semantic con-
straints, therefore, the modifier, complement and conjunc-
tion dependencies generated may have wrong head or wrong 
label. The rules of this sub-type will correct these errors 
with the following Algorithm 3. Given every dependency 
R(wi, wj), if it does not satisfy the semantic constraints, the 
Algorithm 3 will find an appropriate word wt in range [min(i, 
j), max(i,j)] which is the descendant of word wi in DP and 
have semantic constraint Rs(wt, wj). Rs is a dependency label 
chosen from a ordered list {hasActor, hasDObj, hasIDObj, 
hasMod, hasRMod, hasPComp, hasRPComp, hasConj}in 
which hasActor has the top most priority. If the appropriate 
word wt is not found, find it in the ancestors of word wi in 
the same manner. The results of applying rules of adjusting 
wrong label and head word to a DP are illustrated in Figs. 5 
and 7.



SN Computer Science (2021) 2:323	 Page 9 of 18  323

SN Computer Science

Fig. 6   Adjusting the predicate argument of passive verb (nghiên_cứu-8) in the DP of the sentence “các đặc tính ổn định đã được nghiên cứu” 
(“the stable characteristics were studied”)



	 SN Computer Science (2021) 2:323323  Page 10 of 18

SN Computer Science

In Fig. 5, the dependency nmod(lực-2, áp_suất-5) was 
adjusted to conj(lực-2, áp_suất-5) in which the dependency 
label “nmod” was replaced by dependency lable “conj”. In 
this case, the algorithm 3 has adjusted the wrong label case. 
In Fig. 7, the dependency vmod(nghiên_cứu-2, có-4) was 
adjusted to subj(có-4, hình_nón-3) in which the word “có-4” 
was adjusted from the dependant of the word “nghiên_cứu-
2” to the governor of the word “hình_nón-3”. In this case, 
the algorithm 3 has adjusted the wrong head case.

The third transformation type includes adjusting non-pro-
jectivity [23] graph rules. After adjusting dependencies with 
the above transformation rules, the dependency graph may 
be non-projectivity. The rules of this type will correct the 
dependencies which break the projectivity constraint with 
the following Algorithm 4. The result of applying rules of 
adjusting non-projectivity graph to the dependency graph in 
Fig. 8 is shown in Fig. 9.

Fig. 7   Adjusting the wrong head word of dependency vmod(nghiên_cứu-2, có-4) in the DP of the sentence “nghiên cứu hình nón có mũi hình 
cầu” (“study the cone having a modified spherical nose”)



SN Computer Science (2021) 2:323	 Page 11 of 18  323

SN Computer Science

Fig. 8   A non-projectivity graph with dependency conj(lực-11, cường_độ-37)



	 SN Computer Science (2021) 2:323323  Page 12 of 18

SN Computer Science

Fig. 9   A projective graph adjusted from the non-projectivity graph in Fig. 8



SN Computer Science (2021) 2:323	 Page 13 of 18  323

SN Computer Science

The fourth transformation type includes expanding 
dependencies rules. The conjunction dependencies do not 
exist in SDP because they are syntactic dependencies to 
group words having similar semantic function. The rules 
of this type will replace the conjunction dependencies 

with appropriate dependencies. These rules are defined 
in the following Algorithm 5. For illustration, the results 
of applying expanding dependencies rules are shown in 
Figs. 10 and 11.



	 SN Computer Science (2021) 2:323323  Page 14 of 18

SN Computer Science

Fig. 10   The result of expand-
ing dependency conj(lực-4, 
mômen-6) in dependency graph 
of the phrase “biểu đồ của lực 
và mômen” (“the chart of force 
and moment”)



SN Computer Science (2021) 2:323	 Page 15 of 18  323

SN Computer Science

Fig. 11   The result of expanding dependency conj(Hayes-1, Lighthill-3) in dependency graph of the sentence “Hayes và Lighthill đã đề xuất một 
mô hình vật lý” (“Hayes and Lighthill proposed a physic model”)



	 SN Computer Science (2021) 2:323323  Page 16 of 18

SN Computer Science

Converting Dependency Label

After applying all transformation rules, the DP is trans-
formed into semantic dependency graph but many depend-
ency labels of the semantic dependency graph are still 
the same as in the DP therefore these dependency labels 
have to be replaced with the appropriate semantic depend-
ency labels. The dependency label replacement follows 
Algorithm 6.

