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Abstract
The paucity of readily available medical data poses a major challenge for the development of AI (artificial intelligence)-based 
healthcare applications and devices. To aid in overcoming this challenge, we propose a sensor-based medical time series 
data synthesis system especially designed for the training of diabetic foot diagnosis models. The proposed system utilizes 
statistical methods, augmentation techniques, and the NeuralProphet model to accomplish its purpose while still maintaining 
medical validity. Our results show that the generated synthetic time series data follow the trends and tendencies of real data. 
We also verify our work using machine learning-based clustering. By successfully clustering the synthetic data generated 
by our proposed system, we prove that our system is capable of meeting its objectives.

Keywords  Data synthesis · Machine learning · Diabetic foot ulcer

Introduction

The number of people diagnosed with diabetes has shown 
a sharp rise from 108 million cases in 1980 to 422 mil-
lion cases in 2014, according to the WHO (World Health 
Organization) [1]. It is also observable in relevant statistics 
that DFU (Diabetic Foot Ulcer) occurs in approximately 
15% of diabetes cases, with 14–24% of DFU cases requir-
ing lower extremity amputation [2]. Therefore, it could be 
said that the timely warning of DFU patients is a nontrivial 

task that may potentially prevent the necessity of measures 
that could greatly degrade the quality of life, for patients. 
Previous studies have attempted to reveal the relationship 
between DFU and other diagnostic indicators [e.g., foot 
temperature, transcutaneous oxygen pressure ( TcPO

2
 ), etc.] 

using traditional statistical techniques [3–8]. However, it 
is of our belief that AI may prove to be more effective in 
discovering the intricate relations between the dependent 
and independent variables of this case and uncovering the 
correlations between DFU and the above-mentioned diag-
nostic indicators. However, one limitation of AI techniques 
is that they demand an abundant supply of training data to This article is part of the topical collection “Future Data and 
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produce results of appreciable quality. Unfortunately, medi-
cal datasets that were collected using wearable sensors are 
rarely available and often lack in size and diversity. The most 
practical solution to this issue is to synthesize the medical 
data required for the training and validation of AI models. 
Although the introduction of bias and inconsistency into the 
AI models in question is an inherent risk with this approach, 
as is typical with similar efforts, we believe that this may be 
remedied through the application of recommended medical 
criteria for each stage of the data synthesis process.

In our earlier research [9], we introduced a synthesis sys-
tem for medical data that employed Prophet, a renowned 
time series prediction model by Facebook, Inc. In this sys-
tem, data was synthesized and augmented under the supervi-
sion of medical professionals. However, the limitation of our 
previous work is that the generated data was not consistent 
with the characteristics of data collected by wearable sen-
sors. To address this problem, we introduce an improved 
synthesis system that employs the NeuralProphet, an 
enhanced version of Prophet that leverages the strengths of 
neural networks thanks to a collaborative effort led by Stan-
ford University, Facebook, Inc., and the open source com-
munity. The main contributions of this paper are as follows: 

1.	 We propose a data synthesis system that implements 
various measures to ensure that the synthesized data 
adheres to the formal characteristics of actual medical 
data.

2.	 We suggest medical criteria, that may be used in future 
studies, that attempt to synthesize and validate data 
regarding the subject of DFU.

3.	 We demonstrate that our proposed system is capable of 
synthesizing diverse and realistic medical data for the 
development of AI-based DFU solutions.

We plan to apply the results of this study to a digital thera-
peutic device of our creation named SmartInsole, which spe-
cializes in the treatment of DFU, to assess and enhance its 
performance. Synthetic datasets are beneficial for the devel-
opment of machine learning-based healthcare applications, 
as they fundamentally solve the scarcity of available wear-
able sensor collected medical data.

This paper will be presented in the following order. 
“Related Work” describes this work in relation to the subject 
areas. “Experimental Materials and Resources”  provides a 
detailed explanation about the materials and open source 
dataset that were used in this study. “Synthesis System”  pro-
vides details of the proposed data synthesis system and an 
illustration of the procedures involved. “Experiments” pro-
vides an overview of the experiment results obtained from 
this research. “Discussion” presents an analysis of the exper-
iment results and a discussion of possible improvements to 

our system. Finally, in “Conclusion”, we provide our con-
cluding remarks on the study subject.

