
Vol.:(0123456789)

SN Computer Science (2020) 1:104
https://doi.org/10.1007/s42979-020-0081-1

SN Computer Science

REVIEW ARTICLE

Adaptive Ensemble Biomolecular Applications at Scale

Vivek Balasubramanian1 · Travis Jensen2 · Matteo Turilli1 · Peter Kasson3 · Michael Shirts2 · Shantenu Jha4 

Received: 21 August 2019 / Accepted: 24 February 2020 / Published online: 28 March 2020
© Springer Nature Singapore Pte Ltd 2020

Abstract
Recent advances in both theory and methods have created opportunities to simulate biomolecular processes more efficiently
using adaptive ensemble simulations. Ensemble-based simulations are used widely to compute a number of individual simu-
lation trajectories and analyze statistics across them. Adaptive ensemble simulations offer a further level of sophistication
and simulation efficacy by enabling high-level algorithms to control simulations based on intermediate results. Novel high-
level algorithms for adaptive simulations require sophisticated approaches to manage the ensemble members and utilize the
intermediate data during runtime. Thus, there is a need for scalable software systems to support adaptive ensemble-based
methods. We describe the operations in executing adaptive workflows, classify different types of adaptations, and describe
challenges in implementing them in software tools. We establish the design considerations of software systems to support
the requirements of adaptive ensemble applications at extreme scale. We use Ensemble Toolkit (EnTK) and its associated
task execution runtime system (RADICAL-Pilot)—middleware building blocks to implement a scalable adaptive ensem-
ble execution system. We implement two high-level adaptive ensemble algorithms—multiwalker expanded ensemble and
Markov state modeling, and execute up to 212 ensemble members, on thousands of cores on three distinct HPC platforms.
We highlight scientific advantages enabled by the novel capabilities of our approach. To the best of our knowledge, this is
the first attempt at describing and implementing multiple adaptive ensemble workflows using a common conceptual and
implementation framework.

Keywords  Adaptive ensembles · Advanced sampling algorithms · High performance computing · Workflow building
blocks

Introduction

Current computational methods for solving scientific prob-
lems in biomolecular science are at or near their scaling lim-
its using traditional parallel architectures [1]. Computations

using straightforward molecular dynamics (MD) are inher-
ently sequential processes, and parallelization is limited to
speeding up each individual, serialized, time step. Conse-
quently, ensemble-based computational methods have been
developed to address these gaps, including replica-exchange
molecular dynamics (REMD) [2–8], multiple walker meta-
dynamics [8–10], hyperdynamics and other accelerated
dynamics methods [11–13], Markov state modeling [14, 15],
and swarm-of-trajectory methods [16–19]. In these methods,
multiple simulation tasks are executed concurrently, and var-
ious physical or statistical principles are used to combine the
tasks together with longer time scale communication (sec-
onds to hours) instead of the microsecond to milliseconds
required for standard tightly coupled parallel processing.

Existing ensemble-based methods have been success-
ful for addressing a number of questions in biomolecular
modeling [20]. However, studying systems with multiple-
timescale behavior extending out to microseconds or mil-
liseconds, or studying even shorter timescales on larger

This article is part of the topical collection “Software Challenges
to Exascale Computing” guest edited by Amit Majumdar and
Ritu Arora.

 *	 Shantenu Jha
	 shantenu.jha@rutgers.edu

1	 Department of ECE, Rutgers University, Piscataway, USA
2	 Department of ChBE, University of Colorado Boulder,

Boulder, USA
3	 Biomedical Engineering, University of Virginia,

Charlottesville, USA
4	 Department of ECE, Rutgers University and Computational

Science Initiative, Brookhaven National Laboratory,
Upton, New York, USA

http://orcid.org/0000-0002-5040-026X
http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-020-0081-1&domain=pdf

	 SN Computer Science (2020) 1:104104  Page 2 of 15

SN Computer Science

physical systems will not only require tools that can sup-
port 100 × −1000× greater degrees of parallelism but also
exploration of adaptive algorithms. In adaptive algorithms,
the intermediate results of simulations are used to alter fol-
lowing simulations. We define adaptivity as the capability
to change attributes that influence execution performance or
domain-specific parameters, based on runtime information.

Adaptive approaches can increase physical simulation
efficiency by greater than a thousand-fold [12, 15, 21–24].
Adaptive algorithms learn from the simulation ensemble
members as they proceed, “steering” execution toward inter-
esting phase space or parameters and thus improve sampling
quality or sampling rate. Adaptivity can access events that
would otherwise happen at much longer time scales, mak-
ing it possible to investigate larger physical systems with a
given set of resources as well as to efficiently explore high-
dimensional energy surfaces in finer detail. As molecular
simulations are used to investigate questions of increasing
biological complexity with progressively increasing scales,
gains in algorithmic sophistication and computational effi-
ciency from adaptive ensemble methods will become critical
in generating quantitative insight into biological problems.

However, such adaptive ensemble simulations require a
sophisticated software infrastructure to encode, modular-
ize, and execute complex interactions and execution logic
[25–27]. The execution trajectory of adaptive simulations
cannot be fully determined a priori, but depends upon inter-
mediate results. The logic to specify such changes can rely
on a simulation within an ensemble, an operation across an
ensemble, or external criteria, such as resource availability
or experimental data. To achieve scalability and efficiency,
such adaptivity cannot be performed via user intervention
and hence automation of the control logic and execution
becomes critical.

Many adaptive algorithms can be expressed at a high
level, such that the adaptive logic itself is independent of
simulation details (i.e., external to MD engines like AMBER
[28], NAMD [29] or GROMACS [30]). Adaptive operations
that are expressed independent of the internal details of sim-
ulation tasks facilitate MD software package agnosticism
and simpler expression of different types of adaptivity and
responses to adaptivity. Further, it is important to formulate
adaptive capabilities so as to be agnostic of the type and
execution properties of the analysis responsible for adap-
tivity. For example, machine learning-based analysis will
provide increasingly sophisticated adaptive ensemble algo-
rithms. The separation of adaptive operations from simu-
lation and analysis internals provides a useful abstraction
for both methods’ developers and software systems. This
promotes easy development of new methods while facilitat-
ing scalable system software and its optimization through
performance engineering [31].

In this paper, we focus on the design and implementa-
tion of software systems, in particular the Ensemble Toolkit
(EnTK) [32] and its associated runtime system (RADICAL-
Pilot), to support the requirements of adaptive ensemble
applications at extreme scale. To guide the design and imple-
mentation of capabilities to encode and execute adaptive
ensemble applications in a scalable and adaptive manner,
we identify two such applications from the biomolecular sci-
ence domain, abstract and generalized descriptions of which
are shown in Figs. 1 and 2. They have distinct execution
requirements; in addition, coordination and communication
patterns among their ensemble members differ. However,
they are united by their need for an adaptive execution of
large number of tasks.

This paper makes the following specific contributions:
(i) We describe the operations in executing adaptive work-
flows, classify different types of adaptations, and describe
challenges in implementing them in software tools; (ii) we
establish the design considerations of software systems to
support the requirements of adaptive ensemble applications
at extreme scale. We use middleware building blocks [33,
34] to implement a scalable adaptive ensemble execution
system and characterize its performance with respect to
adaptive operations; and (iii) we implement two high-level
adaptive ensemble algorithms, executing up to 212 ensem-
ble members, on thousands of cores on three distinct high-
performance computing (HPC) platforms.

