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Abstract
Recent advances in both theory and methods have created opportunities to simulate biomolecular processes more efficiently 
using adaptive ensemble simulations. Ensemble-based simulations are used widely to compute a number of individual simu-
lation trajectories and analyze statistics across them. Adaptive ensemble simulations offer a further level of sophistication 
and simulation efficacy by enabling high-level algorithms to control simulations based on intermediate results. Novel high-
level algorithms for adaptive simulations require sophisticated approaches to manage the ensemble members and utilize the 
intermediate data during runtime. Thus, there is a need for scalable software systems to support adaptive ensemble-based 
methods. We describe the operations in executing adaptive workflows, classify different types of adaptations, and describe 
challenges in implementing them in software tools. We establish the design considerations of software systems to support 
the requirements of adaptive ensemble applications at extreme scale. We use Ensemble Toolkit (EnTK) and its associated 
task execution runtime system (RADICAL-Pilot)—middleware building blocks to implement a scalable adaptive ensem-
ble execution system. We implement two high-level adaptive ensemble algorithms—multiwalker expanded ensemble and 
Markov state modeling, and execute up to 212 ensemble members, on thousands of cores on three distinct HPC platforms. 
We highlight scientific advantages enabled by the novel capabilities of our approach. To the best of our knowledge, this is 
the first attempt at describing and implementing multiple adaptive ensemble workflows using a common conceptual and 
implementation framework.

Keywords Adaptive ensembles · Advanced sampling algorithms · High performance computing · Workflow building 
blocks

Introduction

Current computational methods for solving scientific prob-
lems in biomolecular science are at or near their scaling lim-
its using traditional parallel architectures [1]. Computations 

using straightforward molecular dynamics (MD) are inher-
ently sequential processes, and parallelization is limited to 
speeding up each individual, serialized, time step. Conse-
quently, ensemble-based computational methods have been 
developed to address these gaps, including replica-exchange 
molecular dynamics (REMD) [2–8], multiple walker meta-
dynamics [8–10], hyperdynamics and other accelerated 
dynamics methods [11–13], Markov state modeling [14, 15], 
and swarm-of-trajectory methods [16–19]. In these methods, 
multiple simulation tasks are executed concurrently, and var-
ious physical or statistical principles are used to combine the 
tasks together with longer time scale communication (sec-
onds to hours) instead of the microsecond to milliseconds 
required for standard tightly coupled parallel processing.

Existing ensemble-based methods have been success-
ful for addressing a number of questions in biomolecular 
modeling [20]. However, studying systems with multiple-
timescale behavior extending out to microseconds or mil-
liseconds, or studying even shorter timescales on larger 

This article is part of the topical collection “Software Challenges 
to Exascale Computing” guest edited by Amit Majumdar and 
Ritu Arora.

 * Shantenu Jha 
 shantenu.jha@rutgers.edu

1 Department of ECE, Rutgers University, Piscataway, USA
2 Department of ChBE, University of Colorado Boulder, 

Boulder, USA
3 Biomedical Engineering, University of Virginia, 

Charlottesville, USA
4 Department of ECE, Rutgers University and Computational 

Science Initiative, Brookhaven National Laboratory, 
Upton, New York, USA

http://orcid.org/0000-0002-5040-026X
http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-020-0081-1&domain=pdf


 SN Computer Science (2020) 1:104104 Page 2 of 15

SN Computer Science

physical systems will not only require tools that can sup-
port 100 × −1000× greater degrees of parallelism but also 
exploration of adaptive algorithms. In adaptive algorithms, 
the intermediate results of simulations are used to alter fol-
lowing simulations. We define adaptivity as the capability 
to change attributes that influence execution performance or 
domain-specific parameters, based on runtime information.

Adaptive approaches can increase physical simulation 
efficiency by greater than a thousand-fold [12, 15, 21–24]. 
Adaptive algorithms learn from the simulation ensemble 
members as they proceed, “steering” execution toward inter-
esting phase space or parameters and thus improve sampling 
quality or sampling rate. Adaptivity can access events that 
would otherwise happen at much longer time scales, mak-
ing it possible to investigate larger physical systems with a 
given set of resources as well as to efficiently explore high-
dimensional energy surfaces in finer detail. As molecular 
simulations are used to investigate questions of increasing 
biological complexity with progressively increasing scales, 
gains in algorithmic sophistication and computational effi-
ciency from adaptive ensemble methods will become critical 
in generating quantitative insight into biological problems.

However, such adaptive ensemble simulations require a 
sophisticated software infrastructure to encode, modular-
ize, and execute complex interactions and execution logic 
[25–27]. The execution trajectory of adaptive simulations 
cannot be fully determined a priori, but depends upon inter-
mediate results. The logic to specify such changes can rely 
on a simulation within an ensemble, an operation across an 
ensemble, or external criteria, such as resource availability 
or experimental data. To achieve scalability and efficiency, 
such adaptivity cannot be performed via user intervention 
and hence automation of the control logic and execution 
becomes critical.

Many adaptive algorithms can be expressed at a high 
level, such that the adaptive logic itself is independent of 
simulation details (i.e., external to MD engines like AMBER 
[28], NAMD [29] or GROMACS [30]). Adaptive operations 
that are expressed independent of the internal details of sim-
ulation tasks facilitate MD software package agnosticism 
and simpler expression of different types of adaptivity and 
responses to adaptivity. Further, it is important to formulate 
adaptive capabilities so as to be agnostic of the type and 
execution properties of the analysis responsible for adap-
tivity. For example, machine learning-based analysis will 
provide increasingly sophisticated adaptive ensemble algo-
rithms. The separation of adaptive operations from simu-
lation and analysis internals provides a useful abstraction 
for both methods’ developers and software systems. This 
promotes easy development of new methods while facilitat-
ing scalable system software and its optimization through 
performance engineering [31].

In this paper, we focus on the design and implementa-
tion of software systems, in particular the Ensemble Toolkit 
(EnTK) [32] and its associated runtime system (RADICAL-
Pilot), to support the requirements of adaptive ensemble 
applications at extreme scale. To guide the design and imple-
mentation of capabilities to encode and execute adaptive 
ensemble applications in a scalable and adaptive manner, 
we identify two such applications from the biomolecular sci-
ence domain, abstract and generalized descriptions of which 
are shown in Figs. 1 and 2. They have distinct execution 
requirements; in addition, coordination and communication 
patterns among their ensemble members differ. However, 
they are united by their need for an adaptive execution of 
large number of tasks.

