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Abstract
In this paper, we propose a novel, model-driven approach for enforcing fine-grained access control (FGAC) policies when 
executing SQL queries. More concretely, we define a function SecQuery() that, given an FGAC policy S and an SQL 
select-statement q, generates an SQL stored-procedure ⌜Sec-Query(S, q)⌝ , such that: if a user u is authorized, according 
to S , to execute q, then calling ⌜SecQuery(S, q)⌝(u) returns the same result that when u executes q; otherwise, if the user 
u is not authorized, according to S , to execute q, then calling ⌜SecQuery(S, q)⌝(u) signals an error. The stored-procedure 
SecQuery(S, q) implements the appropriate FGAC authorization-checks for executing the query q, according to the policy 
S . As expected, the execution of the query q takes less time than calling the stored-procedure ⌜SecQuery(S, q)⌝ . Moreover, 
evaluating the (sub)-queries corresponding to authorization-checks will take (more or less) time, depending on the “com-
plexity” of the underlying policies. To illustrate this performance-issue, we have included in this paper some experimental 
results regarding the performance overhead incurred by executing the (secured) stored-procedure corresponding to (unse-
cured) queries. Finally, we have implemented our model-driven approach for enforcing FGAC policies for SQL queries in 
an open-source project, called SQL Security Injector (SQLSI).

Keywords Secured SQL queries · Fine-grained access control · Model-driven security

Introduction

Model-driven security (MDS) [1, 2] is a specialization of 
model-driven engineering for developing secure systems. 
In MDS, designers specify system models along with their 
security requirements, and use tools to generate security-
related artifacts, such as access control infrastructures. 
SecureUML [8] is ‘de facto’ modeling language used in 
MDS for specifying fine-grained access control policies 
(FGAC). These are policies that depend not only on static 
information, namely the assignments of users and permis-
sions to roles, but also on dynamic information, namely the 
satisfaction of authorization constraints by the current state 

of the system. The structure query language (SQL) [15] 
is a special-purpose programming language designed for 
managing data in relational database management systems 
(RDBMS). Its scope includes data insert, query, update, and 
delete, and schema creation and modification. None of the 
major commercial RDBMS currently supports FGAC poli-
cies in a “native” way.

In [12], we have proposed a model-based characteriza-
tion of FGAC authorization for SQL queries. In our pro-
posal, FGAC policies are modeled using a “dialect” of 
SecureUML. The challenge we address now is how to effec-
tively enforce FGAC policies when executing SQL queries. 
Our solution consists of defining a function SecQuery() 
that, given an FGAC policy S and an SQL select-statement 
q, generates an SQL stored-procedure ⌜SecQuery(S, q)⌝ , 
such that: if a user u is authorized, according to S , to exe-
cute q, then calling ⌜SecQuery(S, q)⌝(u) returns the same 
result that when u executes q; otherwise, if the user u is 
not authorized, according to S , to execute q, then calling 
⌜SecQuery(S, q)⌝(u) signals an error. Our solution consists 
of defining a function SecQuery() that, given a SecureUML 
model S and an SQL select-statement q, generates an SQL 
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stored-procedure, such that: if a user is authorized, accord-
ing to S , to execute q, then calling this stored-procedure 
returns the same result that executing q; otherwise, if a user 
is not authorized, according to S , to execute q, then calling 
this stored-procedure signals an error. Basically, the stored-
procedure SecQuery(S, q) implements the appropriate FGAC 
authorization-checks for executing the query q, according to 
the policy S . Informally, we can say that ⌜SecQuery(S, q)⌝ is 
the secure version of the query q with respect to the FGAC 
policy S , or that ⌜SecQuery(S, q)⌝ secures the query q with 
respect to the FGAC policy S.

As mentioned before, FGAC policies depend on the satis-
faction of authorization constraint by the current state of the 
system. Thus, executing FGAC-related authorization-checks 
causes, unavoidably, a performance overhead at run-time, 
which will be greater or lesser depending on the “complex-
ity” of the underlying policy. We report on some preliminary 
experiments that illustrate well this performance-issue.

Organization

The rest of the paper is organized as follows. In the next sec-
tion, we motivate with examples some of the problems we 
aim to address when securing SQL queries. In the following 
section, we introduce our modeling language for specifying 
FGAC policies. This section provides background material, 
which is needed for the rest of the paper. In the next two 
consecutive sections, we propose our novel model-driven 
approach for enforcing FGAC policies for SQL queries, and 
illustrate it with non-trivial examples. In the following sec-
tion, we report on experimental results regarding the perfor-
mance overhead incurred by our approach. In the next sec-
tion, we present SQLSI, a Java application that implements 
our solution. Finally, in the last sections, we discuss related 
and future work.

Motivation

Informally, enforcing an FGAC policy when executing an 
SQL query means guaranteeing that the execution of the 
query does not leak confidential information. Interestingly, 
this implies much more than simply checking that the final 
result satisfies the applicable FGAC policy, Indeed, a clever 
attacker can devise a query, such that the simple fact that a 
final result is obtained will reveal by itself some additional 
information, which may be confidential. To illustrate this 
problem, we introduce a simple example of information 
leakage resulting from allowing users to execute “unse-
cured” queries.

Let us consider a simple database UniversityDB con-
taining three tables: Lecturer, for representing lecturers; 
Student, for representing students; and Enrollment, 

for representing the links between the students and their 
lecturers.

The tables Lecturer and Student have the columns 
Lecturer_id and Student_id as their respective 
primary keys. The table Enrollment has two columns, 
namely, lecturers and students, which are foreign 
keys, associated, respectively, to Lecturer_id and Stu-
dent_id. Finally, both tables Lecturer and Student 
have columns name and email.

Consider now the select-statements in Fig. 1. For the sake 
of this example, suppose that, for a given scenario, the three 
of statements return the same final result, namely, a non-
empty string, representing an email that is not confidential. 
On a closer examination, however, we can realize that, for 
each of these statements, the final result is revealing addi-
tional information, which may happen to be confidential. In 
particular

– Query#1 reveals that the resulting email belongs to 
Huong.

– Query#2 reveals not only that the resulting email 
belongs to Huong, but also that Thanh is enrolled in a 
course that Huong is teaching.

– Query#3 reveals that the email belongs to Huong, and 
that Huong and Manuel are “colleagues”, in the sense 
that there some students for whom both Huong and 
Manuel are lecturers.