Related Work

DFU, which is a chronic disease [10], is classified into 
three distinguishable pathological types: neuropathy, 
ischemia, and infection [11]. These pathological types 
are each diagnosed using different indicators, according 
to their characteristics [12]. To accurately diagnose and 
predict the symptoms of DFU, it is advisable to consider 
the application of a long-term multiplicative time series.

Unfortunately collecting medical time series data is 
costly, time consuming, and has uncertain availability. 
To solve these problems, Saloni et al. [13] endeavored to, 
and succeeded in synthesizing patients’ records that are 
sporadic and longitudinal, in nature. In addition, Dahmen 
et al. [14] and Walonski et al. [15] proposed SynSys and 
Synthea, respectively, which both attempt to synthesize 
data for health care applications. The above-mentioned 
studies made use of medical records and IoT sensors, 
but not wearable sensors. Stephanie et al. [16] success-
fully demonstrated the synthesis of real valued multidi-
mensional medical time series data from ICU (Intensive 
Care Unit) data. Andrew et al. [14] proposed HealthGAN, 
another framework for medical data synthesis. HealthGAN 
[17] intended to develop a framework that generates dis-
crete medical data rather than continuous time series data.

In our previously proposed system [9], we employed the 
Prophet model for the synthesis of medical data. Prophet 
is an open source time series prediction model initially 
developed by Facebook Inc., that has been proven to dis-
play impressive accuracy in comparison with many other 
forecast methods and models. However, this approach also 
has its own limitations [18] when generating data for the 
training of AI models, in that the seasonality of the syn-
thesized data cannot be accurately reflected [9]. Another 
problem with this approach is that the synthesized data 
fails to reflect the noisy nature of the data collected by 
wearable sensors, which we attempted to remedy with this 
research [9].

Data collected by wearable sensors is easily distorted 
by both external and internal factors [19]. This leads the 
data collected in this manner to display different charac-
teristics compared to medical data procured using tradi-
tional methods using medical precision instruments [20]. 
In a different study [21], it was shown that AI models 
that were trained with clean medical data tended to yield 
unsatisfactory results when applied on noisy data. To deal 
with this problem, many augmentation methods have been 
employed for time series data augmentation. Early efforts 
on time series data augmentation manipulated data in the 
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time and frequency domains. Such examples include, but 
are not limited to, cropping, time warping, flipping, jitter-
ing, and magnitude warping [20, 22]. In our research, we 
apply the “Jittering” method so that our proposed system 
may synthesize medical data that is able to simulate the 
noisy nature of data collected by wearable sensors [20].

NeuralProphet is a novel approach to time series predic-
tion. It is a neural network implementation of Facebook, 
Inc.’s well known Prophet forecast model. By utilizing Neu-
ralProphet, we are able to leverage the power of AR-Net 
[23], a neural network proposed by Triebe et al., to enhance 
the accuracy and robustness of our data synthesis model. We 
believed that NeuralProphet would be a more suitable alter-
native for our proposal considering the scalability require-
ments of the increasingly large amounts of data that we must 
deal with in a production environment.

Experimental Materials and Resources

Medical Criteria

Even though medical criteria have been established empiri-
cally and scientifically over a long period of time, some of 
the variables, such as TcPO

2
 and temperature, are not suit-

able for analysis concerning the diabetic foot, because they 
tend to represent only discrete momentary conditions, while 
continuous time series data are required for accurate results 
that account for developing conditions. Our efforts to rem-
edy these issues can be seen in Tables 1 and 2.

TcPO
2
 values were divided into five levels as shown in 

Table 1, as the fluctuation pattern of TcPO
2
 values in a time 

series tend to display an irregular waveform within certain 
intervals [3–8, 24]. Foot temperature was divided into two 
categories, as derived from the medical research as shown 

in Table 2. In the case of HbA1c values, although not syn-
thesized as part of this study, they have been found to be 
possible to calculate using certain mathematical formulas 
that make use of the relationship between HbA1c and MBG 
(Mean Blood Glucose) [25]. MBG, in this context, repre-
sents the average of blood glucose levels between two to 
three months from the same instance. The equations to be 
used for the aforementioned calculations depend on the type 
of diabetes in question. Eq. 1 (for type 1 diabetes) and Eq. 2 
(for type 2 diabetes) may be employed to generate the rel-
evant HbA1c levels based on the provided synthetic glucose 
data [25].