This paper makes the following specific contributions: 
(i) We describe the operations in executing adaptive work-
flows, classify different types of adaptations, and describe 
challenges in implementing them in software tools; (ii) we 
establish the design considerations of software systems to 
support the requirements of adaptive ensemble applications 
at extreme scale. We use middleware building blocks [33, 
34] to implement a scalable adaptive ensemble execution 
system and characterize its performance with respect to 
adaptive operations; and (iii) we implement two high-level 
adaptive ensemble algorithms, executing up to 212 ensem-
ble members, on thousands of cores on three distinct high-
performance computing (HPC) platforms.
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Fig. 1  Schematic of the expanded ensemble (EE) science driver. Two 
versions of EE are implemented: (1) local analysis where analysis 
uses only data local to its ensemble member; and (2) global analysis 
where analysis uses data from other ensemble members (represented 
by dashed lines)
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Section “Related Work” describes existing and related 
approaches. Section “Science Drivers” presents two sci-
ence drivers that motivate the need for large-scale adaptive 
ensemble biomolecular simulations. We discuss different 
types and challenges in supporting adaptivity in “Software 
Design Considerations for Adaptive Ensemble Workflows” 
section. In “Ensemble Toolkit” section, we describe the 
design and implementation of EnTK, and the enhancements 
made to address the challenges of adaptivity. In “Experi-
ments” section, we characterize the overheads in EnTK as 
a function of adaptivity types, validate the implementation 
of the science drivers, and discuss scientific advantages that 
the novel capabilities of our approach provides.

Related Work

Adaptive ensemble applications span several science 
domains including, but not limited to, climate science, 
seismology, astrophysics, and biomolecular science. For 
example, Ref. [35] studies adaptive selection and tuning of 
dynamic recurrent neural networks (RNNs) for hydrological 
forecasting; Ref. [36] presents adaptive modeling of oce-
anic and atmospheric circulation; Ref. [37] studies adaptive 
assessment methods on an ensemble of bridges subjected to 
earthquake motion; and Ref. [38] discusses parallel adaptive 
mesh refinement techniques for astrophysical and cosmo-
logical applications.

Several adaptive ensemble algorithms have been formu-
lated. In generalized ensemble simulation methods, different 
ensemble simulations employ distinct exchange algorithms 
[39] or specify diverse sampling parameters [40] to explore 
free energy surfaces that are less accessible to non-adaptive 
methods. Weighted ensemble and forward-flux sampling 
approaches adaptively trim and clone ensemble members 
using criteria based on progress along a desired collec-
tive variable [26, 27]. Markov State Model [41] (MSM) 
approaches adaptively select initial configurations for simu-
lations to reduce uncertainty of the resulting model.

Current solutions to encode and execute adaptive ensem-
ble algorithms fall into two categories: workflow systems 
that do not fully support adaptive algorithms, or MD soft-
ware packages where the adaptivity is embedded within the 
executing kernels. Several workflow systems [42], includ-
ing Kepler, Taverna and Pegasus support adaptation capa-
bilities only as a form of fault tolerance and not as a way to 
enable decision-logic for changing the workflow at runtime. 
Domain-specific workflow systems such as Copernicus [43] 
have also been developed to support Markov state modeling 
algorithms to study kinetics of bio-molecules. Although 
Copernicus provides an interactive and customized inter-
face to domain scientists, it requires users to manage the 
acquisition of resources, the deployment of the system, and 

the configuration of the execution environment. This hinders 
Copernicus uptake, often requiring tailored guidance from 
its developers.

Widely used MD software packages such as AMBER 
[28], NAMD [29] and GROMACS [30] offer capabilities 
to execute ensemble algorithms, often with some adap-
tive capability. Encoding the adaptive ensemble algorithm, 
including its adaptation logic within MD software packages 
locks the capabilities in those packages, prevents easy addi-
tion of new adaptive algorithms or reuse across packages. In 
contrast, the capability to encode the algorithm and adapta-
tion logic as a high-level workflow promises several benefits: 
separation between algorithm specification and execution; 
flexible and quick prototyping of alternative algorithms; and 
extensibility of algorithmic solutions to multiple software 
packages, science problems and scientific domains [31, 44]. 
To realize these promises, we develop the abstractions and 
capabilities to encode adaptivity at the ensemble application 
level, while reusing existing capabilities to execute adaptive 
ensemble applications at scale on high-performance comput-
ing (HPC) systems.

Science Drivers

In this paper, we discuss two representative adaptive ensem-
ble applications from the biophysical domain: expanded 
ensemble and Markov state modeling. Prior to discussing 
the implementation of these applications, we describe the 
underlying algorithms.

Expanded Ensemble

Metadynamics [45] and expanded ensemble (EE) dynam-
ics [46] are a class of adaptive simulation algorithms, used 
in both biological and other condensed matter simulations, 
where similar to replica exchange, individual simulations 
jump between simulation conditions. In EE dynamics, the 
simulation states take one of N discrete ‘states’ or ensembles 
of interest, while preserving the probability distribution cor-
responding to each of the states that would be obtained if 
that ensemble was simulated alone. These N states can be 
different temperatures or biasing functions on the system 
or force field parameters of the system. Metadynamics is 
similar, except the different simulation states are described 
by one or more continuous variables. In both algorithms, 
unlike replica exchange, each simulation can explore the 
N  different simulation states independently. Since some 
states are inherently more physically probable than others, 
simulation weights assigned to each state (for EE) or con-
tinuously assigned as a function of the simulation variable 
(metadynamics) are required to force the simulations to 
visit desired distributions in the simulation condition space, 
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which necessarily requires sampling in all the simulation 
states while the allowed simulation configurations are also 
sampled. These weights are learned adaptively as the simula-
tion progresses using a variety of techniques [46].

Since the movement among state spaces is essentially 
diffusive, the larger the simulation state spaces, the more 
time the sampling between states takes. “Multiple walker” 
approaches can improve sampling performance by using 
more than one simulation to explore the same state space 
[47]. Further, the simulation condition range can be par-
titioned into individual simulations as smaller partitions 
decrease diffusive behavior [9]. The “best” partitions to 
spend time sampling may not be known until after simu-
lation. These partitions could instead be determined adap-
tively, based on runtime information about partial simulation 
results.

To our knowledge, EE simulations have not been per-
formed using a multiwalker approach, in large part because 
of the difficulty in implementing such a workflow, as the 
theory itself is very is similar to multiple walker metady-
namics. In this paper, we use this framework to implement 
two versions of EE consisting of concurrent and iterative 
ensemble members that analyze data at regular intervals. 
In the first version, we analyze data local to each ensemble 
member; in the second version we analyze data global to all 
the ensemble members by asynchronously exchanging data 
among members. In our application, each ensemble mem-
ber consists of two types of task: simulation and analysis. 
The simulation tasks generate MD trajectories while the 
analysis tasks use these trajectories to generate simulation 
condition weights for the next iteration of simulation in its 
own ensemble member. Every analysis task operates on the 
current snapshot of the total local or global data. Note that in 
global analysis, EE uses any and all data available and does 
not explicitly “wait” for data from other ensemble members 
at the same iteration. Figure 1 is a representation of these 
implementations.