As the above example shows, to enforce an FGAC policy, 
it is not enough to check that displaying the final result is 
policy-compliant. In fact, we claim that any information 
used to reach this final result (in particular, when solving 
subqueries, where-clauses, and on-clauses) should be also 
checked for policy-compliance. Accordingly, if a user is not 
authorized to know whether Huong is Thanh’s lecturer, when 
attempting to execute Query#2, he/she should receive an 
authorization-error, even when he/she may be authorized 
to access Huong’s email. Similarly, if a user is not author-
ized to know whether Huong and Manuel are “colleagues”, 

Query#1 SELECT email FROM Lecturer WHERE Lecturer id = ’Huong’;

Query#2 SELECT DISTINCT email FROM Lecturer

JOIN (SELECT * FROM Enrollment

WHERE students = ’Thanh’

AND lecturers = ’Huong’ ) AS TEMP

ON TEMP.lecturers = Lecturer id;

Query#3 SELECT DISTINCT email FROM Lecturer

JOIN (SELECT e1.lecturers as lecturers

FROM (SELECT * FROM Enrollment

WHERE lecturers = ’Huong’ ) AS e1

JOIN (SELECT * FROM Enrollment

WHERE lecturers = ’Manuel’ ) AS e2

ON e1.students = e2.students ) AS TEMP

ON TEMP.lecturers = Lecturer id;

Fig. 1  Example. Queries 1–3
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then, when executing Query#3, he/she should receive an 
authorization-error, even when he/she may be authorized to 
access lecturers’ emails.

Modeling Fine‑Grained Access Control 
Policies

Our approach for enforcing FGAC policies for SQL queries 
is model-driven. This means, first of all, that policies are 
specified using models, and, second, that the corresponding 
policy-enforcement artifacts are generated from these mod-
els. Next, we introduce the language SecureUML for mod-
eling FGAC policies. In the next section, we will introduce 
the policy-enforcement artifacts that can be generated from 
SecureUML models for executing securely SQL queries.

SecureUML [8] is a modeling language for specifying 
FGAC policies. It is an extension of role-based access con-
trol (RBAC) [6]. As it is well known, in RBAC, permissions 
are assigned to roles, and roles are assigned to users. How-
ever, in SecureUML, one can model access control deci-
sions that depend on two kinds of information: namely, static 
information, i.e., the assignments of users and permissions 
to roles; and dynamic information, i.e., the satisfaction of 
authorization constraints by the current state of the system.

SecureUML leaves open the nature of the protected 
resources—i.e., whether these resources are data, business 
objects, processes, controller states, etc.—and, consequently, 
the nature of the corresponding controlled actions. These 
are to be declared in a so-called SecureUML dialect. In par-
ticular, in our approach, the data that is protected is modeled 
using classes and associations—as in standard UML class 
diagrams—while the actions that are controlled are read-
actions on class attributes and association-ends. Authoriza-
tion constraints are specified in SecureUML models using 
OCL expressions.

Data Models and Object Models

Data models specify the resources to be protected. Object 
models (also called scenarios) are instances of data models.

Definition 1 (Data models) Let T  be a set of predefined 
types. A data model D is a tuple ⟨C,AT ,AS⟩ , where

– C is a set of classes c.
– AT is a set of attributes at, at = ⟨ati , c, t⟩ , where ati is the 

attribute’s identifier; c is the class of the attribute; and 
t is the type of the values of the attribute, with t ∈ T  or 
t ∈ C.

– AS is a set of associations as, as = ⟨asi, asel , cl , aser , cr⟩ , 
where: asi is the association’s identifier; asel and aser 
are the ends of the association as; cl is the class of the 

objects at the association-end asel ; and cr is the class of 
the objects at the association-end aser.

Definition 2 (Object models) Let D = ⟨C,AT ,AS⟩ be a data 
model. An object model O of D is a tuple ⟨OC , OAT, OAS⟩ 
where:

– OC is set of objects o, o = ⟨oi, c⟩ , where oi is the identi-
fier of the object o, and c ∈ C is the class of the object o.

– OAT is a set of attribute values atv, atv = ⟨⟨ati , c, t⟩ , ⟨oi , 
c⟩ , vl⟩ , where ⟨ati, c, t⟩ ∈ AT  , ⟨oi, c⟩ ∈ OC , and vl is a 
value of the type t.

– OAS is a set of association links asl, asl = ⟨⟨asi, asel , 
cl , aser , cr⟩ , ⟨oil , cl⟩ , ⟨oir , cr⟩⟩ , where ⟨asi, asel , cl , aser , 
cr⟩ ∈ AS , ⟨oil, cl⟩ ∈ OC , and ⟨oir, cr⟩ ∈ OC.

Without loss of generality, we assume that every object 
has a unique identifier.

Example 1 We introduce in Fig. 2 the data model Univer-
sity, which basically corresponds to the database Uni-
versityDB considered in the previous section. The data 
model University contains two classes, Student and 
Lecturer, and one association Enrollment between 
both of them. Both classes, Student and Lecturer, 
have attributes name and email.

The class Student represents the students of the uni-
versity, with their names and emails. The class Lecturer 
represents the lecturers of the university, with their names 
and emails. The association Enrollment represents the 
links between the students (denoted by students) and 
their lecturers (denoted by lecturers).

In the following sections, we will consider the following 
two scenarios of the data model University.

Example 2 We introduce in Fig. 3 the scenario VGU#1. It 
contains five students: An, Chau, Hoang, Thanh, and 
Nam, with the expected names and emails (name@vgu.
edu.vn). The scenario VGU#1 also contains three lec-
turers: Huong, Manuel, Hieu, again with the expected 
names and emails.

Moreover, VGU#1 contains Enrollment-links between 
the lecturer Manuel and the students An, Chau, and 

Fig. 2  The University model
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Hoang, and also between the lecturer Huong and the stu-
dents Chau and Thanh.

Example 3 We introduce in Fig. 4 the scenario VGU#2. that 
is exactly as VGU#1 except that includes two additional 
Enrollment-links: one between the lecturer Hieu and 
the student Thanh, and the other link between the lecturer 
Hieu and the student Nam.

Object Constraint Language (OCL)

OCL [13] is a language for specifying constraints and que-
ries using a textual notation. Every OCL expression is writ-
ten in the context of a model (called the contextual model). 
OCL is a strongly typed language. Expressions either have a 
primitive type, a class type, a tuple type, or a collection type. 
OCL provides standard operators on primitive types, tuples, 
and collections. For example, the operator includes 
checks whether an element is inside a collection. OCL also 
provides a dot-operator to access the value of an attribute 
of an object, or the collection of objects linked with another 
object at the end of an association. OCL also provides opera-
tors to iterate over collections, such as forAll, exists, 
select, reject, and collect. Collections can be sets, 
bags, ordered sets and sequences, and can be parameterized 
by any type, including other collection types. Finally, to rep-
resent undefinedness, OCL provides two constants: null 
and invalid. Intuitively, null represents an unknown 
or undefined value, whereas invalid represents an error 
or an exception.

Let D be a data model. We denote by Exp(D) the set of 
OCL expressions whose contextual model is D.

Let O be an instance of D , and let e be an OCL expres-
sion in Exp(D) . Then, we denote by Eval(O, e) the result of 
evaluating e in O according to the semantics of OCL.