–	 First step, we used the Vietnamese word tokenizer from 
VnCoreNLP [24] for Vietnamese word segmentation 
then we manually checked the results.

–	 Second step, we annotated label hasMod for modifier 
dependencies in noun phrases, verb phrases and adjective 
phrases.

–	 Third step, we annotated label hasPComp for comple-
ment dependencies in noun phrases and verb phrases.

–	 Final step, we annotate labels hasActor, hasDObj and 
hasIDObj for appropriate predicate argument dependen-
cies.

The annotated result of each sentence is a dependency 
graph as shown in Figs. 10 and 11. In this process, the annota-
tor has read carefully to clearly understand each sentence and 
set down all semantic dependencies of the sentence. The sta-
tistic of dependencies in the test dataset are shown in Table 3

Sense Tagging

Our approach is using VLO to verify semantic dependencies 
before adding them into SDP when transforming DP. There-
fore, sense tagging is an obvious step before transforming 
DP into SDP. In this experiment, we use Transformation-
based Learning method to train a sense tagger because our 
sense tagged training dataset contains 835 sense tagged 
sentences which is not large enough to apply state-of-the-
art POS tagging model. Our sense tagging model has the 
accuracy of 0.7949 on our test data.

Evaluation

For evaluation, we need the VLO for semantic constraint 
validation and a sense tagger for word sense labelling. At 
this time, the VLO is not very large and the sense tagged 
dataset is small therefore we can experiment our method 
on a small dataset only. The result of our method will 
be compared to the result of Vietnamese dependency 
parser [5] to show the efficiency of our method in captur-
ing semantic dependencies because we do not have any 
Vietnamese semantic graphbank for training a semantic 
dependency parser or any Vietnamese semantic depend-
ency parser for directly comparing to our parser at this 
time.

Test Dataset

The test dataset includes 343 sentences manually annotated 
in SDP. These sentences are extracted from the online news 
website VnExpress1 then they were annotated in a 4-step 
process as following:

1  http://​vnexp​ress.​net

http://vnexpress.net


SN Computer Science (2021) 2:323	 Page 17 of 18  323

SN Computer Science

Evaluation Results

We have implemented our SD-parser follow “Sentential 
semantic dependency parser for Vietnamese” and used it to 
generate semantic dependency graphs from 343 sentences 
of the test dataset. Then, we used Vietnamese D-parser [5] 
to generate DPs from 343 sentences of test data and con-
verted the dependency labels of the result DPs using Table 1. 
The evaluation results shown in Table 4 indicate that the 
transformation rules with semantic constraints of VLO are 
really effective for converting DPs to SDPs with the preci-
sion and recall of generating predicate argument dependen-
cies increased 10–24% when compare with the result of the 
Vietnamese D-parser.

The results in Table 4 show that Vietnamese D-parser 
cannot capture the indirect object dependency type while 
our SD-parser capture this dependency type with precision 
of 0.64 and recall of 0.25. This dependency type is important 
for presenting the semantic of a sentence. Therefore, the 
transformation-based approach using semantic constraints 
is reasonable to build Vietnamese SD-parser.

The overall precision and recall of the SD-parser are only 
0.5328 and 0.5681, respectively. There are two reasons for 
these results. The first reason is that the F1 score of the under-
lying D-parser of our SD-parser is 0.7353 which should be 
improved because the DP generated from a D-parser strongly 
affects to the result of generating SDP. The second reason 
is that the accuracy of our sense tagger is acceptable with 

0.7949. It should be improved significantly to show the effec-
tive of the transformation with semantic constraints.

Conclusions and Future Works

In this paper, we would like to present our work about 
sentential SD-parser for Vietnamese. The SD-parser uses 
transformation rules with semantic constraints to convert 
a DP to SDP. This is an reasonable approach to generating 
SDPs from Vietnamese sentences. In the experiment, our 
SD-parser can capture more semantic dependencies than 
Vietnamese dependency parser. It can capture the indirect 
object dependency type which is not captured using Viet-
namese dependency in our test data. Since our SD-parser 
uses a lexicon ontology, the VLO, to verify the validity of 
dependencies, a resulted SDP will present the semantic of 
a sentence better than a DP. In our approach, there are two 
problems which affect the transformation results. The first 
problem is the effective of Vietnamese dependency parser. 
Although a DP generated from a dependency parser cannot 
present all semantic dependency of a sentence, it is the base 
for generating the SDP. The second problem is the accuracy 
of sense tagging model, which is 0.7949 in our experiment, 
because SD-parser needs word senses to verify the validity 
of dependencies. If word senses are wrongly identified, the 
results of verifying dependencies are wrong and the gener-
ated SDPs are not good.

