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Abstract
A discrete space-filling curve provides a one-dimensional indexing or traversal of a multi-dimensional grid space. Sample 
applications of space-filling curves include multi-dimensional indexing methods, data structures and algorithms, parallel 
computing, and image compression. Common measures for the applicability of space-filling curve families are locality and 
clustering. Locality preservation reflects proximity between grid points, that is, close-by grid points are mapped to close-by 
indices or vice versa. We present analytical and empirical studies on the locality properties of the two-dimensional Hil-
bert curve family. The underlying locality measure, based on the p-normed metric dp , is the maximum ratio of dp(v, u)m to 
dp(ṽ, ũ) over all corresponding point-pairs (v, u) and (ṽ, ũ) in the m-dimensional grid space and one-dimensional index space, 
respectively. Our analytical results close the gaps between the current best lower and upper bounds with exact formulas for 
p ∈ {1, 2} , and extend to all reals p ≥ 2 . We also verify the results with computer programs over various grid-orders and 
p-values. Our empirical results will shed some light on determining the exact formulas for the locality measure for all reals 
p ∈ (1, 2).

Keywords  Index structures · Space-filling curves · Hilbert curves · z-order curves · Locality

Preliminaries

Discrete space-filling curves have a wide range of appli-
cations in databases, parallel computation, algorithms, in 
which linearization techniques of multi-dimensional arrays 
or computational grids are needed. Sample applications 
include heuristics for combinatorial algorithms and data 
structures: traveling salesperson algorithm [30] and nearest-
neighbor finding [9], multi-dimensional space-filling index-
ing methods [3, 7, 16, 23], image compression [25], dynamic 
unstructured mesh partitioning [21], and linearization and 

traversal of sensor networks [5, 34]. Some recent diverse 
applications of space-filling curves extend to statistical 
sampling [18] and bioinformatics [22]. For a comprehen-
sive historical development of classical space-filling curves, 
see [4, 32].

For a positive integer n, denote [n] = {1, 2,… , n} . For a 
positive integer m, and m-dimensional (discrete) space-filling 
curve of length nm is a bijective mapping C ∶ [nm] → [n]m , 
which provides a linear indexing/traversal or total order-
ing of the grid points in [n]m . For a positive integer k, an 
m-dimensional grid is of order k if it has side-length n = 2k ; 
a space-filling curve has order k if its codomain is a grid 
of order k. A mathematical construction of a sequence of 
multi-dimensional space-filling curves of successive orders 
usually follows a recursive framework on the dimensional-
ity and order, with which a few classical families arise, such 
as Gray-coded curves, Hilbert curves, Peano curves, and 
z-order curves (see, for examples, [2, 27]).

A mathematical formulation of discrete Hilbert curves 
based on generators and permutations (on a corner-labeling 
hypercube) in [2] shows that the descriptional complex-
ity and structural analysis of multi-dimensional Hilbert 
curves can be reduced to a combinatorial analysis of their 
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generators. One of the salient characteristics of space-filling 
curves is their “self-similarity”. Denote by Hm

k
 and Zm

k
 an 

m-dimensional Hilbert and z-order, respectively, space-
filling curve of order k. Figure 1 illustrates the recursive 
geometric generations of Hm

k
 and Zm

k
 for m = 2 , and k = 1, 2 , 

and m = 3 , and k = 1.
We gauge the applicability of a family of space-filling 

curves based on: (1) their common structural characteris-
tics that measure locality and clustering, (2) descriptional 
simplicity that facilitates their construction and combinato-
rial analysis in arbitrary dimensions, and (3) computational 
complexity in the grid space-index space transformation. 
Locality preservation measures proximity between the grid 
points of [n]m , that is, close-by points in [n]m are mapped to 
close-by indices/numbers in [nm] , or vice versa. Clustering 
performance evaluates the distribution of continuous runs 
of grid points (clusters) over identically shaped subspaces 
of [n]m , which can be characterized by the average number 
of clusters and the average inter-cluster distance (in [nm] ) 
within a subspace.

Empirical and analytical studies of clustering perfor-
mances of various low-dimensional space-filling curves have 
been reported in the literature (see [8, 11, 13, 19, 20, 27, 31] 
for details). Generally, the Hilbert and z-order curve families 
exhibit good performance in this respect.

Jagadish [20] derives exact formulas for the mean num-
bers of clusters over all rectangular 2 × 2 and 3 × 3 sub-
grids of a two-dimensional H2

k
-structural grid space. Moon, 

Jagadish, Faloutsos, and Saltz [27] prove that in a sufficiently 
large m-dimensional Hm

k
-structural grid space, the mean 

number of clusters over all rectilinear polyhedral queries 
with surface area Sm,k approaches 1

2

Sm,k

m
 as k approaches ∞ . 

They also extend the work in [20] to obtain the exact formula 
for the mean number of clusters over all rectangular 2q × 2q 
subgrids of a two-dimensional H2

k
-structural grid space.

Xu and Tirthapura [36] generalize the above asymptotic 
mean number of clusters over all rectilinear polyhedral que-
ries with common surface area from m-dimensional Hilbert 
curves to arbitrary continuous space-filling curves (with 
which contiguously indexed grid points are at a rectilinear 
distance of 1). Note that rectangular queries with common 
volume yield the optimal asymptotic mean number of clus-
ters for a continuous space-filling curve.

For an m-dimensional Hm
k

-structural grid space with 
m = 3 , there are 1536 structurally different three-dimen-
sional Hilbert curves [2]. Based on a canonical version of an 
H3

k
-curve, Dai and Su [14] develop the exact formula for the 

mean-clustering statistics for the mean number of clusters 
over all rectangular 2q × 2q × 2q subgrids of the canonical 
H3

k
-curve — which extends the two-dimensional exact result 

in [27].
For clustering performance based on inter-cluster sta-

tistics, Dai and Su [11] obtain the exact formulas for the 

following three statistics for two-dimensional H2
k
 and Z2

k
 : 

(1)  the summation of all inter-cluster distances over all 
2q × 2q query subgrids, (2) the universe mean inter-cluster 
distance over all inter-cluster gaps from all 2q × 2q subgrids, 
and (3) the mean total inter-cluster distance over all 2q × 2q 
subgrids. Based on the analytical results, the asymptotic 
comparisons indicate that, for a two-dimensional grid space, 
the z-order curve family performs better than the Hilbert 
curve family with respect to the statistics.

Alber and Niedermeier [2] give a simple mathematical 
mechanism to describe and analyze the combinatorial prop-
erties of Hilbert curves in arbitrary dimensions. The struc-
ture-theoretic viewpoint provides a framework for combina-
torial studies and mechanized analysis of multi-dimensional 
Hilbert indexings via reduction to a structural analysis of 
basic generating elements and permutations operating on 
a corner-labeling hypercube. Lawder and King [24] imple-
ment effective methods for range and partial-match query 
execution for multi-dimensional Hilbert indexing schemes.

The studies above show that the Hilbert and z-order curve 
families manifest good data clustering properties accord-
ing to some quality clustering measures, robust mathemati-
cal formalism, and viable indexing techniques for querying 
multi-dimensional data, when compared with other curve 
families.

Locality Measures and Related Work

The locality preservation of space-filling curve families is 
crucial for the efficiency of their supported indexing schemes 
on computational grids, and data structures and algorithmic 
applications for combinatorial optimization; for examples, 
spatial correlation in multi-dimensional indexings, compres-
sion in image processing, and communication optimization 
in mesh-connected parallel computing. Rigorous analyses 
of locality depends on the availability of robust and practi-
cal measures: good bounds (lower and upper) on the local-
ity measure translate into good bounds on the declustering 
(locality loss) in one space in the presence of locality in the 
other space.

A few locality measures have been proposed and analyzed 
for space-filling curves in the literature for their diverse 
applications. Denote by d and dp the Euclidean metric and 
p-normed metric (rectilinear metric ( p = 1 ) and maximum 
metric ( p = ∞)), respectively. Let C denote a family of 
m-dimensional curves of successive orders.

For quantifying the proximity preservation of close-by 
grid points in the m-dimensional space [n]m , Pérez, Kamata, 
and Kawaguchi [29] employ an average locality measure:
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and provide a hierarchical construction for a two-dimen-
sional C with good but suboptimal locality with respect to 
this measure.

Mitchison and Durbin [26] use a more restrictive locality 
measure parameterized by q:

to study optimal two-dimensional mappings for q ∈ [0, 1] . 
For the case q = 1 , the optimal mapping with respect to 
LMD,1 is very different from that in [29]. For the case q < 1 , 
they prove a lower bound for arbitrary two-dimensional 
curve C:

LPKK(C) =
∑

i,j∈[nm]∣i<j

|i − j|
d(C(i),C(j))

for C ∈ C,

LMD,q(C) =
∑

i,j∈[nm]∣i<j and d(C(i),C(j))=1

|i − j|q for C ∈ C

and provide an explicit construction for two-dimensional C 
with good but suboptimal locality. They conjecture that the 
space-filling curves with optimal locality (with respect to 
LMD,q with q < 1 ) must exhibit a “fractal” character.

Dai and Su [12] consider a locality measure similar to 
LMD,1 conditional on a 1-normed distance of � between 
points in [n]m:

They derive exact formulas for L
�
 for the Hilbert curve 

family {Hm
k
∣ k = 1, 2,…} and z-order curve family 

{Zm
k
∣ k = 1, 2,…} for m = 2 and arbitrary � that is an inte-

gral power of 2, and m = 3 and � = 1:

LMD,q(C) ≥
1

1 + 2q
n1+2q + O(n2q),

L
𝛿
(C) =

∑
i,j∈[nm]∣i<j and d1(C(i),C(j))=𝛿

|i − j| for C ∈ C.

L
�
(H2

k
) =

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

17

2⋅7
⋅ 23k −

5

2⋅3
⋅ 22k −

23

3⋅7
if � = 1

17

2⋅7
⋅ 23k+2 log � −

23⋅3⋅52⋅7(k−log �)+5⋅7⋅383

24⋅33⋅5⋅7
⋅ 22k+3 log �

+
2⋅3⋅5(k−log �)−1

22⋅33
⋅ 22k+log � −

22⋅41

33⋅5⋅7
⋅ 25 log �

−
2

33
⋅ 23 log � −

2

3⋅5
⋅ 2log � otherwise,

L
�
(Z2

k
) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

23k − 2k if � = 1

23k+2 log � − (
2

32
(k − log �) +

1949

25⋅33⋅7
)22k+3 log �

+(
2

32
(k − log �) +

7

22⋅33
)22k+log � +

19

22⋅3⋅7
⋅ 22k

−
22

7
⋅ 2k+4 log � −

3

7
⋅ 2k+log � +

2⋅5

33⋅7
⋅ 25 log �

−
22

33
⋅ 23 log � +

2

3⋅7
⋅ 22 log � otherwise,

L1(H
3
k
) =

67

2 ⋅ 31
⋅ 25k −

11

2 ⋅ 7
⋅ 23k −

26

7 ⋅ 31
, and

L1(Z
3
k
) = 25k − 22k.

(f)(e)(d)(c)(a) (b)

Fig. 1   Recursive self-similar generations of Hilbert and z-order 
curves of higher order (respectively, Hm

k
 and Zm

k
 ) by interconnecting 

symmetric subcurves, via reflection and/or rotation, of lower order 

(respectively, Hm
k−1

 and Zm
k−1

 ) along an order-1 subcurve (respectively, 

Hm
1

 and Zm
1

 ): a H2

1
 ; b H2

2
 ; c H3

1
 ; d Z2

1
 ; e Z2

2
 ; f Z3

1
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With respect to the locality measure L
�
 and for sufficiently 

large k and 𝛿 ≪ 2k , the z-order curve family performs better 
than the Hilbert curve family for m = 2 and over the �-spec-
trum of integral powers of 2. When � = 2k , the domination 
reverses. The superiority of the z-order curve family persists 
but declines for m = 3 with unit 1-normed distance for L

�
.

Xu and Tirthapura [35] consider a variant of the all-pairs 
locality measure L

�
 via the notion of nearest-neighbor stretch 

of a single-source grid point — conditional on the unit 1-nor-
med metric d1 ; that is, for an m-dimensional space-filling 
curve C and a grid point v indexed by C, denote the nearest-
neighbor of v in [n]m , N1(v,C) = {u ∈ [n]m ∣ d1(u, v) = 1} , 
and:

The average-quantifications of these two nearest-neighbor 
stretches for C result in: average-average nearest-neighbor 
stretch Davg(C) and average-maximum nearest-neighbor 
stretch Dmax(C) for C. They obtain a lower bound for 
Davg(C) for arbitrary m-dimensional curve C with grid 
space [n]m:

and show that, for an m-dimensional row-major space-filling 
curve S with grid space [n]m,

Voorhies [33] defines a heuristic locality measure, tailored 
to computer graphics applications, and the corresponding 
empirical study indicates that the Hilbert space-filling curve 
family outperforms other curve families.

For measuring the proximity preservation of close-by 
points in the indexing space [nm] , Gotsman and Lindenbaum 
[17] consider the following measures:

They show that for arbitrary m-dimensional curve C,

average nearest-neighbor stretch (v,C)

=

∑
u∈N1(v,C)

�C−1(v) − C
−1(u)�

�N1(v,C)� , and

maximum nearest-neighbor stretch (v,C)

= max
u∈N1(v,C)

�C−1(v) − C
−1(u)�.

(Dmax(C) ≥) Davg(C) ≥
2

3m
(nm−1 − n−m−1),

Davg(S) ∼
1

m
nm−1 and Dmax(S) = nm−1.

LGL,min(C) = min
i,j∈[nm]∣i<j

d(C(i),C(j))m

|i − j| , and

LGL,max(C) = max
i,j∈[nm]∣i<j

d(C(i),C(j))m

|i − j| , for C ∈ C.

For the m -dimensional  Hilber t  curve family 
{Hm

k
∣ k = 1, 2,…} , they prove that:

Alber and Niedermeier [1, 2] generalize LGL,max to Lp by 
employing the p-normed metric dp for real norm-parame-
ter p ≥ 1 in place of the Euclidean metric d, which is the 
locality measure studied in our work (and the preliminary 
versions in [12, 15]). We summarize below: (1) the repre-
sentative lower- and upper-bound results and exact formulas 
for the locality measure Lp of the two-dimensional Hilbert 
curve family H2

k
 for various norm-parameter p-values and 

grid-order k-values, and (2) the contribution of our studies: 

1.	 For p = 1 : Niedermeier, Reinhardt, and Sanders [28] 
give a lower bound for L1(H2

k
) : for all k ≥ 1 , 

 and Chochia, Cole, and Heywood [10] provide a match-
ing upper bound for L1(H2

k
) for all k ≥ 2 . We will prove 

the exact formula for L1(H2
k
) for all k ≥ 2 (preliminary 

version in [12]).
2.	 For p = 2 : Gotsman and Lindenbaum [17] derive a 

lower and upper bounds for L2(H2
k
) : for all k ≥ 6 , 

 and Alber and Niedermeier [2] improves the upper 
bound for L2(H2

k
) : for all k ≥ 1 , 

 We will prove that the lower bound above [17] is the 
exact formula for L2(H2

k
) (preliminary version in [12]): 

for all k ≥ 5 , 

 Bauman [6] obtains a matching lower and upper bounds 
for L2(H2

k
) for k = ∞ : 

LGL,min(C) =O(n1−m), and

LGL,max(C) >(2
m − 1)(1 −

1

n
)m.

LGL,max(H
m
k
) ≤ 2m(m + 3)

m

2 .

L1(H
2
k
) ≥

(3 ⋅ 2k−1 − 2)2

4k−1
,

(2k−1 − 1)2

2

3
⋅ 4k−2 +

1

3

≤ L2(H
2
k
) ≤ 6

2

3
,

L2(H
2
k
) ≤ 6

1

2
.

L2(H
2
k
) = 6 ⋅

22k−3 − 2k−1 + 2−1

22k−3 + 1
.

L2(H
2
∞
) = 6.
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3.	 For 2 < p ≤ ∞ : Due to the monotonicity of the under-
lying p-normed metric: for every grid-point pair (v, u), 
the p-normed metric dp(v, u) is strictly decreasing in 
p ∈ [1,∞) , we will prove the same exact formula for 
Lp(H

2
k
) as for the case when p = 2 (preliminary version 

in [12]): 

 When p = ∞ , Alber [1] and Alber and Niedermeier 
[2] establish a lower and upper bounds for L∞(H2

k
) , 

respectively: 

We present analytical and empirical studies on the locality 
measure Lp for the two-dimensional Hilbert curve family 
over the entire spectrum of possible norm-parameter values. 
Our proofs of the exact formulas of Lp(H2

k
) for p ∈ {1, 2} 

follow a uniform approach: identifying all the representative 
grid-point pairs, which realize the Lp(H2

k
)-value, for each 

p ∈ {1, 2} . The analytical results close the gap between the 
current best lower and upper bounds with exact formulas for 
p ∈ {1, 2} , and extend to all reals p ≥ 2.

While the three most obviously important norm-param-
eter p-values: {1, 2,∞} (rectilinear, Euclidean, and maxi-
mum metrics, respectively) are intimately related to intuitive 
concepts, in some cases the structure of applications of the 
Hilbert curves may suggest a different choice of p-value in 
the real unit interval (1, 2) as the most natural setting for 
the underlying locality measure. While not addressing the 
candidate exact formulas for Lp(H2

k
) for p ∈ (1, 2) (partial 

result in [15]), we present an empirical study on Lp(H2
k
) for 

all norm-parameters p ∈ [1, 2] , which complements the 
incomplete analytical study and shows that: (1) The ana-
lytical results are consistent with program verification over 

Lp(H
2
k
) = 6 ⋅

22k−3 − 2k−1 + 2−1

22k−3 + 1
for all reals p ≥ 2.