Markov State Modeling

Markov state modeling (MSM) is another important class 
of molecular simulation algorithms for determining kinet-
ics of molecular models. Using an assumption of separation 
of time scales of molecular motion, the rates of first-order 
kinetic processes are learned adaptively. In a MSM simula-
tion, a large ensemble of simulations, typically tens or hun-
dreds of thousands, are run from different starting points and 
similar configurations are clustered as states. MSM build-
ing techniques include kinetic information but begin with 
a traditional clustering method (e.g., k-means or k-centers) 
using a structural metric. Configurations of no more than 2Å 
to 3Å RMSDs are typically clustered into the same “micro-
state” [48].

The high degree of structural similarity implies a kinetic 
similarity, allowing for subsequent kinetic clustering of 
micro-states into larger “macro-states”. The rates of transi-
tions among these states are estimated by observing which 
entire kinetic behavior can be inferred, even though indi-
vidual simulations perform no more than one state transition. 
However, the choice of where new simulations are initiated 
to best refine the definition of the states, improve the statis-
tics of the rate constants, and discover new simulation states 
requires a range of analyses of previous simulation results, 
making the entire algorithm highly adaptive.

MSM provides a way to encode dynamic processes such 
as protein folding into a set of metastable states and tran-
sitions among them. In computing MSM from simulation 
trajectories, the metastable state definitions and the transi-
tion probabilities have to be inferred. Refs. [49, 50] show 
that “adaptive sampling” can lead to more efficient MSM 
construction as follows: provisional models are constructed 
using intermediate simulation results, and these models are 
then used to direct the placement of further simulation tra-
jectories. Different from other approaches, in this paper we 
encode this algorithm as an application where the adaptive 
code is independent from the software packages used to per-
form the MD simulations and MSM construction.

Figure 2 offers a diagrammatic representation of the adap-
tive ensemble MSM approach. The application consists of 
an iterative pipeline with two stages: (i) ensemble of sim-
ulations and (ii) MSM construction to determine optimal 
placement of future simulations. The first stage generates 
sufficient amount of MD trajectory data for an analysis. The 
analysis–i.e., the second stage–operates over the cumulative 
trajectory data to adaptively generate a new set of simulation 
configurations, used in the next iteration of the simulations. 
The pipeline is iterated until the resulting MSM converges.

Software Design Considerations 
for Adaptive Ensemble Workflows

The broad range of adaptive ensemble simulation algo-
rithms impose diverse requirements on the underlying 
software infrastructure. Algorithms differ in the frequency 
of communication between ensemble members, local ver-
sus non-local communication, and the type of information 
exchanged. Adaptive changes can alter the number of tasks 
being performed (how many ensemble members in a simula-
tion), the parameters of those tasks (placement of tempera-
ture or lambda values in an expanded-ensemble simulation), 
or even which tasks are being performed when. The logic to 
specify such changes can rely on a single simulation within 
an ensemble, an operation across an ensemble, or even exter-
nal criteria, such as new experimental data.
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Execution of Adaptive Workflows

Adaptive ensemble applications discussed in “Science Driv-
ers” section involve two computational layers: at the lower 
level each simulation or analysis is performed via MD soft-
ware package; at the higher level, an algorithm codifies the 
coordination and communication among simulations and 
between simulations and analyses. Different adaptive ensem-
ble applications and adaptive algorithms might have varying 
coordination and communication patterns, yet are amenable 
to common adaptations and similar types of adaptations.

We implement each simulation and analysis instance of 
these applications as a task, while representing the full set of 
task dependencies as task graph of a workflow. A workflow 
may be fully specified a priori, or may be adapted, changing 
in specification, during runtime. For the remainder of the 
paper, we refer to alterations in the task graph as workflow 
adaptivity.

Executing adaptive workflows at scale on HPC resources 
presents several challenges [31]. Execution of adaptive 
workflows can be decomposed into four operations as repre-
sented in Fig. 3: (a) creation of an initial task graph, encod-
ing known tasks and dependencies; (b) traversal of the initial 
task graph to identify tasks ready for execution in accord-
ance with their dependencies; (c) execution of those tasks 
on the compute resource; and (d) notification of completed 
tasks (control-flow) or generation of intermediate data (data-
flow) which invokes adaptations of the task graph.

Operations (b)–(d) are repeated until the complete 
workflow is determined, and all its tasks are executed. This 
sequence of operations is called an Adaptivity Loop: in an 
adaptive scenario, the workflow “learns” its future task 
graph based on the execution of its current task graph; in 
a pre-defined scenario, the workflow’s task graph is fully 
specified and only operations (a)–(c) are necessary.

Encoding of adaptive workflows requires two sets of 
abstractions: one to encode the workflow; and the other to 
encode the adaptation methods (A) that, upon receiving a 
signal x, operate on the workflow. The former abstractions 
are required for creating the task graph, i.e., operation (a), 
while the latter are required to adapt the task graph, i.e., 
operation (d).

Types of Adaptations

Adaptivity Loop applies an adaptation method (Fig. 3d) 
to a task graph. We represent a task graph as G = [V ,E] , 
with the set V of vertices denoting the tasks of the work-
flow and their properties (such as executable, required 
resources, and required data), and the set E of directed 
edges denoting the dependencies among tasks. For a work-
flow represented as task graph GT = [V ,E] , there exist four 

parameters that may change during execution: (i) set of 
vertices; (ii) set of edges; (iii) size of the vertex set; and 
(iv) size of the edge set. We analyzed the 24 permutations 
of these four parameters and identified 3 that are valid and 
unique. The remaining permutations represent conditions 
that are either not possible to achieve, or combinations of 
the 3 valid permutations.

Task-count adaptation: We define an operator AC to rep-
resent the adaptation of task-count if, on receiving a signal 
x, the method performs the following adaptation (operation) 
on GT:

Task-count adaptation changes the number of tasks, i.e., 
the adaptation method operates on GT

i
 to produce a different 

GT
i+1

 , such that at least one vertex and one edge is added or 
removed to/from GT

i
.