Example 4 Let e be the OCL expression �����.����� . 
T h e n ,  Eval(���#�, e) = ε�����@���.���.��ε  ,  a n d 
Eval(���#�, e) = ε�����@���.���.��ε.

Let e be the OCL expression �����.��������� . Then,  
Eval(���#�, e) = {�����} , while Eval(���#�, e) = {�����, ����}.

Let e be the OCL expression �����.���������
→ ��������(����) . Then, Eval(���#�, e) = ����� , while 
Eval(���#�, e) = ����.

FGAC‑Security Models

FGAC-security models specify fine-grained access control 
policies for executing actions on protected resources. We 
first define the specific actions that can be protected in our 
approach. Then, we give a precise definition of FGAC-secu-
rity models, and of their meaning, i.e., which actions are 
authorized to be executed for which users, with which roles, 
and under which conditions.

Definition 3 Let D be a data model D = ⟨C,AT ,AS⟩ . Then, 
we denote by Act(D) the following read-actions:

– For every attribute at ∈ AT  , read(at) ∈ Act(D).
– For every association as ∈ AS , read(as) ∈ Act(D).

Fig. 3  The VGU#1 scenario

Fig. 4  The VGU#2 scenario
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Definition 4 Let D be a data model. Then, a security model 
S for D is a tuple S = (R, auth) , where R is a set of roles, and 
auth∶ R × Act(D) ⟶ Exp(D) is a function that assigns to 
each role r ∈ R and each action a ∈ Act(D) an authorization 
constraint e ∈ Exp(D).

In our approach, we consider authorization constraints 
whose satisfaction depends on information related to: (i) 
the user who is attempting to perform a read-action; (ii) the 
object whose attribute is attempted to be read; and, (iii) the 
objects between which a link is attempted to be read. By 
convention, we denote (i) by the keyword caller; we denote 
(ii) by the keyword self; and we denote (iii) using as key-
words the corresponding association-ends.

Next, we provide three examples of FGAC-security mod-
els specifying three different FGAC policies for accessing 
University-data.

Example 5 Consider the following clause for accessing lists 
of students.

– A lecturer can know the list of his/her own students.

Also, consider also the following clause for accessing emails 
of lectures and students.

– A lecturer can know his/her own email, as well as the 
emails of his/her students.

The model ������#� precisely specifies the above policy 
using SecureUML

Example 6 Consider a policy that is exactly as SecVGU#A 
except that it includes the following additional clause:

– A lecturer can know its colleagues’ emails. For the sake 
of these examples, two lecturers are “colleagues” if there 
is at least one student enrolled with both of them.

The model ������#� precisely specifies the above policy 
using SecureUML

−roles = {��������}.

−auth() =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

(��������, read(����������)) ↦ (caller = lecturers).

(��������, read(������� ∶ �����)) ↦

(caller.�������� → ��������(self )).

(��������, read(�������� ∶ �����)) ↦ (caller = self ).

Example 7 Consider a policy that is exactly as SecVGU#B 
except that it includes the following additional clause:

– A lecturer can know the list of lecturers of his/her own 
students.

The model ������#� precisely specifies the above policy 
using SecureUML

Definition 5 Let D be a data model. Let S = ⟨R, auth⟩ be an 
FGAC-security model for D . Let O = ⟨OC , OAT  , OAS⟩ be 
an object model of D . Then

– A user u with role r ∈ R is authorized, according to S , to 
read the value of an attribute at = ⟨ati, c, t⟩ , at ∈ AT  of 
an object o ∈ OC if and only if 

– A user u with role r ∈ R is authorized, according to S , to 
read whether an association as = ⟨asi, asel , cl , aser , cr⟩ , 
as ∈ AS , as ∈ AS links two objects ol and or , if an only if 

By convention, the function auth() may take as an extra 
argument the security model to which it belongs, when the 
latter is not clear from the context.

Example 8 Suppose that Manuel has role �������� . Then, 
according to ������#� , in the scenario ���#�:

−roles = {��������}.

−auth() =

⎧
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎩

(��������, read(����������)) as in ������#�.

(��������, read(������� ∶ ����)) as in ������#�.

(��������, read(�������� ∶ ����)) ↦

(caller = self ) ��

(caller.�������� → exists

(s ∣ s.lecturers → includes(self ))).

−roles = {��������}.

−auth() =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

(��������, read(����������)) ↦

(caller = lecturers) or

(caller.�������� → ��������(students)).

(��������, read(������� ∶ �����)) as in �����#�.

(��������, read(�������� ∶ �����)) as in �����#�.

Eval(O, auth(r, read(ati)[���� ← o;������ ← u])

= ����.

Eval(O, auth(r, read(asi)[asl ← ol;

asr ← or;caller ← u]) = ����.
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– ������ is authorized to know whether �� , ����� , ���� , 
����� , and ��� are his students. Recall that 

 Notice that, for std ∈ {��, �����, ����, �����, ���} , it 
holds that 

– ������ is not authorized to know whether �� , ����� , 
���� , ����� or ��� are students of ����� . Notice that 
in this case 

Example 9 Suppose that Manuel has role �������� . Then, 
according to ������#� , in the scenario ���#�:

– ������ is authorized to know whether �� , ����� , ���� , 
����� , and ��� are his students. Recall that ������#� 
specifies that 

 Notice that, for std ∈ {��, �����, ����, �����, ���} , it 
holds that 

– ������ is authorized to know whether �� , ����� , 
���� are students of ����� . Notice that, for 
std ∈ {��, �����, ����} , it holds that 

auth(������#�, ��������, read(����������))

= (caller = lecturers),

Eval(���#�, auth(������#�, ��������,

read(����������))[caller ← �����,

lecturers ← �����, students

← std) = ����

Eval(���#�, auth(������#�, ��������,

read(����������))[caller ← �����,

lecturers ← �����, students

← std) = 
�	�.

auth(������#�, ��������, read(����������)) =

(������ = ���������) ��

(caller.������� → �������(students)).