ConvergedConverged

MD Simulation

Analysis

Check

convergence

U
n

co
n

v
er

g
ed

MD Simulation

Analysis

Check

convergence

U
n

co
n

v
er

g
ed

MD Simulation

Analysis

Check

convergence

U
n

co
n

v
er

g
ed

Ensemble member 1

UU UU

Converged

Ensemble member 2 Ensemble member N

Fig. 1   Schematic of the expanded ensemble (EE) science driver. Two
versions of EE are implemented: (1) local analysis where analysis
uses only data local to its ensemble member; and (2) global analysis
where analysis uses data from other ensemble members (represented
by dashed lines)

Analysis

MD Simulation n

MD Simulation 2

MD Simulation 1

Check aggregate

simulation

below threshold

threshold

reached

MD Simulation 1

low thresholdbelow threshold

Fig. 2   Schematic of the Markov State Model science driver

SN Computer Science (2020) 1:104	 Page 3 of 15  104

SN Computer Science

Section “Related Work” describes existing and related
approaches. Section “Science Drivers” presents two sci-
ence drivers that motivate the need for large-scale adaptive
ensemble biomolecular simulations. We discuss different
types and challenges in supporting adaptivity in “Software
Design Considerations for Adaptive Ensemble Workflows”
section. In “Ensemble Toolkit” section, we describe the
design and implementation of EnTK, and the enhancements
made to address the challenges of adaptivity. In “Experi-
ments” section, we characterize the overheads in EnTK as
a function of adaptivity types, validate the implementation
of the science drivers, and discuss scientific advantages that
the novel capabilities of our approach provides.

Related Work

Adaptive ensemble applications span several science
domains including, but not limited to, climate science,
seismology, astrophysics, and biomolecular science. For
example, Ref. [35] studies adaptive selection and tuning of
dynamic recurrent neural networks (RNNs) for hydrological
forecasting; Ref. [36] presents adaptive modeling of oce-
anic and atmospheric circulation; Ref. [37] studies adaptive
assessment methods on an ensemble of bridges subjected to
earthquake motion; and Ref. [38] discusses parallel adaptive
mesh refinement techniques for astrophysical and cosmo-
logical applications.

Several adaptive ensemble algorithms have been formu-
lated. In generalized ensemble simulation methods, different
ensemble simulations employ distinct exchange algorithms
[39] or specify diverse sampling parameters [40] to explore
free energy surfaces that are less accessible to non-adaptive
methods. Weighted ensemble and forward-flux sampling
approaches adaptively trim and clone ensemble members
using criteria based on progress along a desired collec-
tive variable [26, 27]. Markov State Model [41] (MSM)
approaches adaptively select initial configurations for simu-
lations to reduce uncertainty of the resulting model.

Current solutions to encode and execute adaptive ensem-
ble algorithms fall into two categories: workflow systems
that do not fully support adaptive algorithms, or MD soft-
ware packages where the adaptivity is embedded within the
executing kernels. Several workflow systems [42], includ-
ing Kepler, Taverna and Pegasus support adaptation capa-
bilities only as a form of fault tolerance and not as a way to
enable decision-logic for changing the workflow at runtime.
Domain-specific workflow systems such as Copernicus [43]
have also been developed to support Markov state modeling
algorithms to study kinetics of bio-molecules. Although
Copernicus provides an interactive and customized inter-
face to domain scientists, it requires users to manage the
acquisition of resources, the deployment of the system, and

the configuration of the execution environment. This hinders
Copernicus uptake, often requiring tailored guidance from
its developers.

Widely used MD software packages such as AMBER
[28], NAMD [29] and GROMACS [30] offer capabilities
to execute ensemble algorithms, often with some adap-
tive capability. Encoding the adaptive ensemble algorithm,
including its adaptation logic within MD software packages
locks the capabilities in those packages, prevents easy addi-
tion of new adaptive algorithms or reuse across packages. In
contrast, the capability to encode the algorithm and adapta-
tion logic as a high-level workflow promises several benefits:
separation between algorithm specification and execution;
flexible and quick prototyping of alternative algorithms; and
extensibility of algorithmic solutions to multiple software
packages, science problems and scientific domains [31, 44].
To realize these promises, we develop the abstractions and
capabilities to encode adaptivity at the ensemble application
level, while reusing existing capabilities to execute adaptive
ensemble applications at scale on high-performance comput-
ing (HPC) systems.

Science Drivers

In this paper, we discuss two representative adaptive ensem-
ble applications from the biophysical domain: expanded
ensemble and Markov state modeling. Prior to discussing
the implementation of these applications, we describe the
underlying algorithms.

Expanded Ensemble

Metadynamics [45] and expanded ensemble (EE) dynam-
ics [46] are a class of adaptive simulation algorithms, used
in both biological and other condensed matter simulations,
where similar to replica exchange, individual simulations
jump between simulation conditions. In EE dynamics, the
simulation states take one of N discrete ‘states’ or ensembles
of interest, while preserving the probability distribution cor-
responding to each of the states that would be obtained if
that ensemble was simulated alone. These N states can be
different temperatures or biasing functions on the system
or force field parameters of the system. Metadynamics is
similar, except the different simulation states are described
by one or more continuous variables. In both algorithms,
unlike replica exchange, each simulation can explore the
N different simulation states independently. Since some
states are inherently more physically probable than others,
simulation weights assigned to each state (for EE) or con-
tinuously assigned as a function of the simulation variable
(metadynamics) are required to force the simulations to
visit desired distributions in the simulation condition space,

	 SN Computer Science (2020) 1:104104  Page 4 of 15

SN Computer Science

which necessarily requires sampling in all the simulation
states while the allowed simulation configurations are also
sampled. These weights are learned adaptively as the simula-
tion progresses using a variety of techniques [46].

Since the movement among state spaces is essentially
diffusive, the larger the simulation state spaces, the more
time the sampling between states takes. “Multiple walker”
approaches can improve sampling performance by using
more than one simulation to explore the same state space
[47]. Further, the simulation condition range can be par-
titioned into individual simulations as smaller partitions
decrease diffusive behavior [9]. The “best” partitions to
spend time sampling may not be known until after simu-
lation. These partitions could instead be determined adap-
tively, based on runtime information about partial simulation
results.

To our knowledge, EE simulations have not been per-
formed using a multiwalker approach, in large part because
of the difficulty in implementing such a workflow, as the
theory itself is very is similar to multiple walker metady-
namics. In this paper, we use this framework to implement
two versions of EE consisting of concurrent and iterative
ensemble members that analyze data at regular intervals.
In the first version, we analyze data local to each ensemble
member; in the second version we analyze data global to all
the ensemble members by asynchronously exchanging data
among members. In our application, each ensemble mem-
ber consists of two types of task: simulation and analysis.
The simulation tasks generate MD trajectories while the
analysis tasks use these trajectories to generate simulation
condition weights for the next iteration of simulation in its
own ensemble member. Every analysis task operates on the
current snapshot of the total local or global data. Note that in
global analysis, EE uses any and all data available and does
not explicitly “wait” for data from other ensemble members
at the same iteration. Figure 1 is a representation of these
implementations.

Markov State Modeling

Markov state modeling (MSM) is another important class
of molecular simulation algorithms for determining kinet-
ics of molecular models. Using an assumption of separation
of time scales of molecular motion, the rates of first-order
kinetic processes are learned adaptively. In a MSM simula-
tion, a large ensemble of simulations, typically tens or hun-
dreds of thousands, are run from different starting points and
similar configurations are clustered as states. MSM build-
ing techniques include kinetic information but begin with
a traditional clustering method (e.g., k-means or k-centers)
using a structural metric. Configurations of no more than 2Å
to 3Å RMSDs are typically clustered into the same “micro-
state” [48].