Task-order adaptation: We define an operator AO as a 
task-order adaptation if, on a signal x, it performs the fol-
lowing adaptation on G T:

Task-order adaptation changes the dependency order among 
tasks, i.e., AO operates on GT

i
 to produce GT

i+1
 such that the 

vertices are unchanged but at least one of the edges between 
vertices is different between GT

i
 and GT

i+1
.

Task-property adaptation: We define an operator AP that 
captures the adaptation of the property of tasks, if, on a signal 
x, it performs the following adaptation on GT:

Task-property adaptation changes the properties of at least 
one task, i.e., AP operates on a GT

i
 to produce a new GT

i+1
 such 

that the edges and the number of vertices are unchanged, but 

GT
i+1

= AC(G
T
i
, x)

⟹ size(Vi) ≠ size(Vi+1) ∧ size(Ei) ≠ size(Ei+1)

where GT
i
= [Vi,Ei] ∧ GT

i+1
= [Vi+1,Ei+1].

GT
i+1

= AO(G
T
i
, x)

⟹ Ei ≠ Ei+1 ∧ Vi = Vi+1

where GT
i
= [Vi,Ei] ∧ GT

i+1
= [Vi+1,Ei+1].

GT
i+1

= AP(G
T
i
, x)

⟹ Vi ≠ Vi+1 ∧ size(Vi) = size(Vi+1) ∧ Ei = Ei+1

where GT
i
= [Vi,Ei] ∧ GT

i+1
= [Vi+1,Ei+1].
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Fig. 3  Adaptivity Loop: Sequence of operations in executing an 
adaptive workflow
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the properties of at least one vertex are different between GT
i
 

and GT
i+1

.
We can represent the workflow of the two science drivers 

using the notations presented. Expanded ensemble (EE) con-
sists of N ensemble members executing independently for mul-
tiple iterations until convergence (meaning the bias weights on 
each ensemble member are no longer changing to within some 
tolerance) is reached in any ensemble member. We represent 
one iteration of each ensemble members as a task graph GT 
and the convergence criteria with x. An adaptive EE workflow 
can then be represented as:

Markov state modeling (MSM) consists of one ensemble 
member which iterates between simulation and analysis till 
sufficient trajectory data are analyzed. At each analysis step, 
a set of promising molecular configurations is selected as 
initial configurations for the next iteration of ensembles. The 
choice of which configurations are considered “promising” 
will vary between application and MSM variant [15, 51]. 
We represent one iteration of the ensemble member as a task 
graph GT and its termination criteria as x. An adaptive MSM 
workflow can then be represented as:

Challenges in Encoding Adaptive Workflows

Supporting adaptive workflows poses three main chal-
lenges. The first challenge is the expressibility of adap-
tive workflows as their encoding requires APIs that enable 
the description of the initial state of the workflow and the 
specification of how the workflow adapts on the basis of 
intermediate signals. The second challenge is determining 
when and how to instantiate the adaptation. Adaptation is 
described at the end of the execution of tasks wherein a new 
task graph is generated. Different strategies can be employed 
for the instantiation of the adaptation [52]. The third chal-
lenge is the implementation of the adaptation of the task 
graph at runtime. We divide this challenge into three parts: 
(i) propagation of adapted task graph to all components; (ii) 
consistency of the state of the task graph among different 
components; and (iii) efficiency of adaptive operations.

parallel_for i in [1 ∶ N] ∶

while (condition on x) ∶

GT
i+1

= AP(AO(AC(G
T
i
)))

while (condition on x) ∶

GT+1 = AO(AC(G
T ))

Ensemble Toolkit

Expressing adaptive algorithms as computational processes 
separate from but operating on independent ensemble mem-
bers, creates several implementation challenges. These 
include coordination and consistency across distributed 
execution components, scalable communication between 
independent simulations and efficient stop and restart of 
simulations.

Separating the adaptive logic from underlying execution 
management software allows the complexity to be contained 
within the internal implementation of the software system 
and not be exposed to the user. This approach also enables 
transparent low-level optimization and adjustment to fluc-
tuations in workload and resource availability. Thus, scal-
able ensemble-based adaptive algorithms require support at 
multiple levels: programming models and APIs, execution 
models and runtime system.

In this section, we discuss the design and implementa-
tion of EnTK and its associated runtime system, as well 
as enhancements to EnTK to support adaptivity as a first-
class capability. We offer a schematic representation of the 
components and sub-components of EnTK (Fig. 4), sum-
marizing its design and implementation. Further, we detail 
the enhancements made to EnTK to support the encoding 
and execution of the three types of adaptation discussed 
in “Types of Adaptations” section.

Design

EnTK is an ensemble execution system, implemented as a 
Python library, that offers components to encode and execute 
ensemble workflows on HPC systems. EnTK decouples the 
description of ensemble workflows from their execution 
by separating three concerns: (i) specification of tasks and 
resource requirements; (ii) resource selection and acqui-
sition; and (iii) management of task execution. EnTK sits 
between the user and the HPC system, abstracting resource 
and execution management complexities from the user.

The design, implementation and performance of EnTK 
are discussed in detail in Refs. [32, 53]. EnTK exposes 
an API with three user-facing constructs to describe an 
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Enqueue

Dequeue

Resource Manager

Task Manager
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Fig. 4  Schematic of EnTK representing its components and sub-com-
ponents



SN Computer Science (2020) 1:104 Page 7 of 15 104

SN Computer Science

ensemble: Pipeline, Stage, and Task. We define the con-
structs as:

– Task: an abstraction of a computational process consist-
ing of the specification of an executable, software envi-
ronment, resource and data requirement.

– Stage: a set of tasks without mutual dependencies that, 
therefore, can be concurrently executed.

– Pipeline: a sequence of stages such that any stage i can 
be executed only after stage i−1.

Ensemble workflows are described by the user as a set or 
sequence of pipelines, where each pipeline is a list of stages, 
and each stage is a set of tasks. A set of pipelines executes 
concurrently, whereas a sequence executes sequentially. All 
the stages of each pipeline execute sequentially, and all the 
tasks of each stage execute concurrently. In this way, we 
describe a workflow in terms of the concurrency and sequen-
tiality of tasks, without requiring the explicit specification 
of task dependencies.

AppManager is the core component of EnTK, serving two 
broad purposes: (i) exposing an API to accept the encoded 
workflow and a specification of the resource requirements 
from the user; and (ii) managing the execution of the work-
flow on the specified resource via several components and 
a third-party runtime system (RTS). AppManager abstracts 
complexities of resource acquisition, task and data man-
agement, heterogeneity, and failure handling from the user. 
All components and sub-components of EnTK communi-
cate via a dedicated messaging system that is set up by the 
AppManager.