Eval(���#�, auth(������#�, ��������,

read(����������))[caller ← �����,

lecturers ← �����, students

← std) = ����

Eval(���#�, auth(������#�, ��������,

read(����������))[caller ← �����,

lecturers ← �����, students

← std) = ����

– ������ is not authorized to know whether ����� or 
��� are students of ����� . Notice that in this case, for 
std ∈ {�����, ���} , it holds that 

Enforcing FGAC Policies for SQL Queries

In [12], we formally defined the conditions that need to be 
satisfied for a user u, with role r, to be authorized to execute 
a SQL query q according to an FGAC policy S . In this sec-
tion, we present our solution for enforcing these conditions 
when executing queries in SQL. In a nutshell, we define a 
function SecQuery() that, given an FGAC policy S and an 
SQL query q, it generates an SQL stored-procedure, which 
takes two arguments, caller and role, representing, respec-
tively, the user u attempting to execute the query q and the 
role r with which he/she attempts to execute q. This stored-
procedure creates a list of temporary tables, corresponding 
to the different conditions that need to be satisfied for the 
user u, with role r, to be authorized to execute the query q, 
according to S . The definition of each temporary table is 
such that, when attempting to create the table, if the cor-
responding condition is not satisfied, then an error will be 
signaled and the table will not be created. If all temporary 
tables can be successfully created, then the stored-procedure 
generated by SecQuery() will execute q; if any of the tem-
porary tables cannot be created, then an error will be sig-
naled. The reason for using temporary tables instead of sub-
queries is to prevent the SQL optimizer for “skipping” (by 
“silently” rewriting the subqueries) some of the conditions 
that SecQuery() must introduce to guarantee that a query 
is executed securely. The definition of SecQuery() assumes 
that the policies’ underlying data models are implemented 
in SQL following a specific mapping. Notice that other map-
pings from data models to SQL are also possible [5]. As 
expected, if a different mapping from data models to SQL 
is chosen, then our enforcement of FGAC policies for SQL 
queries should be changed accordingly. The definition of 
SecQuery() also assumes that the enforcing mechanism is 
allowed to access the information needed to perform in each 
case the corresponding authorization checks.

Mapping Data and Object Models to Databases

Next, we define the specific mappings from data models and 
object models to SQL that we use in our solution for enforc-
ing FGAC policies when executing SQL queries.

Eval(���#�, auth(������#�, ��������,

read(����������))[caller ← �����,

lecturers ← �����, students ← std) = 
�	�.
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Definition 6 Let D = ⟨C,AT ,AS⟩ be a data model. Our map-
ping of D to SQL, denoted by D , is defined as follows:

– For every c ∈ C , 

– For every attribute at ∈ AT  , at = ⟨ati, c, t⟩ , 

 where

– if t = Integer, then SqlType(t) = int.

– F o r  e v e r y  a t t r i b u t e  v a l u e  atv ∈ OAT  , 
atv = ⟨⟨ati, c, t⟩, ⟨oi, c⟩, vl⟩ , 

– For every association link asl ∈ OAS , asl = ⟨⟨asi, asel , 
cl , aser , cr⟩ , ⟨oil , cl⟩ , ⟨oir , cr⟩⟩ , 

Secure SQL Queries

Next, we introduce the key component in our model-driven 
solution for enforcing FGAC policies when executing SQL 
queries.

The Function SecQuery()

Given an FGAC policy S and an SQL select-statement q, 
the function SecQuery() generates a SQL stored-procedure 
satisfying the following: if a user is authorized, according 
to S , to execute q, then calling this stored-procedure returns 
the same result that executing q; otherwise, if a user is not 
authorized, according to S , to execute q, then calling this 
stored-procedure signals an error.

By convention, we denote by ⌜SecQuery(S, q)⌝ the name 
of the stored-procedure generated by SecQuery , for an 

– if t = String, then SqlType(t) = varchar.
– if t ∈ C, then SqlType(t) = varchar.

   Moreover, if t ∈ C, then 

  

– For every association as ∈ AS, as = ⟨asi, asel, cl, aser, cr⟩ 
∈ AS, 

Moreover 

Definition 7 Let D = ⟨C,AT ,AS⟩ be a data model. Let O = 
⟨OC , OAT  , OAS⟩ be an object model of D . Our mapping of 
O to SQL, denoted by O , is defined as follows:

– For every object o ∈ OC , o = ⟨oi, c⟩ , 
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FGAC policy S and a query q. SecQuery() uses the auxiliary 
function SecQueryAux() that is defined in the next section.

Definition 8 Let D = ⟨C,AT ,AS⟩ be a data model. Let 
S = (R, auth) be a security model for D . Let q be an SQL 
query in D . Then, SecQuery(S, q) generates the following 
stored-procedure: 

SecQueryAux() assumes that the policies’ underlying data 
models, as well as its object models, are implemented in 
SQL following the mapping introduced in the section “Map-
ping data and object models to databases”. According to this 
mapping, the rows in the association-tables only represent 
the links of the given association that exist between objects. 
In other words, if a link does not exist, this information is not 

The Function SecQueryAux

The function SecQuery() uses the function SecQueryAux to 
create a temporary table corresponding to each authorization 
condition applicable when executing a query. As expected, 
our definition of SecQueryAux() proceeds recursively. By 
convention, we denote by ⌜TempTable(q, exp)⌝ the name of 
the temporary table generated by SecQuery , for a query q 
and a (sub-)expression exp.

Before going further, a word of caution is in order. A sub-
tle, but important point in our definition of SecQueryAux() 
has to do with our way of handling read-access authoriza-
tion for tables representing associations. The definition of 

stored anywhere. Thus, when checking if a user is author-
ized to know the links of a given association, we should 
not only perform the appropriate checks on the rows con-
tained in the corresponding association-table, but also on the 
rows contained in its (virtual) complement, i.e., on the table 
whose rows represent the links that do not exist between 
objects. For this reason, in the definition of SecQueryAux() 
below, when handling read-access authorization for tables 
representing associations, we consider the Cartesian product 
of the two class-tables involved in the given association, 
checking read-access authorization for all the rows in the 
Cartesian product.
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Next, we introduce the different cases in the recursive 
definition of the function SecQueryAux() . For each case, 
we informally introduce the authorization conditions that 
need to be satisfied. As mentioned before, we have formally 
defined these conditions in [12]. According to these condi-
tions, any data that are used when executing a query (in 
particular, data used by subqueries, where-clauses, and on-
clauses) must be checked for policy-compliance (and not 

– The user is authorized to access the information referred 
to by selitems , but only for the objects/rows that satisfy 
the where-clause exp.

For this case, SecQueryAux() returns the following 
create-statements: 

Case q = SELECT selitems FROM as WHERE exp. To 
execute q, the following conditions must be satisfied:

– The user is authorized to access the information referred 
to by both association-ends, but only for the rows con-
tained in the Cartesian product between the classes 
involved in the association that satisfy the where-clause 
exp.

For this case, SecQueryAux() returns the following 
create-statements: 

only the data that appears in the final result). To this end, 
the function SecQueryAux() uses the function SecAtt() to 
add the corresponding authorization-checks to any expres-
sion accessing specific attribute values, and the function 
SecAs() to add the corresponding authorization-checks 
to access association links. These functions will be intro-
duced in the next section. The function SecAttList() , also 
used by SecQueryAux() , simply applies SecAtt() to each of 
the expressions in an expression list. Finally, in the defini-
tions below, we denote by RepExp() the result of replacing, 
within an expression, each occurrence of the association’s 

association-ends by the corresponding association-ends’ 
class-identifier. 