The high degree of structural similarity implies a kinetic
similarity, allowing for subsequent kinetic clustering of
micro-states into larger “macro-states”. The rates of transi-
tions among these states are estimated by observing which
entire kinetic behavior can be inferred, even though indi-
vidual simulations perform no more than one state transition.
However, the choice of where new simulations are initiated
to best refine the definition of the states, improve the statis-
tics of the rate constants, and discover new simulation states
requires a range of analyses of previous simulation results,
making the entire algorithm highly adaptive.

MSM provides a way to encode dynamic processes such
as protein folding into a set of metastable states and tran-
sitions among them. In computing MSM from simulation
trajectories, the metastable state definitions and the transi-
tion probabilities have to be inferred. Refs. [49, 50] show
that “adaptive sampling” can lead to more efficient MSM
construction as follows: provisional models are constructed
using intermediate simulation results, and these models are
then used to direct the placement of further simulation tra-
jectories. Different from other approaches, in this paper we
encode this algorithm as an application where the adaptive
code is independent from the software packages used to per-
form the MD simulations and MSM construction.

Figure 2 offers a diagrammatic representation of the adap-
tive ensemble MSM approach. The application consists of
an iterative pipeline with two stages: (i) ensemble of sim-
ulations and (ii) MSM construction to determine optimal
placement of future simulations. The first stage generates
sufficient amount of MD trajectory data for an analysis. The
analysis–i.e., the second stage–operates over the cumulative
trajectory data to adaptively generate a new set of simulation
configurations, used in the next iteration of the simulations.
The pipeline is iterated until the resulting MSM converges.

Software Design Considerations
for Adaptive Ensemble Workflows

The broad range of adaptive ensemble simulation algo-
rithms impose diverse requirements on the underlying
software infrastructure. Algorithms differ in the frequency
of communication between ensemble members, local ver-
sus non-local communication, and the type of information
exchanged. Adaptive changes can alter the number of tasks
being performed (how many ensemble members in a simula-
tion), the parameters of those tasks (placement of tempera-
ture or lambda values in an expanded-ensemble simulation),
or even which tasks are being performed when. The logic to
specify such changes can rely on a single simulation within
an ensemble, an operation across an ensemble, or even exter-
nal criteria, such as new experimental data.

SN Computer Science (2020) 1:104	 Page 5 of 15  104

SN Computer Science

Execution of Adaptive Workflows

Adaptive ensemble applications discussed in “Science Driv-
ers” section involve two computational layers: at the lower
level each simulation or analysis is performed via MD soft-
ware package; at the higher level, an algorithm codifies the
coordination and communication among simulations and
between simulations and analyses. Different adaptive ensem-
ble applications and adaptive algorithms might have varying
coordination and communication patterns, yet are amenable
to common adaptations and similar types of adaptations.

We implement each simulation and analysis instance of
these applications as a task, while representing the full set of
task dependencies as task graph of a workflow. A workflow
may be fully specified a priori, or may be adapted, changing
in specification, during runtime. For the remainder of the
paper, we refer to alterations in the task graph as workflow
adaptivity.

Executing adaptive workflows at scale on HPC resources
presents several challenges [31]. Execution of adaptive
workflows can be decomposed into four operations as repre-
sented in Fig. 3: (a) creation of an initial task graph, encod-
ing known tasks and dependencies; (b) traversal of the initial
task graph to identify tasks ready for execution in accord-
ance with their dependencies; (c) execution of those tasks
on the compute resource; and (d) notification of completed
tasks (control-flow) or generation of intermediate data (data-
flow) which invokes adaptations of the task graph.

Operations (b)–(d) are repeated until the complete
workflow is determined, and all its tasks are executed. This
sequence of operations is called an Adaptivity Loop: in an
adaptive scenario, the workflow “learns” its future task
graph based on the execution of its current task graph; in
a pre-defined scenario, the workflow’s task graph is fully
specified and only operations (a)–(c) are necessary.

Encoding of adaptive workflows requires two sets of
abstractions: one to encode the workflow; and the other to
encode the adaptation methods (A) that, upon receiving a
signal x, operate on the workflow. The former abstractions
are required for creating the task graph, i.e., operation (a),
while the latter are required to adapt the task graph, i.e.,
operation (d).

Types of Adaptations

Adaptivity Loop applies an adaptation method (Fig. 3d)
to a task graph. We represent a task graph as G = [V ,E] ,
with the set V of vertices denoting the tasks of the work-
flow and their properties (such as executable, required
resources, and required data), and the set E of directed
edges denoting the dependencies among tasks. For a work-
flow represented as task graph GT = [V ,E] , there exist four

parameters that may change during execution: (i) set of
vertices; (ii) set of edges; (iii) size of the vertex set; and
(iv) size of the edge set. We analyzed the 24 permutations
of these four parameters and identified 3 that are valid and
unique. The remaining permutations represent conditions
that are either not possible to achieve, or combinations of
the 3 valid permutations.

Task-count adaptation: We define an operator AC to rep-
resent the adaptation of task-count if, on receiving a signal
x, the method performs the following adaptation (operation)
on GT:

Task-count adaptation changes the number of tasks, i.e.,
the adaptation method operates on GT

i
 to produce a different

GT
i+1

 , such that at least one vertex and one edge is added or
removed to/from GT

i
.

Task-order adaptation: We define an operator AO as a
task-order adaptation if, on a signal x, it performs the fol-
lowing adaptation on G T:

Task-order adaptation changes the dependency order among
tasks, i.e., AO operates on GT

i
 to produce GT

i+1
 such that the

vertices are unchanged but at least one of the edges between
vertices is different between GT

i
 and GT

i+1
.

Task-property adaptation: We define an operator AP that
captures the adaptation of the property of tasks, if, on a signal
x, it performs the following adaptation on GT:

Task-property adaptation changes the properties of at least
one task, i.e., AP operates on a GT

i
 to produce a new GT

i+1
 such

that the edges and the number of vertices are unchanged, but

GT
i+1

= AC(G
T
i
, x)

⟹ size(Vi) ≠ size(Vi+1) ∧ size(Ei) ≠ size(Ei+1)

where GT
i
= [Vi,Ei] ∧ GT

i+1
= [Vi+1,Ei+1].

GT
i+1

= AO(G
T
i
, x)

⟹ Ei ≠ Ei+1 ∧ Vi = Vi+1

where GT
i
= [Vi,Ei] ∧ GT

i+1
= [Vi+1,Ei+1].

GT
i+1

= AP(G
T
i
, x)

⟹ Vi ≠ Vi+1 ∧ size(Vi) = size(Vi+1) ∧ Ei = Ei+1

where GT
i
= [Vi,Ei] ∧ GT

i+1
= [Vi+1,Ei+1].