Without following medical criteria derived from medical 
research results, the synthesis system may generate distorted 
data. Consequently, a biased dataset resulting from data dis-
tortion may in turn lead to the training of a biased AI model. 
To ensure medical validity and prevent any distortion, we 
employ two of the most popular distributions in medical 
statistics, the normal distribution and the F distribution [26].

UCI Diabetes Data Set

The time series glucose level data utilized in our implemen-
tation is the Diabetes Data Set obtained from UC Irvine 
Machine Learning Repository. In an attached note, the con-
tributor of this dataset explains that the data was recorded by 
both automatic electric recording devices and paper records 
of patients. Each record in the dataset has four fields: date 
(in MM:DD:YYYY format), time (in HH:MM format), 
code, and glucose level values. The values in the code field 
indicate a specific action or influencing factor that affected 
the glucose levels. However, one of the problems with this 
dataset is that the timestamps of paper recordings seem to be 
unreliable [27]. This is illustrated by the existence of glucose 
measurements for a nonexistent date.

To prevent the inaccuracies in the source dataset from 
negatively affecting our system, we resorted to preprocess-
ing. The inaccurate or unreliable portions of the dataset were 
completely removed during preprocessing.

Synthesis System

The proposed synthesis system consists of four stages, as 
shown in Fig. 1. We modularize the whole system into 
multiple stages to enhance the flexibility and reproducibil-
ity of our system. For instance, II. Preprocessor is designed 
to work with both data that follow medical criteria, which 

(1)MBG = 28.7 × HbA1c − 46.7

(2)MBG = 36.6 × HbA1c − 77.3

Table 1   TcPO
2
 Severity grades and range

TcPO
2
 Severity grade Value range (mmHg) �

1. Critical Ischemia 0–10 ±15.6

2. Severe Ischemia 11–30 ±15.5

3. At Risk 30–49 ±8.92

4. Normal 40–59 ±12.80

5. Healthy From 60 ±8.80

Table 2   Foot temperature severity grades and value range

Foot temperature category Value range (C)/
Inferred value

� �

1. Healthy 30.84–31.95 31.4 1.92
2. Neuropathic 32.1–33.16 32.73 1.48
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we define as seed data (i.e., TcPO
2
 and foot temperature), 

and data that display seasonality or is influenced by a num-
ber of external factors, which we define as raw data (i.e., 
glucose levels). In the case of TcPO

2
 and foot temperature, 

the I. Seed Data Generator produces relevant data based 
on the proposed medical criteria, which is then passed on 
to the II. Preprocessor. In the case of the glucose levels, 
actual medical data (i.e., UCI Diabetes Data Set) is given 
to the II. Preprocessor. The job of the II. Preprocessor is to 
filter inappropriate or unnecessary data from the raw glu-
cose level data, and to synthesize data from the provided 
seed data using statistical methods.

The processed data of each kind is augmented by the 
III. Augmentor. Finally, the IV. Data generator employs 
the NeuralProphet forecast model to synthesize TcPO

2
 , 

foot temperature, and glucose level data. Since the HbA1c 
data may be derived from glucose levels, a simple Calcu-
lator module may be implemented to calculate the HbA1c 
data based on synthetic glucose level data. Each stage is 
described in detail in the following sections.

Seed Data Generator

As highlighted in “Medical Criteria”, the TcPO
2
 and foot 

temperature data each have their own specific grade and cat-
egory ranges. Based on these ranges, which are presented as 
in Table 1 and 2, we synthesize random data that follows a 
normal distribution of a specified range and standard devia-
tion. Figure 2 shows the distributions of the generated seed 
data of TcPO

2
 . A truncated normal distribution was used for 

each of the ranges of the specified severity grades.
As earlier stated, the glucose level data was not syn-

thesized by the I. Seed Data Generator, but was directly 
obtained from the UCI Diabetes Data Set and given to the 
II. Preprocessor. Unlike other parameters, blood glucose lev-
els display a clear pattern in daily fluctuations. This strong 
seasonality is the reason why they cannot be produced using 
typical statistical generative techniques.

