
Vol.:(0123456789)

SN Computer Science (2021) 2:351
https://doi.org/10.1007/s42979-021-00684-8

SN Computer Science

ORIGINAL RESEARCH

Extended Authorization Policy for Graph‑Structured Data

Aya Mohamed1,2  · Dagmar Auer1,2  · Daniel Hofer1,2  · Josef Küng1,2

Received: 22 March 2021 / Accepted: 6 May 2021 / Published online: 22 June 2021
© The Author(s) 2021

Abstract
The high increase in the use of graph databases also for business- and privacy-critical applications demands for a sophisti-
cated, flexible, fine-grained authorization and access control (AC) approach. Attribute-based access control (ABAC) supports
a fine-grained definition of authorization rules and policies. Attributes can be associated with the subject, the requested
resource and action, but also the environment. Thus, this is a promising starting point. However, specific characteristics of
graph-structured data, such as attributes on vertices and edges along a path from a given subject to the resource to be accessed,
are not yet considered. The well-established eXtensible Access Control Markup Language (XACML), which defines a
declarative language for fine-grained, attribute-based authorization policies, is the basis for our proposed approach—XACML
for Graph-structured data (XACML4G). The additional path-specific constraints, described in graph patterns, demand for
specialized processing of the rules and policies as well as adapted enforcement and decision-making in the access control
process. To demonstrate XACML4G and its enforcement process, we present a scenario from the university domain. Due to
the project’s environment, the prototype is built with the multi-model database ArangoDB. Finally, compliance of XACML4G
with quality standards for access control systems administration and enforcement is assessed. The results are promising and
further studies concerning performance and use in practice are planned.

Keywords  Authorization policy · Access control · ABAC · XACML · Graph database · ArangoDB

Introduction

The amount of data in IT systems is still growing exponen-
tially. Besides the amount, the value of data is increasing
as well [1]. Enterprises, public services, public and private

organizations as well as individuals are highly interested not
to risk this value—more than that lost or stolen data could
be used for harmful and damaging activities. Consequently,
data must be protected and access to data must be controlled.
This control has to be as close as possible to the data itself,
with no bypassing options.

More and more data are stored in graph databases today.
Because of their natural and direct support of connected
data objects (e.g., identity and access management, social
networks, and recommendation systems) and the increasing
expectations in knowledge graphs, graph databases are con-
sidered to have the potential to replace the existing relational
market by 2030 [2].

As graph databases are continuously entering business-
and privacy-critical application domains, flexible authoriza-
tion and fine-grained access control (AC) are increasingly
necessary. For now, established graph database systems
such as Neo4j [3] or multi-model database systems such as
Microsoft Azure Cosmos DB [4] and ArangoDB [5] provide
role-based access control (RBAC), which is not sufficient for
our demands to apply fine-grained constraints on vertices
and edges.

This article is part of the topical collection “Future Data and
Security Engineering 2020” guest edited by Tran Khanh Dang.

 *	 Aya Mohamed
	 aya.mohamed@jku.at

	 Dagmar Auer
	 dagmar.auer@jku.at

	 Daniel Hofer
	 daniel.hofer@jku.at

	 Josef Küng
	 josef.kueng@jku.at

1	 Institute for Application‑Oriented Knowledge Processing
(FAW), Johannes Kepler University Linz (JKU), Linz,
Austria

2	 LIT Secure and Correct Systems Lab, Linz Institute
of Technology (LIT), Johannes Kepler University Linz
(JKU), Linz, Austria

http://orcid.org/0000-0001-8972-6251
https://orcid.org/0000-0001-5094-2248
http://orcid.org/0000-0003-0310-1942
http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-021-00684-8&domain=pdf

	 SN Computer Science (2021) 2:351351  Page 2 of 18

SN Computer Science

By now, authorization policies and access control mecha-
nisms that support graph characteristics such as patterns on
access paths are still missing. Therefore, access control in
graph databases needs to be enhanced.

This work provides a solution for access control in graph
databases from policy specification to enforcement of the
proposed authorization policy language in graph databases
based on the eXtensible Access Control Markup Language
(XACML). This solution is demonstrated in a proof of con-
cept prototype and analyzed based on quality assessment
measures introduced by the National Institute of Standards
and Technology (NIST). Specifically, the contributions of
our work are the following:

1.	 The eXtensible Access Control Markup Language for
Graph-structured data (XACML4G), a policy language
based on the XACML structure (described in the JSON
format) for expressing authorization policies for graph-
structured data. XACML4G allows to describe patterns
in terms of constraints on vertices and edges.

2.	 An initial implementation to enforce XACML4G in the
data layer.

3.	 A proof of concept prototype in the university domain,
i.e., professors, students and courses.

4.	 An assessment of XACML4G administration and
enforcement using the National Institute of Standards
and Technology (NIST) standard quality metrics for
access control systems. The assessed properties are clas-
sified according to their importance (critical, optional,
and supplementary) for our use case.

The rest of the paper is structured as follows. The next sec-
tion provides details concerning access control models, espe-
cially attribute-based access control and the well-established
policy language XACML and its architecture. They are the
basis for the authorization and access control approach for
graph databases developed within our research presented in
the following section. The proposed policy definition lan-
guage, XACML4G, and the enforcement process are dem-
onstrated by a proof of concept prototype in the university
domain in the next section. An assessment for XACML4G is
presented in the following section with respect to the admin-
istration and enforcement quality metrics of access control
systems from NIST. The paper concludes with a summary
and an outlook on future work in the last section.

Related Work

The focus of our work is on highly flexible, fine-grained
authorization policies for graph-structured data and their
enforcement in a graph database. As authorization poli-
cies are an established means to allow for flexibility and

separation of concerns, policies are one of the driving forces
for including the following approaches into this discussion.
An authorization policy defines the regulations, which deter-
mine whether a requested access can be granted or not. Poli-
cies are applied in the access decision-making during the
enforcement process.

Regarding graph databases, we do not go into details
here. For the basic concept, it is sufficient to consider a
graph as a set of vertices which can be related in pairs to
each other by edges. Both vertices and edges are distinct
entities with attributes. When traversing a graph, a certain
path is paced [6].

In the following, we concentrate on potentially suitable
authorization models such as attribute-based access control
(ABAC) and relation-based access control (ReBAC) before
discussing the eXtensible Access Control Markup Language
(XACML) that provides a policy definition language, along
with the architecture and processing model for handling
access requests.

Authorization Models

Due to the focus on graph-structured data, the flexible
ABAC model and the ReBAC model, which specializes in
relationships, are studied in more detail.

Attribute‑Based Access Control (ABAC)

The attribute-based access control is a flexible authorization
model, based not only on arbitrary attributes of the subject
(i.e., the user) and the requested resource, but also on action
attributes and environmental conditions (e.g., time, device,
location). It allows for fine-grained definition of access
rights as rules. Access is granted or denied by evaluating
the attributes against these authorization rules. No relation-
ship between subject and resource is needed. The rules are
typically defined in policies. Thus, ABAC is often charac-
terized as policy-based. Defining and managing the poli-
cies independently from the application, i.e., externalizing
authorization, makes it much easier to coordinate access
rights with dynamically evolving IT systems and authoriza-
tion scenarios [7, 8].

Even though ABAC is more complex than many other
authorization models, it is considered to be the most robust,
scalable and flexible one in practice. Compared with the
widely spread RBAC model [9], it not only avoids a huge
number of difficult to manage roles, but especially problems
due to overlapping roles with contradicting access right defi-
nitions. For example, if students are also teaching assistants,
they are allowed to edit student’s grades, but are not allowed
to edit their own ones. With RBAC, these students cannot be
denied to edit their own grades. However, ABAC supports
such ownership scenarios [10].