AppManager instantiates a WorkflowProcessor, which is 
responsible for maintaining the concurrent and sequential 
execution of tasks as described by the pipelines and stages 
in the workflow. WorkflowProcessor consists of two compo-
nents, Enqueue and Dequeue, that are used to: enqueue sets 
of executable tasks, i.e., tasks with all their dependencies 
satisfied; and dequeue executed tasks, to and from dedicated 
queues.

AppManager also instantiates an ExecutionManager, 
which is responsible for managing the resources and the 
execution of tasks on these resources. ExecutionManager 
consists of two sub-components: ResourceManager and 
TaskManager. Both sub-components interface with a RTS 
to manage the allocation and deallocation of resources, and 
the execution of tasks, received via dedicated queues, from 
the WorkflowProcessor.

EnTK manages failures of tasks, components, computing 
infrastructure (CI), and RTS. Depending on user configura-
tion, failed tasks can be resubmitted or ignored. EnTK, by 
design, is resilient against components failure as all state 
updates are transactional: failed components can simply be 
re-instantiated. Both the CI and RTS are considered black 

boxes, and their partial failures are assumed to be handled 
locally. Upon full failure of the CI or RTS, EnTK assumes 
all the resources and the tasks undergoing execution are lost, 
restarts the RTS, and resumes execution from the last suc-
cessful pipeline, stage, and task.

Implementation

EnTK is implemented in Python and uses the RabbitMQ 
message queuing system [54] and the RADICAL-Pilot (RP) 
[55] task execution RTS. All EnTK components are imple-
mented as processes, and all sub-components as threads. 
AppManager is the master process spawning all the other 
processes. Tasks, stages and pipelines are implemented as 
objects, copied among processes and threads via queues and 
transactions. Process synchronization uses message-passing 
via queues.

Using RabbitMQ offers several benefits: (i) producers and 
consumers are unaware of topology, because they interact 
only with the server; (ii) messages are stored in the server 
and can be recovered upon failure of EnTK components; (iii) 
messages can be pushed and pulled asynchronously because 
data can be buffered by the server upon production; and (iv) 
≥ O(106) tasks are supported.

EnTK uses RADICAL-Pilot (RP) as the RTS. RP is a 
pilot system, i.e., a middleware component that enables the 
submission of “pilot” jobs to the resource manager of an 
HPC platform. The defining capability of pilot systems is 
the decoupling of resource acquisition from task execution. 
These systems allow for queuing a single job on the HPC 
platform and, once this job becomes active, they enable the 
direct scheduling of tasks on the acquired resources, without 
waiting in the HPC platform’s queue. Pilot systems do not 
‘game’ the resource manager of the HPC platform: Once 
queued, jobs are managed according to the platform’s poli-
cies. RP provides access to several HPC systems, including 
XSEDE, ORNL, and NCSA resources, and can be config-
ured to use other HPC systems.

Once integrated, EnTK and RP form an end-to-end sys-
tem for: (1) describing an ensemble application; (2) acquir-
ing HPC resources; (3) scheduling tasks of the ensemble 
application on those resources; and (4) executing those tasks 
respecting their priority relationship. This integrated sys-
tem uses a multi-level, multi-entity scheduling algorithm. 
Initially, a job is scheduled on the HPC platform to acquire 
resources; then, tasks that can be executed concurrently (i.e., 
a workload) are scheduled by EnTK on RP that, in turn, 
schedules them as compute units into an Agent that was 
bootstrapped on the HPC resources. Agent is responsible 
for scheduling compute units on available resources, placing 
these units onto specific nodes, cores or GPUs, and launch-
ing these units for execution.
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Usually, EnTK and RP acquire all the resources needed 
to execute the whole workflow before starting its execution. 
Resource acquisition consists in submitting a job to the HPC 
platform, while resource release involves killing the job once 
the entire workflow has been executed. Thus, users wait in 
the HPC platform’s batch system only once before execut-
ing their workflow. When the resources have been acquired, 
RP binds the amount and type of available resources needed 
by each compute unit at execution time, and unbind those 
resources right after the unit has been executed. Binding and 
unbinding resources to compute units does not require using 
the HPC platform’s batch system: RP owns the resources for 
the required walltime and exercises full control over their 
usage.

EnTK and RP concurrently and sequentially execute com-
pute units on the resources acquired by submitting a job to 
the HPC platform’s batch system. This allows to optimize 
scheduling algorithms, based on the type and amount of 
units that need to be executed, and to maximize resource 
utilization by optimizing both the physical and temporal 
placement of units on available resources. Note that these 
capabilities support efficient implementation of adaptivity: 
depending on runtime conditions, elements of the workflows 
can be redefined or new elements can be added to the exist-
ing workflow. RP controls the amount of concurrency with 
which the adapted workflow is executed, depending on the 
amount of resources available.

Note that executing workflows may entail executing sepa-
rate groups of tasks, each group requiring a different amount 
of resources. In this case, trade offs must be made between 
the amount of concurrency of the execution of each group 
of tasks, their execution time, and the amount of resource 
utilization throughout the execution of the whole workflow. 
For example, given a workflow with two groups of tasks 
A and B, where B must be executed after A, and assuming 
that the fully concurrent execution of A requires 2048 cores 
while that of B just 1024, a decision will be made whether 
to privilege time to execution by requiring 2048 cores or 
resource utilization by requiring 1024. In the former case, 
A and B will be executed with maximal concurrency and 
therefore minimal time to completion; in the latter case, A 
will be executed with 50% concurrency and, roughly, twice 
as long execution time. Note that when using maximal con-
currency, 1024 cores will idle when executing B, while when 
using 50% of concurrency for A, all the cores will always be 
utilized throughout the execution of the workflow.

Enhancements for Adaptive Execution

In “Challenges in Encoding Adaptive Workflows” section, 
we described three challenges in supporting adaptive work-
flows: (i) expressibility of adaptive workflows; (ii) when 
and how to trigger adaptation; and (iii) implementation 

of adaptive operations. We addressed these challenges by 
implementing three new capabilities in EnTK: (1) expressing 
an adaptation operation; (2) executing the operation; and (3) 
modifying a task graph at runtime.

Adaptations in ensemble workflows follow the Adaptiv-
ity Loop described in “Execution of Adaptive Workflows” 
section. Execution of one or more tasks is followed by some 
signal x that triggers an adaptation operation. In EnTK, this 
signal is currently implemented as a control signal triggered 
at the end of a stage or a pipeline. We added the capability to 
express this adaptation operation as post-execution proper-
ties of stages and pipelines. In this way, when all the tasks 
of a stage or all the stages of a pipeline have completed, 
the adaptation operation can be invoked to evaluate whether 
a change in the task graph is required. This evaluation is 
based on the results of the ongoing computation and it is 
performed asynchronously, i.e., without effecting any other 
executing tasks.