Fig. 1   Schema of synthesis system

Fig. 2   Distribution histogram of 
generated TcPO

2
 seed data
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Preprocessor

We apply two different methods for preprocessing the seed 
and raw data inside the stage II. Preprocessor. For the seed 
data of TcPO

2
 and foot temperature, the preprocessing pro-

cedure is mainly consists of statistical processing. To syn-
thesize data for the two categories (i.e., non-diabetic and 
diabetic) in amounts that closely reflect the ratio between 
the two, as may be observed in real data, we elected to have 
our synthesized data follow an F distribution by grade. This 
is because the F distribution tends to closely represent the 
distribution of the diseased and non-diseased populations in 
a given random community [28, 29]. As shown in Fig. 3, we 
synthesize data in amounts that fit an F distribution, whose 
sum of y-axis values equal the size of the preprocessed seed 
data that was generated earlier. While there may be difficul-
ties in visually identifying parts of Fig. 3, the five columns 
of the data shown in the histogram represent the proportion 
of data that each of the severity grades must adhere to, if 
we were to follow the F distribution. Albeit being a rough 
estimate, by having the ratio of the amount of data for each 
severity grade follow the F distribution, we are able to train 
our clustering model in an environment that is closer to that 
of reality, where most people are healthy and much fewer 
people are ill.

We filter the raw data (i.e., glucose level data from the 
UCI Diabetes Data Set) so that only portions of raw data 
that contain glucose measurements before and after break-
fast, lunch, and dinner are used. This is done to increase the 
reliability and generalization capability of models trained 
from the raw data [9]. These conditions were formulated to 
exclude erratic and case specific glucose measurement data, 
such as measurements taken after insulin doses (Codes 33, 

34, 35, etc.), unspecified special events (Code 72), etc. In 
addition, since most people are likely to regularly consume 
three meals per day, basing our model on such consistent 
and regular activities should prove to be beneficial for the 
generalization capability of our model. The preprocessing, 
as explained above, helps us to properly augment the data 
and, later, train the NeuralProphet.

Augmentor

This study employs a data augmentation method called “Jit-
tering” on the preprocessed data to mimic the “noisiness” of 
data generated by wearable sensors. Jittering was success-
fully implemented by Um et al. [20] as a time series data 
augmentation method to copy the effects of additive noise in 
accelerometer sensor data from Parkinson’s disease patients. 
Jittering introduces a reasonable level of noise to the subject 
data by extracting random data from a normal distribution, 
and then adding this random data to input data. By using 
jittering, we are able to transform the clean seed data (i.e., 
TcPO

2
 and foot temperature data) and raw data (i.e., glucose 

level data taken from the UCI Diabetes Data Set) into data 
similar to the kind collected by wearable sensors. The aug-
mentation method we employ greatly enriches our dataset 
and enhances the robustness of AI models that try to classify 
or cluster the time series dataset synthesized by our system.

Data Generator

We employ NeuralProphet as a synthesis model for the 
IV. Data Generator. NeuralProphet is a novel forecast model 
for time series prediction that is a fork of Facebook’s well 
renowned Prophet. One of the most distinguishable aspects 

Fig. 3   Preprocessed TcPO
2
 Data 

distribution between severity 
grades
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of NeuralProphet in comparison to Prophet is that it har-
nesses the power of neural networks.

By utilizing NeuralProphet, we can leverage the powers 
of AR-Net [23], to enhance the accuracy and robustness of 
our data synthesis model.

To properly train NeuralProphet’s, we divide augmented 
data into two groups. First, we designate and extract 20% of 
the data as the test dataset. The remaining 80% of the entire 
dataset is again divided following a ratio of 2:8, each being 
the validation dataset and training dataset, respectively.

We conducted this experiment with various differing 
amounts of epochs and have reached the conclusion that the 
optimal number of epochs, where the training and valida-
tion error rates converged to the minimum, is 100 epochs. 
As such, the training of NeuralProphet is conducted for 100 
epochs in this research.

To synthesize realistic and diverse data using Neural-
Prophet, setting up appropriate future regressors is essential. 
Future regressors are important components of how external 
factors, seasonality, and errors are reflected in the overall 
data pattern in a time series prediction model. Future regres-
sors should be resistant to errors even in error-prone environ-
ments [30]. The multiplicative future regressors employed in 
this study precisely predict the future under a highly variable 
environment [31, 32]. After training, NeuralProphet will 
predict and generate TcPO

2
 , foot temperature, and glucose 

level data.
Lastly, HbA1c data may be calculated using the above-

mentioned (Eqs. 1 and 2) in conjunction with the synthe-
sized glucose level data.

Experiments

To evaluate our system, we take two steps. First, we gener-
ate synthetic medical data using our system, following the 
proposed medical criteria. Second, we apply K-means clus-
tering on the data, synthesized in the first step, to verify how 
closely it resembles the features of each of the respective 
categories or severity grades. The following describes the 
experiment methods, procedures, and the results in detail.