SN Computer Science (2021) 2:351	 Page 3 of 18  351

SN Computer Science

With ABAC, relationships between the subject, resource,
action, and environment can be flexibly defined. Therefore,
ABAC is well suited for the flexible, fine-grained definition
of access rights required in this work. However, it does not
support path patterns from the subject to the resource, which
is relevant for the access decision for some of our authoriza-
tion scenarios (see “Demonstration Case”).

Relation‑Based Access Control (ReBAC)

To deal with access rights in social networks, which can be
naturally described by graph-structured data, the relation-
based access control model (ReBAC) has been developed
[11, 12]. It focuses on interpersonal relationships between
users, where permissions are modeled as relations between
subject and object classes. However, ReBAC does not con-
sider fine-grained access rights unlike ABAC.

Cheng et al. [13] published a policy specification in 2014
that integrates ABAC with ReBAC as an enhancement to
their user-to-user relationship-based access control model
(UURAC) [14], which uses regular expressions to describe
relations and their characteristics (e.g., type, depth, and trust
value), and the subsequent extensions for user-to-resource
and resource-to-resource relationships in [15]. However, this
model can cause privacy issues resulting from end-users
specified policies [16].

As conditions on the path between subject and resource
are also missing with the ReBAC extensions, we take the
very flexible ABAC model as the basis for our further work.

eXtensible Access Control Markup Language
(XACML)

While XACML stands for eXtensible Access Control
Markup Language, it is not only a language, but also an
architecture and processing model of how to evaluate access

requests. XACML is an established OASIS1 standard and
widely used for ABAC. XACML has a strong and active
community that continuously works on enhancements since
the first version was approved in 2003.

Policy Language

It defines an XML-based declarative access control policy
language with focus on fine-grained, attribute-based access
control policies. It is hierarchically structured (see Fig. 1)
with three main levels: rule, policy, and policy set [7, 17].

–	 Rule: is the basic building block. Each rule holds a target,
an effect, and one or more conditions. All rule elements
are optional except for the rule effect. The effect deter-
mines whether access to an object is granted or denied.

–	 Policy: is structured according to a Composite Pattern
[18] and contains one to multiple rules which are com-
bined according to a predefined or user-defined rule-
combining algorithm [19].

–	 Policy Set: is a collection of policies and policy sets (i.e.,
the composite element). The policies and policy sets are
combined according to the defined policy-combining
algorithm.

The target specifies the component’s subject (who), action
(what), and resource (which) by giving attributes and literals
to compare with. The definition of the target is optional with
all three components. It is a kind of filter to specify the rel-
evant target. If the target is not defined in the rule, the one of
the surrounding policy will be used, the same is true for the
policy and the policy set. Defining no target at all indicates
that the rule is relevant for all access requests.

Since policies within the same policy set and rules inside
a policy can return different decisions, the overall result
is determined by combining the single decisions with a

Fig. 1   XACML policy structure

1  Organization for the Advancement of Structured Information
Standards, www.​oasis-​open.​org.

http://www.oasis-open.org

	 SN Computer Science (2021) 2:351351  Page 4 of 18

SN Computer Science

combining algorithm [20]. The following list provides some
basic combining algorithms which are mostly implemented
on policy level (rule-combining) as well as on policy set
level (policy-combining) [21]:

–	 Permit/Deny overrides: with permit overrides the
decision is permit if any of the rules or policies returns
permit. The same is true for deny overrides, the safest
combining algorithm.

–	 First applicable: the first decision taken is the overall
decision.

–	 Only one applicable: is only valid for combining poli-
cies and policy sets, but not for rules. A valid output is
only achieved if exactly one of the children either returns
the decision Permit or Deny.

–	 Ordered permit/deny overrides: like the Permit/Deny
overrides algorithm, but takes the order of rules, policies,
and policy sets into account.

–	 Permit unless deny/Deny unless permit: guarantees
that either Permit or Deny decision is returned. Not
Applicable and Indeterminate are excluded.

Authorization requirements are specified in authorization
policies using the policy definition language of XACML.
These policies are used with the XACML architecture to
determine the result of the access control request. This
allows for a high level of flexibility as they are not imple-
mented within the source code.

Architecture

The XACML architecture supports separation of concerns,
so that authorization policies are managed independently
of their application in access control. It consists of several
functional components (see FMC2 diagram in Fig. 2), so-
called points [7, 22]:

–	 Policy Administration Point (PAP): is the component
to create, modify, and distribute policies.

–	 Policy Decision Point (PDP): decides about access by
evaluating and issuing authorization decisions. The out-
come is one of the four decisions: Permit, Deny, Inde-
terminate (if it cannot be decided, e.g., in case of error
or missing values), and Not Applicable (if the request is
not supported by the policy).

–	 Policy Information Point (PIP): is an intermediate point
between the data source, to which attribute requests are
sent, and the PDP, to which the information is passed.

–	 Policy Enforcement Point (PEP): is responsible for
enforcing the authorization decisions, when an applica-
tion requests access to a protected resource.

An established way to enforce XACML polices with
relational databases is query rewriting. Query rewriting
extends the user query with information from the authori-
zation policy. This approach is used for example with the
Virtual Private Database (VPD) mechanism introduced by
Oracle [23] and the Truman model [24]. Besides the incon-
sistencies between user expectations and system output
(e.g., unexpected incorrect query results instead of rejected
user request) also decidability issues [25] pose practical
problems.

For now, no applications of XACML for graph-structured
data have been reported. Some research is available on using
graph databases to manage XACML policies using policy
graphs [26–28], but not for graph-structured data sources.
The well-established XACML policy description language
and its architecture are still a promising viable starting point
for our approach. Therefore, XACML is the basis for the
proposed extensions to be discussed in the next section.

XACML4G

The proposed idea presented in this paper is to extend
authorization policies so that they can support graph-spe-
cific access control as well. The standard BPMN 2.03 dia-
gram visualized by Fig. 3 is representing the enforcement
process for XACML4G. The XACML architecture and
process model have been used as a reference basis. Policy
processing is independent of the users’ access requests and
database queries. Policy enforcement approaches are often
based on an intermediate layer between the user and the
database at the application level where the policy preproc-
essing takes place and the user query is rewritten to embed
the access rights requirements. In our solution, the system

Fig. 2   XACML architecture

2  http://​www.​fmc-​model​ing.​org/​notat​ion_​refer​ence.
3  https://​www.​omg.​org/​spec/​BPMN/2.​0/​PDF.
  http://​www.​bpmb.​de/​images/​BPMN2_0_​Poster_​EN.​pdf.

http://www.fmc-modeling.org/notation_reference
https://www.omg.org/spec/BPMN/2.0/PDF
http://www.bpmb.de/images/BPMN2_0_Poster_EN.pdf

SN Computer Science (2021) 2:351	 Page 5 of 18  351

SN Computer Science

is implemented in the database layer for better performance
and security. The upcoming subsections start with a motiva-
tion and definition of the problem and then address each of
the components in detail.