The adaptation operation is encoded as a Python property 
of the Stage and Pipeline objects. The encoding requires the 
specification of three functions: one function to evaluate a 
boolean condition over x, and two functions to describe the 
adaptation, depending on the result of the boolean evalu-
ation. Users define the three functions specified as post-
execution properties of a Stage or Pipeline, based on the 
requirements of their application. As such, these functions 
can modify the existing task graph or extend it as per the 
three adaptivity types described in “Types of Adaptations” 
section.

Reference [52] specifies multiple strategies to perform 
adaptation: forward recovery, backward recovery, proceed, 
and transfer. In EnTK, we implement a non-aggressive 
adaptation strategy, similar to ‘transfer’, where a new task 
graph is created by modifying the current task graph only 
after the completion of part of that task graph. The choice 
of this strategy is based on the current science drivers where 
tasks that have already executed and tasks that are currently 
executing are not required to be adapted but all forthcoming 
tasks might be.

Modifying the task graph at runtime requires coordina-
tion among EnTK components to ensure consistency in the 
task graph representation. AppManager holds the global 
view of the task graph and, upon instantiation, Workflow 
Processor maintains a local copy of that task graph. The 
dequeue sub-component of Workflow Processor acquires 
a lock over the local copy of the task graph, and invokes 
the adaptation operation as described by the post-execution 
property of stages and pipelines. If the local copy of the 
task graph is modified, Workflow Processor transmits those 
changes to AppManager that modifies the global copy of 
task graph, and releases the lock upon receiving an acknowl-
edgment. This ensures that adaptations to the task graph are 
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consistent across all components, while requiring minimal 
communication.

Pipeline, stage, and task descriptions alongside the 
specification of an adaptation operation as post-execution 
for pipelines and stages enable the expression of adaptive 
workflows. The ‘transfer’ strategy enacts the adaptivity of 
the task graph, and the implementation in EnTK ensures 
consistency and minimal communication in executing adap-
tive workflows. Note how the design and implementation of 
adaptivity in EnTK does not depend on specific capabili-
ties of the software package executed by each task of the 
ensemble workflow.

Note that the separation of concern between expressing 
the adaptive logic of the workflow and executing the scien-
tific code of the workflow’s tasks, makes EnTK a general-
purpose tool for codifying adaptive ensemble applications. 
Thus, EnTK can be used to express well-known adaptive 
algorithms but also to explore new solutions. Reference [56] 
offers examples of how to implement adaptive code in EnTK 
while Ref. [57] shows the code implementing the adaptive 
expanded sample used in our experiments.

Experiments

We perform three sets of experiments. The first set character-
izes the overhead of EnTK when performing the three types 
of adaptation described in “Types of Adaptations” section. 
The second set validates our implementation of the two sci-
ence drivers presented in “Science Drivers” section against 
reference data. The third set compares our implementation 
of adaptive expanded ensemble algorithm with local and 
global analysis against results obtained with a single and an 
ensemble of MD simulations.

We use four application kernels in our experiments: 
stress-ng [58], GROMACS [30], OpenMM [59] and 
Python scripts. stress-ng allows to control the compu-
tational duration of a task for the experiments that character-
ize the adaptation overhead of EnTK, while GROMACS and 
OpenMM are the simulation kernels for the expanded ensem-
ble and Markov state modeling validation experiments.

We executed all experiments from the same host machine, 
but we targeted three HPC systems, depending on the 
amount and availability of the resources required by the 
experiments, and the constraints imposed by the queue pol-
icy of each machine. NCSA Blue Waters and ORNL Titan 
were used for characterizing the adaptation overhead of 
EnTK, while XSEDE SuperMIC was used for the validation 
and production scale experiments. When we run our experi-
ments, NCSA Blue Waters had 22500 nodes, each with 32 
cores; ORNL Titan had 18688 nodes, each with 16 cores; 
and XSEDE SuperMIC had 382 nodes, each with 20 cores.

Characterization of Adaptation Overhead

We perform five experiments to characterize the overhead 
of adapting ensemble workflows encoded using EnTK. Each 
experiment measures the overhead of a type of adaptation 
as a function of the number of adaptations. In the case of 
task-count adaptation, the overhead is measured also as a 
function of the number of tasks and of their type, single- or 
multi-node. This is relevant because with increasing size of 
the simulated molecular system, multi-node tasks may have 
lower time-to-solution than single-node ones.

Each experiment measures EnTK Adaptation Overhead 
and Task Execution Time. The former is the time taken by 
EnTK to adapt the workflow by invoking user-specified algo-
rithms; the latter is the time taken to run the executables of 
all tasks of the workflow. Consistent with the scope of this 
paper, the comparison between each adaptation overhead 
and task execution time offers a measure of the efficiency 
with which EnTK implements adaptive functionalities. Ref. 
[53] has a detailed analysis of other overheads of EnTK.

Table 1 describes the variables and fixed parameters of 
the five experiments about adaptivity overheads in EnTK. 
In these experiments, the algorithm is encoded in EnTK as 
1 pipeline consisting of several stages with a set of tasks. 
In the experiments I–III about task-count adaptation, the 
pipeline initially consists of a single stage with 16 tasks of a 
certain type. Each adaptation, at the completion of a stage, 
adds 1 stage with a certain number of tasks of a certain type, 
thereby increasing the task-count in the workflow.

In experiments IV–V, the workflow is encoded as 1 pipe-
line with 17, 65, or 257 stages with 16 tasks per stage. Each 
adaptation occurs upon the completion of a stage and, in 
the case of task-order adaption, the remaining stages of a 
pipeline are shuffled. In the case of task-property adaption, 
the number of cores used by the tasks of the next stage is set 
to a random value below 16, keeping the task type to single-
node. The last stage of both experiments is non-adaptive, 
resulting in 16, 64, and 256 total adaptations.

In the experiments I, IV and V, where the number of 
adaptations varies, each task of the workflow executes the 
stress-ng kernel for 60 seconds. For the experiments 
II and III with O(1000) tasks, the execution duration is set 
to 600 seconds so to avoid performance bottlenecks in the 
underlying runtime system and therefore interferences with 
the measurement of EnTK adaptation overheads. All experi-
ments have no data movement as the performance of data 
operations is independent from that of adaptation.