6(1 − O(2−k)) ≤ L∞(H
2
k
) ≤ 6

2

5
.

various norm-parameter p-values and sufficiently large grid-
order k-values, (2) As p increases over the real unit interval 
[1, 2], the locations of candidate representative grid-point 
pairs agree with the intuitive interpolation effect over the 
two delimiting p-values, and (3) Our empirical study will 
shed some light on determining the exact formulas for the 
locality measure for all reals p ∈ (1, 2).

With diverse applications of the two-dimensional Hilbert 
curve family H2

k
 , a practical implication of our results on 

the locality measure Lp(H2
k
) over all real norm-parameters 

p ∈ {1} ∪ [2,∞) is that the exact formulas provide precise 
bounds on measuring the loss in data locality in the one-
dimensional index space, while spatial correlation exists in 
the two-dimensional grid space, or vice versa.

Analytical Studies of Lp(H2

k
) with p ≥ 1

For two-dimensional Hilbert curves, the recursive self-
similar structural property decomposes H2

k
 into four identi-

cal H2
k−1

-subcurves via reflection and/or rotation, which are 
amalgamated together by an H2

1
-curve — inducing unique 

orientations of the four H2
k−1

-subcurves relative to that of 
the H2

1
-curve for only the case of a two-dimensional H2

k
 . Fol-

lowing the linear order along this H2
1
-curve, we denote the 

four H2
k−1

-subcurves (quadrants) as Q1(H
2
k
) , Q2(H

2
k
) , Q3(H

2
k
) , 

and Q4(H
2
k
).

We extend the notations to identify all H2
l
-subcurves of a 

structured H2
k
 for all l ∈ [k] inductively on the grid-order. Let 

Qi(H
2
k
) denote the ith H2

k−1
-subcurve (along the amalgamat-

ing H2
1
-curve) for all i ∈ [22] . Then for the ith H2

l−1
-subcurve, 

Qi(H
2
l
) , of H2

l
 , where 2 < l ≤ k and i ∈ [22] , let Qj(Qi(H

2
l
)) 

denote the jth H2
l−2

-subcurve of Qi(H
2
l
) for all j ∈ [22] . We 

write Qq+1

i
(H2

l
) for Qi(Q

q

i
(H2

l
)) for all l ∈ [k] and all positive 

integers q < l . The notation Ql
i
(H2

l
) identifies the ith grid 

point in the H2
1
-subcurve Ql−1

i
(H2

l
).

Fig. 2   Generation of H2

k
 from a 

H2

1
-interconnection of four H2

k−1

-subcurves with their labeled 
entries and exits

(a) H2
k

∂1(H
2
k) ∂2(H

2
k)

(b) H2
1 -interconnection

∂1 ∂2 ∂1 ∂2

∂2 ∂1

∂2∂1(Q1(H
2
k))

= ∂1(H
2
k−1)

Q1(H
2
k)

Q2(H
2
k) Q3(H

2
k)

Q4(H
2
k)

Q2(H
2
k)

Q1(H
2
k)

Q3(H
2
k)

Q4(H
2
k)
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For a two-dimensional Hilbert curve H2
k
 indexing the grid 

[2k]2 , with a canonical orientation shown in Fig. 2a, denote 
by �1(H2

k
) and �2(H2

k
) the entry and the exit, respectively, grid 

points in [2k]2 (with respect to the canonical orientation). 
Figure 2 depicts the decomposition of H2

k
 and the �1 - and �2

-labels of four H2
k−1

-subcurves.
For a two-dimensional Hilbert curve H2

k
 in a Cartesian 

x-y coordinate system, and for a grid point v indexed by 
H2

k
 , we denote by x(v) and y(v) the x- and y-coordinate of v, 

respectively, and by (x(v), y(v)) the grid point v in the coor-
dinate system. For an H2

l
-subcurve C of H2

k
 , where l ∈ [k] , 

notice that its entry �1(C) and exit �2(C) differ in exactly one 
coordinate: x- or y-coordinate, say z ∈ {x, y} . We say that 
the subcurve C is z+-oriented (respectively, z−-oriented) if 
the z-coordinate of �1(C) is less than (respectively, greater 
than) that of �2(C) . Note that: (1) the x- and y-coordinates 
of �1(H2

k
) and �2(H2

k
) uniquely determine those of �1(H2

l
) 

and �2(H2
l
) for all l ∈ [k] , and (2) the two subcurves Q2(H

2
k
) 

and Q3(H
2
k
) inherit the orientation from their supercurve H2

k
.

For a space-filling curve C indexing an m-dimensional 
grid space, the notation “ v ∈ C ” refers to “the grid point v 
indexed by C”, and C−1(v) gives the index of v in the one-
dimensional index space. We denote, for m-dimensional 
grid-point pair v = (v1, v2,… , vm) and u = (u1, u2,… , um) , 
and for positive real norm-parameter p,

Note that, for 0 < p < 1 , the formula of dp fails to be a norm 
since it defines an absolutely homogeneous function but is 
not subadditive. The locality measure in our studies is, for 
all reals p ≥ 1,

dp(v, u) = (

m∑
i=1

|vi − ui|p)
1

p .

Lp(C) = max
indices i,j∈[nm]

dp(C(i),C(j))
m

dp(i, j)
(= max

indices i,j∈[nm]

dp(C(i),C(j))
m

|i − j| )

= max
v,u∈C

dp(v, u)
m

|C−1(v) − C−1(u)| .

When m = 2 , the following denotations represent the above 
locality measure with respect to a grid-point pair and a sub-
curve pair. We write LC,p(v, u) =

dp(v,u)
2

�C(v,u)
 , where �C(v, u) 

denotes the index-difference |C−1(v) − C−1(u)| , and general-
ize the notations Lp(C) and LC,p for a subcurve C (of a two-
dimensional space-filling curve) in an obvious manner. For 
two subcurves C1 and C2 of a two-dimensional space-filling 
curve C, denote:

We define order relations among grid-point pairs and sub-
curve pairs with respect to the locality measure LC,p as fol-
lows. For subcurves C1 , C2 , C′

1
 , and C′

2
 of C, a grid-point 

pair (v1, v2) ∈ C1 × C2 is reducible to a grid-point pair 
(v�

1
, v�

2
) ∈ C�

1
× C�

2
 if LC,p(v1, v2) ≤ LC,p(v

�
1
, v�

2
) — denoted 

by (v1, v2) ⪯ (v�
1
, v�

2
) , and subcurve pair C1 × C2 is reduc-

ible to subcurve pair C�
1
× C�

2
 if for every (v1, v2) ∈ C1 × C2 , 

there exists (v�
1
, v�

2
) ∈ C�

1
× C�

2
 such that (v1, v2) is reducible 

to (v�
1
, v�

2
) — denoted by C1 × C2 ⪯ C�

1
× C�

2
 . We define the 

strict reducibility, denoted by ≺ , for grid-point pairs and 
subcurve pairs via the strict inequality of LC,p-values in an 
obvious manner.

For two grid-point pairs (v, u) and (v�, u�) indexed by C, 
denote:

Grid-point pairs can be ordered with respect to the measure 
LC,p via the algebraic sign of sC,p-values. We summarize the 
reducibility conditions via sC,p-values in Lemma 1, whose 
proof simply follows from the definitions.

LC,p(C1,C2) = max
(v,u)∈C1×C2

LC,p(v, u).

sC,p(v
�, u�, v, u) = dp(v

�, u�)2�C(v, u) − dp(v, u)
2
�C(v

�, u�).

Fig. 3   Four linearly-contiguous 
H2

k
-subcurves in a canonical 

Cartesian coordinate system

Q3(1H2
k) Q4(1H2

k)

Q1(1H2
k)

1H
2
k

Q4(4H2
k)

Q2(4H2
k)Q1(4H2

k)

Q2(1H2
k) Q3(4H2

k)
4H

2
k

y

x
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Lemma 1  For two arbitrary grid-point pairs, (v,  u) 
and (v�, u�) , indexed by a space-filling curve C of 
a two-dimensional grid-space, and all real norm-
parameters p ≥ 1 ,  LC,p(v, u) ≤ LC,p(v

�, u�) (equiva-
lently, (v, u) ⪯ (v�, u�) ) if and only if sC,p(v�, u�, v, u) 
(= dp(v

�, u�)2�C(v, u) − dp(v, u)
2
�C(v

�, u�)) ≥ 0 ; the equiva-
lence remains true also for strict inequalities and strict 
reducibility.

A pair of grid points v and u indexed by C is a representa-
tive for C with respect to Lp if LC,p(v, u) = Lp(C) , or, equiva-
lently, for all v�, u� ∈ C , (v�, u�) ⪯ (v, u) . Many of our main 
results encompass identifications of candidate representative 
grid-point pairs for C, which often involve sequences of 
reductions via successive considerations of two grid-point 
pairs and the comparisons of their LC,p-values. Our studies 
of Lp(H2

k
) cover all real norm-parameters p ≥ 1 . The geomet-

ric characteristics of the underlying p-norm that is rectilinear 
or Euclidean metric of p = 1 or p = 2 , respectively, help 
distinguish candidate representative grid-point pairs and 
verify tedious reductions. However, for all reals p ∈ (1, 2) , 
the lack of geometric clarity for interpreting LC,p - and hence 
Lp-values adversely increases the complexity: (1) of identify-
ing candidate representative grid-point pairs, and (2) in com-
paring LH2

k
,p-values for reductions due to the complex inter-

play of the norm-parameter p-value and grid-order k-value.

Exact Formulas for Lp(H
2

k
) with p ≥ 2

To obtain exact formulas for Lp(H2
k
) for all reals p ≥ 2 , it 

suffices to consider identifying all representative pairs that 
yield, for p = 2 , LH2

k
,2(v, u) = L2(H

2
k
) , due to the monotonic-

ity of the underlying p-normed metric. In “Exact Formulas 
for Lp(H2

k
) with p > 2” section, Lemma 9 and Theorem 3 

reduce the consideration of L2(H2
k
) for the case of p > 2 to 

p = 2.
A more refined combinatorial analysis based on the 

upper-bound argument in [17] reveals in Theorem 2 below 
that the representative grid-point pair resides in a subcurve 
C composed of four linearly-contiguous Hilbert subcurves. 
In “L2-Locality of Four Linearly Contiguous Hilbert Sub-
curves” and “Exact Formula for L2(H2

k
)” sections, we derive 

the exact formula for L2(C) , which is used to deduce that 
for L2(H2

k
).

L
2
‑Locality of Four Linearly Contiguous Hilbert Subcurves

For a two-dimensional Hilbert curve H2
l
 with l ≥ 4 , 

there exists a subcurve C that is composed of four 

linearly-contiguous H2
k
-subcurves with k = l − 3 . Figure 3 

depicts the arrangement in a canonical Cartesian coordinate 
system. Denote the leftmost and rightmost (first and fourth 
in the traversal order) H2

k
-subcurves by 1H2

k
 ( y−-oriented) and 

4H
2
k
 ( y+-oriented), respectively.

In this subsection, we assume the canonical coordi-
nate system as shown in Fig. 3 such that the lower-left 
corner grid point of 1H2

k
 is the origin (1, 1) of the coor-

dinate system. In the following analysis, we identify 
a pair of grid points v� ∈ 1H

2
k
 and u� ∈ 4H

2
k
 such that 

LC,2(v
�, u�) = LC,2(1H

2
k
, 4H

2
k
) ; we show explicitly that such a 

grid-point pair must necessarily be the lower-left and lower-
right corners of C. In “Exact Formula for L2(H2

k
)” section, 

we prove that (v�, u�) (or its symmetry) serves as the repre-
sentative pair for the entire H2

k
 with respect to L2.

To locate a candidate representative grid-point pair 
v ∈ 1H

2
k
 and u ∈ 4H

2
k
 , Lemmas 2–4 show that the possibility 

“ v ∈ Q3(1H
2
k
) and u ∈ Q3(4H

2
k
) ” is reduced to, with respect 

to u, seeking v in successive Q3-subcurves of 1H2
k
.

Lemma 2  For all positive integers k ≥ 2 , and all grid-point 
pairs v ∈ Q3(1H

2
k
) − Q3(Q3(1H

2
k
)) and u ∈ Q3(4H

2
k
) , there 

exists v� ∈ Q3(Q3(1H
2
k
)) such that (v, u) ≺ (v�, u) via the com-

parison: LC,2(v, u) < LC,2(v
�, u).

Proof  Note that the partition of Q3(1H
2

k
) − Q3(Q3(1H

2

k
))

= Q1(Q3(1H
2

k
)) ∪ Q2(Q3(1H

2

k
)) ∪ Q4(Q3(1H

2

k
)) suggests the 

consideration of the following three cases, in which the geo-
metric interpretation of the underlying 2-normed (Euclid-
ean) distance helps identify and verify sequences of reduc-
tions in maximizing LC,2-values.

Case  1: v ∈ Q2(Q3(1H
2
k
)) . Consider v� ∈ Q3(Q3(1H

2
k
)) 

with x(v�) = x(v) , then we have d2(v�, u)2 > d2(v, u)
2 and 

𝛿C(v
�, u) < 𝛿C(v, u) , which yield that sC,2(v�, u, v, u) > 0 in 

Lemma 1; we have LC,2(v, u) < LC,2(v
�, u).

Case  2: v ∈ Q1(Q3(1H
2
k
)) . Consider v�� ∈ Q2(Q3(1H

2
k
)) 

with y(v��) = y(v) ,  then, as in Case  1, we have 
sC,2(v

��, u, v, u) > 0  a n d  LC,2(v, u) < LC,2(v
��, u)  . 

From Case 1, there exists v� ∈ Q3(Q3(1H
2
k
)) such that 

LC,2(v, u) < LC,2(v
��, u) < LC,2(v

�, u).
Case  3: v ∈ Q4(Q3(1H

2
k
)) . Consider v� ∈ Q3(Q3(1H

2
k
)) 

with x(v�) = 1 and y(v�) = y(v) , and we show that 
sC,2(v

�, u, v, u) > 0 as follows. 

1.	 We expand sC,2(v�, u, v, u) in terms of x- and y-coordi-
nates of relevant grid points: 
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2.	 We bound all the x- and y-coordinate, and index-
differences of relevant grid points by noting that 
u ∈ Q3(4H

2
k
) , and v ∈ Q4(Q3(1H

2
k
)) and its correspond-

ing v� ∈ Q3(Q3(1H
2
k
)) : 

3.	 The lower and upper bounds in item  2 above yield 
the following bounds for the five terms appearing in 
d2(v

�, u)2�C(v, u) − d2(v, u)
2
�C(v

�, u) in item 1: 

(a)	 x(u)2(�C(v, �2(1H
2
k
)) − �C(v

�, �2(1H
2
k
))) ≥ −2 ⋅ 24k,

(b)	 (2x(u) − x(v) − 1)(x(v) − 1)(2 ⋅ 22k + 1) ≥ 
(7 ⋅ 2k −

1

4
⋅ 2k + 1)(

1

4
⋅ 2k)(2 ⋅ 22k + 1) >

27

8
⋅ 24k,

(c)	 (2x(u) − x(v) − 1)(x(v) − 1)(�
C
(v, �

2
(
1
H

2

k
)) 

+�
C
(u, �1(4H

2

k
))) ≥ (7 ⋅ 2k −

1

4
⋅ 2k + 1)(

1

4
⋅ 2k)

(
3

4
⋅ 22k) > 0,

sC,2(v
�, u, v, u)

= d2(v
�, u)2�C(v, u) − d2(v, u)

2
�C(v

�, u)

= ((x(u) − x(v�))2 + (y(u) − y(v�))2)

⋅ (�C(v, �2(1H
2
k
)) + 2 ⋅ 22k + �C(u, �1(4H

2
k
)) + 1)

− ((x(u) − x(v))2 + (y(u) − y(v))2)

⋅ (�C(v
�, �2(1H

2
k
)) + 2 ⋅ 22k + �C(u, �1(4H

2
k
)) + 1)

= ((x(u) − 1)2)(�C(v, �2(1H
2
k
)) + 2 ⋅ 22k + �C(u, �1(4H

2
k
)) + 1)

+ (y(u) − y(v))2(�C(v, �2(1H
2
k
)) + 2 ⋅ 22k + �C(u, �1(4H

2
k
)) + 1)

(note that x(v�) = 1 and y(v�) = y(v))

− ((x(u) − x(v))2)(�C(v
�, �2(1H

2
k
)) + 2 ⋅ 22k + �C(u, �1(4H

2
k
)) + 1)

− (y(u) − y(v))2(�C(v
�, �2(1H

2
k
)) + 2 ⋅ 22k + �C(u, �1(4H

2
k
)) + 1)

= x(u)2(�C(v, �2(1H
2
k
)) − �C(v

�, �2(1H
2
k
)))

+ (−2x(u) + 1 + 2x(u)x(v) − x(v)2)(�C(v, �2(1H
2
k
)) + �C(u, �1(4H

2
k
)))

+ (2x(u)x(v) − x(v)2)(�C(v
�, �2(1H

2
k
)) − �C(v, �2(1H

2
k
)))

+ (y(u) − y(v))2�C(v, �2(1H
2
k
)) − (y(u) − y(v))2�C(v

�, �2(1H
2
k
))

= x(u)2(�C(v, �2(1H
2
k
)) − �C(v

�, �2(1H
2
k
)))

+ (2x(u) − x(v) − 1)(x(v) − 1)(2 ⋅ 22k + 1)

+ (2x(u) − x(v) − 1)(x(v) − 1)(�C(v, �2(1H
2
k
)) + �C(u, �1(4H

2
k
)))

+ (2x(u)x(v) − x(v)2)(�C(v
�, �2(1H

2
k
)) − �C(v, �2(1H

2
k
)))

+ (y(u) − y(v))2(�C(v, �2(1H
2
k
)) − �C(v

�, �2(1H
2
k
))).