Task graph

creation

Adaptation

A(TG
i
, x)

Task

execution

Task graph

traversal

Signal (x) TG
0

TG
i+1

(a) (b) (c)
i
,

(d)

Fig. 3   Adaptivity Loop: Sequence of operations in executing an
adaptive workflow

	 SN Computer Science (2020) 1:104104  Page 6 of 15

SN Computer Science

the properties of at least one vertex are different between GT
i

and GT
i+1

.
We can represent the workflow of the two science drivers

using the notations presented. Expanded ensemble (EE) con-
sists of N ensemble members executing independently for mul-
tiple iterations until convergence (meaning the bias weights on
each ensemble member are no longer changing to within some
tolerance) is reached in any ensemble member. We represent
one iteration of each ensemble members as a task graph GT
and the convergence criteria with x. An adaptive EE workflow
can then be represented as:

Markov state modeling (MSM) consists of one ensemble
member which iterates between simulation and analysis till
sufficient trajectory data are analyzed. At each analysis step,
a set of promising molecular configurations is selected as
initial configurations for the next iteration of ensembles. The
choice of which configurations are considered “promising”
will vary between application and MSM variant [15, 51].
We represent one iteration of the ensemble member as a task
graph GT and its termination criteria as x. An adaptive MSM
workflow can then be represented as:

Challenges in Encoding Adaptive Workflows

Supporting adaptive workflows poses three main chal-
lenges. The first challenge is the expressibility of adap-
tive workflows as their encoding requires APIs that enable
the description of the initial state of the workflow and the
specification of how the workflow adapts on the basis of
intermediate signals. The second challenge is determining
when and how to instantiate the adaptation. Adaptation is
described at the end of the execution of tasks wherein a new
task graph is generated. Different strategies can be employed
for the instantiation of the adaptation [52]. The third chal-
lenge is the implementation of the adaptation of the task
graph at runtime. We divide this challenge into three parts:
(i) propagation of adapted task graph to all components; (ii)
consistency of the state of the task graph among different
components; and (iii) efficiency of adaptive operations.

parallel_for i in [1 ∶ N] ∶

while (condition on x) ∶

GT
i+1

= AP(AO(AC(G
T
i
)))

while (condition on x) ∶

GT+1 = AO(AC(G
T))

Ensemble Toolkit

Expressing adaptive algorithms as computational processes
separate from but operating on independent ensemble mem-
bers, creates several implementation challenges. These
include coordination and consistency across distributed
execution components, scalable communication between
independent simulations and efficient stop and restart of
simulations.

Separating the adaptive logic from underlying execution
management software allows the complexity to be contained
within the internal implementation of the software system
and not be exposed to the user. This approach also enables
transparent low-level optimization and adjustment to fluc-
tuations in workload and resource availability. Thus, scal-
able ensemble-based adaptive algorithms require support at
multiple levels: programming models and APIs, execution
models and runtime system.

In this section, we discuss the design and implementa-
tion of EnTK and its associated runtime system, as well
as enhancements to EnTK to support adaptivity as a first-
class capability. We offer a schematic representation of the
components and sub-components of EnTK (Fig. 4), sum-
marizing its design and implementation. Further, we detail
the enhancements made to EnTK to support the encoding
and execution of the three types of adaptation discussed
in “Types of Adaptations” section.

Design

EnTK is an ensemble execution system, implemented as a
Python library, that offers components to encode and execute
ensemble workflows on HPC systems. EnTK decouples the
description of ensemble workflows from their execution
by separating three concerns: (i) specification of tasks and
resource requirements; (ii) resource selection and acqui-
sition; and (iii) management of task execution. EnTK sits
between the user and the HPC system, abstracting resource
and execution management complexities from the user.

The design, implementation and performance of EnTK
are discussed in detail in Refs. [32, 53]. EnTK exposes
an API with three user-facing constructs to describe an

Pipeline

Workflow

Processor
Enqueue

Dequeue

Resource Manager

Task Manager

Execution

Manager

Ensemble Toolkit

Stage Task AppManager

Fig. 4   Schematic of EnTK representing its components and sub-com-
ponents

SN Computer Science (2020) 1:104	 Page 7 of 15  104

SN Computer Science

ensemble: Pipeline, Stage, and Task. We define the con-
structs as:

–	 Task: an abstraction of a computational process consist-
ing of the specification of an executable, software envi-
ronment, resource and data requirement.

–	 Stage: a set of tasks without mutual dependencies that,
therefore, can be concurrently executed.

–	 Pipeline: a sequence of stages such that any stage i can
be executed only after stage i−1.

Ensemble workflows are described by the user as a set or
sequence of pipelines, where each pipeline is a list of stages,
and each stage is a set of tasks. A set of pipelines executes
concurrently, whereas a sequence executes sequentially. All
the stages of each pipeline execute sequentially, and all the
tasks of each stage execute concurrently. In this way, we
describe a workflow in terms of the concurrency and sequen-
tiality of tasks, without requiring the explicit specification
of task dependencies.

AppManager is the core component of EnTK, serving two
broad purposes: (i) exposing an API to accept the encoded
workflow and a specification of the resource requirements
from the user; and (ii) managing the execution of the work-
flow on the specified resource via several components and
a third-party runtime system (RTS). AppManager abstracts
complexities of resource acquisition, task and data man-
agement, heterogeneity, and failure handling from the user.
All components and sub-components of EnTK communi-
cate via a dedicated messaging system that is set up by the
AppManager.

AppManager instantiates a WorkflowProcessor, which is
responsible for maintaining the concurrent and sequential
execution of tasks as described by the pipelines and stages
in the workflow. WorkflowProcessor consists of two compo-
nents, Enqueue and Dequeue, that are used to: enqueue sets
of executable tasks, i.e., tasks with all their dependencies
satisfied; and dequeue executed tasks, to and from dedicated
queues.

AppManager also instantiates an ExecutionManager,
which is responsible for managing the resources and the
execution of tasks on these resources. ExecutionManager
consists of two sub-components: ResourceManager and
TaskManager. Both sub-components interface with a RTS
to manage the allocation and deallocation of resources, and
the execution of tasks, received via dedicated queues, from
the WorkflowProcessor.

EnTK manages failures of tasks, components, computing
infrastructure (CI), and RTS. Depending on user configura-
tion, failed tasks can be resubmitted or ignored. EnTK, by
design, is resilient against components failure as all state
updates are transactional: failed components can simply be
re-instantiated. Both the CI and RTS are considered black

boxes, and their partial failures are assumed to be handled
locally. Upon full failure of the CI or RTS, EnTK assumes
all the resources and the tasks undergoing execution are lost,
restarts the RTS, and resumes execution from the last suc-
cessful pipeline, stage, and task.

Implementation

EnTK is implemented in Python and uses the RabbitMQ
message queuing system [54] and the RADICAL-Pilot (RP)
[55] task execution RTS. All EnTK components are imple-
mented as processes, and all sub-components as threads.
AppManager is the master process spawning all the other
processes. Tasks, stages and pipelines are implemented as
objects, copied among processes and threads via queues and
transactions. Process synchronization uses message-passing
via queues.

Using RabbitMQ offers several benefits: (i) producers and
consumers are unaware of topology, because they interact
only with the server; (ii) messages are stored in the server
and can be recovered upon failure of EnTK components; (iii)
messages can be pushed and pulled asynchronously because
data can be buffered by the server upon production; and (iv)
≥ O(106) tasks are supported.

EnTK uses RADICAL-Pilot (RP) as the RTS. RP is a
pilot system, i.e., a middleware component that enables the
submission of “pilot” jobs to the resource manager of an
HPC platform. The defining capability of pilot systems is
the decoupling of resource acquisition from task execution.
These systems allow for queuing a single job on the HPC
platform and, once this job becomes active, they enable the
direct scheduling of tasks on the acquired resources, without
waiting in the HPC platform’s queue. Pilot systems do not
‘game’ the resource manager of the HPC platform: Once
queued, jobs are managed according to the platform’s poli-
cies. RP provides access to several HPC systems, including
XSEDE, ORNL, and NCSA resources, and can be config-
ured to use other HPC systems.