Policy Language Limitations

Most of the current policy languages are limited to describ-
ing subjects, objects, and access rights. Relations between
entities could be represented using joining conditions by
mapping primary and foreign keys of the tables in relational
databases. However, when it comes to specifying policies for
graph databases, it will be necessary to formulate conditions
on edges and vertices that are neither subject nor resource
vertices. They belong to the path between them. An exam-
ple of such a policy to be applied to a graph data model is
given below. It demonstrates how the policy components are
extracted and describes the relations between them. Thus,
policy languages need to be extended to detect paths with
certain patterns. Since XACML is the most commonly used
language for specifying fine-grained security policies, the
policy format in this work is an extension for XACML struc-
ture. For easier formulation and parsing, it is implemented
in JSON instead of XML. Our approach overcomes the limi-
tations of XACML to adapt with graph-structured data by
adding an extra feature to specify the patterns, how subject
and object vertices are related to each other, and conditions

on the attributes of the vertices as well as edges along the
path (see Example 1).

Example 1 

–	 Subject: professor
–	 Object: student
–	 Action: read
–	 Additional constraints that could not be mapped in

XACML: To express “their courses” a pattern like “pro-
fessor → course → student” is needed, which indicates
that the professor and student entities are connected
through a vertex of type course. Otherwise, undesired
results could be returned, because of various paths, with
respect to length or content, between the given subject
and resource. Thus, there is a significant demand for add-
ing path patterns in policies for graph-structured data.

Extended Policy Format

Based on the current limitations to express policies for
graph-structured data, the JSON formatted authorization
policy definition language XACML4G is introduced. XAC-
ML4G is based on XACML. Thus, the XACML4G policy
language is structured like XACML with an additional

Fig. 3   Policy enforcement
process

	 SN Computer Science (2021) 2:351351  Page 6 of 18

SN Computer Science

element to specify graph requirements such as conditions
on vertices along with the in-between relations.

This pattern property is inspired by the syntax of Cypher4
for matching patterns of nodes and relationships in the
graph. Note that being well familiar with the graph model
and its architecture is a requirement for policy writing. List-
ing 1 depicts the template used for defining the authorization
policies in this work to be enforced in any graph database.
The variable op in the subject, resource, and condition rep-
resents the relational operator for the condition statement.
Each policy is composed of an identifier, rule combining
algorithm, and rules list. Rules are the fundamental elements

is specified, the result is the shortest path between the
subject and object vertices. Long patterns can be split
and joined in the condition. The arrows in the path of
the described pattern represent the direction of the edges
whether inbound or outbound. If no arrow direction is
indicated, all hops are considered.

–	 Condition (optional): to join vertices/edges upon certain
attributes.

–	 Effect: represents the rule decision whether to grant
access to the resource through the returned paths satis-
fying the described patterns or not.

4  Cypher is the declarative query language used to work with graphs
in Neo4j (https://​neo4j.​com/​docs/​cypher-​manual/​curre​nt/​intro​ducti​
on/).

defined with a design similar to XACML rules implementing
the concept of effect, target, and condition as explained in
the following rule components list:

–	 Rule ID: unique identifier for each rule.
–	 Target: action type, subject and resource vertices are

specified along with their conditions.
–	 Pattern (optional): to specify nodes, their connections,

and characteristics on the attributes level. If no pattern

According to the policy syntax in Listing 1, the cases
for describing a node/an edge in the pattern along with its
condition(s) are identified as follows:

–	 Empty node/edge using empty brackets
	  e.g., () → for nodes, [] → for edges
–	 A defined entity with empty or without conditions
	  e.g., (dataObjects), (dataObjects{})
–	 A single condition with one value
	  e.g., (dataObjects{typeCode:’X’})
–	 Multiple conditions joined with and/or (both opera-

tors could exist together in one entity)
	 � e.g., (dataObjects{’or’:{typeCode:’X’,_key:’Y’},’and

’:{created:’Z’}})
–	 A condition with multiple values separated by semi-

colons
	  e.g., (dataObjects{typeCode:[’X’;’Y’]})

https://neo4j.com/docs/cypher-manual/current/introduction/
https://neo4j.com/docs/cypher-manual/current/introduction/

SN Computer Science (2021) 2:351	 Page 7 of 18  351

SN Computer Science

Policy Processing

After establishing the authorization policies and converting
them from text to JSON in the previous step, the procedure
of policy processing is carried out in three stages: policy
parsing, query generation and execution as well as classi-
fication. These components along with the decision maker
belong to the PDP. First, the list of policies has to be parsed
to get the parameters and filter conditions. The extracted
data will serve as input (Rule details A in Fig. 3) to the
database query which is dynamically generated to get the
paths matching the designated patterns. The query execution
component communicates with the database for retrieving
further attributes related to subject, action, resource and
environment of the request. Listing 2 shows an example of
the query template in ArangoDB Query Language (AQL)
with variables representing the inputs extracted from the
policy file. The statements that correspond to the selected
database query language syntax are generated accordingly.

The variable subjectCollection is equivalent to entity in
the policy. subjectQueryFilter represents the subject condi-
tions. depth is the length of each path in the pattern such
that it is calculated from the count of the edges representing
the number of hops. Finally, graphQueryFilters is a variable
consisting of several AQL filter statements generated from
the rule pattern conditions for each vertex/edge in the path
including the resource vertex.

Meanwhile extracting the query requirements, the parser
also saves the name of the combining algorithms that will
be used to resolve conflicts not only between rules of the
same policy, but also on the policies level. For each policy,
the rule combining algorithm is obtained from the policy file
and both are represented as key-value pair. The same is true
for the policy combining algorithm, but in this case “gen-
eral” is the key. All of the policies are identified by their id
and stored as subset of the object as illustrated below.

Based on the rule effect (Rule details B in Fig. 3), the
paths resulting from the query execution module are

assigned to one of the categories, either permit or deny.
In this process, the output paths satisfying the specified
description in the policy are saved in a way that will also
help in the next step, decision-making, as stated in the data
structure below. This JSON snippet is composed of the cat-
egory as a key and the value is a list of objects where each
of them has a key consisting of a concatenated string of
an integer index along with the id of the policy and rule to
which the value, an array of the resulting paths, is associ-
ated. Each path is a list of vertices.

The role of the variable index in the access decision pro-
cedure will be explained in the upcoming subsection.

Decision‑Making

This is the last phase in the enforcement process where the
final decision is taken for the response to the user requesting
access. For each access control request, the query path from
the principal to the requested resource is checked against the
categorized output of the policy patterns. The decision is
taken according to Table 1. For instance, if the query result
exists in the category Permit and not in Deny, this means
that access is granted. Hence, the access decision response
is Permit. In case of the response Indeterminate, conflict
resolution is required.

The entire decision-making process is depicted in Fig. 4.
The procedure starts with one start event, but has several
end events to reflect the different possible decision-mak-
ing situations: (1) without any conflict, (2) with conflicts
resolved within the policies and no overall conflict resolu-
tion and finally the end point which requires (3) full conflict

Table 1   Access decision for categories permutations

a Nothing is specified in the policy to decide about the access and the
PEP will handle this situation
b Conflicting rules of the same or different policies. Rule/Policy com-
bining algorithm (see “eXtensible Access Control Markup Language
(XACML)”) resolves the conflict(s) to determine the final decision

Access decision Category

Permit Deny

Permit ✓ ×

Deny × ✓

Not Applicablea × ×

Indeterminateb ✓ ✓

	 SN Computer Science (2021) 2:351351  Page 8 of 18

SN Computer Science

resolution, i.e., not only within the policies but also by inte-
grating all policies. The upcoming subsection discusses the
conflict resolution on both levels in details.