4 ⋅ 2k ≥ x(u) ≥
7

2
⋅ 2k + 1, 2k ≥ y(u) ≥

1

2
⋅ 2k + 1;

1

2
⋅ 2k ≥ x(v) ≥

1

4
⋅ 2k + 1,

1

4
⋅ 2k ≥ y(v) ≥ 1;

5

16
⋅ 22k > 𝛿C(v, 𝜕2(1H

2
k
)) ≥

1

4
⋅ 22k,

6

16
⋅ 22k > 𝛿C(v

�, 𝜕2(1H
2
k
)) ≥

5

16
⋅ 22k.

(d)	 (2x(u)x(v) − x(v)2)(𝛿
C
(v�, 𝜕

2
(
1
H

2

k
)) − 𝛿

C
(v, 𝜕

2
(
1
H

2

k
))) > 0  , 

and
(e)	 (y(u) − y(v))2(�

C
(v, �

2
(
1
H

2

k
)) − �

C
(v�, �

2
(
1
H

2

k
)))

≥ (2k − 1)2(−
2

16
⋅ 22k) > −

1

8
⋅ 24k.

	    These five terms together show that the grid point 
v� ∈ Q3(Q3(1H

2
k
)) with x(v�) = 1 and y(v�) = y(v) satisfies 

that: 

 hence LC,2(v, u) < LC,2(v
�, u).

Combining the three cases, the lemma is proved. 	�  ◻

Lemma 3  For all positive integers k and h with 1 ≤ h < k , 
and all grid-point pairs v ∈ Qh

3
(1H

2
k
) − Qh+1

3
(1H

2
k
) and 

u ∈ Q3(4H
2
k
) , there exists v� ∈ Qh+1

3
(1H

2
k
) such that 

(v, u) ≺ (v�, u) via the comparison: LC,2(v, u) < LC,2(v
�, u).

Proof  Similar to the proof of Lemma  2. By focus-
ing on Qh−1

3
(1H

2
k
) , we rephrase the statement of the 

lemma as: for all integers k and h with 1 ≤ h < k , and all 
v ∈ Q3(Q

h−1
3

(1H
2
k
)) − Q3(Q3(Q

h−1
3

(1H
2
k
))) and u ∈ Q3(4H

2
k
) , 

there exists v� ∈ Q3(Q3(Q
h−1
3

(1H
2
k
))) such that (v, u) ≺ (v�, u) 

via the comparison: LC,2(v, u) < LC,2(v
�, u).

s
C,2(v

�
, u, v, u) = d2(v

�
, u)2𝛿

C
(v, u) − d2(v, u)

2
𝛿
C
(v�, u) > 0,
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We proceed analogously as in the proof of Lemma 2. Not-
ing that:

we consider the following three cases.
C a s e   1 :  v ∈ Q2(Q3(Q

h−1
3

(1H
2
k
)))  .  C o n s i d e r 

v� ∈ Q3(Q3(Q
h−1
3

(1H
2
k
)))  w i t h  x(v�) = x(v)  ,  t h e n 

d2(v
�, u)2 > d2(v, u)

2 and 𝛿C(v�, u) < 𝛿C(v, u) , which gives that 
sC,2(v

�, u, v, u) > 0 in Lemma 1; hence L
C,2(v, u) < L

C,2(v
�, u).

Q3(Q
h−1
3

(1H
2
k
)) − Q3(Q3(Q

h−1
3

(1H
2
k
)))

= Q1(Q3(Q
h−1
3

(1H
2
k
))) ∪ Q2(Q3(Q

h−1
3

(1H
2
k
))) ∪ Q4(Q3(Q

h−1
3

(1H
2
k
))),

C a s e   2 :  v ∈ Q1(Q3(Q
h−1
3

(1H
2
k
)))  .  C o n s i d e r 

v�� ∈ Q2(Q3(Q
h−1
3

(1H
2
k
))) with y(v��) = y(v) , then, as in Case 1, 

we have sC,2(v��, u, v, u) > 0 and LC,2(v, u) ≤ LC,2(v
��, u) . 

Then from Case 1, there exists v� ∈ Q3(Q3(Q
h−1
3

(1H
2
k
))) such 

that L2(v, u) < LC,2(v
��, u) < LC,2(v

�, u).
C a s e   3 :  v ∈ Q4(Q3(Q

h−1
3

(1H
2
k
)))  .  C o n s i d e r 

v� ∈ Q3(Q3(Q
h−1
3

(1H
2
k
))) with x(v�) = 1 and y(v�) = y(v) , we 

prove that sC,2(v�, u, v, u) > 0 as follows. 

1.	 We expand sC,2(v�, u, v, u) in terms of x- and y-coordi-
nates of relevant grid points: 

s
C,2(v

�, u, v, u)

= d2(v
�, u)2�

C
(v, u) − d2(v, u)

2
�
C
(v�, u)

= ((x(u) − x(v�))2 + (y(u) − y(v�))2)

⋅ (�
C
(v, �2(Q

h−1
3

(1H
2
k
))) +

7 ⋅ 22k − 22(k−h−1)

3
+ �

C
(u, �1(4H

2
k
)) + 1)

− ((x(u) − x(v))2 + (y(u) − y(v))2)

⋅ (�
C
(v�, �2(Q

h−1
3

(1H
2
k
))) +

7 ⋅ 22k − 22(k−h−1)

3
+ �

C
(u, �1(4H

2
k
)) + 1)

= ((x(u) − 1)2)(�
C
(v, �2(Q

h−1
3

(1H
2
k
))) +

7 ⋅ 22k − 22(k−h−1)

3

+ �
C
(u, �1(4H

2
k
)) + 1)

+ (y(u) − y(v))2(�
C
(v, �2(Q

h−1
3

(1H
2
k
))) +

7 ⋅ 22k − 22(k−h−1)

3
+ �

C
(u, �1(4H

2
k
)) + 1)

(note that x(v�) = 1, y(v�) = y(v))

− ((x(u) − x(v))2)(�
C
(v�, �2(Q

h−1
3

(1H
2
k
))) +

7 ⋅ 22k − 22(k−h−1)

3
+ �

C
(u, �1(4H

2
k
)) + 1)

− (y(u) − y(v))2(�
C
(v�, �2(Q

h−1
3

(1H
2
k
))) +

7 ⋅ 22k − 22(k−h−1)

3
+ �

C
(u, �1(4H

2
k
)) + 1)

= x(u)2(�
C
(v, �2(Q

h−1
3

(1H
2
k
))) − �

C
(v�, �2(Q

h−1
3

(1H
2
k
))))

+ (−2x(u) + 1 + 2x(u)x(v) − x(v)2)(
7 ⋅ 22k − 22(k−h−1)

3
+ 1)

+ (−2x(u) + 1 + 2x(u)x(v) − x(v)2)

⋅ (�
C
(v, �2(Q

h−1
3

(1H
2
k
))) + �

C
(u, �1(4H

2
k
)))

+ (2x(u)x(v) − x(v)2)

⋅ (�
C
(v�, �2(Q

h−1
3

(1H
2
k
))) − �

C
(v, �2(Q

h−1
3

(1H
2
k
))))

+ (y(u) − y(v))2�
C
(v, �2(Q

h−1
3

(1H
2
k
)))

− (y(u) − y(v))2�
C
(v�, �2(Q

h−1
3

(1H
2
k
)))

= x(u)2(�
C
(v, �2(Q

h−1
3

(1H
2
k
))) − �

C
(v�, �2(Q

h−1
3

(1H
2
k
))))

+ (2x(u) − x(v) − 1)(x(v) − 1)(
7 ⋅ 22k − 22(k−h−1)

3
+ 1)

+ (2x(u) − x(v) − 1)(x(v) − 1)(�
C
(v, �2(Q

h−1
3

(1H
2
k
))) + �

C
(u, �1(4H

2
k
)))

+ (2x(u)x(v) − x(v)2)(�
C
(v�, �2(Q

h−1
3

(1H
2
k
))) − �

C
(v, �2(Q

h−1
3

(1H
2
k
))))

+ (y(u) − y(v))2(�
C
(v, �2(Q

h−1
3

(1H
2
k
))) − �

C
(v�, �2(Q

h−1
3

(1H
2
k
)))).
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2.	 We bound all the x- and y-coordinate, and index-differ-
ences of relevant grid points via: 

3.	 The lower and upper bounds in item  2 above yield 
the following bounds for the five terms appearing in 
d2(v

�, u)2�C(v, u) − d2(v, u)
2
�C(v

�, u) in item 1: 

(a)	 x(u)2(�
C
(v, �

2
(Qh−1

3
(
1
H

2

k
))) − �

C
(v�, �

2
(Qh−1

3

(1H
2

k
)))) ≥ −24k−2h+3,

(b)	 (2x(u) − x(v) − 1)(x(v) − 1)(
7⋅22k−22k−2h−2

3
+ 1) 

≥ (7 ⋅ 2k − 2k−h + 1)(2k−h−1)(
7⋅22k−22k−2h−2

3
+ 1)

>
46

3
⋅ 24k−h−1,

(c)	 (2x(u) − x(v) − 1)(x(v) − 1)(�
C
(v, �

2
(Qh−1

3
(
1
H

2

k
)))

+�
C
(u, �1(4H

2

k
)))  ≥ (7 ⋅ 2k − 2k−h + 1)(2k−h−1)

(
22k−22(k−h)

3
+ 22(k−h−1) +

1

2
⋅ 22k) > 1

3
⋅ (35 ⋅ 24k−h−2

−5 ⋅ 24k−2h−2 − 7 ⋅ 24k−3h−3 + 24k−4h−3),
(d)	 (2x(u)x(v) − x(v)2)(�

C
(v�, �

2
(Qh−1

3
(
1
H

2

k
))) − �

C
 

(v, 𝜕2(Q
h−1
3

(1H
2

k
)))) > 0 , and

(e)	 (y(u) − y(v))2(�
C
(v, �

2
(Qh−1

3
(
1
H

2

k
))) − �

C
(v�, �

2
(Qh−1

3
 

(1H
2

k
)))) ≥ (2k − 1)2(−2 ⋅ 22(k−h−1)) > −24k−2h−1.

	    These five terms together show that the grid point 
v� ∈ Q3(Q3(Q

h−1
3

(1H
2
k
))) with x(v�) = 1 and y(v�) = y(v) 

satisfies that: 

 thus, LC,2(v, u) < LC,2(v
�, u).

Combining the three cases, we have proved the lemma. 	
� ◻

Lemma 4  For all positive integers k and h with 1 ≤ h < k , 
and all grid-point pairs v ∈ Qh

3
(1H

2
k
) − Qk

3
(1H

2
k
) and 

u ∈ Q3(4H
2
k
) ,  there exists v� ∈ Qk

3
(1H

2
k
) such that 

(v, u) ≺ (v�, u) via the comparison: LC,2(v, u) < LC,2(v
�, u).

4 ⋅ 2
k
≥ x(u) ≥

7

2
⋅ 2

k + 1, 2
k
≥ y(u) ≥

1

2
⋅ 2

k + 1;

2
k−h

≥ x(v) ≥ 2
k−h−1 + 1, 2

k−h−1
≥ y(v) ≥ 1;

2
2k − 2

2(k−h)

3
+ 2

2(k−h−1)
> 𝛿

C
(v, 𝜕

2
(Qh−1

3
(
1
H

2

k
))) ≥

2
2k − 2

2(k−h)

3
,

2
2k − 2

2(k−h)

3
+ 2 ⋅ 2

2(k−h−1)
> 𝛿

C
(v�, 𝜕

2
(Qh−1

3
(
1
H

2

k
)))

≥
2
2k − 2

2(k−h)

3
+ 2

2(k−h−1)
.

s
C,2

(v�, u, v, u)

= d
2
(v�, u)2𝛿

C
(v, u) − d

2
(v, u)2𝛿

C
(v�, u)

>
1

3
⋅ (24k−h−2) ⋅ (35 − 34 ⋅ 2

−h −
7

2
⋅ 2

−2h +
1

2
⋅ 2

−3h)

> 0 (note that h ≥ 1),

Proof  We prove the lemma by an induction on k − h . For 
the basis of the induction ( k − h = 1 ), we apply Lemma 3 
with h = k − 1.

For the induction step, assume that the statement in  
the lemma is true for all integers h with 1 ≤ k − h < n ,  
where n > 1 . Consider the case when k − h = n . Let  
v ∈ Qh

3
(1H

2
k
) − Qk

3
(1H

2
k
) and u ∈ Q3(4H

2
k
) be arbitrary.  

The partition of Qh

3
(1H

2

k
) = Q3(Q

h

3
(1H

2

k
)) ∪ (Q1(Q

h

3
(1H

2

k
))

∪Q2(Q
h

3
(1H

2

k
)) ∪ Q4(Q

h

3
(1H

2

k
))) = Q

h+1

3
(1H

2

k
) ∪ (Qh

3
(1H

2

k
) − Q

h+1

3

(1H
2

k
)) suggests that we consider the following two cases.

Case 1: v ∈ Qh+1
3

(1H
2
k
) . Notice that k − (h + 1) < n , and 

we apply the induction hypothesis for the case of k − (h + 1) , 
and obtain a desired grid point v′.

Case 2: v ∈ Qh
3
(1H

2
k
) − Qh+1

3
(1H

2
k
) . By Lemma 3, there 

exists v� ∈ Qh+1
3

(1H
2
k
)) such that LC,2(v, u) < LC,2(v

�, u) . 
If v� ∈ Qk

3
(1H

2
k
) , then v′ is a desired grid point. Otherwise 

( v ∈ Qh+1
3

(1H
2
k
) − Qk

3
(1H

2
k
) ), it is reduced to Case 1.

This completes the induction step, and the lemma is 
proved. 	�  ◻

Lemma  4 asserts that the lower-left corner grid 
point v′ with coordinates (1, 1) is unique in Q3(1H

2
k
) for 

maximizing the LC,2-value: for arbitrary u ∈ Q3(4H
2
k
) , 

LC,2(v
�, u) = max{LC,2(v, u) ∣ v ∈ Q3(1H

2
k
)}.

The search for a candidate representative grid-point pair 
is reduced to a case-analysis for all possible combinations of 
subcurve pairs: Qi(1H

2
k
) × Qj(4H

2
k
) for all i, j ∈ [4] , and their 

possible systematic reductions. After eliminating symmetri-
cal cases and grouping of underlying subcurves, it suffices to 
consider the analysis for five major cases: Q3(1H

2
k
) × Q2(4H

2
k
) , 

Q3(1H
2
k
) × Q3(4H

2
k
) , Q3(1H

2
k
) × Q4(4H

2
k
) , Q4(1H

2
k
) × 4H

2
k
 , and 

(Q1(1H
2
k
) ∪ Q2(1H

2
k
)) × (Q3(4H

2
k
) ∪ Q4(4H

2
k
)) . We can fur-

ther discard the latter four subcurve pairs due to their (strict) 
reductions to the first subcurve pair Q3(1H

2
k
) × Q2(4H

2
k
) in 

Lemma 5.

Lemma 5  For all positive integers k ≥ 1 , each of the 
following four subcurve pairs: Q3(1H

2
k
) × Q3(4H

2
k
) , 

Q3(1H
2
k
) × Q4(4H

2
k
) , Q4(1H

2
k
) × 4H

2
k
 , and (Q1(1H

2

k
) ∪ Q2(1H

2

k
))

×(Q3(4H
2

k
) ∪ Q4(4H

2

k
)) is strictly reducible to the subcurve 

pair Q3(1H
2
k
) × Q2(4H

2
k
):
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1. Q
3
(
1
H2

k
) × Q

3
(
4
H2

k
) ≺ Q

3
(
1
H2

k
) × Q

2
(
4
H2

k
),

2. Q
3
(
1
H2

k
) × Q

4
(
4
H2

k
) ≺ Q

3
(
1
H2

k
) × Q

2
(
4
H2

k
),

3. Q
4
(
1
H2

k
) ×

4
H2

k
≺ Q

3
(
1
H2

k
) × Q

2
(
4
H2

k
) , and

4. (Q1(1H
2

k
) ∪ Q2(1H

2

k
)) × (Q3(4H

2

k
) ∪ Q4(4H

2

k
)) ≺ Q3(1H

2

k
) × Q2(4H

2

k
).

Proof  For part 1: Q3(1H
2
k
) × Q3(4H

2
k
) ≺ Q3(1H

2
k
) × Q2(4H

2
k
) , 

we show that: for all  positive integers k ≥ 1 , 
and  a l l  (v, u) ∈ Q3(1H

2
k
) × Q3(4H

2
k
) ,  t he re  ex i s t s 

(v�, u�) ∈ Q3(1H
2
k
) × Q2(4H

2
k
) such that (v, u) ≺ (v�, u�) via 

the comparison: LC,2(v, u) < LC,2(v
�, u�).

Consider v� ∈ Qk
3
(1H

2
k
) ( = (1, 1) ) and u� ∈ Q2(4H

2
k
) 

wi th  x(u�) = x(u) and  y(u�) = 1 .  A case-analy-
s i s  for  u ∈ Qi(Q3(4H

2
k
)) wi th  i ∈ [4] can  show 

t h a t  LC,2(v
�, u) < LC,2(v

�, u�)  .  B y  L e m m a   4 , 
LC,2(v, u) ≤ LC,2(v

�, u) ; therefore, LC,2(v, u) < LC,2(v
�, u�).

For part  2: Q3(1H
2
k
) × Q4(4H

2
k
) ≺ Q3(1H

2
k
) × Q2(4H

2
k
) , 

we show that: for all  positive integers k ≥ 1 , 
and  a l l  (v, u) ∈ Q3(1H

2
k
) × Q4(4H

2
k
) ,  t he re  ex i s t s 

(v�, u�) ∈ Q3(1H
2
k
) × Q2(4H

2
k
) , such that (v, u) ≺ (v�, u�) via 

the comparison: LC,2(v, u) < LC,2(v
�, u�).