Figure  5i,  iv, v shows that EnTK Adaptation Over-
head and Task Execution Time increase linearly with the 
increasing of the number of adaptations. EnTK Adaptation 
Overhead increases due to the time taken to compute the 
additional adaptations and its linearity indicates that the 
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computing time of each adaptation is constant. Task Execu-
tion Time increases due to the time taken to execute the 
tasks of the stages that are added to the workflow as a result 
of the adaptation.

Figure 5i, iv, v also shows that task-property adaptation 
(v) is the most expensive, followed by task-order adaptation 
(iv) and task-count (i) adaptation. These differences depend 
on the computational cost of the Python functions executed 
during adaptation: in task-property adaptation, the function 
parses the entire workflow and invokes the Python ran-
dom.randint function 16 times per adaptation; in task-
order adaptation, the Python function shuffles a Python list 
of stages; and in task-count adaption, the Python function 
creates an additional stage, appending it to a list.

In Fig. 5ii, EnTK Adaptation Overhead increases lin-
early with an increase in the number of tasks added per 
task-count adaptation, explained by the cost of creating 
additional tasks and adding them to the workflow. The 
Task Execution Time remains constant at ≈ 1200s , since 
sufficient resources are acquired to execute all the tasks 
concurrently.

Figure 5iii compares EnTK Adaptation Overhead and 
Task Execution Time when adding single-node and multi-
node tasks to the workflow. The former is greater by ≈ 1s 
when adding multi-node tasks, whereas the latter remains 
constant at ≈ 1200s in both scenarios. The difference in 
the overhead, although negligible when compared to Task 

Execution Time, is explained by the increased size of a 
multi-node task description. As in Fig. 5ii, Task Execu-
tion Time remains constant due to availability of sufficient 
resources to execute all tasks concurrently.

Experiments I–V show that EnTK Adaptation Overhead 
is proportional to the computing required by the adap-
tation algorithm and is not determined by the design or 
implementation of EnTK. In absolute terms, EnTK Adap-
tation Overhead is orders of magnitude smaller than Task 
Execution Time. Thus, EnTK advances the practical use 
of adaptive ensemble workflows.

Validation of Science Driver Implementations

We implement the two science drivers of “Science Driv-
ers” section using the abstractions developed in EnTK. We 
validate our implementation of expanded ensemble (EE) by 
calculating the binding of the cucurbit[7]uril 6-amino-1-hex-
anol host-guest system, a molecular recognition system often 
used for testing as exhaustive simulation can get the right 
answer on a reasonable timescale [60, 61], and our imple-
mentation of Markov state modeling (MSM) by simulating 
the Alanine dipeptide system and comparing our results with 
the reference data of the DESRES group [62].

Table 1  Experiment parameters 
plotted in Fig. 5

Figure Adaptation type Experiment variable Fixed parameters

I Task-count Num. of adaptations Num. of tasks added per adaptation = 16,
Type of tasks added = single-node

II Task-count Num. of tasks added per 
adaptation

Num. of adaptations = 2,
Type of tasks added = single-node

III Task-count Type of tasks added Num. of adaptations = 2,
Num. of tasks added per adaptation = 210 ∗ 2

s

(s = stage index)
IV Task-order Num. of adaptations Num. of re-ordering op. per adaptation = 1,

Type of re-ordering = uniform shuffle
V Task-property Num. of adaptations Property type modified per adaptation = 1,

Property adapted = Num. of cores per task
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Fig. 5  EnTK Adaptation Overhead and Task Execution Time for task-count (i, ii, and iii), task-order (iv), and task-property (v) adaptations
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Expanded Ensemble

We execute the EE science driver described in “Expanded 
Ensemble” section on XSEDE SuperMIC for a total of 
2270ns MD simulation time using GROMACS 5.1.3 (to 
match behavior in previous studies). To validate the process, 
we carry out a set of simulations of the binding of cucur-
bit[7]uril (host) to 6-amino-1-hexanol (guest) in explicit sol-
vent. Simulation details and sample input files can be found 
in a previous study Ref [60]. Simulations were run for a 
total of 29.12 ns per ensemble member. Validation was done 
by comparing the final free energy estimate to a reference 
calculation run with a single adaptive expanded ensemble 
simulation. Each ensemble member is encoded in EnTK as 
a pipeline of stages of simulation and analysis tasks, where 
each pipeline uses 1 node for 72 hours. With 16 ensemble 
members (i.e., pipelines) for the current physical system, we 
use ≈ 1k node hours of computational resources.

The expanded ensemble variable in these simulations is 
the degree of coupling (i.e., the strength of the energetic 
interaction term) between the guest and the rest of the sys-
tem (water and host). As the system explores the coupling 
parameter using EE dynamics, this strengthening and weak-
ening allows the guest to binds and unbind from the host 
over the course of the simulation, where if the interactions 
were left entirely on, the ligand would remain bound dur-
ing a simulation of this timescale. The free energy of this 
process is gradually estimated over the course of the simu-
lation, using the Wang–Landau algorithm [63], as imple-
mented in this system as described in Ref. [60]. However, we 
hypothesize that we can speed convergence by 1) estimate 
free energies using the potential energy differences among 
states and the Multistate Bennett Acceptance Ratio (MBAR) 
algorithm [64] at intermediate steps, treating the expanded 
ensemble simulations as quasistatic processes, and 2) allow-
ing individual ensemble members to share information with 
each other about the free energies of the different ensembles 
rather than using only their own trajectory to estimate it.

We consider four variants of the EE method:

– Method 1: one continuous simulation, omitting any 
intermediate analysis using MBAR.

– Method 2: multiple parallel simulations without any 
intermediate analysis using MBAR.

– Method 3: multiple parallel simulations with local inter-
mediate analysis, i.e., using current and historical simula-
tion information from only its own ensemble member.

– Method 4: multiple parallel simulations with global 
intermediate analysis, i.e., using current and historical 
simulation information from all ensemble members.

In each method, the latter 2/3 of the simulation data avail-
able at the time of each analysis is used for free energy 

estimates via the MBAR algorithm. In methods 3 and 4, we 
avoid the use of instantaneous weights due to Wang–Landau 
algorithm by using all of the quasistatic sampling data to 
determine the weights using MBAR during the intermediate 
analyses. These weights provide, in theory, a better estimate 
of the weights that are used to force simulations to visit 
desired distributions in the simulation condition space (see 
“Expanded Ensemble” section). Note that in methods 3 and 
4, where intermediate analysis is used to update the weights, 
the intermediate analysis, external to GROMACS, is always 
applied at 320ps intervals.