Case q = ������ selitems ���� c ����� exp . To execute 
q, the following conditions must be satisfied:

– The user is authorized to access the information required 
to evaluate the where-clause exp.

Case q = SELECT selitems FROM subselect WHERE exp. 
To execute q, the following conditions must be satisfied:

– The user is authorized to execute the subquery subselect.

For this case, SecQueryAux() returns the following 
create-statements: 
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Case q = SELECT selitems FROM c JOIN as ON exp 
WHERE exp′ . To execute q, the following conditions must 
be satisfied:

– The user is authorized to access the information referred 
to by both association-ends.

– The user is authorized to access the information required 
to evaluate the on-clause exp.

– The user is authorized to access the information required 
to evaluate the where-clause exp′ , but only for the objects/
rows and links/rows that satisfy the on-clause exp.

– The user is authorized to access the information referred 
to by selitems, but only for the objects/rows and links/
rows that satisfy the on-clause exp and the where-clause 
exp′.

For this case, SecQueryAux() returns the following 
create-statements: 

Case q = SELECT selitems FROM c JOIN subselect ON 
exp WHERE exp′ . To execute q, the following conditions 
must be satisfied:

– The user is authorized to execute the subquery subselect
.

– The user is authorized to access the information required 
to evaluate the on-clause exp.

– The user is authorized to access the information required 
to evaluate the where-clause exp′ ; but only for the 
objects/rows and links/rows that satisfy the on-clause 
exp.

– The user is authorized to access the information referred 
to by selitems, but only for the objects/rows and links/
rows that satisfy the on-clause exp and the where-clause 
exp′.

For this case, SecQueryAux() returns the following 
create-statements: 
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Case q = SELECT selitems FROM as JOIN subselect ON 
exp WHERE exp′ . We must consider three cases:

First, the case when asel appears in exp, but aser does not 
appear in exp. Let col be the column in subselect that asel 
is related to in exp. To execute q, the following conditions 
must be satisfied:

– The user is authorized to execute the subquery subselect.
– The user is authorized to access the information referred 

to by both association-ends, but only for the rows con-
tained in the Cartesian product between the classes 
involved in the association that satisfy the where-clause 
exp.

For this case, SecQueryAux() returns the following 
create-statements: 

Second, the case when aser appears in exp, but asel does 
not appear in exp.

This case is resolved analogously to the previous case.
Third, the case when both aser and asel appear in exp. To 

execute q, the following conditions must be satisfied:

– The user is authorized to execute the subquery subselect.
– The user is authorized to access the information referred 

to by both association-ends.

For this case, SecQueryAux() returns the following 
create-statements: 

Case q = SELECT selitems FROM subselect1 JOIN 
subselect2 ON exp WHERE exp′ . To execute q, the following 
conditions must be satisfied:

– The user is authorized to execute the subqueries 
subselect1 and subselect2.

For this case, SecQueryAux() returns the following 
create-statements: 
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The Function SecAtt()

The function SecQueryAux() uses SecAtt() to wrap any 
access to a protected attribute at into a case expression. 
The value of this case expression is a call to a function 
AuthFunc() that implements that authorization-checks 
required for accessing the corresponding attribute. If the 
result of this function-call is TRUE, then the case expression 
will return the requested resource; otherwise, it will signal 
an error. The function AuthFunc() is defined in the following 

section. By convention, we denote by ⌜AuthFunc(S, at)⌝ the 
name of the function generated by SecQuery() for a policy 
S an attribute at; when the argument S is clear from the 
context, we may omit it.

Definition 9 Let D = ⟨C,AT ,AS⟩ be a data model. Let 
S = (R, auth) be a security model for D . Let exp be an SQL 
expression in D . We denote by SecAtt(S, exp) the SQL 
expression in D that results from replacing each attribute 
at = ⟨ati, c, t⟩ in exp by the following case expression: 

Table 1  Examples

Calling stored-procedures generated by SecQuery() for different queries and policies, with different users 
and scenarios

Caller Query SecVGU#A SecVGU#B SecVGU#C

VGU#1 VGU#2 VGU#1 VGU#2 VGU#1 VGU#2

Manuel Query#1 ✗ ✗ ✓ ✓ ✓ ✓
Huong ✓ ✓ ✓ ✓ ✓ ✓
Hieu ✗ ✗ ✗ ✓ ✗ ✓
Manuel Query#2 ✗ ✗ ✗ ✗ ✗ ✗
Huong ✓ ✓ ✓ ✓ ✓ ✓
Hieu ✗ ✗ ✗ ✗ ✗ ✓
Manuel Query#3 ✗ ✗ ✗ ✗ ✗ ✗
Huong ✗ ✗ ✗ ✗ ✗ ✗
Hieu ✗ ✗ ✗ ✗ ✗ ✗

 where the function throw error is defined as follows: 
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The Function SecAs()

The function SecQueryAux() uses SecAs() to wrap any 
access to a protected association as into a where case 
expression. The value of this case expression is a call to 
the function AuthFunc() that, in this case, implements the 
authorization-checks required for accessing the correspond-
ing association-ends. If the result of this function-call is 
TRUE, then the case expression will return also TRUE; oth-
erwise, it will signal an error. The function AuthFunc() is 
defined in the following section. By convention, we denote 
by ⌜AuthFunc(S, as)⌝ the name of the function generated by 
SecQuery() for a policy S an association as; when the argu-
ment S is clear from the context, we may omit it.

Definition 10 Let D = ⟨C,AT ,AS⟩ be a data model. Let 
S = (R, auth) be a security model for D . Let as be an asso-
ciation class in D . Let asel and aser be the association-ends 
of as. We denote by SecAs(S, as) the SQL expression in D 
that results by the following case expression: 

where the function throw_error() is defined as 
above.

The Function AuthFunc()

The functions SecAtt() and SecAs() use this function to 
check that the access to a specific protected resource is 
authorized. For each protected resource, the required author-
ization-checks depend on the role of the user attempting to 
access this resource. Accordingly, for each role, the func-
tion AuthFunc() calls a function AuthFuncRole() that imple-
ments the authorization-checks required for a user with that 
role to access a specific protected resource. The function 
AuthFuncRole() will be introduced in the next section. By 
convention, we denote by ⌜AuthFuncRole(S, rs, r)⌝ the name 
of the function generated by SecQuery() for a policy S , a 
resource rs, and a role r; when the argument S is clear from 
the context, we may omit it.

Definition 11 Let D = ⟨C,AT ,AS⟩ be a data model. 
Let S = (R, auth) be a security model for D , with 
R = {r1, r2,… , rn} . Let at be an attribute in AT. Then, 
AuthFunc(at) generates the following SQL function:

Query#4 SELECT COUNT(students) FROM Enrollment

WHERE lecturers = ’Hieu’;

Fig. 5  Example. Query 4
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Similarly, let as be an association in AS . Then, 
AuthFunc(as) generates the following SQL function: 

The Function AuthFuncRole()

The function AuthFuncRole() implements the authoriza-
tion constraints associated with the permission for users of 
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a given role for executing a given read-action on a specific 
resource.