Consider u�� ∈ Q3(4H
2
k
) with y(u��) = y(u) . Notice 

t h a t  d2(v, u
��) > d2(v, u)  a n d  𝛿C(v, u

��) < 𝛿C(v, u)  , 
we have LC,2(v, u) < LC,2(v, u

��) . By part  1 above, 
there exists (v�, u�) ∈ Q3(1H

2
k
) × Q2(4H

2
k
) such that 

LC,2(v, u) < LC,2(v, u
��) < LC,2(v

�, u�).
W e  d e v e l o p  a  s t r i c t  r e d u c t i o n : 

Q4(1H
2
k
) × 4H

2
k
≺ Q3(1H

2
k
) × 4H

2
k
 in Lemma  6 below that 

helps derive the strict reductions in the remaining two parts 
of Lemma 5. 	�  ◻

Le m m a  6   Fo r  a l l  p o s i t i ve  i n t e ge rs  k ≥ 1 , 
Q4(1H

2
k
) × 4H

2
k
≺ Q3(1H

2
k
) × 4H

2
k
 . We show that: all posi-

tive integers k ≥ 1 , and all grid-point pairs v ∈ Q4(1H
2
k
) and 

u ∈ 4H
2
k
 ( = Q1(4H

2
k
) ∪ Q2(4H

2
k
) ∪ Q3(4H

2
k
) ∪ Q4(4H

2
k
) ), there 

exists v� ∈ Q3(1H
2
k
) such that (v, u) ≺ (v�, u) via the compari-

son: LC,2(v, u) < LC,2(v
�, u).

Proof  Consider v� ∈ Q3(1H
2
k
) with y(v�) = y(v) and x(v�) = 1 . 

A case-analysis for u ∈ Qi(4H
2
k
) with i ∈ [4] can show that 

LC,2(v, u) < LC,2(v
�, u) . 	�  ◻

We  c o n t i n u e  t o  p a r t   3  o f  L e m m a   5 : 
Q4(1H

2
k
) × 4H

2
k
≺ Q3(1H

2
k
) × Q2(4H

2
k
) , and show that: for all 

positive integers k ≥ 1 , and all (v, u) ∈ Q4(1H
2
k
) × 4H

2
k
 , there 

exists (v�, u�) ∈ Q3(1H
2
k
) × Q2(4H

2
k
) such that (v, u) ≺ (v�, u�) 

via the comparison: LC,2(v, u) < LC,2(v
�, u�).

Lemma  6 asserts that there exists v� ∈ Q3(1H
2
k
) 

s u c h  t h a t  LC,2(v, u) < LC,2(v
�, u)   .  A s 

u ∈ 4H
2
k
= Q1(4H

2
k
) ∪ Q2(4H

2
k
) ∪ Q3(4H

2
k
) ∪ Q4(4H

2
k
)   , 

we consider the four combinations of subcurve pairs for 
(v�, u) : Q3(1H

2
k
) × Qi(4H

2
k
) with i ∈ [4] . The analysis for 

the subcurve pair Q3(1H
2
k
) × Q1(4H

2
k
) is equivalent to 

that for Q4(1H
2
k
) × Q2(4H

2
k
) , which is strictly reducible to 

Q3(1H
2
k
) × Q2(4H

2
k
) by applying Lemma 6. The subcurve pair 

Q3(1H
2
k
) × Q3(4H

2
k
) is strictly reducible to Q3(1H

2
k
) × Q2(4H

2
k
) 

by part 1 above, and the subcurve pair Q3(1H
2
k
) × Q4(4H

2
k
) 

is strictly reducible to Q3(1H
2
k
) × Q2(4H

2
k
) by part 2 above.

For part 4: (Q1(1H
2

k
) ∪ Q2(1H

2

k
)) × (Q3(4H

2

k
) ∪ Q4(4H

2

k
))

≺ Q3(1H
2

k
) × Q2(4H

2

k
) , we show that: for all positive  

integers k ≥ 1 , and all (v, u) ∈ (Q1(1H
2

k
) ∪ Q2(1H

2

k
)) × (Q3

(4H
2

k
) ∪ Q4(4H

2

k
)) , there exists (v�, u�) ∈ Q3(1H

2
k
) × Q2(4H

2
k
) 

such  tha t  (v, u) ≺ (v�, u�) v ia  t he  compar i son : 
LC,2(v, u) < LC,2(v

�, u�).
Consider v�� ∈ Q3(1H

2
k
) ∪ Q4(1H

2
k
) with x(v��) = x(v) 

and y(v��) = y(v) − 2k−1 ,  and u�� ∈ Q1(4H
2
k
) ∪ Q2(4H

2
k
) 

with x(u��) = x(u) and y(u��) = y(u) − 2k−1 . Observe that 
d2(v

��, u��) = d2(v, u) and 𝛿C(v��, u��) < 𝛿C(v, u) , and we 
have LC,2(v, u) < LC,2(v

��, u��) . Hence, it suffices to con-
sider two combinations of subcurve pairs for (v��, u��) : 
Q3(1H

2
k
) × Q1(4H

2
k
) and Q4(1H

2
k
) × (Q1(4H

2
k
) ∪ Q2(4H

2
k
)) . The 

analysis for the subcurve pair Q3(1H
2
k
) × Q1(4H

2
k
) is equiva-

lent to that for Q4(1H
2
k
) × Q2(4H

2
k
) , which is strictly reduc-

ible to Q3(1H
2
k
) × Q2(4H

2
k
) by Lemma 6. The subcurve pair 

Q4(1H
2
k
) × (Q1(4H

2
k
) ∪ Q2(4H

2
k
)) is a subcase of part 3 above. 

Consequently, for these two combinations of subcurve pairs 
for (v��, u��) , there exists (v�, u�) ∈ Q3(1H

2
k
) × Q2(4H

2
k
) such 

that LC,2(v, u) < LC,2(v
��, u��) < LC,2(v

�, u�) , as desired.
This completes the proof of Lemma 5. 	�  ◻

An immediate consequence of Lemma 5 supports and helps 
prove our geometric intuition that a representative grid-point 
pair must reside in Q3(1H

2
k
) × Q2(4H

2
k
) , as stated in Corollary 1.

Corollary 1  For all positive integers k ≥ 1 , and all grid-point 
pairs v ∈ 1H

2
k
− Q3(1H

2
k
) and u ∈ 4H

2
k
− Q2(4H

2
k
) , there exist 

v� ∈ Q3(1H
2
k
) and u� ∈ Q2(4H

2
k
) such that (v, u) ≺ (v�, u�) via 

the comparison: LC,2(v, u) < LC,2(v
�, u�).

Lemmas 7 and 8 below complement Lemmas 3 and 4, 
respectively, with analogous proofs. Applying Corollary 1 
to reach the subcurve pair Q3(1H

2
k
) × Q2(4H

2
k
) for seeking a 

candidate representative grid-point pair (v�, u�) , the two lem-
mas guide the search into successive Q3-subcurves of 1H2

k
 for 

v′ . The symmetry in the subcurve pair Q3(1H
2
k
) × Q2(4H

2
k
) 

leads the search into successive Q2-subcurves of 4H2
k
 for u′.

Lemma 7  For all positive integers k and h with 1 ≤ h < k , 
and all grid-point pairs v ∈ Qh

3
(1H

2
k
) − Qh+1

3
(1H

2
k
) and 

u ∈ Q2(4H
2
k
) , there exists v� ∈ Qh+1

3
(1H

2
k
) such that 

(v, u) ≺ (v�, u) via the comparison: LC,2(v, u) < LC,2(v
�, u).

Lemma 8  For all positive integers k and h with 1 ≤ h < k , 
and all grid-point pairs v ∈ Qh

3
(1H

2
k
) − Qk

3
(1H

2
k
) and 

u ∈ Q2(4H
2
k
) ,  there exists v� ∈ Qk

3
(1H

2
k
) such that 

(v, u) ≺ (v�, u) via the comparison: LC,2(v, u) < LC,2(v
�, u).
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We summarize the analyses above in Theorem 1, which 
asserts that the unique representative grid-point pair reside 
at the lower-left and lower-right corners of C.

Theorem 1  For all positive integers k ≥ 1 , and all grid-point 
pairs (v, u) ∈ 1H

2
k
× 4H

2
k
− Qk

3
(1H

2
k
) × Qk

2
(4H

2
k
) , there exist 

v� ∈ Qk
3
(1H

2
k
) and u� ∈ Qk

2
(4H

2
k
) such that (v, u) ≺ (v�, u�) via 

t h e  c o m p a r i s o n :  LC,2(v, u) < LC,2(v
�, u�)  a n d 

LC,2(v
�, u�) = 6 ⋅

22k+3−2k+2+2−1

22k+3+1
.

Proof  By Corollary 1 and Lemma 8 (and its symmetry), the 
grid-point pair at the lower-left and lower-right corners of C: 
v� ∈ Qk

3
(1H

2
k
) with coordinates (1, 1) and u� ∈ Qk

2
(H2

k
) with 

coordinates (2k+2, 1) maximizes the LC,2-value.
Notice that �C(v�, u�) = 2(

∑k−1

i=0
22i + 1 + 2 ⋅ 22k) − 1 , 

hence, LC,2(v
�, u�) =

d2(v
�,u�)2

�C(v
�,u�)

= 6 ⋅
22k+3−2k+2+2−1

22k+3+1
 . 	�  ◻

Exact Formula for L
2
(H2

k
)

The current best bounds for the two-dimensional Hilbert 
curve family with respect to L2 (lower bound in [17] and 
upper bound in [2]) are:

Following the argument in [17] with a more refined combi-
natorial analysis, together with the above-obtained exact for-
mula for LC,2(Q3(1H

2
k
),Q2(4H

2
k
)) (= LC,2(Q

k
3
(1H

2
k
),Qk

2
(4H

2
k
)) ) 

in “L2-Locality of Four Linearly Contiguous Hilbert Sub-
curves” section, we close the gaps between the two bounds 
with an exact formula for L2(H2

k
).

Theorem 2  For all positive integers k ≥ 5,

Proof  We refine a geometric constraint, from the upper-
bound argument in [17], which relates the path-length of 
a subpath of H2

k
 versus the geometric distance between its 

initial and terminal grid points. Consider an arbitrary sub-
curve/subpath P of length l along H2

k
 . Note that for arbitrary 

l, there exists a sufficiently large positive integer r such that 
(2r−1)2 < l ≤ (2r)2 . This gives that P is contained in two 
adjacent quadrants Q′ and Q′′ , each with size (2r)2 (grid 

6(1 − O(2−k)) ≤ L2(H
2
k
) ≤ 6

1

2
.

L2(H
2
k
) = 6 ⋅

22k−3 − 2k−1 + 2−1

22k−3 + 1
.

points). Let D denote the Euclidean diameter (based on the 
2-normed metric d2 ) of the set of grid points in P. A case-
analysis of subpath-containment of P in subquadrants of size 
(2r−1)2 within Q� ∪ Q�� results in the following six cases: 

Case Lower and upper bounds for l Upper bounds for D2 and D
2

l

1. 4

16
⋅ 4

r
< l ≤

5

16
⋅ 4

r: D2
<

5

4
⋅ 4

r , hence D
2

l
≤ 5.

2. 5

16
⋅ 4

r
< l ≤

6

16
⋅ 4

r: D2
<

29

16
⋅ 4

r , hence D
2

l
≤ 5

4

5
.

3. 6

16
⋅ 4

r
< l ≤

7

16
⋅ 4

r: D2
<

10

4
⋅ 4

r , hence D
2

l
≤ 6

2

3
.

4. 7

16
⋅ 4

r
< l ≤

8

16
⋅ 4

r: D2
<

10

4
⋅ 4

r , hence D
2

l
≤ 5

5

7
.

5. 8

16
⋅ 4

r
< l ≤

12

16
⋅ 4

r: D2
<

13

4
⋅ 4

r , hence D
2

l
≤ 6

1

2
.

6. 12

16
⋅ 4

r
< l ≤ 4

r: D2
< 5 ⋅ 4

r , hence D
2

l
≤ 6

2

3
.

To obtain the desired L2-bound, it suffices to refine the 
analysis of subpath-containment in Cases 3, 5, and 6 in sub-
quadrants of size (2r−2)2.

The refined analysis for Case 3 yields the upper bounds 
on D

2

l
 : 29

6
 , 137

25
 , 141

26
 , and 160

27
 (the maximum is 160

27
< 5.93 ). For 

Case 6, the upper bounds on D
2

l
 are: 68

12
 , 73
13

 , 80
14

 , and 80
15

 (the 
maximum is 80

14
< 5.72).

The refined analysis for Case 5 reveals that all but one 
arrangement (of subquadrants of size (2r−2)2 ) yield upper 
bounds that are bounded above and away from 6. The excep-
tion structure is given by the subcurve C (described in “L2
-Locality of Four Linearly Contiguous Hilbert Subcurves” 
section) of four linearly-contiguous Hilbert subcurves H2

�
 

of order � ; the maximum possible �-value is k − 3 (embed-
ded in H2

k
 ). By Theorem 1, the maximum D

2

l
-value for this 

case is:

Observe that the expression 2
2�+3−2�+2+2−1

22�+3+1
 is strictly increasing 

in � ≥ 0 (and approaching 1 as � → ∞ ). Thus, when 
� = k − 3 , the maximum D

2

l
-value, which is 6 ⋅ 22�+3−2�+2+2−1

22�+3+1
 , 

assumes the value:

which is strictly increasing in k ≥ 3 . To show the desired 
formula for L2(H2

k
) for all positive integers k ≥ 5 , we further 

consider the two ranges of k-value: k ≥ 9 and 0 ≤ k ≤ 8 , as 
follows.

6 ⋅
22�+3 − 2�+2 + 2−1

22�+3 + 1
.

6 ⋅
22k−3 − 2k−1 + 2−1

22k−3 + 1
,

Fig. 4   The three possible 
adjacent H2

�
-subcurves: a y−

-oriented and y+-oriented 
subcurves, b y−-oriented and x+
-oriented subcurves, c x+-ori-
ented and x+-oriented subcurves

   (b)   (a)    (c )
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When k = 9 , we have 6 ⋅ 22k−3−2k−1+2−1

22k−3+1
> 5.953 , which is 

greater than all the upper bounds on D
2

l
-value in the above 

refined analyses for Cases 3 and 6. For 4 ≤ k ≤ 8 , exhaustive 
searches for representative grid-point pairs of H2

k
 show that 

L2(H
2
k
) = 6 ⋅

22k−3−2k−1+2−1

22k−3+1
 for each k ∈ {5, 6, 7, 8} (except for 

k = 4 ), and the theorem is proved. 	�  ◻

For an x+-oriented Hilbert curve H2
k
 with �1(H2

k
) = (1, 1) , 

where k ≥ 5 , the representative grid-point pair for H2
k
 with 

respect to L2 reside at the lower-left corner (with coordi-
nates (2k−2 + 1, 2k−1 + 1) ) and the lower-right corner (with 
coordinates (2k − 2k−2, 2k−1 + 1) ) of four linearly-contiguous 
largest subquadrants ( H2

k−3
-subcurves).

Exact Formulas for Lp(H
2

k
) with p > 2

To study Lp for arbitrary real p > 2 , we first investigate the 
monotonicity of the underlying p-normed metric.

Lemma 9  For every positive real constant � , the function 
f ∶ (0,∞) → (1,∞) defined by f (p) = (1 + �

p)
1

p is strictly 
decreasing over its domain.

Proof  It is equivalent to show that the function 
g ∶ (0,∞) → (0,∞) defined by g(p) = log f (p) (“log ” 
denotes the natural logarithm) is strictly decreasing over 
its domain. We consider the first derivative of g, which is 
defined on (0,∞):

Note that: for 0 < 𝛼 < 1 , g�(p) =
𝛼
p

1+𝛼p
log 𝛼p−log(1+𝛼p)

p2
< 0 , and 

for 1 ≤ � , g�(p) =
log 𝛼p−log(1+𝛼p)−

log 𝛼p

1+𝛼p

p2
< 0 . This proves the 

strictly decreasing property of g over its domain, and there-
fore the lemma. 	�  ◻

g�(p) =

�
p

1+�p
log �p − log(1 + �

p)

p2
=

log �p − log(1 + �
p) −

log �p

1+�p

p2
.

An immediate consequence of Lemma 9 is that for all 
grid points v and u, the p-normed metric dp(v, u) as a func-
tion of p ∈ (0,∞) is decreasing over its domain. Hence for 
a space-filling curve C, LC,p(v, u) =

dp(v,u)
2

�C(v,u)
 is decreasing in 

p ∈ (0,∞) , as �C(v, u) is independent of p.

Theorem 3  For all positive integers k ≥ 5,

Proof  According to Theorem 2, let (v�, u�) be the representa-
tive grid-point pair for H2

k
 with respect to L2 , with their coor-

dinates v� = (2k−2 + 1, 2k−1 + 1) and u� = (2k − 2k−2, 2k−1 + 1) . 
Consider an arbitrary real p ≥ 2 , and we show that (v�, u�) 
also serves as the unique representative grid-point pair for 
H2

k
 with respect to Lp , that is, for all (v, u) ≠ (v�, u�) , 

(v, u) ≺ (v�, u�) via LH2
k
,p(v, u) < LH2

k
,p(v

�, u�).
Observe that y(v�) = y(u�) ,  which implies that 

dp(v
�, u�) = d2(v

�, u�) . Then for arbitrary grid points v, u ∈ H2
k
 

with (v�, u�) ≠ (v, u) , we have:

	�  ◻

Exact Formula for L
1
(H2

k
)

We develop an argument similar to the one in “Exact 
Formulas for Lp(H2

k
) with p ≥ 2” section in establishing 

L2(H
2
k
) to obtain the exact formula for L1(H2

k
) . Adopting 

similar denotations in the proof of Theorem 2, consider the 

Lp(H
2
k
) = 6 ⋅

22k−3 − 2k−1 + 2−1

22k−3 + 1
for all reals p ≥ 2.

LH2
k
,p(v

�, u�) =
dp(v

�, u�)2

𝛿H2
k
(v�, u�)

=
d2(v

�, u�)2

𝛿H2
k
(v�, u�)

= LH2
k
,2(v

�, u�)

> LH2
k
,2(v, u) ((v�, u�) ∶ a representative grid-point

pair with respect to LH2
k
,2)

≥ LH2
k
,p(v, u) (by the monotonicity of LH2

k
,p).