Once integrated, EnTK and RP form an end-to-end sys-
tem for: (1) describing an ensemble application; (2) acquir-
ing HPC resources; (3) scheduling tasks of the ensemble
application on those resources; and (4) executing those tasks
respecting their priority relationship. This integrated sys-
tem uses a multi-level, multi-entity scheduling algorithm.
Initially, a job is scheduled on the HPC platform to acquire
resources; then, tasks that can be executed concurrently (i.e.,
a workload) are scheduled by EnTK on RP that, in turn,
schedules them as compute units into an Agent that was
bootstrapped on the HPC resources. Agent is responsible
for scheduling compute units on available resources, placing
these units onto specific nodes, cores or GPUs, and launch-
ing these units for execution.

	 SN Computer Science (2020) 1:104104  Page 8 of 15

SN Computer Science

Usually, EnTK and RP acquire all the resources needed
to execute the whole workflow before starting its execution.
Resource acquisition consists in submitting a job to the HPC
platform, while resource release involves killing the job once
the entire workflow has been executed. Thus, users wait in
the HPC platform’s batch system only once before execut-
ing their workflow. When the resources have been acquired,
RP binds the amount and type of available resources needed
by each compute unit at execution time, and unbind those
resources right after the unit has been executed. Binding and
unbinding resources to compute units does not require using
the HPC platform’s batch system: RP owns the resources for
the required walltime and exercises full control over their
usage.

EnTK and RP concurrently and sequentially execute com-
pute units on the resources acquired by submitting a job to
the HPC platform’s batch system. This allows to optimize
scheduling algorithms, based on the type and amount of
units that need to be executed, and to maximize resource
utilization by optimizing both the physical and temporal
placement of units on available resources. Note that these
capabilities support efficient implementation of adaptivity:
depending on runtime conditions, elements of the workflows
can be redefined or new elements can be added to the exist-
ing workflow. RP controls the amount of concurrency with
which the adapted workflow is executed, depending on the
amount of resources available.

Note that executing workflows may entail executing sepa-
rate groups of tasks, each group requiring a different amount
of resources. In this case, trade offs must be made between
the amount of concurrency of the execution of each group
of tasks, their execution time, and the amount of resource
utilization throughout the execution of the whole workflow.
For example, given a workflow with two groups of tasks
A and B, where B must be executed after A, and assuming
that the fully concurrent execution of A requires 2048 cores
while that of B just 1024, a decision will be made whether
to privilege time to execution by requiring 2048 cores or
resource utilization by requiring 1024. In the former case,
A and B will be executed with maximal concurrency and
therefore minimal time to completion; in the latter case, A
will be executed with 50% concurrency and, roughly, twice
as long execution time. Note that when using maximal con-
currency, 1024 cores will idle when executing B, while when
using 50% of concurrency for A, all the cores will always be
utilized throughout the execution of the workflow.

Enhancements for Adaptive Execution

In “Challenges in Encoding Adaptive Workflows” section,
we described three challenges in supporting adaptive work-
flows: (i) expressibility of adaptive workflows; (ii) when
and how to trigger adaptation; and (iii) implementation

of adaptive operations. We addressed these challenges by
implementing three new capabilities in EnTK: (1) expressing
an adaptation operation; (2) executing the operation; and (3)
modifying a task graph at runtime.

Adaptations in ensemble workflows follow the Adaptiv-
ity Loop described in “Execution of Adaptive Workflows”
section. Execution of one or more tasks is followed by some
signal x that triggers an adaptation operation. In EnTK, this
signal is currently implemented as a control signal triggered
at the end of a stage or a pipeline. We added the capability to
express this adaptation operation as post-execution proper-
ties of stages and pipelines. In this way, when all the tasks
of a stage or all the stages of a pipeline have completed,
the adaptation operation can be invoked to evaluate whether
a change in the task graph is required. This evaluation is
based on the results of the ongoing computation and it is
performed asynchronously, i.e., without effecting any other
executing tasks.

The adaptation operation is encoded as a Python property
of the Stage and Pipeline objects. The encoding requires the
specification of three functions: one function to evaluate a
boolean condition over x, and two functions to describe the
adaptation, depending on the result of the boolean evalu-
ation. Users define the three functions specified as post-
execution properties of a Stage or Pipeline, based on the
requirements of their application. As such, these functions
can modify the existing task graph or extend it as per the
three adaptivity types described in “Types of Adaptations”
section.

Reference [52] specifies multiple strategies to perform
adaptation: forward recovery, backward recovery, proceed,
and transfer. In EnTK, we implement a non-aggressive
adaptation strategy, similar to ‘transfer’, where a new task
graph is created by modifying the current task graph only
after the completion of part of that task graph. The choice
of this strategy is based on the current science drivers where
tasks that have already executed and tasks that are currently
executing are not required to be adapted but all forthcoming
tasks might be.

Modifying the task graph at runtime requires coordina-
tion among EnTK components to ensure consistency in the
task graph representation. AppManager holds the global
view of the task graph and, upon instantiation, Workflow
Processor maintains a local copy of that task graph. The
dequeue sub-component of Workflow Processor acquires
a lock over the local copy of the task graph, and invokes
the adaptation operation as described by the post-execution
property of stages and pipelines. If the local copy of the
task graph is modified, Workflow Processor transmits those
changes to AppManager that modifies the global copy of
task graph, and releases the lock upon receiving an acknowl-
edgment. This ensures that adaptations to the task graph are

SN Computer Science (2020) 1:104	 Page 9 of 15  104

SN Computer Science

consistent across all components, while requiring minimal
communication.

Pipeline, stage, and task descriptions alongside the
specification of an adaptation operation as post-execution
for pipelines and stages enable the expression of adaptive
workflows. The ‘transfer’ strategy enacts the adaptivity of
the task graph, and the implementation in EnTK ensures
consistency and minimal communication in executing adap-
tive workflows. Note how the design and implementation of
adaptivity in EnTK does not depend on specific capabili-
ties of the software package executed by each task of the
ensemble workflow.

Note that the separation of concern between expressing
the adaptive logic of the workflow and executing the scien-
tific code of the workflow’s tasks, makes EnTK a general-
purpose tool for codifying adaptive ensemble applications.
Thus, EnTK can be used to express well-known adaptive
algorithms but also to explore new solutions. Reference [56]
offers examples of how to implement adaptive code in EnTK
while Ref. [57] shows the code implementing the adaptive
expanded sample used in our experiments.

Experiments

We perform three sets of experiments. The first set character-
izes the overhead of EnTK when performing the three types
of adaptation described in “Types of Adaptations” section.
The second set validates our implementation of the two sci-
ence drivers presented in “Science Drivers” section against
reference data. The third set compares our implementation
of adaptive expanded ensemble algorithm with local and
global analysis against results obtained with a single and an
ensemble of MD simulations.

We use four application kernels in our experiments:
stress-ng [58], GROMACS [30], OpenMM [59] and
Python scripts. stress-ng allows to control the compu-
tational duration of a task for the experiments that character-
ize the adaptation overhead of EnTK, while GROMACS and
OpenMM are the simulation kernels for the expanded ensem-
ble and Markov state modeling validation experiments.