Of course, there are many different ways of implementing 
in SQL an OCL authorization constraint. In our definition 
of the function AuthFuncRole() , we only assume that there 
exists a function map() that, for each authorization constraint 
of interest, it returns its preferred SQL implementation. 
Without loss of generality, we also assume that this imple-
mentation, when executed, will return a SQL Boolean.1

Definition 12 Let D = ⟨C,AT ,AS⟩ be a data model. 
Let S = (R, auth) be a security model for D . Let r be a 
role in R. Let at = ⟨ati, c, t⟩ be an attribute in AT. Then, 
AuthFuncRole(at, r) generates the following SQL function: 

Examples

To illustrate our definition of the function SecQuery() , we 
show in Table 1 the results of calling the stored-procedures 

Query#5 SELECT COUNT(*) FROM Student WHERE age > 18

Query#6 SELECT COUNT(students) from Enrollment

Fig. 6  Example. Queries 5–6

Fig. 7  Experiments: Query#5 

Similarly, let as = ⟨asi, asel, cl, aser, cr⟩ ∈ AS , be an asso-
ciation in AS. Then, AuthFuncRole(as, r) generates the fol-
lowing SQL function: 

generated by this function for the queries Query#1, 
Query#2, and Query#3 (in  Fig.  1), on the scenar-
ios VGU#1 and VGU#2, for the policies SecVGU#A, 
SecVGU#B, and SecVGU#C, when the callers are the 

1 Our mapping OCL2PSQL [11] can certainly be used as map()

-function. However, our current experiments suggest that, for non-
trivial authorization constraints, manually written implementations 
significantly outperforms those automatically generated by OCL2P-
SQL, when checking FGAC authorization in large databases.
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lecturers Manuel, Huong and Hieu. The mark ✓ indicates 
that the caller is authorized to execute the query (and there-
fore the expected result is returned), while the mark ✗ indi-
cates that the caller is not authorized to execute the query 
(and therefore an error is signaled). Notice in particular that:

– Manuel is not authorized to execute Query#2 for any 
of the scenarios VGU#1 and VGU#2, according to the 
policy SecVGU#� . This is to be expected, since Thanh 
is not a student of Manuel in any of these scenarios, 
and, therefore, Manuel is not authorized to know that 
Thanh is a student of Huong.

– Hieu is not authorized to execute Query#2 for the sce-
nario VGU#� , according to the policy SecVGU#� . This 
is to be expected, since Thanh is not a student of Hieu 
in this scenario, and, therefore, Hieu is not authorized 
to know that Thanh is a student of Huong.

  However, in the scenario VGU#� , Thanh is in fact a 
student of Hieu, and, therefore, Hieu is authorized to 
know that Thanh is also a student of Huong, according 
to the policy SecVGU#�.

– Huong is not authorized to execute Query#3 for any 
of the scenarios VGU#1 and VGU#2, according to the 
policies SecVGU#C. This is to be expected, since for 
each of these scenarios, there is at least one student who 
is a student of Manuel, but he/she is not a student of 
Huong, and therefore, Huong is not authorized to know 
that he/she is in fact a student of Manuel, according to 
the policy SecVGU#�.

Our next example serves to illustrate the issue of handling 
read-access authorization for associations. Recall that, in our 
implementation of objects models in SQL, the rows in these 

tables only represent existing links between objects. Con-
sider now the select-statement Query#4 in Fig. 5. Recall 
that in the scenario VGU#1, Hieu has no students. Notice 
that, according to the policy SecVGU#C, for the scenario 
VGU#1, Huong is not authorized to execute this query, 
since she is not authorized to know the students of Hieu 
(unless they happen to be her own students, which is not 
the case in this scenario). Consider now a naive implemen-
tation of read-access authorization for tables representing 
associations that will only perform authorization-checks on 
the rows contained in these tables. Since in the scenario 
VGU#1, there are no links between Hieu and students, if we 
follow this naive implementation, Huong will be authorized 
to know that Hieu has no students in the scenario VGU#1, 
and conclude, logically, that neither An nor Nam, for exam-
ple, are students of Hieu. To avoid this undesired leakage 
of information, when handling read-access authorization 
for associations, our implementation not only performs the 
appropriate checks on the rows contained in the correspond-
ing association-table, but also on the rows contained in its 
(virtual) complement, i.e., on the table whose rows represent 
the links that do not exist between objects. As expected then, 
when calling the stored-procedure generated by SecQuery() 
for the query Query#4 on the scenario VGU#1, we obtain 
the following results:

– Huong is not be authorized to execute Query#4 for the 
scenario VGU#1, according to the policy SecVGU#C, 
because she is not authorized to know that An, Nam, and 
Hoang are not students of Hieu in this scenario.

– Hieu is authorized to execute Query#4 or the scenario 
VGU#1, according to the policy SecVGU#C, because he 
is authorized to know if a student is or not his student.

Performance

Fine-grained access control (FGAC) policies depend not 
only on static information, namely the assignments of users 
and permissions to roles, but also on dynamic information, 
namely the satisfaction of authorization constraint on the 
current state of the system. Thus, executing FGAC-related 
authorization-checks will unavoidably cause a performance 
overhead at execution-time, which is greater or lesser 
depending on the “size” of the database and the “complex-
ity” of the authorization-checks. In this section, we conduct 
several experiments to analyze the performance-overhead 
incurred when executing securely queries by calling the 
corresponding stored-procedures generated by our function 
SecQuery().

Fig. 8  Experiments: Query#6 
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Experimental Setup

The following experiments were conducted on an MySQL 
server (5.7.25.1) running on a server computer with Intel(R) 
Xeon(R) CPU E5-2620 v3, 2.40 GHz, and 16 GB RAM. 
For each experiment, the execution-time that we report 
actually corresponds to the arithmetic mean of 10 different 
executions.

Next, we introduce the data model, object models, 
FGAC-security models, and queries that we consider in our 
experiments.

Data Model

We simply extend the data model ���������� introduced in 
the section “Modeling fine-grained access control policies” 
by adding an attribute age to both classes ������� and 
�������� . We call this data model �����������.

Object Models

For the sake of simplicity, we consider scenarios with the 
same number of students and lecturers, and in which every 
student is a student of every lecture. More specifically, for 
n > 0 , we denote by �����(n) an instance of the data model 
����������� , such that

– There are exactly n students. Students have unique name.
– There are exactly n lecturers. Lecturers have a unique 

name.
– Every lecturer has every student as his/her student. Thus, 

the number of enrollments is n2.

FGAC‑Security Models

We consider the following FGAC-security models for the 
data model UniversityX.

SecVGU#X1 Consider the following clause for accessing 
the age of students.