To calculate the decision (as defined in Table 1), the out-
put from checking the user query path against the specified
policies needs to be processed (see Fig. 5). Thus, the mapping
result (Mapping Result [initial]) is converted to a
policy-focused view (MappingResult [policyView]), i.e., the
policies are the keys instead of the categories. This conver-
sion is crucial to differentiate between the levels of conflict,
as conflicts can occur between rules within one policy, or
rules across several policies, and also might result in auto-
matic conflict resolution at one of these levels. The initial
mapping result (MappingResult [initial]) is represented by a
collection of categories with a list of some compound vari-
ables indicating the rule and the policy containing this input
(i.e., the query path) combined with an index representing
the rule order. This compound variable is used earlier in the

result of the Permit/Deny Classifier as a key in the catego-
rized list of collections (index:policyID.ruleID).
This data structure is converted to a collection of policies
having rule indices as the value (MappingResult [pol-
icyView]). This data structure can contain duplicates,
which need to be removed before conflict resolution takes
place. For each policy, duplicates are handled per category
by selecting the rule with the minimum index regardless of
the combining algorithm. This is to guarantee that the right
access permission will be returned in case of having a first-
applicable as a combining algorithm for rule and/or policy.

Until now, the JSON-formatted authorization policies are
parsed to retrieve the subject, resource, action and environ-
ment conditions which are then passed to the query genera-
tor module. Upon retrieving the results which are basically
paths satisfying the described patterns in the policy, they are
classified and stored in the repository processed policies (see
Fig. 3) to end up the policy processing phase. The decision

Fig. 4   Decision-making process

Fig. 5   Subprocess: convert and eliminate duplicates

SN Computer Science (2021) 2:351	 Page 9 of 18  351

SN Computer Science

maker component checks the output of a user query against
the existing paths (i.e., processed policies), which causes
conflicts if the respective rules have different effects.

Conflict Resolution

A conflict occurs when the criteria of more than one rule
with different effects are satisfied. For achieving a deter-
mined decision, the conflicts, regardless of their level, have
to be resolved using the combining algorithm. Although the
resolution method is the same for any conflict level, the con-
flict for each level is investigated and resolved individually
according to the outcome of the check point, i.e. decision.
Algorithm 1 summarizes the conflict resolution sequence as
part of the decision-making process.

The conflict is resolved after the completion of the post-
decision-making subprocess (see Fig. 5) which is responsible
for converting the output of decision-making and eliminating
duplicated rules (if any) having identical effects within the
same policy as indicated by Algorithm 1 in lines 4 and 6,
respectively. This is performed in two steps as exemplified
in Fig. 4 starting with the rules within policies followed by
rules across different policies if a conflict still exists.

The conflict resolution function input parameters are the
combining algorithm along with a group of collections hav-
ing the category and the winning rule index after eliminat-
ing duplicates as key and value respectively. The combining

algorithm is retrieved from the previously stored data struc-
ture using either the policy identifier, or general as a key
depending on the level of conflict. Conflicts are resolved by
returning permit in case of permit-overrides, or deny-unless-
permit and deny for the opposite combining algorithms, i.e.
deny-overrides and permit-unless-deny. For the first-appli-
cable combining algorithm, the decision of the minimum
rule index will be returned. Otherwise, the default access
decision, indeterminate, will be returned.

The first conflict resolution attempt (lines 7–10) takes
place as a result of an intermediate decision made accord-
ing to the strategy discussed in Table 1. Then, the winning
rule index is saved in the category of the returned decision
(line 11). If the evaluation decision is indeterminate, then

the conflict resolution process is repeated, but on the level
of rules across policies (lines 12–15).

Demonstration Case

To demonstrate the applicability of the proposed concept, we
present a case study. A policy for a scenario is formulated
and applied.

We start with an overview of the chosen graph data-
base and the framework used in the implementation. The
description of the selected scenario along with a proper

	 SN Computer Science (2021) 2:351351  Page 10 of 18

SN Computer Science

visualization for our database model follows. Finally, the
results for each step are presented, from the policy descrip-
tion, its preprocessing, to determin the access decision for an
example request. Also conflicts and special cases are consid-
ered to demonstrate the capabilities of XACML4G.

ArangoDB and Foxx Microservices

ArangoDB is the selected database management system for
the prototype discussed in this paper because of several rea-
sons. It will fit the storing requirements for any application
since it supports more than one data model. Moreover, it has
an application framework named Foxx that is directly com-
municating with the database. Finally, dealing with graphs
in AQL, ArangoDB’s query language, is not straight for-
ward like in Neo4j, the leading GraphDB according to DB-
Engines Ranking of Graph DBMS in March 2021.5 Thus, if
some concept proves to be viable with ArangoDB, it will be
feasible with other graph databases as well.

ArangoDB is a non-relational open source multi-model
database management system written in C++. It supports
documents, key/value, and graphs. These schema-free No-
SQL models have one database core and one declarative
query language for retrieving and modifying data. Its query
language AQL supports complex graph traversals, but no
data definition operations including creating and dropping
databases, collections, and indexes.

Foxx services are embedded inside ArangoDB and can
be executed as an application directly within the database
with native access to in-memory data. Furthermore, it makes
ArangoDB extensible because custom HTTP endpoints are
added to ArangoDB’s REST API using JavaScript [29].

Model and Scenario

A university scenario is chosen for demonstrating and testing
the proposed approach. The database is composed of pro-
fessors teaching courses that are attended by students who
are graded for their course(s), i.e., get grades. The graph
constructed for this use case is illustrated in Fig. 6. As we
only use one kind of vertices, so-called dataObjects (DO),
all instance names in this scenario start with the same abbre-
viation (DO) followed by the first letter(s) of the associated
type and a number. The type (typeCode) of the instances is
indicated by different colors (see legend in Fig. 6).

Initial Case

Recalling the policy example defined for this scenario
(Example 1 in “Policy Language Limitations”), it can now
be expressed using XACML4G. The text and the corre-
sponding policy syntax in JSON are demonstrated in the
following Example 2 bearing in mind that conditions cannot
only be added on vertices but also on edges.

Fig. 6   Uni scenario database
model

5  https://​db-​engin​es.​com/​en/​ranki​ng/​graph+​dbms.

https://db-engines.com/en/ranking/graph+dbms

SN Computer Science (2021) 2:351	 Page 11 of 18  351

SN Computer Science

Example 2 

The result of this query is classified according to the rule
effect and stored along with the rule and policy combining
algorithms.

Two test cases exemplify the path of a user query for
investigating the prototype and getting an access decision as
result. The input is represented as a sequence of node keys
separated by a delimiter (e.g., “;”). The decisions returned
for each input are depicted in the screenshots taken from the
Foxx services interface given the path and its node separator
as parameters.

Case 1  DO.N1; DO.P1; DO.C1; DO.S1

Since DO.S1 is one of the students attending the course
DO.C1 that is lectured by person DO.N1 who has the role
of professor DO.P1, access should be allowed (see Fig. 7)
for any user query returning this path, because of the Per-
mit rule effect. A Deny decision is returned for the same
path if stated in the rule effect of the policy. If legitimate
users are trying to access a resource in a non-recognized
pattern, the response will be Not Applicable (NA). Thus, the

Fig. 7   Test case 1 result: permit

According to the role of the processing procedure, the
policy file is parsed and the generated query (Listing 3) is
executed.

authorization of principal, resource, and pattern is manda-
tory for obtaining access.

	 SN Computer Science (2021) 2:351351  Page 12 of 18

SN Computer Science

Case 2  DO.N2; DO.P2; DO.C2; DO.S1

Although this input path satisfies the policy pattern con-
straints defined for this scenario, the NA decision is returned
as per the output in Fig. 8 because there is no such path.
According to the data model in Fig. 6, there is no valid con-
nection between the student DO.S1 and the course DO.C2.