The reference calculation consisted of four parallel 
expanded ensemble simulations that each ran for 200 ns 
each with fixed initial weights. These simulations used a 
set of previously estimated weights, which were themselves 
from a 400 ns expanded ensemble using the Wang–Landau 
algorithm (similar to a single member of the ensemble from 
Method 1, but run for much longer). MBAR was used to 
estimate the free energy for each of these simulations, which 
generate the fully stationary probability distribution of the 
simulation due to fixed, non-adaptive weights. The refer-
ence value is reported as the MBAR estimate of the pooled 
reference data, and its error is reported as the standard devia-
tion of the non-pooled MBAR estimates. This calculation 
is therefore a reference for correctness, not a control for 
efficiency.

Figure  6 shows the free energy estimates obtained 
through each of the four methods with the reference calcula-
tion value. Final estimates of each method agree within error 
to the reference value. Validating that the four methods used 
to implement adaptive ensembles converge the free energy 
estimate to the actual value.

Markov State Modeling

We execute the MSM science driver described in “Markov 
State Modeling” section on XSEDE SuperMIC for a total 
of 100ns MD simulation time over multiple iterations. 
Each iteration of the task graph is encoded in EnTK as one 
pipeline with 2 stages consisting of 10 simulation tasks 
and 1 analysis task. Each task uses 1 node to simulate 1ns.

We compare the results obtained from execution of the 
EnTK implementation against reference data by perform-
ing the clustering of the reference data and deriving the 
mean eigenvalues of two levels of the metastable states, 
i.e., macro- and micro-states. The reference data were gen-
erated by a non-adaptive workflow consisting of 10 tasks, 
each simulating 10ns.

Eigenvalues attained by the macro-states (top) and 
micro-states (bottom) in the EnTK implementation and 
reference data are plotted as a function of the state index 
in Fig. 7. Final eigenvalues attained by the implementation 
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agree with the reference data within the error bounds. The 
validation of the implementation warrants that similar 
implementations should be investigated for larger molec-
ular systems and longer durations, where the aggregate 
duration is unknown and termination conditions are evalu-
ated during runtime.

Evaluation of Methodological Efficiency Using 
Adaptive Capabilities in EnTK

We analyzed the convergence properties of the free energy 
estimate using the data generated for the validation of EE. 
The convergence behavior of Method 1 observed in Fig. 8 
suggests that the non-ensemble method converges faster than 
ensemble-based methods with the same total simulation 
time. However, it does not necessarily represent the average 
behavior of the non-ensemble-based approach. The average 
behavior is depicted more clearly by Method 2 because this 
method averages the free energy estimate of 16 independ-
ent single simulations. The apparent improved convergence 
may be due to the fact that the simulation is continuous, and 

can potentially reach configurations not sampled in Method 
2, or may simply represent lucky stochastic fluctuations in 
the weights.

The most significant feature of Fig. 8 is that all three 
ensemble-based methods converge at similar rates to the 
reference value. We initially hypothesized that adding 
adaptive analysis to estimate the weights would improve 
convergence behavior, but we see no significant change in 
these experiments. Analysis of these simulations revealed 
a fundamental physical reason that demonstrates a need for 
additional adaptivity to successfully accelerate these simula-
tions. Although expanded ensemble simulations allowed the 
ligand to move in and out of the binding pocket rapidly, the 
slowest motion, occurring on the order of 10s of nanosec-
onds, was the movement of water out of the binding pocket, 
which is needed to allow the ligand to rebind as water backs 
into a simulation biases that equilibrate on shorter timescales 
may overly stabilize either configurations of with waters out 
or waters, preventing the sampling of both configurations. 
Combining the weights from multiple simulations does not 
lower the kinetic barriers for the water transition. Additional 
biasing variables are needed to algorithmically accelerate 
this slow motions, requiring a combination of metadynam-
ics and expanded ensemble simulations, with biases both in 
the protein interaction variable and the collective variable 
of water occupancy in the binding pocket. The same ensem-
ble approach may be more useful with multiple nonphysical 
dimensions, resulting in a larger space than can be sampled 
by a single ensemble member.

The methodology described here gives researchers the 
ability to implement additional adaptive elements and test 
their effects on system properties. Additionally, as referenced 
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Fig. 6  Validation of EE implementation: Observed variation of free 
energy estimate for methods 1–4. Reference is the MBAR estimate 
and standard deviation of four 200ns fixed weight expanded-ensemble 
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Fig. 8  Convergence of the ensemble expanded ensemble implemen-
tation: Observed convergence behavior in Methods 1–4. Reference is 
the MBAR estimate of the pooled data and the standard deviation of 
the non-pooled MBAR estimates of four 200ns fixed weight expanded 
ensemble simulations
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in “Enhancements for Adaptive Execution” section, these 
adaptive elements can be implemented on relatively short 
time scales, giving the ability to test many implementations, 
as done in this paper.

Analysis of the slow motions of the system suggests 
the potential power of more complex and general adaptive 
patterns. Simulations with accelerated dynamics along the 
hypothesized degrees of freedom can be carried out, and 
resulting dynamics can be analyzed, automated and moni-
tored for degrees of freedom associated with remaining slow 
degrees of motion [65]. Accelerated dynamics can be adap-
tively adjusted as the simulation process continues. Charac-
terization experiments suggest that EnTK can support the 
execution of this enhanced adaptive workflow with minimal 
overhead.

Conclusion

Novel adaptive algorithms and methods across domains such 
as biomolecular science, climate science and uncertainty 
quantification leverage intermediate data to study larger 
problems, longer time scales and to engineer better fidelity 
in the modeling of complex phenomena. Adaptive ensemble 
simulations methods provide a promising route to enhanc-
ing the computational efficiency of biomolecular simulations 
over vanilla ensemble MD simulations. As we approach 
exascale computing, and molecular simulations are used to 
address questions of increasing biological complexity, gains 
in algorithmic sophistication and computational efficiency 
from adaptive ensemble methods will become critical in 
generating quantitative insight into biological problems.

In this paper, we described the operations in executing 
adaptive ensemble workflows, classified the different types 
of adaptations, and described challenges in implement-
ing them in software tools. We discuss how the Ensemble 
Toolkit was designed to support the scalable the execution of 
adaptive ensemble workflows. We characterized the adapta-
tion overhead in EnTK, validated the implementation of two 
science drivers. We executed expanded ensemble at scales 
and highlight the advantages of using adaptive ensemble 
capabilities developed here to accelerate methodological 
advances.

The primary contribution of this work is the design of a 
software infrastructure that permits new adaptive methods, 
and ultimately, their applications to important biophysical 
problems at unprecedented scales. To the best of our knowl-
edge, this is the first attempt at describing and implement-
ing multiple adaptive ensemble workflows using a common 
conceptual and implementation framework.
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