 (a)
x

y

5H
2
k 6H

2
k

Q3(5H2
k)

Q2(5H2
k) Q4(6H2

k)

Q1(6H2
k) Q2(6H2

k)

Q3(6H2
k)Q1(5H2

k)

Q4(5H2
k)

 (b)

7H
2
k 8H

2
k

x

y

Q2(7H2
k)

Q3(7H2
k) Q4(8H2

k)

Q3(8H2
k)Q2(8H2

k)

Q1(8H2
k)

Q1(7H2
k)

Q4(7H2
k)

Fig. 5   Two Hilbert subcurves for the refined subpath-containment analysis: a two adjacent y− - and y+-oriented Hilbert subcurves; b two adjacent 
y− - and x+-oriented Hilbert subcurves
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subpath-containment analysis with an arbitrary subcurve/
subpath P of length l embedded in a two-dimensional Hil-
bert curve. There exists a sufficiently large positive inte-
ger r such that (2r−1)2 < l ≤ (2r)2 and P is contained in two 
adjacent quadrants Q′ and Q′′ of size (2r)2 grid points each. 
Figure 4 provides the three possible arrangements of the 
two adjacent H2

�
-subcurves where � ≤ r (modulo symmetry).

Denote by Δ the rectilinear diameter (based on the 1-nor-
med metric d1 ) of the set of grid points in P. A case-analysis 
of subpath-containment of P in subquadrants of size (2r−1)2 
within Q� ∪ Q�� results in the following six cases: 

Case Lower and upper 
bounds for l

Upper bounds for Δ2 and Δ
2

l

1. 4

16
⋅ 4

r
< l ≤

5

16
⋅ 4

r: Δ2
<

36

16
⋅ 4

r , hence Δ
2

l
≤ 9.

2. 5

16
⋅ 4

r
< l ≤

6

16
⋅ 4

r: Δ2
<

49

16
⋅ 4

r , hence Δ
2

l
≤ 9

4

5
.

3. 6

16
⋅ 4

r
< l ≤

7

16
⋅ 4

r: Δ2
<

64

16
⋅ 4

r , hence Δ
2

l
≤ 10

2

3
.

4. 7

16
⋅ 4

r
< l ≤

8

16
⋅ 4

r: Δ2
<

64

16
⋅ 4

r , hence Δ
2

l
≤ 9

1

7
.

5. 8

16
⋅ 4

r
< l ≤

12

16
⋅ 4

r: Δ2
<

100

16
⋅ 4

r , hence Δ
2

l
≤ 12

1

2
.

6. 12

16
⋅ 4

r
< l ≤ 4

r: Δ2
<

144

16
⋅ 4

r , hence Δ
2

l
≤ 12.

A refined analysis that is based on the entry and exit 
subquadrants/subcurves of size (2r−2)2 or (2r−3)2 and their 
orientations within Q� ∪ Q�� further partitions the above six 
cases into subcases as follows: 

	Case 1.	 4

16
⋅ 4r < l ≤

5

16
⋅ 4r : Δ2

<
36

16
⋅ 4r , hence Δ

2

l
≤ 9.

	Case 2.	 5

16
⋅ 4r < l ≤

6

16
⋅ 4r  :  Δ2

<
36

16
⋅ 4r  ,  h e n c e 

Δ2

l
≤ 7

1

5
    (entry and exit subcurves on common coor-

dinate axis).
	Case 3.	 6

16
⋅ 4r < l ≤

7

16
⋅ 4r  :  Δ2

<
49

16
⋅ 4r  ,  h e n c e 

Δ2

l
≤ 8

1

6
    (entry and exit subcurves on common coor-

dinate axis).
	Case 4.	 7

16
⋅ 4r < l ≤

8

16
⋅ 4r : ( Δ2

<
64

16
⋅ 4r)

Case Lower and upper bounds for l Upper bounds  
for Δ2 and Δ

2

l

4.1. 7

16
⋅ 4

r
< l ≤

7

16
⋅ 4

r +
1

64
⋅ 4

r: Δ2
<

225

64
⋅ 4

r , hence 
Δ2

l
≤ 8

1

28
.

4.2. 7

16
⋅ 4

r +
1

64
⋅ 4

r
< l ≤

7

16
⋅ 4

r +
2

64
⋅ 4

r: Δ2
<

64

16
⋅ 4

r , hence 
Δ2

l
≤ 8

24

29
.

4.3. 7

16
⋅ 4

r +
2

64
⋅ 4

r
< l ≤

7

16
⋅ 4

r +
3

64
⋅ 4

r: Δ2
<

64

16
⋅ 4

r , hence 
Δ2

l
≤ 8

8

15
.

4.4. 7

16
⋅ 4

r +
3

64
⋅ 4

r
< l ≤

8

16
⋅ 4

r: Δ2
<

64

16
⋅ 4

r , hence 
Δ2

l
≤ 8

8

31
.

	Case 5.	 8

16
⋅ 4r < l ≤

12

16
⋅ 4r : ( Δ2

<
100

16
⋅ 4r)

Case Lower and upper bounds for l Upper bounds for Δ2 and Δ
2

l

5.1. 8

16
⋅ 4

r
< l ≤

9

16
⋅ 4

r: Δ2
<

64

16
⋅ 4

r , hence Δ
2

l
≤ 8.

5.2. 9

16
⋅ 4

r
< l ≤

10

16
⋅ 4

r: Δ2
<

64

16
⋅ 4

r , hence Δ
2

l
≤ 7

1

9

(entry and exit subcurves on common coordinate axis).
5.3. 10

16
⋅ 4

r
< l ≤

11

16
⋅ 4

r: Δ2
<

81

16
⋅ 4

r , hence Δ
2

l
≤ 8

1

10

(entry and exit subcurves on common coordinate axis).
5.4. 11

16
⋅ 4

r
< l ≤

12

16
⋅ 4

r: Δ2
<

100

16
⋅ 4

r , hence Δ
2

l
≤ 9

1

11
.

	Case 6.	 12

16
⋅ 4r < l ≤ 4r : ( Δ2

<
144

16
⋅ 4r)

Case Lower and upper bounds for l Upper bounds for Δ2 and Δ
2

l

6.1. 12

16
⋅ 4

r
< l ≤

13

16
⋅ 4

r: Δ2
<

100

16
⋅ 4

r , hence Δ
2

l
≤ 8

1

3
.

6.2. 13

16
⋅ 4

r
< l ≤

14

16
⋅ 4

r: Δ2
<

100

16
⋅ 4

r , hence Δ
2

l
≤ 7

9

13
.

(entry and exit subcurves on common coordinate axis).
6.3. 14

16
⋅ 4

r
< l ≤

15

16
⋅ 4

r: Δ2
<

121

16
⋅ 4

r , hence Δ
2

l
≤ 8

9

14
.

(entry and exit subcurves on common coordinate axis).
6.4. 15

16
⋅ 4

r
< l ≤

16

16
⋅ 4

r: Δ2
<

144

16
⋅ 4

r , hence Δ
2

l
≤ 9

3

5
.

The exact formula for L1(H2
k
) proven below is asymptoti-

cally (as k → ∞ ) equal to 9, while the refined analysis shows 
that all but three (sub)cases (Cases 1, 5.4, and 6.4) yield 
upper bounds on Δ

2

l
 that are bounded above and away from 9.

Each of the Cases 1, 6.4, and 5.4 appears in both arrange-
ments in Fig. 4a, b. Denote the first/left and right/last Hil-
bert subcurves (in the traversal order) of the two adjacent 
subcurves in Fig. 4a by 5H2

k
 ( y−-oriented) and 6H2

k
 ( y+-ori-

ented), respectively, and analogously for Fig. 4b by 7H2
k
 ( y−

-oriented) and 8H2
k
 ( x+-oriented), respectively. Figure 5a, b 

illustrate the annotations of the H2
k
-subcurves and their quad-

rants ( H2
k−1

-subcurves) in Fig. 4a, b, respectively.
Case  1 appears in Fig.  5a, b with k = r − 1 (embed-

ding the subpath P from Q3(5H
2
r−1

) to Q3(6H
2
r−1

) and from 
Q3(7H

2
r−1

) to Q3(8H
2
r−1

) , respectively) and Case 6.4 appears 
in Fig. 5a, b with k = r (embedding the subpath P from 
Q3(5H

2
r
) to Q3(6H

2
r
) and from Q3(7H

2
r
) to Q3(8H

2
r
) , respec-

tively); the locality analyses of Cases 1 and 6.4 are studied 
in “Two Adjacent y− - and y+-Oriented Hilbert Subcurves: 
Direct-Diagonal Corners” and “Two Adjacent y− - and x+
-Oriented Hilbert Subcurves: Direct- and Slanted-Diagonal 
Corners” sections. Case 5.4 appears in Fig. 5a, b with k = r 
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(embedding the subpath P from Q3(Q3(5H
2
r
)) to Q3(Q2(6H

2
r
)) 

and from Q3(Q3(7H
2
r
)) to Q3(Q2(8H

2
r
)) , respectively); the 

locality analyses of Case 5.4 are studied in “Two Adjacent 
y− - and x+-Oriented Hilbert Subcurves: Slanted-Diagonal 
Corners” and “Two Adjacent y− - and x+-Oriented Hilbert 
Subcurves: Direct- and Slanted-Diagonal Corners” sections.

The locality study in each case-analysis for a two-
dimensional space-filling curve C involves the seeking 
of representative grid-point pairs via the comparisons 
of their LC,1-values. Lemma 10 below provides a suffi-
cient condition for the strict reducibility of (v, u) ≺ (v�, u�) 
via LC,1(v, u) < LC,1(v

�, u�) for two grid-point pairs 
(v,  u) and (v�, u�) indexed by C in restricted forms of 
coordinate-relationship.

Denote ŝ
C,1(v

�, v, u) = 2d1(v, v
�)𝛿

C
(v, u) − d1(v, u)𝛿C(v, v

�) . 
The sufficient conditions via sC,2 in Lemma 1 and ŝC,1 in 
Lemma 10 play analogous roles in yielding the reducibility 
conditions for grid-point pairs with respect to the locality 
measures LC,2 and LC,1 , respectively, for the L2(H2

k
) - and 

L1(H
2
k
)-studies, respectively.

Lemma 10  For two arbitrary grid-point pairs (v, u) and 
(v�, u) indexed by a two-dimensional space-filling curve 
C such that the sequence of the three grid points (v�, v, u) 
satisfies the monotone-coordinate condition: monotone in 
each coordinate (but may have different monotonicities), 
if ŝC,1(v�, v, u) > 0 then (v, u) ≺ (v�, u) via the comparison: 
LC,1(v, u) < LC,1(v

�, u).

By symmetry, for two arbitrary grid-point pairs (v, u) 
and (v, u�) indexed by a two-dimensional space-filling 
curve C such that the sequence of the three grid points 
(v, u, u�) satisfies the monotone-coordinate condition, if 
ŝC,1(u

�, u, v) > 0 then (v, u) ≺ (v, u�) via the comparison: 
LC,1(v, u) < LC,1(v, u

�).

Proof  It suffices to prove the case for two arbitrary grid-
point pairs (v, u) and (v�, u) in the stated monotone-coordi-
nate condition. Noting that LC,1(v, u) < LC,1(v

�, u) is equiva-
lent to d1(v�, u)2𝛿C(v, u) − d1(v, u)

2
𝛿C(v

�, u) > 0 , we consider:

d1(v
�, u)2𝛿C(v, u) − d1(v, u)

2
𝛿C(v

�, u)

= (d1(v
�, v) + d1(v, u))

2
𝛿C(v, u) − d1(v, u)

2
𝛿C(v

�, u)

(by the monotone-coordinate condition of (v�, v, u))

≥ (d1(v
�, v) + d1(v, u))

2
𝛿C(v, u) − d1(v, u)

2(𝛿C(v
�, v) + 𝛿C(v, u))

(by the triangle-inequality of 𝛿C)

= d1(v
�, u)2𝛿C(v, u) + (2d1(v

�, v)𝛿C(v, u) − d1(v, u)𝛿C(v
�, v))d1(v, u)

= d1(v
�, v)2𝛿C(v, u) + ŝC,1(v

�, v, u)d1(v, u),

and then the trivial positivity of d1(v�, v) , �C(v, u) , and 
d1(v, u) (from the non-inequalities of both v versus u and v′ 
versus v) yields the desired sufficient condition. 	�  ◻

Two Adjacent y− ‑ and y+‑Oriented Hilbert Subcurves: 
Direct‑Diagonal Corners

Figure 5a depicts the labeled arrangement in Cartesian coor-
dinates of a subcurve C that is composed of two adjacent 
H2

k
-subcurves: the left 5H2

k
 ( y−-oriented) and the right 6H2

k
 

( y+-oriented). In the following analysis, we identify a pair 
of grid points at direct-diagonal corners of the subcurve C1 
joining Q3(5H

2
k
) and Q3(6H

2
k
) : v� ∈ Q3(5H

2
k
) and u� ∈ Q3(6H

2
k
) 

such that LC,1(v
�, u�) = LC,1(Q3(5H

2
k
),Q3(6H

2
k
)) . Lem-

mas 11–13 yield the reduction of “ v� ∈ Q3(5H
2
k
) ” in suc-

cessive Q3-subcurves of 5H2
k
 , and Lemmas 14–16 do the 

counterpart for “ u� ∈ Q3(6H
2
k
)”.

Note that the proofs of some lemmas in “Two Adjacent 
y− - and y+-Oriented Hilbert Subcurves: Direct-Diagonal 
Corners” and “Two Adjacent y− - and x+-Oriented Hilbert 
Subcurves: Slanted-Diagonal Corners” sections are achieved 
with case-analyses based on the quadrant-decomposition of 
the underlying subcurves for the membership of a candidate 
v′ or u′ . For each membership-case of v′ or u′ , Lemma 10 
is employed to justify the candidacy of v′ or u′ . The case-
analysis is summarized in a table completed with non-trivial 
entries. We demonstrate a typical derivation of a member-
ship-case in the proof/table of Lemma 11.

Lemma 11  For all positive integers k ≥ 2 , and all grid-
point pairs v ∈ Q3(5H

2
k
) − Q3(Q3(5H

2
k
)) and u ∈ Q3(6H

2
k
) , 

there exists v� ∈ Q3(Q3(5H
2
k
)) such that (v, u) ≺ (v�, u) via 

the comparison: LC,1(v, u) < LC,1(v
�, u).

Proof  With K denoting the subcurve Q3(5H
2
k
) in the proof, 

the case-analysis based on the quadrant-decomposition of K 
is summarized in the following table.

We show below an example-derivation of the 
membership-case of v ∈ Q4(K) and v� ∈ Q3(K) with 
(x(v�), y(v�)) = (1, y(v)) .  Note that d1(v, u) < 12 ⋅ 2k−2 , 
𝛿C(v, u) > 3 ⋅ 22k−2 , d1(v, v�) ≥ 2k−2 , and �C(v, v�) ≤ 2 ⋅ 22k−4 , 
we have:

	�  ◻

ŝC,1(v
�, v, u) = 2d1(v, v

�)𝛿C(v, u) − d1(v, u)𝛿C(v, v
�)

>2 ⋅ 2k−2 ⋅ 3 ⋅ 22k−2 − 12 ⋅ 2k−2 ⋅ 2 ⋅ 22k−4

= 0.
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v ∈ v
� ∈ v

′-coordinate(s): d1(v, u) < 𝛿
C
(v, u) > d1(v, v

�) ≥ �
C
(v, v�) ≤ ŝ

C,1(v
�, v, u) >

Q
2
(K) Q

3
(K) x(v�) = x(v) d

1
(v�, u) �C(v

�
, u)

Q
1
(K) Q

2
(K) y(v�) = y(v) d

1
(v�, u) �C(v

�
, u)

Q
4
(K) Q

3
(K) (x(v�), y(v�))

= (1, y(v))
12 ⋅ 2

k−2
3 ⋅ 2

2k−2
2
k−2

2 ⋅ 2
2k−4 0

Lemma 12  For all positive integers k and h with 1 ≤ h < k , 
and all grid-point pairs v ∈ Qh

3
(5H

2
k
) − Qh+1

3
(5H

2
k
) and 

u ∈ Q3(6H
2
k
) , there exists v� ∈ Qh+1

3
(5H

2
k
) such that 

(v, u) ≺ (v�, u) via the comparison: LC,1(v, u) < LC,1(v
�, u).

Proof  With K denoting the subcurve Qh
3
(5H

2
k
) in the proof, 

the case-analysis based on the quadrant-decomposition of K 
is summarized in the following table. 	�  ◻

v ∈ v
� ∈ v

′-coordinate(s): d1(v, u) < 𝛿
C
(v, u) > d1(v, v

�) ≥ �
C
(v, v�) ≤ ŝ

C,1(v
�, v, u) >

Q
2
(K) Q

3
(K) x(v�) = x(v) d

1
(v�, u) �C(v

�
, u)

Q
1
(K) Q

2
(K) y(v�) = y(v) d

1
(v�, u) �C(v

�
, u)

Q
4
(K) Q

3
(K) (x(v�), y(v�))

= (1, y(v))
12 ⋅ 2

k−2
3 ⋅ 2

2k−2
2
k−h−1

2 ⋅ 2
2k−2h−2

3 ⋅ 2
3k−h−2

−3 ⋅ 23k−2h−1

> 0

Lemma 13  For all positive integers k and h with 
1 ≤ h < k , and all grid-point pairs v ∈ Qh

3
(5H

2
k
) − Qk

3
(5H

2
k
) 

and u ∈ Q3(6H
2
k
) , there exists v� ∈ Qk

3
(5H

2
k
) such that 

(v, u) ≺ (v�, u) via the comparison: LC,1(v, u) < LC,1(v
�, u).