Extended Case

In the previous subsection, we presented all procedures
from declaring authorization rules along with specifying
path constraints to enforcing the policy and getting access
decisions for a given test path. This example demonstrates
the whole process, however, there are more sophisticated
scenarios that actually highlight the strengths of our con-
cept and illustrate how the special cases are handled, e.g.,
instances with complex path constraints (even extended
beyond the resource) as well as conflicts.

Complex Constraints

Based on our graph model from the university scenario in
Fig. 6 and the policy in Example 2,, the professors author-
ized to access the students enrolled to their courses does not
imply being allowed to access the information (e.g., grade)
related to this student. For instance, professor DO.P1 is only
allowed to access the grade DO.C1S2G1 of student DO.S2
for the course DO.C1 and not the grade DO.C2S2G1 of the
same student for the other course DO.C2. The same is valid
for professor DO.P2 with student DO.S2. In fact, there is
neither an authorization rule that can differentiate between
these two paths nor a database query that can return only
one of them. This is because the two paths have the same
pattern in terms of node and edge characteristics as well as
constraints. For a traditional policy having the professor as
a subject and the student as a resource, this is an unsolved
problem.

In XACML4G, it is possible to specify the pattern from
the subject to the resource and extend the constraints even
beyond. This is useful in our example to assure that the grade
is related to the student, but also to the course of the associ-
ated professor, i.e., the subject. The rule including pattern

Fig. 8   Test case 2 result: NA

Fig. 9   Policy resulting paths

SN Computer Science (2021) 2:351	 Page 13 of 18  351

SN Computer Science

constraints beyond the resource and the joining condition
relating entities via variables is depicted in Example 3.

Example 3 

be prioritized according to an organization’s use cases and
operational needs [31]. The proposed priority categories are
critical, optional, and supplemental.

{
"id":" allow_professors_studentsGrades_theirCourses",
"target ":{

"subject ":" dataObjects.typeCode ==’NaturalPerson ’",
"resource ":" dataObjects.typeCode==’CourseStudentGrade ’",
"action ":" read"

},
"pattern ":"(subject) -[]->(dataObjects{typeCode:’Professor ’})

<-[]-(c1:dataObjects{typeCode:’Course ’}) -[]->
(dataObjects{typeCode:’Student ’}) <-[]-(resource)
-[]->(c2:dataObjects{typeCode:’Course ’})",

"condition ":"c1._key==c2._key",
"effect ":" permit"

}

Conflict Case

Following the example described in the previous subsec-
tion, we allow professors to access a student’s grade for their
courses and prevent the paths for grades of this student to
other courses, which are not related to the professor (i.e., the
subject). This restriction can be defined with two rules. One
allows all paths from the subject to the resource matching
the specified pattern while the other denies specific ones
using extended constraints and joining conditions. The
resulting paths are grouped according to the rule effect (see
Fig. 9). The rule-combining algorithm should prioritize the
deny decision (e.g., deny-overrides or permit-unless-deny)
to solve the occurring conflicts.

This demonstration case shows the feasibility of the pro-
posed concept. Fine-grained attribute-based policies can be
enforced for access requirements with different complexi-
ties and conflicts. Due to the size of the current test dataset,
no reliable performance measures can be provided. Hence,
more testing especially with more complex application sce-
narios and much more data are necessary. By working on the
test case, additional requirements for the policy description
have been identified, e.g., the idea to reuse graph patterns
(iterative or recursive) and efficient handling of optional
sub-patterns.

Assessment

The National Institute of Standards and Technology (NIST)
proposed a set of quality metrics of AC systems [30] in
2006, which were used by [31] in 2012 to define respec-
tive evaluation properties. These metrics are also used to
evaluate concepts, not only systems [32]. Properties need to

The properties in [31] are grouped into four categories:
administration, enforcement, performance, and support.
As XACML4G is currently a concept with a prototypical
implementation in ArangoDB and not a product, we only
considered administration and enforcement properties. For
each of the following metrics, the assigned priority and an
overview are given before providing the qualitative assess-
ment statement.

Administration

The upcoming described properties are for evaluating access
control system’s administration with respect to cost, effi-
ciency, and performance.

Auditing (Supplemental)

Does the AC system log granted/denied access requests, sys-
tem failures and provide organization-specific log data man-
agement? Features such as providing the error source in case
of system failure when processing access decisions, logging
denied user requests, and tracking access with respect to the
granted capabilities should be available.

–	 No. Auditing is irrelevant when evaluating a concept
since it is product-specific and not AC model-specific.
Thus, it is not considered with XACML4G right now as
we provide a prototype implementation of the concept.

Privileges/Capabilities Discovery (Supplemental)

Can capabilities, system states, objects (or object groups)
and environment variables of a given subject (or subject
group) be discovered from assigned privileges/constraints?

	 SN Computer Science (2021) 2:351351  Page 14 of 18

SN Computer Science

Furthermore, the discovery of the subjects (or subject
groups), system states, and environment variables for a given
capability/object (or object group) is considered.

–	 No. Privileges and capabilities cannot be discovered in
the current XACML standard, thus also not for XAC-
ML4G. A supplemental service could be considered in
future work, based on the dynamic mapping of rule con-
straints to query filters for a given subject and object.

Ease of Privilege Assignments (Optional)

Considers the number of steps required for assigning, chang-
ing, and removing privileges as well as subject capabili-
ties/object entries along with their groups and relations into
the system. The more steps are needed to perform these
tasks, the higher is the error rate—due to human or system
mistakes.

–	 Yes. In XACML4G, policies are described in JSON syn-
tax and can be immediately processed in our prototype,
which is implemented as a built-in service running on
top of ArangoDB, while writing and changing XACML
policies is a challenging task. Moreover, the policy is
described in the XML syntax and needs to be published
in the infrastructure. Thus, the policy needs be explicitly
re-published in the case of modifications.

Syntactic and Semantic Support for Specifying AC Rules
(Critical)

Can rules be specified using logical expressions and/or by
some programming language?

–	 Yes. XACML defines its own declarative AC policy lan-
guage supporting syntactic as well as semantic gram-
mar required for specifying AC policies. Although, this
language uses the boolean logic relations (e.g., AND,
OR, <, =, and >) for describing complex policy con-
straints, it is only applicable for XACML AC systems.
XACML4G additionally provides a syntax to group all
the policies and their rules in one file besides expressing
complex path patterns along with their constraints and
conditions, which could be joined and compared using
the logic operators.

Policy Management (Supplemental)

Measures the ability to manage the AC policy life cycle
including activation/deactivation, deployment verification,
expiration date, and runtime change [33].

–	 No. Neither XACML nor XACML4G manage AC sys-
tems with respect to these capabilities.

Delegation of Administrative Capabilities (Supplemental)

Is it allowed to delegate policy administration, i.e., transfer
the privileges from an administrator to other administrators
easily and securely?

–	 No. This property is not supported in the current XAC-
ML4G prototype. XACML Administration and Delega-
tion Profile [34] is a specification published by OASIS
for providing administration and delegation features to
XACML policies.

Flexibilities of Configuration into Existing Systems
(Supplemental)

Can the AC mechanism be enforced by different parts of the
system, e.g., the operating system, a microkernel, an applica-
tion, or a client/server communication protocol?

–	 No. This kind of flexibility is not considered with the
XACML architecture [31] and hence, XACML4G. Our
prototype is an add-on to the database for high perfor-
mance and reliability issues.

The Horizontal Scope (Across Platforms and Applications)
of Control (Optional)

Can the AC system cover only a single host or also multiple
hosts in a network or even virtual communities?