– An admin can know the age of any student.

Consider also the following clause for accessing the list of 
students.

– An admin can know the students of any lecturer.

The following model precisely specifies the above policy 
using SecureUML:

For our experiments, we define the function map() , which 
implements the above authorization-constraints in SQL, as 
follows:

SecVGU#X2 Consider the following clause for accessing the 
age of students.

– A lecturer can know the age of any student, if no other 
lecturer is older than he/she is.

Consider also the following clause for accessing lists of 
students.

– A lecturer can know the students of any lecturer if no 
other lecturer is older than he/she is..

−roles = {�����}.

−auth(�����, read(����������))

= auth(�����, read(������� ∶ ���))

= (����).

map(auth(��������, read(����������)))

= map(auth(��������, read(������� ∶ ���)))

= ����.

Fig. 9  An overview of the 
SQLSI component diagram
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The following model ������#�� precisely specifies the 
above policy using SecureUML:

For our experiments, we define the function map() as below. 
Recall that map() is called by the function AuthFuncRole() 
that takes caller as one of its arguments, both for the case of 
the association Enrollment and the attribute age

SecVGU#X3 Consider the following clause for accessing the 
age of students.

– A lecturer can know the age of any student, if the student 
is his/her student.

Consider also the following clause for accessing lists of 
students.

– A lecturer can know the students of any lecturer if the 
student is his/her student.

The following model ������#�� precisely specifies the 
above policy using SecureUML:

For our experiments, we define the function map() as 
below. Recall that the function map() is called by the func-
tion AuthFuncRole() that, for the case of the association 
Enrollment, it takes caller, students, and lecturers as its 

−roles = {��������}.

−auth(��������, read(����������))

= auth(��������, read(������� ∶ ���))

= ��������.������������()

→ ������(� ∣ �.��� >caller.���) → ������().

map(auth(��������, read(����������)))

= map(auth(��������, read(������� ∶ ���)))

=

((������ ��(���) �
	� ��������)

= (������ ��� �
	� �������� ���
� ��������_�� = caller)).

−roles = {��������}.

−auth(��������, read(����������))

= auth(��������, read(������� ∶ ���))

= caller.�������� → (� ∣ � = students).

arguments, and, for the case of the attribute age, it takes 
caller and self as its arguments

Queries

In our experiments, we will use the queries Query#5 and 
Query#6 shown in Fig. 6, which return, respectively, the 
number of students whose age is greater than 18, and the 
number of enrollments.

We will consider three different users/callers: namely, 
����� , with role ����� ; and ������ and ���� , both with 
role �������� . For the sake of our experiments, no other 
lecturer is older than ������ , and every student is a student 
of every lecturer.

Results

Query#5

To understand the execution-time lines in Fig. 7, notice 
that, for a policy S ∈ {������#�� ∣ 1 ≤ i ≤ 3} , the body of 
⌜SecQuery(S, �����#�)()⌝ contains the following statement: 

map(auth(��������, read(����������)))

= ������ (������ � ��� ����������


	������������.��������� = caller

��� ����������.�������� = students).

map(auth(��������, read(������� ∶ ���)))

������ (������ � ��� ����������


	�� ����������.��������� = caller

��� ����������.�������� = self ).
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In particular, notice that, to create the table 
⌜TempTable(��� > ��)⌝ , for every tuple contained in the 
table Student, the function ⌜AuthFunc(S, ���)⌝() is called. 
Logically, the execution-time for SecQuery(S, �����#�) 
increases depending of the “size” of the table Stu-
dent. Recall also that, depending on the role r of each 
caller, for every student contained in the table Student, 
the function ⌜AuthFunc(S, ���)⌝() calls the function 
⌜AuthFuncRole(S, ���, r)⌝() , which in turn calls the func-
tion map(auth(S, r, read(���))) . Then, the execution-time for 
SecQuery(S, �����#�) depends also on the “complexity” 

Query#6

To understand the execution-time lines in Fig. 8, notice 
that, for a policy S ∈ {������#�� ∣ 1 ≤ i ≤ 3} , the body 
of ⌜SecQuery(S, �����#�)()⌝ contains the following 
create-statements: 

of the query map(auth(S, r, read(���))) that implements 
auth(S, r, read(���)) in SQL, since this query will be exe-
cuted for every student in the table Student. In particu-
lar, notice that, in the case of the scenario �����(103) , to 
execute

the query map(auth(������#��, ��������, read(���))) , 
that is

will be executed 103 times, each time with caller replaced 
by }����} and self  replaced by a different student in the 
table ������� . Notice also that, each time the query (2) is 
executed, the clause

will search in a table Enrollment that contains 106 rows.
Not surprisingly, the execution of the (secured) call (1) 

in the scenario �����(103) takes around 0.5 s more than the 
execution of the (unsecured) query Query#5.

(1)
⌜SecQuery(������#��, �����#�)⌝(}Vinh}, ��������),

(2)
������ ( ������ � ���� ��������� �

����� �.��
	���� = caller

��� �.�	���� = self ).

����� �.��������� = caller

��� �.�������� = self

In particular, notice that, to create the table 
⌜TempTable(��������)⌝ , for every tuple contained in 
the table ⌜TempTable(��������)⌝ , which is the Cartesian 
product of the tables Student and Lecturer, the func-
tion ⌜AuthFunc(S , ����������)⌝() is called. Logically, 
the execution-time for SecQuery(S, �����#�) increases 
depending of the “size” of the tables Student  and 
Lecturer. Recall also that, depending on the role r of 
each caller, for every pair of a student and a lecturer con-
tained in ⌜TempTable(�����#�, ��������)⌝ , the function 
⌜AuthFunc(S, ����������)⌝() cal ls  ⌜AuthFuncRole(S,

Enrollment, r)⌝() , which in turn calls the function 
map(auth(S, r, read(Enrollment))). Then, the execution-
time for SecQuery(S, �����#�) depends also on the “com-
plexity” of the query map(auth(S, r, read(����������))) 
implementing auth(S, r, read(Enrollment)) in SQL, since 
this query will be executed for every pair in the Cartesian 
product of the tables Student and Lecturer. In par-
ticular, notice that, in the case of the scenario �����(103) , 
to execute

the query map(auth(������#��, ��������, read(����������))) , that 
is

(3)
⌜SecQuery(������#��, �����#�)⌝(}Vinh}, ��������),
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will be executed 106 times, each time with caller replaced 
by }Vinh} and students replaced by the student-element 
of a different pair of a student and a lecturer in the table 
���������� . Notice also that, each time the query (4) is 
executed, the where-clause

will search in a table Enrollment that contains 106 rows. 
Not surprisingly, the execution of the (secured) call (3) in 
the scenario �����(103) takes around 500 s more than the 
execution of the (unsecured) query �����#�.