The results of SD-parser are better than Vietnamese 
dependency parser in presenting semantic of sentence 
according to our experiment, however, SD-parser’s precision 
of 0.5328 and recall of 0.5681 are low and need improve-
ments. The first improvement is to enrich the VLO and to 
build a large Vietnamese sense tagged dataset. The second 
improvement is to apply deep neural network in sense tag-
ging task for state-of-the-art results.

Although the Vietnamese dependency parser should 
be improved also, we have focussed in building VLO and 
Vietnamese sense tagged dataset for semantic related tasks 
first. In addition, when we have large VLO and sense tagged 
dataset, we can also develop a semantic dependency parser 
for Vietnamese.

Conflict of interest  The authors declare that they have no conflict of 
interest.

References

	 1.	 Nivre J. Dependency grammar and dependency parsing. Technical 
Report MSI report 05133; 2005.

	 2.	 Oepen S, Kuhlmann M, Miyao Y, Zeman D, Cinkova S, Flickinger 
D, Hajic J, Uresova Z. SemEval 2015 Task 18: broad-coverage 

Table 3   The statistic of dependencies in test dataset

Type of dependency Number Ratio (%)

hasActor 407 5.7
hasDObj 841 11.7
hasIDObj 64 0.9
hasMod 4509 62.7
hasPComp 1363 19.0
Sum 7184 100

Table 4   The results of our SD-parser and Vietnamese D-parser

Type of dependency Our SD-parser Vietnamese 
D-parser

P R P R

hasActor 0.3852 0.4619 0.2492 0.2015
hasDObj 0.6334 0.4602 0.5351 0.2176
hasIDObj 0.6400 0.2500 0 0
hasMod 0.4884 0.5962 0.3736 0.5006
hasPComp 0.4588 0.3925 0 0
Average 0.5328 0.5681 0.3113 0.3512



	 SN Computer Science (2021) 2:323323  Page 18 of 18

SN Computer Science

semantic dependency parsing. International workshop on semantic 
evaluation. ACL, Denver; 2015. p. 915–926.

	 3.	 Oepen S, Kuhlmann M, Miyao Y, Zeman D, Flickinger D, Hajic 
J, Ivanova A, Zhang Y. Semeval 2014 task 8: broad-coverage 
semantic dependency parsing. International workshop on seman-
tic evaluation. ACL, Dublin; 2014. p. 63–72.

	 4.	 Schuster S, Manning CD. Enhanced english universal depend-
encies: an improved representation for natural language under-
standing tasks. International conference on language resources 
and evaluation; 2016. p. 2371–2378.

	 5.	 Nguyen DQ, Dras M, Johnson M. An empirical study for Viet-
namese dependency parsing. Australasian language technology 
association workshop, Melbourne, Australia; 2016. p. 143–149.

	 6.	 Grünewald S, Friedrich A. RobertNLP at the IWPT 2020 shared 
task: surprisingly simple enhanced UD parsing for english. Inter-
national conference on parsing technologies and the IWPT 2020 
shared task on parsing into enhanced universal dependencies; 
2020. p. 245–252.

	 7.	 Qi P, Dozat T, Zhang Y, Manning CD. Universal dependency 
parsing from scratch. The CoNLL 2018 shared task: multilingual 
parsing from raw text to universal dependencies. ACL, Brussels, 
Belgium; 2018. p. 160–170.

	 8.	 Do TT-T, Nguyen DT. Sentential semantic dependency parsing 
for Vietnamese. Future data and security engineering. Binh Dinh: 
Springer; 2020. p. 429–447.