–	 Yes. One of the major advantages of XACML AC sys-
tems is the externalization of authorization such that
policies are defined and managed independently from
the application(s). XACML4G is mainly targeting graph
data, local or distributed across server machines, man-
aged by single AC system.

The Vertical Scope (Between Application, DBMS, and OS)
of Control (Optional)

Deals with the scope of data control coverage on the level of
applications, files, database (records, fields, and networks).

–	 No. As XACML4G is aimed at authorization policies for
graph-structured data specifying path constraints. The
current prototype implementation is limited to a single
database, ArangoDB (see “Model and Scenario”). How-
ever, this property is partly supported by XACML since
it is primarily an ABAC system which has an intermedi-
ate level of vertical scope.

SN Computer Science (2021) 2:351	 Page 15 of 18  351

SN Computer Science

Enforcement

The following metrics concern the efficiency of rendering
AC decisions. They basically evaluate the AC system’s pol-
icy enforcement techniques [31].

Policy Combination, Composition, and Constraint (Critical)

Represents the capability to combine authorization rules of
different policies as well as policy models.

–	 Yes. In the underlying XACML, the model/rules combi-
nation, composition, and constraint methods are imple-
mented in the PAP. Regarding XACML4G, combining
contents of different policies as well as path patterns
specified in the rules are considered.

Bypass (Supplemental)

Can policy rules be bypassed for critical access decisions
and is this tolerable? This supplementary service must be
used for emergency only and the risk should be tolerable
in this case.

–	 No. The XACML and XACML4G frameworks are not
designed to allow bypassing. However, critical situations
can be handled with the rules by specifying environmen-
tal conditions.

Least Privilege Principle Support (Optional)

Can the system specify the minimum access rights required
for performing a task and enforce the least privilege princi-
ple with respect to the level of granularity, flexibility, scope,
and different groupings of the controlled objects?

–	 Yes. The ABAC model enforces an intermediate level
of the least privilege principle as access rights and con-
straints can be specified using attributes [32]. Thus,
XACML4G supports this property the same way as for
XACML.

Separation of Duty (SoD) (Critical)

Ensures that access is only granted to subjects that are
duty-related to the objects to limit power and avoid con-
flict of interests. The level of supporting SoD varies. Static,
dynamic, and historical are the three basic types of SoD.
Static and dynamic SoD differ in such that the former always
applies and the latter is session-based. In the historical SoD,
previous accesses determine the future authorization. To
determine this metric, the number of supported SoD types

as well as the steps needed to separate subjects and objects
can be counted.

–	 Yes. XACML and hence, XACML4G is based on ABAC
which has high levels of SoD, because it specifies access
rights in terms of attributes and assigns them to certain
principles [32]. In XACML4G, this property is critical in
the context of the university scenario (see “Demonstra-
tion Case”) to differentiate between conflicting roles and
activate only one at a time (e.g., a person with the roles
professor and student).

Safety (Confinements and Constraints) (Critical)

Are safety checks in permissions (e.g., via constraints) con-
sidered to prevent leaking of permissions? This property
can be measured by the number of supported types of safety
constraints or operational steps needed to build a certain
safety constraint.

–	 Yes. The ABAC model enforces safety at high levels
[32]. XACML is flexible and trustable in expressing and
applying constraints on subjects and resources. XAC-
ML4G can additionally describe path pattern constraints.

Conflict Resolution or Prevention (Critical)

Can conflicting rules, deadlocks be prevented or resolved
with rules stemming from the same but also from different
policies?

–	 Yes. XACML provides conflict resolution by specifying
the rule and policy combining algorithms. XACML4G
additionally implements an algorithm for resolving con-
flicting paths (see Section 3.5).

Operational/Situational Awareness (Optional)

Specification and enforcement of access rules should also
consider operational/situational factors. Thus, these factors
(e.g., some environment variables) need to be considered in
decision making.

–	 Yes. Similar to XACML, environmental conditions and
attributes can be expressed in XACML4G policies.

Granularity of Control (Critical)

Can different granularity levels of objects such as data fields
and endpoint system components (e.g., servers, worksta-
tions, routers, databases, or even cross domain systems) be
supported by the system?

	 SN Computer Science (2021) 2:351351  Page 16 of 18

SN Computer Science

–	 Yes. XACML is selected as a starting point for our
approach since fine-grained access control is supported
and the application of its policies is not restricted. XAC-
ML4G is even more fine-grained in protecting graph-
structured data, because it allows to define constraints
on paths with respect to attributes on edges and vertices.

Expression (Policy/Model) Properties (Critical)

Does the AC system support a standard, language for
expressing authorization rules, formal AC mechanisms, and
rule/policy combination?

–	 Yes. XACML4G is built upon the ABAC model, provides
a syntax for specifying AC rules, and implements the
XACML architecture, one of the standards for defining
and evaluating access policies/requests.

Adaptable to the Implementation and Evolution of Access
Control Policies (Critical)

Evaluates the AC system with respect to its adaptability for
policy changes and its capability of dynamically interpos-
ing AC rules according to the system states. Adaptability
not only concerns changes in rules, but also in the applied
AC mechanism (e.g., RBAC, Discretionary Access Control
(DAC) [35, 36], Mandatory Access Control (MAC) [37], and
Chinese Wall). Furthermore, the capability to dynamically

interpose rules with respect to the entire current system state
including its history is relevant.

–	 Yes. XACML4G, like XACML, is based on ABAC
which is very flexible and can also implement other pol-
icy models like RBAC, DAC, and MAC.

Assessment Summary

To sum up, NIST’s evaluation metrics for access control sys-
tems have been taken as a reference to assess XACML4G.
Out of the 28 standard criteria, only the 19 criteria from
the two groups administration and enforcement have been
assessed. As we are not evaluating a product but a concept
and its prototype implementation, the metrics for perfor-
mance and support are not relevant. All applied metrics
have been categorized to critical, optional, or supplemental
according to our case study requirements.

One of the reasons for selecting XACML as the basis
for our approach is being complied with all critical metrics.
Since XACML4G is based on XACML’s architecture, pro-
cess model and AC policy structure, all the critical proper-
ties are met. In addition, most of the optional properties are
satisfied. The supplemental metrics are rather related to the
system than to the concept, but some of them can be taken
into account in the future work. Table 2 summarizes the
assessment results.

Table 2   XACML4G assessment
overview

Metrics Priority XACML4G

Administration
 Auditing Supplemental ×

 Privileges/capabilities discovery Supplemental ×

 Ease of privilege assignments Optional ✓

 Syntactic and semantic support for specifying AC rules Critical ✓

 Policy management Supplemental ×

 Delegation of administrative capabilities Supplemental ×

 Flexibilities of configuration into existing system Supplemental ×

 The horizontal scope of control Optional ✓

 The vertical scope of control Optional ×

Enforcement
 Policy combination, composition, and constraint Critical ✓

 Bypass Supplemental ×

 Least privilege principle support Optional ✓

 Separation of Duty (SoD) Critical ✓

 Safety (confinements and constraints) Critical ✓

 Conflict resolution or prevention Critical ✓

 Operational/situational awareness Optional ✓

 Granularity of control Critical ✓

 Expression (policy/model) properties Critical ✓

 Adaptable to AC policies implementation and evolution Critical ✓

SN Computer Science (2021) 2:351	 Page 17 of 18  351

SN Computer Science

Conclusion

In this paper, we proposed the authorization policy lan-
guage XACML4G, based on XACML, with an extension
to describe graph patterns. These graph patterns are used to
define constraints on vertices and edges and further consid-
ering their attribute values. Furthermore, we showed the pro-
totype implementation of the definition and enforcement of
XACML4G policies in ArangoDB, a multi-model database.
The demonstration case within the university domain shows
different scenarios with varying complexity. The authoriza-
tion policy is specified in XACML4G using the JSON for-
mat. The policy needs to be processed and the result is stored
in the repository for processed policies. Processing means
parsing the policy file, generating and executing the query
for each rule to retrieve the query path(s), and clustering the
resulting path(s) by the rule effect—permit or deny. Deci-
sion-making (including conflict resolution) takes place based
upon the result path of the user query and the processed
policy. Lastly, we present an assessment of XACML4G
taking NIST’s quality metrics for evaluating access control
systems as a reference. These evaluation metrics are grouped
into the four categories (i.e., Administration, Enforcement,
Performance, and Support) and classified according to their
priority (i.e., Critical, Optional, and Supplemental) for a
given case study. We only considered the categories related
to access control policy administration and enforcement due
to their relevance to our scope.