Scalability As mentioned before, enforcing FGAC policy 
for SQL queries implies performing authorization-checks 
at execution-time, with the consequent loss in performance. 
There are however situations in which we know that the 
required authorization-check are in fact unnecessary, 
because they will always return true. In our experiments, 
for example, in the case of the FGAC policy ������#� , if a 
lecturer attempts to execute the query �����#� on any sce-
nario �����(n) , it is certainly unnecessary to perform any 
authorization-check at execution-time, because we know that 
every student is a student of every lecture.

Similarly, in the case of the FGAC policy ������#� , if 
the lecturer ������ attempts to execute the query �����#� 
on any scenario �����(n) , it is also unnecessary to perform 
any authorization-check at execution-time, because we know 
that there is no other lecturer older than Michel.

We leave as future work to develop a formal, model-based 
methodology for optimizing the stored-procedures generated 
by the function SecQuery() , based on the intended scenarios.

The SQLSI Project

The SQL Security Injector (SQLSI) is a Java application 
implementing our solution for enforcing FGAC policies 
when executing SQL queries. Figure 9 shows an overview of 
the SQLSI component diagram. In a nutshell, SQLSI takes 
three inputs, namely, a data model, an FGAC policy, and an 
SQL query, and returns a database schema script (gener-
ated from the input data model, according to the mapping 
defined in the section “Mapping data and object models to 
databases”), a list of authorization functions (generated from 
the input data model and the input FGAC policy, according 
to the functions AuthFunc() and AuthFuncRole() defined in 
the section “Enforcing FGAC policies for SQL queries”), 
and a secure stored-procedure (generated from the input data 
model and the input SQL query, according to the function 

(4)
������ ( ������ � ���� ��������� �

����� �.��
	���� = caller

��� �.�	���� = students ).

����� �.��������� = caller

��� �.�������� = students

SecQuery() defined in the section “Enforcing FGAC policies 
for SQL queries”).

SQLSI is an open-source project, available at:
https:// github. com/ SE- at- VGU/ SQLSI.
SQLSI is also available as a prototype as a multi-con-

tainer Docker web-application at:
https:// github. com/ SE- at- VGU/ SQLSI- Docker.

Related Work

Based on our model-based characterization of FGAC author-
ization for SQL queries [12], we have proposed here a novel 
model-driven approach for enforcing FGAC policies when 
executing SQL queries. A key feature of this approach is that 
it does not modify the underlying database, except for adding 
the stored-procedures that configure our FGAC-enforcement 
mechanism. This is in clear contrast with the solutions cur-
rently offered by the major commercial RDBMS. which rec-
ommend—like in the case of MySQL or MariaDB [10]—to 
manually create appropriate views, and to modify the queries 
so as to referencing these views, or request—like Oracle [3], 
PostgreSQL [14], and IBM [4]—to use other non-standard, 
proprietary enforcement mechanisms. As we have argued in 
[12], the solutions currently offered by the major RDBMS 
are far from ideal: in fact, they are time-consuming, error-
prone, and scale poorly.

The second key feature of our model-driven approach is 
that FGAC policies and SQL queries are kept independent 
of each other, except for the fact that they refer to the same 
underlying data model. This means, in particular, that FGAC 
policies can be specified without knowing which SQL que-
ries will be executed, and vice versa. This is in clear contrast 
with the solution recently proposed in [9] where the FGAC 
policies must be (re-)written depending on the SQL queries 
that are executed. Nevertheless, our model-driven approach 
certainly shares with [9], as well as with other previous 
approaches like [7], the idea of enforcing FGAC policies 
by rewriting the SQL queries, instead of by modifying the 
underlying databases or using non-standard, proprietary 
RDBMS features.

The third key-feature of our model-driven approach is 
that the enforcement mechanism can be automatically gen-
erated from the FGAC policies, using available mappings 
from OCL to SQL—for example [11]—to implement the 
authorization constraints appearing in the FGAC policies. 
In practice, however, for the sake of execution-time perfor-
mance, manually implementing in SQL the authorization 
constraints appearing in the FGAC policies is to be preferred 
over using the implementations generated by the available 
mappings from OCL to SQL.

https://github.com/SE-at-VGU/SQLSI
https://github.com/SE-at-VGU/SQLSI-Docker
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Conclusions and Future Work

In this paper, we have proposed a novel, model-driven 
approach for enforcing fine-grained access control (FGAC) 
policies when executing SQL queries. It is characteristic 
of FGAC policies that access control decisions depend on 
dynamic information: namely, whether the current state of 
the system satisfies some authorization constraints. In our 
approach, FGAC policies are modeled using the SecureUML 
language [8], in which authorization constraints are specified 
using the object constraint language (OCL) [13].

In a nutshell, to enforce FGAC policies when executing 
SQL queries we define a function SecQuery() that, given a 
policy S and a select-statement q, generates an SQL stored-
procedure, such that: if a user is authorized, according to S , 
to execute q, then calling this stored-procedure will return 
the same result that executing q; otherwise, if a user is not 
authorized, according to S , to execute q, then calling the 
stored-procedure will signal an error.

To illustrate our approach we have provided a number 
of non-trivial examples, involving different FGAC policies, 
queries, and scenarios, and we have evaluated the perfor-
mance overhead incurred when executing the stored-proce-
dured generated by SecQuery().

Finally, we have also implemented our approach in a Java 
application, called SQLSI, which is currently available as 
open-source project.

We recognize that there is still work to be done. First, 
we need to formally prove the correctness of the function 
SecQuery() , with respect to our model-based characteri-
zation of FGAC authorization for SQL queries [12]. This 
proof will certainly involve the formal semantics of both 
OCL and SQL, since authorization constraints are specified 
in OCL and SecQuery() generates SQL stored-procedures. 
Second, we need to develop a formal, model-based meth-
odology for optimizing the stored-procedures generated by 
the function SecQuery() , based on the intended scenarios. 
In particular, whenever “safe”, subqueries should be favored 
over temporary tables, to allow the SQL optimizer to do 
its job. The decision of whether it is “safe” or not to use 
subqueries instead of temporary tables ultimately depends 
on the underlying security model, and more particularly on 
the authorization constraints responsible in each case of the 
case-statements generated by SecQuery() . If these authori-
zation constraints can be proved to be trivial, or if they can 
be proved to be always satisfied given the invariants of the 
underlying data model, then the case-statements do not need 
to be generated, and the corresponding temporary tables can 
be safely replaced by subqueries. Third, we need to extend 
our definition of SecQuery() to cover as much as possible of 
the SQL language, including, in particular, left/right-joins 
and group-by clauses. Last but not least, we want to provide 

a more abstract characterization of our approach, including 
a formal definition of our attacker model. In this context, 
we will discuss more formally how our approach relates to 
the traditional distinction between Truman and Non-Truman 
models for secure database access (our approach clearly 
leaning towards the latter).
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