We executed all experiments from the same host machine,
but we targeted three HPC systems, depending on the
amount and availability of the resources required by the
experiments, and the constraints imposed by the queue pol-
icy of each machine. NCSA Blue Waters and ORNL Titan
were used for characterizing the adaptation overhead of
EnTK, while XSEDE SuperMIC was used for the validation
and production scale experiments. When we run our experi-
ments, NCSA Blue Waters had 22500 nodes, each with 32
cores; ORNL Titan had 18688 nodes, each with 16 cores;
and XSEDE SuperMIC had 382 nodes, each with 20 cores.

Characterization of Adaptation Overhead

We perform five experiments to characterize the overhead
of adapting ensemble workflows encoded using EnTK. Each
experiment measures the overhead of a type of adaptation
as a function of the number of adaptations. In the case of
task-count adaptation, the overhead is measured also as a
function of the number of tasks and of their type, single- or
multi-node. This is relevant because with increasing size of
the simulated molecular system, multi-node tasks may have
lower time-to-solution than single-node ones.

Each experiment measures EnTK Adaptation Overhead
and Task Execution Time. The former is the time taken by
EnTK to adapt the workflow by invoking user-specified algo-
rithms; the latter is the time taken to run the executables of
all tasks of the workflow. Consistent with the scope of this
paper, the comparison between each adaptation overhead
and task execution time offers a measure of the efficiency
with which EnTK implements adaptive functionalities. Ref.
[53] has a detailed analysis of other overheads of EnTK.

Table 1 describes the variables and fixed parameters of
the five experiments about adaptivity overheads in EnTK.
In these experiments, the algorithm is encoded in EnTK as
1 pipeline consisting of several stages with a set of tasks.
In the experiments I–III about task-count adaptation, the
pipeline initially consists of a single stage with 16 tasks of a
certain type. Each adaptation, at the completion of a stage,
adds 1 stage with a certain number of tasks of a certain type,
thereby increasing the task-count in the workflow.

In experiments IV–V, the workflow is encoded as 1 pipe-
line with 17, 65, or 257 stages with 16 tasks per stage. Each
adaptation occurs upon the completion of a stage and, in
the case of task-order adaption, the remaining stages of a
pipeline are shuffled. In the case of task-property adaption,
the number of cores used by the tasks of the next stage is set
to a random value below 16, keeping the task type to single-
node. The last stage of both experiments is non-adaptive,
resulting in 16, 64, and 256 total adaptations.

In the experiments I, IV and V, where the number of
adaptations varies, each task of the workflow executes the
stress-ng kernel for 60 seconds. For the experiments
II and III with O(1000) tasks, the execution duration is set
to 600 seconds so to avoid performance bottlenecks in the
underlying runtime system and therefore interferences with
the measurement of EnTK adaptation overheads. All experi-
ments have no data movement as the performance of data
operations is independent from that of adaptation.

Figure 5i, iv, v shows that EnTK Adaptation Over-
head and Task Execution Time increase linearly with the
increasing of the number of adaptations. EnTK Adaptation
Overhead increases due to the time taken to compute the
additional adaptations and its linearity indicates that the

	 SN Computer Science (2020) 1:104104  Page 10 of 15

SN Computer Science

computing time of each adaptation is constant. Task Execu-
tion Time increases due to the time taken to execute the
tasks of the stages that are added to the workflow as a result
of the adaptation.

Figure 5i, iv, v also shows that task-property adaptation
(v) is the most expensive, followed by task-order adaptation
(iv) and task-count (i) adaptation. These differences depend
on the computational cost of the Python functions executed
during adaptation: in task-property adaptation, the function
parses the entire workflow and invokes the Python ran-
dom.randint function 16 times per adaptation; in task-
order adaptation, the Python function shuffles a Python list
of stages; and in task-count adaption, the Python function
creates an additional stage, appending it to a list.

In Fig. 5ii, EnTK Adaptation Overhead increases lin-
early with an increase in the number of tasks added per
task-count adaptation, explained by the cost of creating
additional tasks and adding them to the workflow. The
Task Execution Time remains constant at ≈ 1200s , since
sufficient resources are acquired to execute all the tasks
concurrently.

Figure 5iii compares EnTK Adaptation Overhead and
Task Execution Time when adding single-node and multi-
node tasks to the workflow. The former is greater by ≈ 1s
when adding multi-node tasks, whereas the latter remains
constant at ≈ 1200s in both scenarios. The difference in
the overhead, although negligible when compared to Task

Execution Time, is explained by the increased size of a
multi-node task description. As in Fig. 5ii, Task Execu-
tion Time remains constant due to availability of sufficient
resources to execute all tasks concurrently.

Experiments I–V show that EnTK Adaptation Overhead
is proportional to the computing required by the adap-
tation algorithm and is not determined by the design or
implementation of EnTK. In absolute terms, EnTK Adap-
tation Overhead is orders of magnitude smaller than Task
Execution Time. Thus, EnTK advances the practical use
of adaptive ensemble workflows.

Validation of Science Driver Implementations

We implement the two science drivers of “Science Driv-
ers” section using the abstractions developed in EnTK. We
validate our implementation of expanded ensemble (EE) by
calculating the binding of the cucurbit[7]uril 6-amino-1-hex-
anol host-guest system, a molecular recognition system often
used for testing as exhaustive simulation can get the right
answer on a reasonable timescale [60, 61], and our imple-
mentation of Markov state modeling (MSM) by simulating
the Alanine dipeptide system and comparing our results with
the reference data of the DESRES group [62].

Table 1   Experiment parameters
plotted in Fig. 5

Figure Adaptation type Experiment variable Fixed parameters

I Task-count Num. of adaptations Num. of tasks added per adaptation = 16,
Type of tasks added = single-node

II Task-count Num. of tasks added per
adaptation

Num. of adaptations = 2,
Type of tasks added = single-node

III Task-count Type of tasks added Num. of adaptations = 2,
Num. of tasks added per adaptation = 210 ∗ 2

s

(s = stage index)
IV Task-order Num. of adaptations Num. of re-ordering op. per adaptation = 1,

Type of re-ordering = uniform shuffle
V Task-property Num. of adaptations Property type modified per adaptation = 1,

Property adapted = Num. of cores per task

16 64 256
(i)

10−3

10−1

101
103
105

T
im

e
(s
ec
on
ds
)

1024 2048 4096
(ii)

single-node multi-node
(iii)

16 64 256
(iv)

16 64 256
(v)

EnTK Adaptation Overhead Task Execution Time

Fig. 5   EnTK Adaptation Overhead and Task Execution Time for task-count (i, ii, and iii), task-order (iv), and task-property (v) adaptations

SN Computer Science (2020) 1:104	 Page 11 of 15  104

SN Computer Science

Expanded Ensemble

We execute the EE science driver described in “Expanded
Ensemble” section on XSEDE SuperMIC for a total of
2270ns MD simulation time using GROMACS 5.1.3 (to
match behavior in previous studies). To validate the process,
we carry out a set of simulations of the binding of cucur-
bit[7]uril (host) to 6-amino-1-hexanol (guest) in explicit sol-
vent. Simulation details and sample input files can be found
in a previous study Ref [60]. Simulations were run for a
total of 29.12 ns per ensemble member. Validation was done
by comparing the final free energy estimate to a reference
calculation run with a single adaptive expanded ensemble
simulation. Each ensemble member is encoded in EnTK as
a pipeline of stages of simulation and analysis tasks, where
each pipeline uses 1 node for 72 hours. With 16 ensemble
members (i.e., pipelines) for the current physical system, we
use ≈ 1k node hours of computational resources.