The specific characteristics of graph-structured data, tak-
ing the path in the graph connecting nodes into account, can
be considered in fine-grained, attribute-based authorization
policies by introducing path patterns into the policy. With
the demonstration case, we show that this extended policy
format can be successfully enforced in a graph database.
Our approach allows for more sophisticated attribute-based
authorization policies than role-based access control, which
is the choice in existing graph database tools (e.g., Neo4j [3,
38]). Specific authorization scenarios as presented in the
demonstration can be implemented easily. The assessment of
XACML4G with regard to the guidelines for access control
system evaluation metrics by NIST [31] shows the all critical
metrics for our use case are satisfied.

The results of the demonstration case show that the
approach is promising. The use of XACML4G in graph
databases is feasible for the demonstration scenarios. Still
more research is needed to test this approach on a larger
scale with more complex policies, data models and data sets.
Furthermore, additional requirements concerning the policy
definition have been identified when working on the demon-
stration case such as the reuse of graph patterns and allow-
ing for optional patterns. In future work, we will deal with
performance testing as well as the requirements concerning

the advanced features for the policy description language
and the resulting policy enforcement.

Acknowledgements  The research reported in this paper has been partly
supported by the LIT Secure and Correct Systems Lab funded by the
State of Upper Austria. The work was also funded within the FFG
BRIDGE project KnoP-2D (Grant No. 871299).

Funding  Open access funding provided by Johannes Kepler University
Linz.

Declaration 

Conflict of Interest  The authors declare that they have no conflict of
interest.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

	 1.	 Reinsel D, Gantz J, Rydning J. Data age 2025: The digitization of
the world—from edge to core. 2018; https://​www.​seaga​te.​com/​
files/​www-​conte​nt/​our-​story/​trends/​files/​idc-​seaga​te-​dataa​ge-​
white​paper.​pdf.

	 2.	 Graph databases go mainstream. 2019; https://​www.​forbes.​com/​
sites/​cogni​tivew​orld/​2019/​07/​18/​graph-​datab​ases-​go-​mains​
tream/#​79c0f​5d517​9d. Accessed in 03.2021.

	 3.	 Fine-grained access control. https://​neo4j.​com/​docs/​opera​tions-​
manual/​curre​nt/​authe​ntica​tion-​autho​rizat​ion/​access-​contr​ol/​index.​
html. Accessed in 03.2021.

	 4.	 Azure role-based access control in azure cosmos db. 2020; https://​
docs.​micro​soft.​com/​en-​us/​azure/​cosmos-​db/​role-​based-​access-​
contr​ol. Accessed in 03.2021.

	 5.	 Access control in arangodb oasis. https://​www.​arang​odb.​com/​
docs/​stable/​oasis/​access-​contr​ol.​html. Accessed in 03.2021.

	 6.	 Fletcher G, Hidders J, Larriba-Pey JL. Graph data management—
fundamental issues and recent developments. Springer Interna-
tional Publishing AG, Gewerbestrasse 11, 6330 Cham, Switzer-
land 2018, ISBN 978-3-319-96192-7.

	 7.	 Hu VC, Ferraiolo DF, Chandramouli R, Kuhn DR. Attribute-
Based Access Control. London: Artech House; 2018.

	 8.	 Mohan A. Design and implementation of an attribute-based
authorization management system. Ph.D. thesis, Georgia Institute
of Technology 2011.

	 9.	 Sandhu RS. Role-based access control. Adv Comput.
1998;46:237–86 (Elsevier).

	10.	 Axiomatics: What is attribute-based access control? White Paper
2016, https://​ma.​axiom​atics.​com/​acton/​ct/​10529/s-​02c9-​1707/​
Bct/l-​0586/l-​0586:​3307/​ct7_0/​1?​sid=​TV2%​3AmFB​xh9FWI.

http://creativecommons.org/licenses/by/4.0/
https://www.seagate.com/files/www-content/our-story/trends/files/idc-seagate-dataage-whitepaper.pdf
https://www.seagate.com/files/www-content/our-story/trends/files/idc-seagate-dataage-whitepaper.pdf
https://www.seagate.com/files/www-content/our-story/trends/files/idc-seagate-dataage-whitepaper.pdf
https://www.forbes.com/sites/cognitiveworld/2019/07/18/graph-databases-go-mainstream/#79c0f5d5179d
https://www.forbes.com/sites/cognitiveworld/2019/07/18/graph-databases-go-mainstream/#79c0f5d5179d
https://www.forbes.com/sites/cognitiveworld/2019/07/18/graph-databases-go-mainstream/#79c0f5d5179d
https://neo4j.com/docs/operations-manual/current/authentication-authorization/access-control/index.html
https://neo4j.com/docs/operations-manual/current/authentication-authorization/access-control/index.html
https://neo4j.com/docs/operations-manual/current/authentication-authorization/access-control/index.html
https://docs.microsoft.com/en-us/azure/cosmos-db/role-based-access-control
https://docs.microsoft.com/en-us/azure/cosmos-db/role-based-access-control
https://docs.microsoft.com/en-us/azure/cosmos-db/role-based-access-control
https://www.arangodb.com/docs/stable/oasis/access-control.html
https://www.arangodb.com/docs/stable/oasis/access-control.html
https://ma.axiomatics.com/acton/ct/10529/s-02c9-1707/Bct/l-0586/l-0586:3307/ct7_0/1?sid=TV2%3AmFBxh9FWI
https://ma.axiomatics.com/acton/ct/10529/s-02c9-1707/Bct/l-0586/l-0586:3307/ct7_0/1?sid=TV2%3AmFBxh9FWI

	 SN Computer Science (2021) 2:351351  Page 18 of 18

SN Computer Science

	11.	 Giunchiglia F, Zhang R, Crispo B. Relbac: Relation based access
control. In: 2008 Fourth International Conference on Semantics,
Knowledge and Grid. 2008; pp. 3–11. IEEE.

	12.	 Fong PW. Relationship-based access control: protection model
and policy language. In: Proceedings of the first ACM conference
on Data and application security and privacy. 2011; pp. 191–202.

	13.	 Cheng Y, Park J, Sandhu R. Attribute-aware relationship-based
access control for online social networks. In: IFIP Annual Confer-
ence on Data and Applications Security and Privacy. 2014; pp.
292–306. Springer.

	14.	 Cheng Y, Park J, Sandhu R. A user-to-user relationship-based
access control model for online social networks. In: IFIP Annual
Conference on Data and Applications Security and Privacy. 2012;
pp. 8–24. Springer.