Proof  Similar to the proof of Lemma 4 for L2(H2
k
) in “L2

-Locality of Four Linearly Contiguous Hilbert Subcurves” 
section. 	� ◻

Lemma 14  For all positive integers k ≥ 2 , and all grid-
point pairs v ∈ Qk

3
(5H

2
k
) and u ∈ Q3(6H

2
k
) − Q3(Q3(6H

2
k
)) , 

there exists u� ∈ Q3(Q3(6H
2
k
)) such that (v, u) ≺ (v, u�) via 

the comparison: LC,1(v, u) < LC,1(v, u
�).

Proof  With K denoting the subcurve Q3(6H
2
k
) in the proof, 

the case-analysis based on the quadrant-decomposition of K 
is summarized in the following table. 	�  ◻

u ∈ u
� ∈ u

′-coordinate(s): d1(v, u) < 𝛿
C
(v, u) > d1(u, u

�) ≥ �
C
(u, u�) ≤ ŝ

C,1(u
�, u, v) >

Q
2
(K) Q

3
(K) (x(u�), y(u�))

= (x(u), 2k)
12 ⋅ 2

k−2
3 ⋅ 2

2k−2
2
k−2

2 ⋅ 2
2k−4 0

Q
1
(K) Q

2
(K) (x(u�), y(u�))

= (2k+1, y(u))
12 ⋅ 2

k−2
3 ⋅ 2

2k−2
2
k−2

2 ⋅ 2
2k−4 0

Q
4
(K) Q

3
(K) y(u�) = y(u) d

1
(v, u�) �C(v, u

�)

Lemma 15  For all positive integers k and h with 
1 ≤ h < k , and all grid-point pairs v ∈ Qk

3
(5H

2
k
) and 

u ∈ Qh
3
(6H

2
k
) − Qh+1

3
(6H

2
k
) , there exists u� ∈ Qh+1

3
(6H

2
k
) 

such  tha t  (v, u) ≺ (v, u�) v ia  the  compar i son : 
LC,1(v, u) < LC,1(v, u

�).

Proof  With K denoting the subcurve Qh
3
(6H

2
k
) in the proof, 

the case-analysis based on the quadrant-decomposition of K 
is summarized in the following table. 	�  ◻
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u ∈ u
� ∈ u

′-coordinate(s): d1(v, u) < 𝛿
C
(v, u) > d1(u, u

�) ≥ �
C
(u, u�) ≤ ŝ

C,1(u
�, u, v) >

Q
2
(K) Q

3
(K) (x(u�), y(u�))

= (x(u), 2k)
12 ⋅ 2

k−2
3 ⋅ 2

2k−2
2
k−h−1

2 ⋅ 2
2k−2h−2

3 ⋅ 2
3k−h−2

−3 ⋅ 23k−2h−1

> 0

Q
1
(K) Q

2
(K) (x(u�), y(u�))

= (2k+1, y(u))
12 ⋅ 2

k−2
3 ⋅ 2

2k−2
2
k−h−1

2 ⋅ 2
2k−2h−2

3 ⋅ 2
3k−h−2

−3 ⋅ 23k−2h−1

> 0

Q
4
(K) Q

3
(K) y(u�) = y(u) d

1
(v, u�) �C(v, u

�)

Lemma 16  For all positive integers k and h with 
1 ≤ h < k , and all grid-point pairs v ∈ Qk

3
(5H

2
k
) and 

u ∈ Qh
3
(6H

2
k
) − Qk

3
(6H

2
k
) , there exists u� ∈ Qk

3
(6H

2
k
) such that 

(v, u) ≺ (v, u�) via the comparison: LC,1(v, u) < LC,1(v, u
�).

Proof  Similar to the proof of Lemma 4 for L2(H2
k
) in “L2

-Locality of Four Linearly Contiguous Hilbert Subcurves” 
section. 	� ◻

The six lemmas (Lemmas 11 – 16) identify the unique 
representative grid-point pair (v�, u�) ∈ Qk

3
(5H

2
k
) × Qk

3
(6H

2
k
) 

that maximizes the LC,1-value for the subcurve C1 (joining 
the direct-diagonal corners Q3(5H

2
k
) and Q3(6H

2
k
) Hilbert 

subcurves) — with (v�, u�) residing at the lower-left and 
upper-right corners of C1 with coordinates v� = (1, 1) and 
u� = (2k+1, 2k) , respectively:

LC,1(v
�, u�) =LC,1(Q3(5H

2
k
),Q3(6H

2
k
)) = LC,1(Q

k
3
(5H

2
k
),Qk

3
(6H

2
k
))

=
(2k+1 − 1 + 2k − 1)2

22k
=

(3 ⋅ 2k − 2)2

22k
= 9 − 3 ⋅ 2−k+2 + 2−2k+2.

Two Adjacent y− ‑ and x+‑Oriented Hilbert Subcurves: 
Slanted‑Diagonal Corners

Analogous to the case of direct-diagonal corners of C1 
in “Two Adjacent y− - and y+-Oriented Hilbert Sub-
curves: Direct-Diagonal Corners”  section, we iden-
tify a grid-point pair at slanted-diagonal corners of the 
subcurve C2 joining Q3(Q3(5H

2
k
)) and Q3(Q2(6H

2
k
)) : 

v� ∈ Q3(Q3(5H
2
k
)) and  u� ∈ Q3(Q2(6H

2
k
)) such  tha t 

LC,1(v
�, u�) = LC,1(Q3(Q3(5H

2
k
)),Q3(Q2(6H

2
k
))).

Lemma 17  For all positive integers k ≥ 3 , and all grid-point 
pairs v ∈ Q2

3
(5H

2
k
) − Q3(Q

2
3
(5H

2
k
)) and u ∈ Q3(Q2(6H

2
k
)) , 

there exists v� ∈ Q3(Q
2
3
(5H

2
k
)) such that (v, u) ≺ (v�, u) via 

the comparison: LC,1(v, u) < LC,1(v
�, u).

Proof  With K denoting the subcurve Q2
3
(5H

2
k
) in the proof, 

the case-analysis based on the quadrant-decomposition of K 
is summarized in the following table. 	�  ◻

v ∈ v
� ∈ v

′-coordinate(s): d1(v, u) < 𝛿
C
(v, u) > d1(v, v

�) ≥ �
C
(v, v�) ≤ ŝ

C,1(v
�, v, u) >

Q
2
(K) Q

3
(K) x(v�) = x(v) d

1
(v�, u) �C(v

�
, u)

Q
1
(K) Q

2
(K) y(v�) = y(v) d

1
(v�, u) �C(v

�
, u)

Q
4
(K) Q

3
(K) (x(v�), y(v�))

= (1, y(v))
10 ⋅ 2

k−2 11

4
⋅ 2

2k−2 2
k−3

2 ⋅ 2
2k−6

6 ⋅ 2
3k−6

> 0

Lemma 18  For all positive integers k and h with 2 ≤ h < k , 
and all grid-point pairs v ∈ Qh

3
(5H

2
k
) − Qh+1

3
(5H

2
k
) and 

u ∈ Q3(Q2(6H
2
k
)) , there exists v� ∈ Qh+1

3
(5H

2
k
) such that 

(v, u) ≺ (v�, u) via the comparison: LC,1(v, u) < LC,1(v
�, u).

Proof  With K denoting the subcurve Qh
3
(5H

2
k
) in the proof, 

the case-analysis based on the quadrant-decomposition of K 
is summarized in the following table. 	�  ◻
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v ∈ v
� ∈ v

′-coordinate(s): d1(v, u) < 𝛿
C
(v, u) > d1(v, v

�) ≥ �
C
(v, v�) ≤ ŝ

C,1(v
�, v, u) >

Q
2
(K) Q

3
(K) x(v�) = x(v) d

1
(v�, u) �C(v

�
, u) 0

Q
1
(K) Q

2
(K) y(v�) = y(v) d

1
(v�, u) �C(v

�
, u) 0

Q
4
(K) Q

3
(K) (x(v�), y(v�))

= (1, y(v))
10 ⋅ 2

k−2 11

4
⋅ 2

2k−2 2
k−h−1

2 ⋅ 2
2k−2h−2

11 ⋅ 2
3k−h−4

−5 ⋅ 23k−2h−2

> 0

Lemma 19  For all positive integers k and h with 2 ≤ h < k , 
and all grid-point pairs v ∈ Qh

3
(5H

2
k
) − Qk

3
(5H

2
k
) and 

u ∈ Q3(Q2(6H
2
k
)) , there exists v� ∈ Qk

3
(5H

2
k
) such that 

(v, u) ≺ (v�, u) via the comparison: LC,1(v, u) < LC,1(v
�, u).

Proof  Similar to the proof of Lemma 4 for L2(H2
k
) in “L2

-Locality of Four Linearly Contiguous Hilbert Subcurves” 
section. 	� ◻

Fig. 6   Candidate representa-
tive grid-point pairs for H2

k
 with 

respect to Lp for k ≥ 2 : a three 
sources {A,B,C} of candidate 
representative grid-point pairs; 
b detailed view of the source C 

(a) (b)

..

.

B

A

C0

C1

Ck−2

C0

C1

C2

Ck−2

Lemma 20  For all positive integers k ≥ 3 , and all grid-point 
pairs v ∈ Qk

3
(5H

2
k
) and u ∈ Q3(Q2(6H

2
k
)) − Q3(Q3(Q2(6H

2
k
))) , 

there exists u� ∈ Q3(Q3(Q2(6H
2
k
))) such that (v, u) ≺ (v, u�) 

via the comparison: LC,1(v, u) < LC,1(v, u
�).

Proof  With K denoting the subcurve Q3(Q2(6H
2
k
)) in the 

proof, the case-analysis based on the quadrant-decomposi-
tion of K is summarized in the following table. 	�  ◻

u ∈ u
� ∈ u

′-coordinate(s): d1(v, u) < 𝛿
C
(v, u) > d1(u, u

�) ≥ �
C
(u, u�) ≤ ŝ

C,1(u
�, u, v) >

Q
2
(K) Q

3
(K) (x(u�), y(u�))

= (x(u), 2k−1)
10 ⋅ 2

k−2 11

4
⋅ 2

2k−2 2
k−3 ≤ 2 ⋅ 2

2k−6
6 ⋅ 2

3k−6

> 0

Q
1
(K) Q

2
(K) (x(u�), y(u�))

= (2k+1, y(u))
10 ⋅ 2

k−2 11

4
⋅ 2

2k−2 2
k−3 ≤ 2 ⋅ 2

2k−6
6 ⋅ 2

3k−6

> 0

Q
4
(K) Q

3
(K) y(u�) = y(u) d

1
(v, u�) �C(v, u

�)

Lemma 21  For all positive integers k and h with 
2 ≤ h < k  ,  and all  grid-point pairs v ∈ Qk

3
(5H

2
k
) 

and u ∈ Qh−1
3

(Q2(6H
2
k
)) − Qh

3
(Q2(6H

2
k
)) ,  there exists 

u� ∈ Qh
3
(Q2(6H

2
k
)) such that (v, u) ≺ (v, u�) via the compari-

son: LC,1(v, u) < LC,1(v, u
�).

Proof  With K denoting the subcurve Qh−1
3

(Q2(6H
2
k
)) in the 

proof, the case-analysis based on the quadrant-decomposi-
tion of K is summarized in the following table. 	�  ◻
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Table 1   Representative grid-point pairs for H2

k
 with respect to Lp for k ∈ {2, 3,… , 16} and p ∈ [1.00, 2.00] with granularity of 0.01

k p (x, y)-Coordinates Representative grid-point pair coordinates in terms of k Source

2 [1.00, 2.00] ((2, 1), (1, 4)) ((2k−1, 1), (1, 2k)) B
3 [1.00, 2.00] ((4, 1), (1, 8)) ((2k−1, 1), (1, 2k)) B
4 [1.00, 1.82] ((8, 1), (1, 16)) ((2k−1, 1), (1, 2k)) B

[1.83, 2.00] ((1, 5), (1, 16)) ((1,
1

4
⋅ 2

k + 1), (1, 2k)) A

5 [1.00, 1.61] ((16, 1), (1, 32)) ((2k−1, 1), (1, 2k)) B
[1.62, 2.00] ((9, 17), (24, 17)) ((

1

4
⋅ 2

k + 1, 2
k−1 + 1), (

3

4
⋅ 2

k
, 2

k−1 + 1)) C
3

6 [1.00, 1.51] ((32, 1), (1, 64)) ((2k−1, 1), (1, 2k)) B
[1.52, 1.55] ((17, 33), (48, 40)) ((

1

4
⋅ 2

k + 1, 2
k−1 + 1), (

3

4
⋅ 2

k
, 2

k−1 + 2
k−3)) C

1

[1.56, 1.60] ((17, 33), (48, 36)) ((
1

4
⋅ 2

k + 1, 2
k−1 + 1), (

3

4
⋅ 2

k
, 2

k−1 + 2
k−4)) C

2

[1.61, 2.00] ((17, 33), (48, 33)) ((
1

4
⋅ 2

k + 1, 2
k−1 + 1), (

3

4
⋅ 2

k
, 2

k−1 + 1)) C
4

7 [1.00, 1.41] ((64, 1), (1, 128)) ((2k−1, 1), (1, 2k)) B
[1.42, 1.57] ((33, 65), (96, 80)) ((

1

4
⋅ 2

k + 1, 2
k−1 + 1), (

3

4
⋅ 2

k
, 2

k−1 + 2
k−3)) C

1

[1.58, 1.66] ((33, 65), (96, 72)) ((
1

4
⋅ 2

k + 1, 2
k−1 + 1), (

3

4
⋅ 2

k
, 2

k−1 + 2
k−4)) C

2

[1.67, 1.67] ((33, 65), (96, 68)) ((
1

4
⋅ 2

k + 1, 2
k−1 + 1), (

3

4
⋅ 2

k
, 2

k−1 + 2
k−5)) C

3

[1.68, 2.00] ((33, 65), (96, 65)) ((
1

4
⋅ 2

k + 1, 2
k−1 + 1), (

3

4
⋅ 2

k
, 2

k−1 + 1)) C
5

8 [1.00, 1.36] ((128, 1), (1, 256)) ((2k−1, 1), (1, 2k)) B
[1.37, 1.57] ((65, 129), (192, 160)) ((

1

4
⋅ 2

k + 1, 2
k−1 + 1), (

3

4
⋅ 2

k
, 2

k−1 + 2
k−3)) C

1

[1.58, 1.68] ((65, 129), (192, 144)) ((
1

4
⋅ 2

k + 1, 2
k−1 + 1), (

3

4
⋅ 2

k
, 2

k−1 + 2
k−4)) C

2

[1.69, 1.72] ((65, 129), (192, 136)) ((
1

4
⋅ 2

k + 1, 2
k−1 + 1), (

3

4
⋅ 2

k
, 2

k−1 + 2
k−5)) C

3

[1.73, 2.00] ((65, 129), (192, 129)) ((
1

4
⋅ 2

k + 1, 2
k−1 + 1), (

3

4
⋅ 2

k
, 2

k−1 + 1)) C
6

9 [1.00, 1.33] ((256, 1), (1, 512)) ((2k−1, 1), (1, 2k)) B
[1.34, 1.58] ((129, 257), (384, 320)) ((

1

4
⋅ 2

k + 1, 2
k−1 + 1), (

3

4
⋅ 2

k
, 2

k−1 + 2
k−3)) C

1

[1.59, 1.69] ((129, 257), (384, 288)) ((
1

4
⋅ 2

k + 1, 2
k−1 + 1), (

3

4
⋅ 2

k
, 2

k−1 + 2
k−4)) C

2

[1.70, 1.75] ((129, 257), (384, 272)) ((
1

4
⋅ 2

k + 1, 2
k−1 + 1), (

3

4
⋅ 2

k
, 2

k−1 + 2
k−5)) C

3

[1.76, 1.77] ((129, 257), (384, 264)) ((
1

4
⋅ 2

k + 1, 2
k−1 + 1), (

3

4
⋅ 2

k
, 2

k−1 + 2
k−6)) C

4

[1.78, 2.00] ((129, 257), (384, 257) ((
1

4
⋅ 2

k + 1, 2
k−1 + 1), (

3

4
⋅ 2

k
, 2

k−1 + 1)) C
7

10 [1.00, 1.32] ((512, 1), (1, 1024)) ((2k−1, 1), (1, 2k)) B
[1.33, 1.58] ((257, 513), (768, 640)) ((

1

4
⋅ 2

k + 1, 2
k−1 + 1), (

3

4
⋅ 2

k
, 2

k−1 + 2
k−3)) C

1

[1.59, 1.70] ((257, 513), (768, 576)) ((
1

4
⋅ 2

k + 1, 2
k−1 + 1), (

3

4
⋅ 2

k
, 2

k−1 + 2
k−4)) C

2

[1.71, 1.76] ((257, 513), (768, 544)) ((
1

4
⋅ 2

k + 1, 2
k−1 + 1), (

3

4
⋅ 2

k
, 2

k−1 + 2
k−5)) C

3

[1.77, 1.79] ((257, 513), (768, 528)) ((
1

4
⋅ 2

k + 1, 2
k−1 + 1), (

3

4
⋅ 2

k
, 2

k−1 + 2
k−6)) C

4

[1.80, 1.80] ((257, 513), (768, 520)) ((
1

4
⋅ 2

k + 1, 2
k−1 + 1), (

3

4
⋅ 2

k
, 2

k−1 + 2
k−7)) C

5

[1.81, 2.00] ((257, 513), (768, 513)) ((
1

4
⋅ 2

k + 1, 2
k−1 + 1), (

3

4
⋅ 2

k
, 2

k−1 + 1)) C
8

11 [1.00, 1.31] ((1024, 1), (1, 2048)) ((2k−1, 1), (1, 2k)) B
[1.32, 1.58] ((513, 1025), (1536, 1280)) ((