Data Synthesis

In the first experiment, we synthesize three types of data, 
that is, TcPO

2
 , foot temperature, and glucose level data. The 

experiment is conducted as follows: 

1.	 We generate seed data for both the diseased and non-
diseased categories based on the medical criteria used 
for the synthesis of TcPO

2
 and foot temperature data. In 

the case of glucose level data, the UCI Diabetes Data 

Set was used in order to generate data that reflects the 
seasonality of glucose levels in diabetic patients.

2.	 The II. Preprocessor processes the synthesized data fol-
lowing the procedures mentioned earlier, and randomly 
selects a certain amount of data, whose amounts con-
form to the F distribution, from a pool of synthesized 
data. The F distribution is used to reflect the volume 
distribution of data collected in a real-world environ-
ment.

3.	 The III. Augmentor applies jittering on preprocessed 
data with the � parameter (which decides the size of the 
normal distribution to extract random data from) set to 
0.5.

4.	 The IV. Data Generator trains NeuralProphet on aug-
mented data with the test to remaining dataset ratio 
being 2:8. The remaining dataset is again split by a 2:8 
ratio for the validation and training datasets, respec-
tively. The model is trained for 100 epochs, thereafter. 
Finally, the  IV. Data Generator synthesizes data for 
both the diseased and non-diseased categories, based 
on trends and patterns learned from the seed data.

Clustering

In our second experiment, we perform unsupervised 
machine learning (i.e., K-means clustering) on the synthe-
sized data from the previous stage. By performing cluster-
ing, we can verify whether our proposed synthesis system 
is able to correctly and accurately synthesize medical data 
that is consistent with the general characteristics of each cat-
egory or severity grade. When choosing the metric to use for 
cluster assignment, we elected to proceed with dynamic time 
warping (DTW) as it is less sensitive to the subtle changes 
of the sequence on the time axis, compared to the widely 
used Euclidean method, as described by Wang et al. [33]. 
The tslearn library [34] of Python was used to implement 
the clustering model.

Results

Table 3 presents the results of our clustering experiment on 
the TcPO

2
 and foot temperature data generated by our sys-

tem. The “Ground truth” column displays the actual amount 
of data that was chosen for each of the two categories (i.e., 
diseased and non-diseased). The “Clustered” column dis-
plays the amount of data that the K-means clustering algo-
rithm considered to belong to each category. The “Clas-
sification accuracy” column shows the ratio between the 
amount of data that was clustered together and the amount 
of data that actually belongs to the given category. With this 
measure, we may evaluate whether the data synthesized by 
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our system successfully imitates the aspects of actual data 
belonging to each of the respective categories. The fact that 
the “Classification accuracy” is 1.00 for all categories and 
types of data indicates that our system is appropriate for 
synthesizing training data for models tasked with the binary 
classification of diseased and non-diseased people.

To ensure the accuracy, robustness, and scalability of our 
system, we repeat the same clustering experiment again; this 
time with a larger number of data and with the implementa-
tion of a five-tiered severity grade (i.e., healthy, normal, at 
risk, severe, and critical). Table 4 presents the clustering 

results for the above-mentioned expanded clustering exper-
iment. This time, we can observe that the “Classification 
accuracy” exhibits a certain level of deviation from the 
optimal ratio of 1.00. However, if we sum the values of the 
“Healthy” and “Normal” severity grades, which are show-
ing the above-mentioned deviation, we can observe that the 
numbers add up to 441,428; which is the total amount of 
“Ground truth” data that was labelled “Non-Diseased”. As 
shown in the experiment results, all grossly incorrect cluster-
ing happened within the “Non-Diseased” category, and the 
worst level of classification for the “Diseased” category was 
achieved for the “Critical” severity grade, which scored a 
classification accuracy of 0.93 out of 1.00. Although exhib-
iting some room for improvement, it could be said that our 
system is generally robust, accurate, and fulfills our purpose 
of synthesizing medical data to train AI models, aimed at the 
enhanced diagnosis of diabetic patients.