	15.	 Cheng Y, Park J, Sandhu R. Relationship-based access control for
online social networks: beyond user-to-user relationships. In: 2012
International Conference on Privacy, Security, Risk and Trust and
2012 International Confernece on Social Computing. 2012; pp.
646–655. IEEE.

	16.	 Servos D, Osborn SL. Current research and open problems in
attribute-based access control. ACM Comput Surv (CSUR).
2017;49(4):1–45.

	17.	 A brief introduction to XACML. https://​www.​oasis-​open.​org/​
commi​ttees/​downl​oad.​php/​2713/​Brief_​Intro​ducti​on_​to_​XACML.​
html. Accessed in 03.2021.

	18.	 Gamma E, Helm R, Johnson R, Vlissides J, Patterns D. Elements
of reusable object-oriented software. Design patterns. Massachu-
setts: Addison-Wesley Publishing Company; 1995.

	19.	 Delessy N, Fernandez EB, Sorgente T. Patterns for the extensible
access control markup language. In: Proceedings of the 12th Pat-
tern Languages of Programs Conference (PLoP2005). 2005; pp.
7–10

	20.	 eXtensible Access Control Markup Language (XACML) Version
3.0—OASIS standard. 2013;http://​docs.​oasis-​open.​org/​xacml/3.​
0/​xacml-3.​0-​core-​spec-​os-​en.​html. Accessed in 03.2021.

	21.	 Brossard D. Understanding XACML combining algorithms. 2014;
https://​www.​axiom​atics.​com/​blog/​under​stand​ing-​xacml-​combi​
ning-​algor​ithms/. Accessed in 03.2021.

	22.	 Hu VC, Ferraiolo D, Kuhn R, Friedman AR, Lang AJ, Cogdell
MM, Schnitzer A, Sandlin K, Miller R, Scarfone K, et al. Guide
to attribute based access control (abac) definition and considera-
tions. NIST Special Public. 2019. https://​doi.​org/​10.​6028/​NIST.​
SP.​800-​162

	23.	 Browder K, Davidson MA. The virtual private database in ora-
cle9ir2. Oracle Tech White Paper Oracle Corp. 2002;500:280.

	24.	 Rizvi S, Mendelzon A, Sudarshan S, Roy P. Extending query
rewriting techniques for fine-grained access control. In: Proceed-
ings of the 2004 ACM SIGMOD international conference on
Management of data. 2004; pp. 551–562.

	25.	 Bertino E, Sandhu R. Database security-concepts, approaches,
and challenges. IEEE Trans Dependable Secure Comput.
2005;2(1):2–19.

	26.	 Ahmadi H, Small D. Graph model implementation of attribute-
based access control policies. 2019; arXiv preprint arXiv:​1909.​
09904.

	27.	 Jin Y, Kaja K. Xacml implementation based on graph database.
Proc 34th Int Conf. 2019;58:65–74.

	28.	 Diez FP, Vasu AC, Touceda DS, Cámara JMS. Modeling
xacml security policies using graph databases. IT Professional.
2017;19(6):52–7.

	29.	 Foxx Microservices. https://​www.​arang​odb.​com/​docs/​stable/​foxx.​
html. Accessed in 03.2021.

	30.	 Hu VC, Ferraiolo D, Kuhn DR. Assessment of access control
systems. Princeton: Citeseer; 2006.

	31.	 Hu VC, Scarfone K. Guidelines for Access Control System Evalu-
ation Metrics. National Institute of Standards and Technology,
Gaithersburg, MD. https://​doi.​org/​10.​6028/​NIST.​IR.​7874.

	32.	 Karatas G, Akbulut A. Survey on access control mechanisms in
cloud computing. J Cyber Secur Mobil 2018; pp. 1–36.

	33.	 Sokol AW. A report on the privilege (access) management work-
shop 2010.

	34.	 XACML v3.0 Administration and Delegation Profile Version 1.0.
2014; http://​docs.​oasis-​open.​org/​xacml/3.​0/​xacml-3.​0-​admin​istra​
tion-​v1-​spec-​en.​html. Accessed in 03.2021.

	35.	 Graham GS, Denning PJ. Protection: principles and practice. In:
Proceedings of the May 16–18, 1972, spring joint computer con-
ference. 1971; pp. 417–429.

	36.	 (US), N.C.S.C.: A guide to understanding discretionary access
control in trusted systems, vol. 3. National Computer Security
Center 1987.

	37.	 Benantar M. Mandatory-access-control model. Access control
systems: security, identity management and trust models 2006;
pp. 129–146.

	38.	 Role-based access control in neo4j. 2017; https://​neo4j.​com/​blog/​
role-​based-​access-​contr​ol-​neo4j-​enter​prise/. Accessed in 03.2021.

Publisher’s Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://www.oasis-open.org/committees/download.php/2713/Brief_Introduction_to_XACML.html
https://www.oasis-open.org/committees/download.php/2713/Brief_Introduction_to_XACML.html
https://www.oasis-open.org/committees/download.php/2713/Brief_Introduction_to_XACML.html
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html
https://www.axiomatics.com/blog/understanding-xacml-combining-algorithms/
https://www.axiomatics.com/blog/understanding-xacml-combining-algorithms/
https://doi.org/10.6028/NIST.SP.800-162
https://doi.org/10.6028/NIST.SP.800-162
https://arxiv.org/abs/1909.09904
https://arxiv.org/abs/1909.09904
https://www.arangodb.com/docs/stable/foxx.html
https://www.arangodb.com/docs/stable/foxx.html
https://doi.org/10.6028/NIST.IR.7874
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-administration-v1-spec-en.html
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-administration-v1-spec-en.html
https://neo4j.com/blog/role-based-access-control-neo4j-enterprise/
https://neo4j.com/blog/role-based-access-control-neo4j-enterprise/

	Extended Authorization Policy for Graph-Structured Data
	Abstract
	Introduction
	Related Work
	Authorization Models
	Attribute-Based Access Control (ABAC)
	Relation-Based Access Control (ReBAC)

	eXtensible Access Control Markup Language (XACML)
	Policy Language
	Architecture

	XACML4G
	Policy Language Limitations
	Extended Policy Format
	Policy Processing
	Decision-Making
	Conflict Resolution

	Demonstration Case
	ArangoDB and Foxx Microservices
	Model and Scenario
	Initial Case
	Extended Case
	Complex Constraints
	Conflict Case

	Assessment
	Administration
	Auditing (Supplemental)
	PrivilegesCapabilities Discovery (Supplemental)
	Ease of Privilege Assignments (Optional)
	Syntactic and Semantic Support for Specifying AC Rules (Critical)
	Policy Management (Supplemental)
	Delegation of Administrative Capabilities (Supplemental)
	Flexibilities of Configuration into Existing Systems (Supplemental)
	The Horizontal Scope (Across Platforms and Applications) of Control (Optional)
	The Vertical Scope (Between Application, DBMS, and OS) of Control (Optional)

	Enforcement
	Policy Combination, Composition, and Constraint (Critical)
	Bypass (Supplemental)
	Least Privilege Principle Support (Optional)
	Separation of Duty (SoD) (Critical)
	Safety (Confinements and Constraints) (Critical)
	Conflict Resolution or Prevention (Critical)
	OperationalSituational Awareness (Optional)
	Granularity of Control (Critical)
	Expression (PolicyModel) Properties (Critical)
	Adaptable to the Implementation and Evolution of Access Control Policies (Critical)

	Assessment Summary

	Conclusion
	Acknowledgements
	References