1

4
⋅ 2

k + 1, 2
k−1 + 1), (

3

4
⋅ 2

k
, 2

k−1 + 2
k−3)) C

1

[1.59, 1.70] ((513, 1025), (1536, 1152)) ((
1

4
⋅ 2

k + 1, 2
k−1 + 1), (

3

4
⋅ 2

k
, 2

k−1 + 2
k−4)) C

2

[1.71, 1.76] ((513, 1025), (1536, 1088)) ((
1

4
⋅ 2

k + 1, 2
k−1 + 1), (

3

4
⋅ 2

k
, 2

k−1 + 2
k−5)) C

3

[1.77, 1.80] ((513, 1025), (1536, 1056)) ((
1

4
⋅ 2

k + 1, 2
k−1 + 1), (

3

4
⋅ 2

k
, 2

k−1 + 2
k−6)) C

4

[1.81, 1.82] ((513, 1025), (1536, 1040)) ((
1

4
⋅ 2

k + 1, 2
k−1 + 1), (

3

4
⋅ 2

k
, 2

k−1 + 2
k−7)) C

5

[1.83, 2.00] ((513, 1025), (1536, 1025)) ((
1

4
⋅ 2

k + 1, 2
k−1 + 1), (

3

4
⋅ 2

k
, 2

k−1 + 1)) C
9

12 [1.00, 1.31] ((2048, 1), (1, 4096)) ((2k−1, 1), (1, 2k)) B
[1.32, 1.58] ((1025, 2049), (3072, 2560)) ((

1

4
⋅ 2

k + 1, 2
k−1 + 1), (

3

4
⋅ 2

k
, 2

k−1 + 2
k−3)) C

1

[1.59, 1.70] ((1025, 2049), (3072, 2304)) ((
1

4
⋅ 2

k + 1, 2
k−1 + 1), (

3

4
⋅ 2

k
, 2

k−1 + 2
k−4)) C

2

[1.71, 1.77] ((1025, 2049), (3072, 2176)) ((
1

4
⋅ 2

k + 1, 2
k−1 + 1), (

3

4
⋅ 2

k
, 2

k−1 + 2
k−5)) C

3
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Table 1   (continued)

k p (x, y)-Coordinates Representative grid-point pair coordinates in terms of k Source

[1.78, 1.81] ((1025, 2049), (3072, 2112)) ((
1

4
⋅ 2

k + 1, 2
k−1 + 1), (

3

4
⋅ 2

k
, 2

k−1 + 2
k−6)) C

4

[1.82, 1.83] ((1025, 2049), (3072, 2080)) ((
1

4
⋅ 2

k + 1, 2
k−1 + 1), (

3

4
⋅ 2

k
, 2

k−1 + 2
k−7)) C

5

[1.84, 1.84] ((1025, 2049), (3072, 2064)) ((
1

4
⋅ 2

k + 1, 2
k−1 + 1), (

3

4
⋅ 2

k
, 2

k−1 + 2
k−8)) C

6

[1.85, 2.00] ((1025, 2049), (3072, 2049)) ((
1

4
⋅ 2

k + 1, 2
k−1 + 1), (

3

4
⋅ 2

k
, 2

k−1 + 1)) C
10

13 [1.00, 1.30] ((4096, 1), (1, 8192)) ((2k−1, 1), (1, 2k)) B
[1.31, 1.58] ((2049, 4097), (6144, 5120)) ((

1

4
⋅ 2

k + 1, 2
k−1 + 1), (

3

4
⋅ 2

k
, 2

k−1 + 2
k−3)) C

1

[1.59, 1.70] ((2049, 4097), (6144, 4608)) ((
1

4
⋅ 2

k + 1, 2
k−1 + 1), (

3

4
⋅ 2

k
, 2

k−1 + 2
k−4)) C

2

[1.71, 1.77] ((2049, 4097), (6144, 4352)) ((
1

4
⋅ 2

k + 1, 2
k−1 + 1), (

3

4
⋅ 2

k
, 2

k−1 + 2
k−5)) C

3

[1.78, 1.81] ((2049, 4097), (6144, 4224)) ((
1

4
⋅ 2

k + 1, 2
k−1 + 1), (

3

4
⋅ 2

k
, 2

k−1 + 2
k−6)) C

4

[1.82, 1.83] ((2049, 4097), (6144, 4160)) ((
1

4
⋅ 2

k + 1, 2
k−1 + 1), (

3

4
⋅ 2

k
, 2

k−1 + 2
k−7)) C

5

[1.84, 1.85] ((2049, 4097), (6144, 4128)) ((
1

4
⋅ 2

k + 1, 2
k−1 + 1), (

3

4
⋅ 2

k
, 2

k−1 + 2
k−8)) C

6

[1.86, 1.86] ((2049, 4097), (6144, 4112)) ((
1

4
⋅ 2

k + 1, 2
k−1 + 1), (

3

4
⋅ 2

k
, 2

k−1 + 2
k−9)) C

7

[1.87, 2.00] ((2049, 4097), (6144, 4097)) ((
1

4
⋅ 2

k + 1, 2
k−1 + 1), (

3

4
⋅ 2

k
, 2

k−1 + 1)) C
11

14 [1.00, 1.30] ((8192, 1), (1, 16384)) ((2k−1, 1), (1, 2k)) B
[1.31, 1.58] ((4097, 8193), (12288, 10240)) ((

1

4
⋅ 2

k + 1, 2
k−1 + 1), (

3

4
⋅ 2

k
, 2

k−1 + 2
k−3)) C

1

[1.59, 1.70] ((4097, 8193), (12288, 9216)) ((
1

4
⋅ 2

k + 1, 2
k−1 + 1), (

3

4
⋅ 2

k
, 2

k−1 + 2
k−4)) C

2

[1.71, 1.77] ((4097, 8193), (12288, 8704)) ((
1

4
⋅ 2

k + 1, 2
k−1 + 1), (

3

4
⋅ 2

k
, 2

k−1 + 2
k−5)) C

3

[1.78, 1.81] ((4097, 8193), (12288, 8448)) ((
1

4
⋅ 2

k + 1, 2
k−1 + 1), (

3

4
⋅ 2

k
, 2

k−1 + 2
k−6)) C

4

[1.82, 1.84] ((4097, 8193), (12288, 8320)) ((
1

4
⋅ 2

k + 1, 2
k−1 + 1), (

3

4
⋅ 2

k
, 2

k−1 + 2
k−7)) C

5

[1.85, 1.86] ((4097, 8193), (12288, 8256)) ((
1

4
⋅ 2

k + 1, 2
k−1 + 1), (

3

4
⋅ 2

k
, 2

k−1 + 2
k−8)) C

6

[1.87, 1.87] ((4097, 8193), (12288, 8224)) ((
1

4
⋅ 2

k + 1, 2
k−1 + 1), (

3

4
⋅ 2

k
, 2

k−1 + 2
k−9)) C

7

[1.88, 1.88] ((4097, 8193), (12288, 8208)) ((
1

4
⋅ 2

k + 1, 2
k−1 + 1), (

3

4
⋅ 2

k
, 2

k−1 + 2
k−10)) C

8

[1.89, 2.00] ((4097, 8193), (12288, 8193)) ((
1

4
⋅ 2

k + 1, 2
k−1 + 1), (

3

4
⋅ 2

k
, 2

k−1 + 1)) C
12

15 [1.00, 1.30] ((16384, 1), (1, 32768)) ((2k−1, 1), (1, 2k)) B
[1.31, 1.58] ((8193, 16385), (24576, 20480)) ((

1

4
⋅ 2

k + 1, 2
k−1 + 1), (

3

4
⋅ 2

k
, 2

k−1 + 2
k−3)) C

1

[1.59, 1.70] ((8193, 16385), (24576, 18432)) ((
1

4
⋅ 2

k + 1, 2
k−1 + 1), (

3

4
⋅ 2

k
, 2

k−1 + 2
k−4)) C

2

[1.71, 1.77] ((8193, 16385), (24576, 17408)) ((
1

4
⋅ 2

k + 1, 2
k−1 + 1), (

3

4
⋅ 2

k
, 2

k−1 + 2
k−5)) C

3

[1.78, 1.81] ((8193, 16385), (24576, 16896)) ((
1

4
⋅ 2

k + 1, 2
k−1 + 1), (

3

4
⋅ 2

k
, 2

k−1 + 2
k−6)) C

4

[1.82, 1.84] ((8193, 16385), (24576, 16640)) ((
1

4
⋅ 2

k + 1, 2
k−1 + 1), (

3

4
⋅ 2

k
, 2

k−1 + 2
k−7)) C

5

[1.85, 1.86] ((8193, 16385), (24576, 16512)) ((
1

4
⋅ 2

k + 1, 2
k−1 + 1), (

3

4
⋅ 2

k
, 2

k−1 + 2
k−8)) C

6

[1.87, 1.87] ((8193, 16385), (24576, 16448)) ((
1

4
⋅ 2

k + 1, 2
k−1 + 1), (

3

4
⋅ 2

k
, 2

k−1 + 2
k−9)) C

7

[1.88, 1.88] ((8193, 16385), (24576, 16416)) ((
1

4
⋅ 2

k + 1, 2
k−1 + 1), (

3

4
⋅ 2

k
, 2

k−1 + 2
k−10)) C

8

[1.89, 1.89] ((8193, 16385), (24576, 16400)) ((
1

4
⋅ 2

k + 1, 2
k−1 + 1), (

3

4
⋅ 2

k
, 2

k−1 + 2
k−11)) C

9

[1.90, 2.00] ((8193, 16385), (24576, 16385)) ((
1

4
⋅ 2

k + 1, 2
k−1 + 1), (

3

4
⋅ 2

k
, 2

k−1 + 1)) C
13

16 [1.00, 1.30] ((32768, 1), (1, 65536)) ((2k−1, 1), (1, 2k)) B
[1.31, 1.58] ((16385, 32769), (49152, 40960)) ((

1

4
⋅ 2

k + 1, 2
k−1 + 1), (

3

4
⋅ 2

k
, 2

k−1 + 2
k−3)) C

1

[1.59, 1.70] ((16385, 32769), (49152, 36864)) ((
1

4
⋅ 2

k + 1, 2
k−1 + 1), (

3

4
⋅ 2

k
, 2

k−1 + 2
k−4)) C

2

[1.71, 1.77] ((16385, 32769), (49152, 34816)) ((
1

4
⋅ 2

k + 1, 2
k−1 + 1), (

3

4
⋅ 2

k
, 2

k−1 + 2
k−5)) C

3

[1.78, 1.81] ((16385, 32769), (49152, 33792)) ((
1

4
⋅ 2

k + 1, 2
k−1 + 1), (

3

4
⋅ 2

k
, 2

k−1 + 2
k−6)) C

4

[1.82, 1.84] ((16385, 32769), (49152, 33280)) ((
1

4
⋅ 2

k + 1, 2
k−1 + 1), (

3

4
⋅ 2

k
, 2

k−1 + 2
k−7)) C

5

[1.85, 1.86] ((16385, 32769), (49152, 33024)) ((
1

4
⋅ 2

k + 1, 2
k−1 + 1), (

3

4
⋅ 2

k
, 2

k−1 + 2
k−8)) C

6

[1.87, 1.87] ((16385, 32769), (49152, 32896)) ((
1

4
⋅ 2

k + 1, 2
k−1 + 1), (

3

4
⋅ 2

k
, 2

k−1 + 2
k−9)) C

7

[1.88, 1.89] ((16385, 32769), (49152, 32832)) ((
1

4
⋅ 2

k + 1, 2
k−1 + 1), (

3

4
⋅ 2

k
, 2

k−1 + 2
k−10)) C

8

[1.90, 1.90] ((16385, 32769), (49152, 32784)) ((
1

4
⋅ 2

k + 1, 2
k−1 + 1), (

3

4
⋅ 2

k
, 2

k−1 + 2
k−12)) C

10
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u ∈ u
� ∈ u

′-coordinate(s): d1(v, u) < 𝛿
C
(v, u) > d1(u, u

�) ≥ �
C
(u, u�) ≤ ŝ

C,1(u
�, u, v) >

Q
2
(K) Q

3
(K) (x(u�), y(u�))

= (x(u), 2k−1)
10 ⋅ 2

k−2 11

4
⋅ 2

2k−2 2
k−h−1

2 ⋅ 2
2k−2h−2

11 ⋅ 2
3k−h−4

−5 ⋅ 23k−2h−2

> 0

Q
1
(K) Q

2
(K) (x(u�), y(u�))

= (2k+1, y(u))
10 ⋅ 2

k−2 11

4
⋅ 2

2k−2 2
k−h−1

2 ⋅ 2
2k−2h−2

11 ⋅ 2
3k−h−4

−5 ⋅ 23k−2h−2

> 0

Q
4
(K) Q

3
(K) y(u�) = y(u) d

1
(v, u�) �C(v, u

�)

Table 1   (continued)

k p (x, y)-Coordinates Representative grid-point pair coordinates in terms of k Source

[1.91, 2.00] ((16385, 32769), (49152, 32769)) ((
1

4
⋅ 2

k + 1, 2
k−1 + 1), (

3

4
⋅ 2

k
, 2

k−1 + 1)) C
14

Fig. 7   Locality measures 
corresponding to the grid-
point pairs in: a A, B, and 
C = {C2} for k = 4 and 
p-granularity of 0.01; b B 
and C = {Ct ∣ 1 ≤ t ≤ k − 2} 
for k = 12 and p-granu-
larity of 0.01; c, d B and 
C = {Ct ∣ 1 ≤ t ≤ k − 2} for 
k = 16 and p-granularity of 0.01

(a) (b)

(c) (d)
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Lemma 22  For all positive integers k and h with 
2 ≤ h < k , and all grid-point pairs v ∈ Qk

3
(5H

2
k
) and 

u ∈ Qh−1
3

(Q2(6H
2
k
)) − Qk−1

3
(Q2(6H

2
k
))  ,  t h e r e  e x i s t s 

u� ∈ Qk−1
3

(Q2(6H
2
k
)) such that (v, u) ≺ (v, u�) via the com-

parison: LC,1(v, u) < LC,1(v, u
�).

Proof  Similar to the proof of Lemma 4 for L2(H2
k
) in “L2

-Locality of Four Linearly Contiguous Hilbert Subcurves” 
section. 	� ◻

The  s ix  l emmas  (Lemmas   17–22)  i den -
tify the unique representative gr id-point pair 
(v�, u�) ∈ Qk

3
(5H

2
k
) × Qk−1

3
(Q2(6H

2
k
)) that maximizes the LC,1

-value for the subcurve C2 (joining the slanted-diagonal 
corners Q3(Q3(5H

2
k
)) and Q3(Q2(6H

2
k
)) Hilbert subcurves) — 

with (v�, u�) residing at the lower-left and middle-right cor-
ners of C2 with coordinates v� = (1, 1) and u� = (2k+1, 2k−1) , 
respectively:

Two Adjacent y− ‑ and x+‑Oriented Hilbert Subcurves: 
Direct‑ and Slanted‑Diagonal Corners

Figure 5b illustrates the labeled arrangement in Cartesian 
coordinates of a subcurve C′ that is composed of two adja-
cent H2

k
-subcurves: the left 7H2

k
 ( y−-oriented) and the right 

8H
2
k
 ( x+-oriented). Through translation and symmetry (with 

respect to the 1-normed metric d1 and the index-difference 
functions �C/�C′ ), the treatments in locating candidate repre-
sentative grid-point pairs for C′ are equivalent to those for C 
in the two cases C1 (in “Two Adjacent y− - and y+-Oriented 
Hilbert Subcurves: Direct-Diagonal Corners” section) and 
C2 (in “Two Adjacent y− - and x+-Oriented Hilbert Sub-
curves: Slanted-Diagonal Corners” section), which result 
in the following Lemmas 23 and 24, respectively.

Lemma 23  For all positive integers k ≥ 2 , and all grid-point 
pairs  (v, u) ∈ Q3(7H

2
k
) × Q3(8H

2
k
) − Qk

3
(7H

2
k
) × Qk

3
(8H

2
k
) , 

there exist v� ∈ Qk
3
(7H

2
k
) and u� ∈ Qk

3
(8H

2
k
) such that 

(v, u) ≺ (v�, u�) via the comparison: LC�,1(v, u) < LC�,1(v
�, u�).

Lemma 23 now yields the unique representative grid-
point pair (v�, u�) ∈ Qk

3
(7H

2
k
) × Qk

3
(8H

2
k
) that maximizes the 

LC′,1-value for the subcurve C′
1
 joining the direct-diagonal 

corners Q3(7H
2
k
) and Q3(8H

2
k
) Hilbert subcurves — with 

(v�, u�) residing at the lower-left and upper-right corners of C′
1
 

with coordinates v� = (1, 1) and u� = (2k+1, 2k) , respectively:

Lemma 24  For all positive integers k ≥ 3 , and all grid-point 
pa i rs  (v, u) ∈ Q3(Q3(7H

2

k
)) × Q3(Q2(8H

2

k
)) − Q

k

3
(7H

2

k
) × Q

k−1
3

(Q2(8H
2

k
))  , 

there exist v� ∈ Qk
3
(7H

2
k
) and u� ∈ Qk−1

3
(Q2(8H

2
k
)) such that 

(v, u) ≺ (v�, u�) via the comparison: LC,1(v, u) < LC,1(v
�, u�).

Lemma 24 now yields the unique representative grid-
point pair (v�, u�) ∈ Qk

3
(7H

2
k
) × Qk−1

3
(Q2(8H

2
k
)) that maxi-

mizes the LC′,1-value for the subcurve C′
2
 joining the 

LC,1(v
�, u�) =LC,1(Q3(Q3(5H

2
k
)),Q3(Q2(6H

2
k
)))

=LC,1(Q
k
3
(5H

2
k
),Qk−1

3
(Q2(6H

2
k
)))

=
(2k+1 − 1 + 2k−1 − 1)2

3 ⋅ 22k−2
=

(
5

2
⋅ 2k − 2)2

3 ⋅ 22k−2

=
25

3
−

5

3
⋅ 2−k+3 +

1

3
⋅ 2−2k+4.