The expanded ensemble variable in these simulations is
the degree of coupling (i.e., the strength of the energetic
interaction term) between the guest and the rest of the sys-
tem (water and host). As the system explores the coupling
parameter using EE dynamics, this strengthening and weak-
ening allows the guest to binds and unbind from the host
over the course of the simulation, where if the interactions
were left entirely on, the ligand would remain bound dur-
ing a simulation of this timescale. The free energy of this
process is gradually estimated over the course of the simu-
lation, using the Wang–Landau algorithm [63], as imple-
mented in this system as described in Ref. [60]. However, we
hypothesize that we can speed convergence by 1) estimate
free energies using the potential energy differences among
states and the Multistate Bennett Acceptance Ratio (MBAR)
algorithm [64] at intermediate steps, treating the expanded
ensemble simulations as quasistatic processes, and 2) allow-
ing individual ensemble members to share information with
each other about the free energies of the different ensembles
rather than using only their own trajectory to estimate it.

We consider four variants of the EE method:

–	 Method 1: one continuous simulation, omitting any
intermediate analysis using MBAR.

–	 Method 2: multiple parallel simulations without any
intermediate analysis using MBAR.

–	 Method 3: multiple parallel simulations with local inter-
mediate analysis, i.e., using current and historical simula-
tion information from only its own ensemble member.

–	 Method 4: multiple parallel simulations with global
intermediate analysis, i.e., using current and historical
simulation information from all ensemble members.

In each method, the latter 2/3 of the simulation data avail-
able at the time of each analysis is used for free energy

estimates via the MBAR algorithm. In methods 3 and 4, we
avoid the use of instantaneous weights due to Wang–Landau
algorithm by using all of the quasistatic sampling data to
determine the weights using MBAR during the intermediate
analyses. These weights provide, in theory, a better estimate
of the weights that are used to force simulations to visit
desired distributions in the simulation condition space (see
“Expanded Ensemble” section). Note that in methods 3 and
4, where intermediate analysis is used to update the weights,
the intermediate analysis, external to GROMACS, is always
applied at 320ps intervals.

The reference calculation consisted of four parallel
expanded ensemble simulations that each ran for 200 ns
each with fixed initial weights. These simulations used a
set of previously estimated weights, which were themselves
from a 400 ns expanded ensemble using the Wang–Landau
algorithm (similar to a single member of the ensemble from
Method 1, but run for much longer). MBAR was used to
estimate the free energy for each of these simulations, which
generate the fully stationary probability distribution of the
simulation due to fixed, non-adaptive weights. The refer-
ence value is reported as the MBAR estimate of the pooled
reference data, and its error is reported as the standard devia-
tion of the non-pooled MBAR estimates. This calculation
is therefore a reference for correctness, not a control for
efficiency.

Figure 6 shows the free energy estimates obtained
through each of the four methods with the reference calcula-
tion value. Final estimates of each method agree within error
to the reference value. Validating that the four methods used
to implement adaptive ensembles converge the free energy
estimate to the actual value.

Markov State Modeling

We execute the MSM science driver described in “Markov
State Modeling” section on XSEDE SuperMIC for a total
of 100ns MD simulation time over multiple iterations.
Each iteration of the task graph is encoded in EnTK as one
pipeline with 2 stages consisting of 10 simulation tasks
and 1 analysis task. Each task uses 1 node to simulate 1ns.

We compare the results obtained from execution of the
EnTK implementation against reference data by perform-
ing the clustering of the reference data and deriving the
mean eigenvalues of two levels of the metastable states,
i.e., macro- and micro-states. The reference data were gen-
erated by a non-adaptive workflow consisting of 10 tasks,
each simulating 10ns.

Eigenvalues attained by the macro-states (top) and
micro-states (bottom) in the EnTK implementation and
reference data are plotted as a function of the state index
in Fig. 7. Final eigenvalues attained by the implementation

	 SN Computer Science (2020) 1:104104  Page 12 of 15

SN Computer Science

agree with the reference data within the error bounds. The
validation of the implementation warrants that similar
implementations should be investigated for larger molec-
ular systems and longer durations, where the aggregate
duration is unknown and termination conditions are evalu-
ated during runtime.

Evaluation of Methodological Efficiency Using
Adaptive Capabilities in EnTK

We analyzed the convergence properties of the free energy
estimate using the data generated for the validation of EE.
The convergence behavior of Method 1 observed in Fig. 8
suggests that the non-ensemble method converges faster than
ensemble-based methods with the same total simulation
time. However, it does not necessarily represent the average
behavior of the non-ensemble-based approach. The average
behavior is depicted more clearly by Method 2 because this
method averages the free energy estimate of 16 independ-
ent single simulations. The apparent improved convergence
may be due to the fact that the simulation is continuous, and

can potentially reach configurations not sampled in Method
2, or may simply represent lucky stochastic fluctuations in
the weights.

The most significant feature of Fig. 8 is that all three
ensemble-based methods converge at similar rates to the
reference value. We initially hypothesized that adding
adaptive analysis to estimate the weights would improve
convergence behavior, but we see no significant change in
these experiments. Analysis of these simulations revealed
a fundamental physical reason that demonstrates a need for
additional adaptivity to successfully accelerate these simula-
tions. Although expanded ensemble simulations allowed the
ligand to move in and out of the binding pocket rapidly, the
slowest motion, occurring on the order of 10s of nanosec-
onds, was the movement of water out of the binding pocket,
which is needed to allow the ligand to rebind as water backs
into a simulation biases that equilibrate on shorter timescales
may overly stabilize either configurations of with waters out
or waters, preventing the sampling of both configurations.
Combining the weights from multiple simulations does not
lower the kinetic barriers for the water transition. Additional
biasing variables are needed to algorithmically accelerate
this slow motions, requiring a combination of metadynam-
ics and expanded ensemble simulations, with biases both in
the protein interaction variable and the collective variable
of water occupancy in the binding pocket. The same ensem-
ble approach may be more useful with multiple nonphysical
dimensions, resulting in a larger space than can be sampled
by a single ensemble member.

The methodology described here gives researchers the
ability to implement additional adaptive elements and test
their effects on system properties. Additionally, as referenced

Method 1 Method 2 Method 3 Method 4 Reference
42

44

46

48
Fr
ee

E
ne
rg
y
E
st
im

at
e

(k
ca
l/
m
ol
)

Fig. 6   Validation of EE implementation: Observed variation of free
energy estimate for methods 1–4. Reference is the MBAR estimate
and standard deviation of four 200ns fixed weight expanded-ensemble
simulations

1 2 3 4

Macrostate index

0.2

0.4

0.6

0.8

1.0

M
ea
n
ei
ge
n
va
lu
e EnTK implementation

Reference

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Microstate index

0.2

0.4

0.6

0.8

1.0

M
ea
n
ei
ge
n
va
lu
e EnTK implementation

Reference

Fig. 7   Mean eigenvalue attained by the macro-states (top) and micro-
states (bottom) by Alanine dipeptide after aggregate simulation dura-
tion of 100ns implemented using EnTK compared against reference
data

Fig. 8   Convergence of the ensemble expanded ensemble implemen-
tation: Observed convergence behavior in Methods 1–4. Reference is
the MBAR estimate of the pooled data and the standard deviation of
the non-pooled MBAR estimates of four 200ns fixed weight expanded
ensemble simulations

SN Computer Science (2020) 1:104	 Page 13 of 15  104

SN Computer Science

in “Enhancements for Adaptive Execution” section, these
adaptive elements can be implemented on relatively short
time scales, giving the ability to test many implementations,
as done in this paper.