Since the UCI Diabetes Data Set only contains data taken 
from diabetic patients, we found it unnecessary to perform 
clustering for the glucose levels. However, we were able 
to calculate the seasonality trend of diabetic patients’ glu-
cose levels by having NeuralProphet learn from the data, as 
shown in Fig. 4. We received confirmation from a medical 
specialist that the seasonality learned by NeuralProphet dis-
plays a trend that reflects that of actual diabetes patients, and 
is within a medically valid range. Thus, we may reasonably 
claim that our proposed model holds up to its description 
even for glucose level data.

Discussion

Currently, it is proving to be difficult to apply more sophisti-
cated evaluation methods to the synthetic data generated by 
our system, since we lack any other data of a similar nature 
for comparison. Nevertheless, the result from NeuralProphet 
shows promising results. We have confirmed that our model 
correctly identifies sharp increases in blood glucose level 

Table 3   Clustering results of TcPO
2
 and foot temperature (two clus-

ters)

Clustered Ground truth Clas-
sification 
accuracy

TcPO
2

   Non-diseased 441,428 441,428 1.00
   Diseased 58,572 58,572 1.00

Foot temperature
   Non-diseased 192,119 192,119 1.00
   Diseased 7881 7881 1.00

Table 4   Clustering results of TcPO
2
 (five clusters)

Clustered Ground truth Clas-
sification 
accuracy

TcPO
2

 Healthy 360,041 81,387 4.42
 Normal 81,387 360,041 0.23
 At risk 56,844 56,844 1.00
 Severe 1701 1699 1.00
 Critical 27 29 0.93

Fig. 4   An example of NeuralProphet daily seasonality of glucose level data
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during time periods that are traditionally associated with 
regular meal consumption, and downward fluctuations dur-
ing the rest of the day. It is also noteworthy that our system 
successfully imitates the characteristics of wearable sensor 
collected data, thanks to the data augmentation method (i.e., 
jittering) we implemented.

To test the validity of our work in the absence of a real 
dataset to compare with, we conducted a clustering experi-
ment using the K-means algorithm on data synthesized by 
our system. The results of this experiment demonstrate the 
integrity and usability of our data. As such, this is expected 
to help accelerate the development of SmartInsole’s DFU 
diagnosis model. Based on the two experiments presented 
in this paper, we can expect to be able to synthesize medi-
cal data in a more sophisticated manner in the future. To 
improve the quality of data synthesized by our system, we 
may fine-tune our model further by customizing the Season-
ality and Holiday of the NeuralProphet. This would con-
tribute to the production of data that reflects more diverse 
and possibly personalized trends, with better reflection of 
external influencing factors. Table 5 shows the tentative cus-
tom Seasonality types of each parameter. This customizable 

Seasonality can be used in NeuralProphet model as well as 
Prophet.

As clinical trials based on SmartInsole, shown in Fig. 5, 
are scheduled to be conducted this year, we expect that we 
will soon be able to further this research with empirical data. 
We look forward to being able to shed light on the correla-
tions between the parameters of NeuralProphet and the pat-
tern of characteristics displayed by the synthesized data with 
the help of empirical data collected by SmartInsole.

Conclusion

Through this research, we proposed an advanced and flexi-
ble medical data synthesis system for DFU. Our system syn-
thesizes time series data that factors in the characteristics 
of data collected by wearable sensors. The greatest merit of 
our system is that it takes a great leap forward in combatting 
the scarcity of readily available medical data through use of 
cutting-edge scientific methods; all the while maintaining 
medical validity. We also presented a systematic approach 
on how to synthesize medical data while following prede-
fined medical criteria, which will undoubtedly be an asset 
for future researchers in this discipline. However, a limita-
tion of our effort is that our system is currently incapable of 
synthesizing multivariate data simultaneously. This results 
in possible under-representation of correlations between 
external factors. We look forward to remedying this limita-
tion through upcoming research, after the acquisition of 
empirical data collected by SmartInsole. In the future, we 
hope to enhance our proposed system, so that it may simul-
taneously synthesize multivariate medical time series data 
using a single deep learning model; hopefully in a versatile 
manner that is easily adaptable for other purposes.

Table 5   Proposed list of custom specified seasonality for each param-
eter

Type of seasonality Affected data Name of custom seasonality

Hourly Glucose level Insulin from body
Sub-daily Glucose level Insulin intake, eating habit

Foot temperature Regular exercises, external 
temperature changes

Monthly Glucose level Insulin intake dosage change
TcPO

2
Blood pressure changes

Quarterly HbA1c Mean glucose level changes

Fig. 5   3D model and prototype 
of SmartInsole 
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