L
C�,1(v

�
, u

�) = L
C�,1(Q3(7H

2

k
),Q3(8H

2

k
))

= L
C�,1(Q

k

3
(7H

2

k
),Qk

3
(8H

2

k
))

=
(2k+1 − 1 + 2k − 1)2

22k

=
(3 ⋅ 2k − 2)2

22k
= 9 − 3 ⋅ 2

−k+2 + 2
−2k+2

.

Table 2   For selected k-values k ∈ {12, 16} : enumeration of intersec-
tions in p ∈ (1, 2) of two functions LH2

k
,p(v, u) for (v, u) in B versus C1 

and Ci versus Cj for some i < j in {1, 2,… , k − 2} , which yield con-
secutive p-subintervals ( [1, p1], [p1, p2],… ) partitioning [1,  2] with 
their dominant grid-point pairs

k = 12 k = 16

Two sources Intersection (in p) Two sources Intersection (in p)

B,C
1

p
1
= 1.308506668 B,C

1
p
1
= 1.308144712

C
1
,C

2
p
2
= 1.584954815 C

1
,C

2
p
2
= 1.585292219

C
2
,C

3
p
3
= 1.704624651 C

2
,C

3
p
3
= 1.705738029

C
3
,C

4
p
4
= 1.770094088 C

3
,C

4
p
4
= 1.772316180

C
4
,C

5
p
5
= 1.810228346 C

4
,C

5
p
5
= 1.814308770

C
5
,C

6
p
6
= 1.835689535 C

5
,C

6
p
6
= 1.843073443

C
6
,C

7
1.850364304 C

6
,C

7
p
7
= 1.863837864

C
7
,C

8
1.854042783 C

7
,C

8
p
8
= 1.879247199

C
8
,C

9
1.840799205 C

8
,C

9
1.890629924

C
9
,C

10
1.780373868 C

9
,C

10
1.898437578

C
10
,C

11
1.902231935

C
6
,C

10
p
6
= 1.849641746 C

11
,C

12
1.900104562

C
7
,C

10
1.847782860 C

12
,C

13
1.886347004

C
8
,C

10
1.829317612 C

13
,C

14
1.835908289

C
9
,C

10
1.780373868

C
8
,C

10
p
9
= 1.892362171

C
9
,C

10
1.898437578

C
10
,C

14
p
10

= 1.900238177

C
11
,C

14
1.894655955

C
12
,C

14
1.877334050

C
13
,C

14
1.835908289



SN Computer Science (2021) 2:403	 Page 23 of 26  403

SN Computer Science

direct-slanted corners Q3(Q3(7H
2
k
)) and Q3(Q2(8H

2
k
)) Hil-

bert subcurves — with (v�, u�) residing at the lower-left and 
upper-middle corners of C′

2
 with coordinates v� = (1, 1) and 

u� = (
3

2
⋅ 2k, 2k) , respectively:

Representative Grid‑Point Pairs for L
1
(H2

k
)

We follow a uniform approach to identifying all repre-
sentative grid-point pairs that realize the L1(H2

k
)-values for 

p ∈ {1, 2} , and obtain the same matching lower and upper 
bounds for L1(H2

k
) in [10, 28], respectively: for all k ≥ 2,

LC�,1(v
�, u�) =LC�,1(Q3(Q3(7H

2
k
)),Q3(Q2(8H

2
k
)))

=LC�,1(Q
k
3
(7H

2
k
),Qk−1

3
(Q2(8H

2
k
)))

=
(2k+1 − 1 + 2k−1 − 1)2

3 ⋅ 22k−2
=

(
5

2
⋅ 2k − 2)2

3 ⋅ 22k−2

=
25

3
−

5

3
⋅ 2−k+3 +

1

3
⋅ 2−2k+4.

The refined subpath-containment analysis in establishing 
L1(H

2
k
) developed above suffices us to consider three cases 

(Cases 1, 6.4, and 5.4) whose locality analyses are studied 
in “Two Adjacent y− - and y+-Oriented Hilbert Subcurves: 
Direct-Diagonal Corners”–“Two Adjacent y− - and x+-Ori-
ented Hilbert Subcurves: Direct- and Slanted-Diagonal Cor-
ners" sections, and we summarize their results with an exact 
formula for L1(H2

k
) below.

Theorem 4  For all positive integers k ≥ 2,

Proof  The locality analyses of the three cases: Cases 1, 6.4, 
and 5.4 (introduced in “Exact Formula for L1(H2

k
)” section) 

in the refined subpath-containment analysis produce two 
candidate maximum Δ

2

l
-value (from four sources):

L1(H
2
k
) =

(3 ⋅ 2k−1 − 2)2

4k−1
.

L1(H
2
k
) = 9 − 3 ⋅ 2−k+3 + 2−2k+4.

1. L
C,1(Q3(5H

2
�
),Q3(6H

2
�
)) = L

C,1(Q
�

3
(5H

2
�
),Q�

3
(6H

2
�
))

= L
C,1((1, 1), (2

�+1, 2�))

= 9 − 3 ⋅ 2−�+2 + 2−2�+2

−− maximum possible �-value is k − 2 (embedded in H2
k
);

2. L
C,1(Q3(Q3(5H

2
�
)),Q3(Q2(6H

2
�
))) = L

C,1(Q
�

3
(5H

2
�
),Q�−1

3
(Q2(6H

2
�
)))

= L
C,1((1, 1), (2

�+1, 2�−1))

=
25

3
−

5

3
⋅ 2−�+3 +

1

3
⋅ 2−2�+4

−− maximum possible �-value is k − 2 (embedded in H2
k
);

3. L
C�,1(Q3(7H

2
�
),Q3(8H

2
�
)) = L

C�,1(Q
�

3
(7H

2
�
),Q�

3
(8H

2
�
))

= L
C�,1((1, 1), (2

�+1, 2�))

= 9 − 3 ⋅ 2−�+2 + 2−2�+2

−− maximum possible �-value is k − 1 (embedded in H2
k
); and

4. L
C�,1(Q3(Q3(7H

2
�
)),Q3(Q2(8H

2
�
))) = L

C�,1(Q
�

3
(7H

2
�
),Q�−1

3
(Q2(8H

2
�
)))

= L
C�,1((1, 1), (

3

2
⋅ 2� , 2�))

=
25

3
−

5

3
⋅ 2−�+3 +

1

3
⋅ 2−2�+4

−− maximum possible �-value is k − 1 (embedded in H2
k
).
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Note  tha t  both  f1(�) = 9 − 3 ⋅ 2−�+2 + 2−2�+2  and 
f2(�) =

25

3
−

5

3
⋅ 2−�+3 +

1

3
⋅ 2−2�+4 are strictly increasing in 

� ≥ 0 ; therefore, f1 and f2 attain their maximum value at 
� = k − 1 with

Observe that, for all positive integers k, f1(k − 1) > f2(k − 1) , 
hence the maximum Δ

2

l
-value assumes the value of f1(k − 1) . 

When k = 8 , we have 9 − 3 ⋅ 2−k+3 + 2−2k+4 > 8.906 , which 
is greater than all the upper bounds on Δ

2

l
-value in the above 

refined analyses for Case 5.4. For 2 ≤ k ≤ 7 , exhaustive 
searches for representative grid-point pairs of H2

k
 show that 

L1(H
2
k
) = 9 − 3 ⋅ 2−k+3 + 2−2k+4 for each k ∈ {2, 3,… , 7} ; 

and this completes the theorem. 	�  ◻

For an x+-oriented Hilbert curve H2
k
 with �1(H2

k
) = (1, 1) , 

where k ≥ 2 , the two representative grid-point pairs for 
H2

k
 with respect to L1 reside at: (1) Qk−1

2
(Q1(H

2
k
)) × Qk

2
(H2

k
) 

with coordinates ((2k−1, 1), (1, 2k)) , and (2) their sym-
m et r y  Qk

3
(H2

k
) × Qk−1

3
(Q4(H

2
k
))  w i t h  c o o r d i n a t e s 

((2k, 2k), (2k−1 + 1, 1)).

Empirical Study on Lp(H2

k
) with p ∈ [1, 2]

To complement the analytical results for Lp(H2
k
) for all reals 

p = 1 and p ≥ 2 , we conduct an empirical study on Lp(H2
k
) 

for all k ∈ {2, 3,… , 16} and a discrete spectrum of real val-
ues of p ∈ [1, 2] . With respect to the canonical orientation of 
H2

k
 shown in Fig. 2a, we cover the two-dimensional order-k 

grid space [2k]2 of H2
k
 in Cartesian coordinates: 2k columns 

(respectively, rows) indexed by x-coordinates (respectively, 
y-coordinates) 1, 2,… , 2k . The exhaustive verification 
requires a two-dimensional 216 × 216 array in main memory. 
The implementation is in C-language, and is available upon 
request from the authors.

For every grid-order k ∈ {2, 3,… , 16} and real p ∈ [1, 2] 
with granularity of 0.01 (for 2 ≤ k ≤ 16 ), we locate with 
computer programs all representative pairs of grid points for 
H2

k
 with respect to Lp . Fig. 6a illustrates the three sources 

{A,B,C} of candidate representative grid-point pairs for 
k ≥ 2 , which are elaborated below: 

1.	 Source  A  iden t i f i e s  t he  g r id -po in t  pa i r 
(vA, uA) = ((1,

1

4
⋅ 2k + 1), (1, 2k)) and its symmetry-pair. 

The pair (vA, uA) serves as the representative grid-point 
pair “briefly” — for k = 4 and 1.83 ≤ p ≤ 2.00.

f1(k − 1) = 9 − 3 ⋅ 2−k+3 + 2−2k+4, and

f2(k − 1) =
25

3
−

5

3
⋅ 2−k+4 +

1

3
⋅ 2−2k+6.

2.	 Source  B  iden t i f i e s  t he  g r id -po in t  pa i r 
(vB, uB) = ((2k−1, 1), (1, 2k)) and its symmetry-pair. The 
pair (vB, uB) serves as the representative grid-point pair 
for every k ∈ {2, 3,… , 16} and all reals p of a (shrink-
ing) prefix-interval [1, 𝜌k) ⊆ [1, 2] — where, empirically, 
�k decreases and stabilizes as k increases in {2, 3,… , 12} 
and in {13, 14, 15, 16} , respectively.

3.	 Source C identifies a sequence (C1,C2,… ,Ck−2) of grid-
point pairs: 

 for t = 1, 2,… , k − 2 , and their symmetry-pairs, with 

 and eventually uCt
 converges to uCk−2

.
	   Note that,  for t = 0 ,  the gr id-point pair 

C0 = (v
C0
, u

C0
) = ((

1

4
⋅ 2k + 1, 2k−1 + 1), (

3

4
⋅ 2k , 2k−1 + 2k−2)) is  not 

included in C since C0 can not be a candidate representa-
tive grid-point pair (for any k and real p ∈ [1, 2] ): 

Empirically, for all k ∈ {5, 6,… , 16} and all reals p in the 
(growing and stabilized) suffix-interval (𝜌k, 2] ⊆ [1, 2] , all 
the representative grid-point pairs form a subsequence C′ of 
C composed of: (1) a prefix of C and (2) isolated grid-point 
pair(s) of C including (vCk−2

, uCk−2
) . The suffix-interval (�k, 2] 

is partitioned into disjoint successive p-subintervals, each of 
which supports a grid-point pair in the subsequence C′ as the 
representative grid-point pair for Lp(H2

k
) (for all reals p of the 

subinterval). The length of C′ (number of all representative 
grid-point pairs from the source C) should depend on k in 
general, and on the p-granularity in our empirical setting. 
Figure 6b depicts the sequence of candidate representative 
grid-point pairs from the source C.

Table 1 tabulates the following statistics: (1) for each 
k ∈ {2, 3,… , 16} , the partitioning p-subintervals of [1, 2], 
and the corresponding representative grid-point pair and its 
source; and (2) LH2

k
,p(v, u) ( = Lp(H

2
k
) ) for a representative 

grid-point pair (v, u) in the three sources A, B, and C:

C
t
= (v

C
t
, u

C
t
) = ((

1

4
⋅ 2

k + 1, 2
k−1 + 1), (

3

4
⋅ 2

k
, 2

k−1 + 2
k−2−t)),

x(uCt+1
) = x(uCt

), and

y(uCt+1
) − 2k−1 =

y(uCt
) − 2k−1

2

LH2
k
,p(vB, uB) =

((2k−1 − 1)p + (2k − 1)p)
2

p

22k−2

> LH2
k
,p(vC0

, uC0
) =

((2k−1 − 1)p + (2k−2 − 1)p)
2

p

1

3
⋅ 22k−3 +

1

3
⋅ 22k−4

.
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Figure 7a–d shows the graphs, using the mathematical 
software Maple, of the locality measure LH2

k
,p(v, u) for 

selected grid-order k-values: k ∈ {4, 12, 16} , respectively, 
for all reals p ∈ [1, 2] and all (v, u) in the three sources A, B, 
and C. Our future work will involve determining, for each k, 
the dominant functions/measures over successive subinter-
vals of [1, 2], whose piece-wise combination yields the 
(overall) locality measure Lp(H2

k
) for all reals p ∈ [1, 2].

For selected grid-order k-values: k ∈ {4, 12, 16} , we elab-
orate below the empirical statistics that relate the p-subin-
tervals partitioning [1, 2] to their dominant grid-point pairs 
— subject to the underlying p-granularity and numerical 
approximation: 

1.	 For the extreme case of k = 4 with p-granularity of 
0.01, two representative grid-point pairs emerge from 
the sources B and A over the partitioning subintervals 
[1.00, 1.82] and [1.83, 2.00], respectively.

2.	 For the case of k = 12 with p-granularity of 0.01, the 
representative grid-point pairs are from the sources B 
and C over the partitioning subintervals [1.00, 1.31] 
and [1.32, 2.00], respectively. Observe that the sub-
sequence C′ of all representative grid-point pairs 
(from the source C = {Ct ∣ 1 ≤ t ≤ 10} ) is the prefix 
{C1,C2,C3,C4,C5,C6} of C with the isolated grid-point 
pair C10.

	   To highlight the consecutive p-subintervals 
( [1, p1], [p1, p2],… ) partitioning [1, 2] with their domi-
nant grid-point pairs, we tabulate in Table 2 the intersec-
tions (in p ∈ (1, 2) ) of two functions LH2

k
,p(v, u) for: (1) 

(v, u) in B × C1 , and Ct × Ct+1 for t ∈ {1, 2,… , 9} , and 
(2) (v, u) in C6 × C10 , C7 × C10 , C8 × C10 , and C9 × C10.

	   The seven intersections p1, p2,… , p7 correspond to 
seven p-subintervals: 

 dominated by B,C1,… ,C6 , respectively — as shown in 
Table 1. The consideration of the remaining intersec-
tions in the tabulation and the monotonicity of the 
underlying LH2

k
,p-functions indicates the dominance of 

C10 over the last p-subinterval [1.85, 2.00].
3.	 For the case of k = 16 with p-granularity of 0.01, 

the representative grid-point pairs are from the 

LH2
k
,p(v, u) =

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

(3⋅2k−2−1)2

5

3
⋅22k−4+

1

3

if (v, u)is in A

((2k−1−1)p+(2k−1)p)
2
p

22k−2
if (v, u) is in B

((2k−1−1)p+(2k−2−t−1)p)
2
p

1

3
⋅22k−3+

1

3
⋅22k−4−2t

if (v, u) = (vCt
, uCt

) in C,

where t = 1, 2,… , k − 2.

[1.00, 1.31], [1.32, 1.58],… , [1.84, 1.84]

sources B and C over the partitioning subintervals 
[1.00,  1.30] and [1.31,  2.00], respectively. Analo-
gous to the case of k = 12 subject to the underly-
ing p-granularity and numerical approximation, the 
subsequence C′ of all representative grid-point pairs 
(from the source C = {Ct ∣ 1 ≤ t ≤ 14} ) is the prefix 
{C1,C2,C3,C4,C5,C6,C7,C8} of C with the isolated 
grid-point pairs C10 and C14 . We also tabulate similar 
statistics in Table 2 for the consecutive intersections that 
yield the p-subintervals ( [1, p1], [p1, p2],… ) partitioning 
[1, 2] with their dominant grid-point pairs.

Conclusion

Our analytical study of the locality properties of the Hilbert 
curve family, {H2

k
∣ k = 1, 2,…} , is based on the locality 

measure Lp , which is the maximum ratio of dp(v, u)m to 
dp(ṽ, ũ) over all corresponding grid-point pairs (v, u) and 
(ṽ, ũ) in the m-dimensional grid space and index space, 
respectively. Our analytical results close the gaps between 
the current best lower and upper bounds with exact formulas 
for norm-parameter p ∈ {1, 2} , and extend to all reals p ≥ 2 . 
In addition, we identify all the representative grid-point pairs 
(which realize Lp(H2

k
) ) for p = 1 and all reals p ≥ 2 . We also 

verify the results with computer programs over various 
p-values ( p ∈ {1, 2, 3} ) and grid-orders ( k ∈ {4, 5,… , 10} ). 
For all real norm-parameters p ∈ [1, 2] with sufficiently 
small granularity and grid-orders k ∈ {2, 3,… , 16} , our 
empirical study reveals the three major sources (A, B, and 
C) of representative grid-point pairs (v,  u) that give 
LH2

k
,p(v, u) = Lp(H

2
k
) . The empirical results also suggest that, 

subject to the underlying p-granularity and numerical 
approximation, all the representative grid-point pairs of B 
and C are from B and C′ , which is a prefix-subsequence of 
C together with some isolated grid-point pair(s) of C includ-
ing Ck−2 for some sufficiently large grid-orders 
k ∈ {5, 6,… , 16} . The study will shed some light on an ana-
lytical study for determining the exact formulas for Lp(H2

k
) 

for all reals p ∈ (1, 2) and/or in arbitrary dimensions.
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