	 9.	 Banarescu L, Bonial C, Cai S, Georgescu M, Griffit K, Hermjakob 
U, Knight K, Koehn P, Palmer M, Schneider N. Abstract meaning 
representation for sembanking. 7th linguistic annotation workshop 
and interoperability with discourse; 2013. p. 178–186.

	10.	 Oepen S, Kuhlmann M, Miyao Y, Zeman D, Cinková S, Flick-
inger D, Hajic J, Ivanova A, Uresova Z. Towards comparability 
of linguistic graph banks for semantic parsing. Tenth interna-
tional conference on language resources and evaluation; 2016. p. 
3991–3995.

	11.	 De Marneffe M-C, Manning CD. Stanford typed dependencies 
manual. Technical report, Stanford University; 2016.

	12.	 Nivre J, de Marneffe M-C, Ginter F, Goldberg Y, Hajic J, Manning 
CD, McDonald R, Petrov S, Pyysalo S, Silveira N, Tsarfaty R, 
Zeman D. Universal dependencies v1: a multilingual treebank col-
lection. Tenth international conference on language resources and 
evaluation. European Language Resources Association (ELRA); 
2016. p. 1659–1666.

	13.	 Hershcovich D, Abend O, Rappoport A. Multitask parsing across 
semantic representations. 56th annual meeting of the association 
for computational linguistics, vol. 1. Melbourne: ACL; 2018. p. 
373–385.

	14.	 Hershcovich D, Abend O, Rappoport A. A Transition-based 
directed acyclic graph parser for UCCA. 55th annual meeting of 
the association for computational linguistics, vol. 1. Vancouver: 
ACL; 2017. p. 1127–1138.

	15.	 Abend O, Rappoport A. Universal conceptual cognitive annotation 
(UCCA). Annual meeting of the association for computational lin-
guistics, vol. 1. Sofia: Association for Computational Linguistics; 
2013. p. 228–238.

	16.	 Dozat T, Manning CD. Deep biaffine attention for neural depend-
ency parsing. International conference on learning representa-
tions; 2017.

	17.	 Levine RD, Meurers WD. Head-driven phrase structure grammar: 
linguistic approach, formal foundations, and computational reali-
zation. Encyclopedia of language and linguistics, 2nd ed; 2006. 
p. 237–252.

	18.	 Pollard C, Sag IA. Head-driven phrase structure grammar. Chi-
cago: University of Chicago Press; 1994.

	19.	 Nguyen DQ, Pham SB, Nguyen P-T, Le Nguyen M. From tree-
bank conversion to automatic dependency parsing for Vietnamese. 
International conference on applications of natural language to 
data bases—information systems. Springer; 2014. p. 196–207.

	20.	 Do TT-T. Building a Vietnamese lexicon ontology for syntactic 
parsing and document annotation. iiWAS. Vienna: ACM; 2013. 
p. 619–623.

	21.	 Do TT-T, Nguyen DT. VLO V1. 1-A Vietnamese lexicon ontol-
ogy for universal dependency parsing. International conference on 
advanced computing and applications. IEEE; 2020. p. 94–100.

	22.	 Ruppert E, Jonas K, Martin R, Chris B. Rule-based dependency 
parse collapsing and propagation for German and English. Ger-
man society for computational linguistics and language technol-
ogy. University of Duisburg-Essen; 2015. p. 58–66.

	23.	 Covington MA. A fundamental algorithm for dependency parsing. 
Proceedings of the 39th annual ACM southeast conference; 2001. 
p. 95–102.

	24.	 Vu T, Nguyen DQ, Dras M, Johnson M. VnCoreNLP: a Vietnam-
ese natural language processing toolkit. Conference of the North 
American chapter of the association for computational linguistics: 
demonstrations. New Orleans: Association for Computational Lin-
guistics; 2018. p. 56–60.

Publisher’s Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.


	Sentential Semantic Dependency Parsing for Vietnamese
	Abstract
	Introduction
	Backgrounds
	Semantic Dependency Parsing
	Semantic Constraints

	Sentential Semantic Dependency Parser for Vietnamese
	Vietnamese Lexicon Ontology
	Transformation Rules
	Converting Dependency Label

	Evaluation
	Test Dataset
	Sense Tagging
	Evaluation Results

	Conclusions and Future Works
	References