Analysis of the slow motions of the system suggests
the potential power of more complex and general adaptive
patterns. Simulations with accelerated dynamics along the
hypothesized degrees of freedom can be carried out, and
resulting dynamics can be analyzed, automated and moni-
tored for degrees of freedom associated with remaining slow
degrees of motion [65]. Accelerated dynamics can be adap-
tively adjusted as the simulation process continues. Charac-
terization experiments suggest that EnTK can support the
execution of this enhanced adaptive workflow with minimal
overhead.

Conclusion

Novel adaptive algorithms and methods across domains such
as biomolecular science, climate science and uncertainty
quantification leverage intermediate data to study larger
problems, longer time scales and to engineer better fidelity
in the modeling of complex phenomena. Adaptive ensemble
simulations methods provide a promising route to enhanc-
ing the computational efficiency of biomolecular simulations
over vanilla ensemble MD simulations. As we approach
exascale computing, and molecular simulations are used to
address questions of increasing biological complexity, gains
in algorithmic sophistication and computational efficiency
from adaptive ensemble methods will become critical in
generating quantitative insight into biological problems.

In this paper, we described the operations in executing
adaptive ensemble workflows, classified the different types
of adaptations, and described challenges in implement-
ing them in software tools. We discuss how the Ensemble
Toolkit was designed to support the scalable the execution of
adaptive ensemble workflows. We characterized the adapta-
tion overhead in EnTK, validated the implementation of two
science drivers. We executed expanded ensemble at scales
and highlight the advantages of using adaptive ensemble
capabilities developed here to accelerate methodological
advances.

The primary contribution of this work is the design of a
software infrastructure that permits new adaptive methods,
and ultimately, their applications to important biophysical
problems at unprecedented scales. To the best of our knowl-
edge, this is the first attempt at describing and implement-
ing multiple adaptive ensemble workflows using a common
conceptual and implementation framework.

Acknowledgements  We acknowledge support from NSF 1440677,
1639694 and 1835449. XSEDE computational resources were made

available via XRAC allocation TG-MCB090174. On behalf of all
authors, the corresponding author states that there is no conflict of
interest.

References

	 1.	 Cheatham TE, Roe DR. The impact of heterogeneous computing
on workflows for biomolecular simulation and analysis. Comput
Sci Eng. 2015;17(2):30–9.

	 2.	 Trebst S, Troyer M, Hansmann UHE. Optimized parallel temper-
ing simulations of proteins. J Chem Phys. 2006;124:174903.

	 3.	 Hansmann UHE. Parallel tempering algorithm for confor-
mational studies of biological molecules. Chem Phys Lett.
1997;281:140–50.

	 4.	 Mitsutake A, Sugita Y, Okamoto Y. Replica-exchange multica-
nonical and multicanonical replica-exchange Monte Carlo simu-
lations of peptides. I. Formulation and benchmark test. J Chem
Phys. 2003;118:6664.

	 5.	 Mitsutake A, Okamoto Y. Replica-exchange extensions of simu-
lated tempering method. J Chem Phys. 2004;121:2491.

	 6.	 Ballard AJ, Jarzynski C. Replica exchange with nonequilibrium
switches. Proc Natl Acad Sci. 2009;106(30):12224–9. https​://doi.
org/10.1073/pnas.09004​06106​.

	 7.	 Rauscher S, Neale C, Pomes R. Simulated tempering distributed
replica sampling, virtual replica exchange, and other generalized-
ensemble methods for conformational sampling. J Chem Theory
Comput. 2009;5(10):2640–62. https​://doi.org/10.1021/ct900​302n
ISSN: 1549-9618.

	 8.	 Comer J, Phillips JC, Schulten K, Chipot C. Multiple-replica
strategies for free-energy calculations in NAMD: multiple-walker
adaptive biasing force and walker selection rules. J Chem Theory
Comput. 2014;10(12):5276–85 ISSN: 1549-9618.

	 9.	 Janosi L, Doxastakis M. Accelerating flat-histogram meth-
ods for potential of mean force calculations. J Chem Phys.
2009;131(5):054105 ISSN: 1089-7690.

	10.	 Raiteri P, Laio A, Gervasio FL, Micheletti C, Parrinello M. Effi-
cient reconstruction of complex free energy landscapes by multi-
ple walkers metadynamics. J Phys Chem B. 2006;110:3533–9.

	11.	 Voter AF. Hyperdynamics: accelerating molecular dynamics of
infrequent events. Phys Rev Lett. 1997;78:3908–11. https​://doi.
org/10.1103/PhysR​evLet​t.78.3908.

	12.	 Huang C, Perez D, Voter AF. Hyperdynamics boost factor achiev-
able with an ideal bias potential. J Chem Phys. 2015;143:074113.
https​://doi.org/10.1063/1.49286​36.

	13.	 Voter AF. Parallel replica method for dynamics of infrequent
events. Phys Rev B. 1998;57(22):13985–8.

	14.	 Chodera JD, Swope WC, Pitera JW, Dill KA. Long-time protein
folding dynamics from short-time molecular dynamics simula-
tions. Multiscale Model Simul. 2006;5(4):1214–26.

	15.	 Bowman GR, Huang X, Pande VS. Using generalized ensem-
ble simulations and Markov state models to identify conforma-
tional states. Methods. 2009;. https​://doi.org/10.1016/j.ymeth​
.2009.04.013.

	16.	 Maragliano L, Roux B, Vanden-Eijnden E. Comparison between
mean forces and swarms-of-trajectories string methods. J Chem
Theory Comput. 2014;10(2):524–33. https​://doi.org/10.1021/
ct400​606c.

	17.	 Atzori A, Bruce NJ, Burusco KK, Wroblowski B, Bonnet P,
Bryce RA. Exploring protein kinase conformation using swarm-
enhanced sampling molecular dynamics. J Chem Inf Model.
2014;54(10):2764–75. https​://doi.org/10.1021/ci500​3334.

https://doi.org/10.1073/pnas.0900406106
https://doi.org/10.1073/pnas.0900406106
https://doi.org/10.1021/ct900302n
https://doi.org/10.1103/PhysRevLett.78.3908
https://doi.org/10.1103/PhysRevLett.78.3908
https://doi.org/10.1063/1.4928636
https://doi.org/10.1016/j.ymeth.2009.04.013
https://doi.org/10.1016/j.ymeth.2009.04.013
https://doi.org/10.1021/ct400606c
https://doi.org/10.1021/ct400606c
https://doi.org/10.1021/ci5003334

	 SN Computer Science (2020) 1:104104  Page 14 of 15

SN Computer Science

	18.	 Sanchez-Martinez M, Field M, Crehuet R. Enzymatic minimum
free energy path calculations using swarms of trajectories. J Phys
Chem B. 2015;119(3):1103–13. https​://doi.org/10.1021/jp506​
593t.

	19.	 Pan AC, Sezer D, Roux B. Finding transition pathways using
the string method with swarms of trajectories. J Phys Chem B.
2008;112(11):3432–40.

	20.	 Husic BE, Pande VS. Markov state models: from an art to a sci-
ence. J Am Chem Soc. 2018;140(7):2386–96.

	21.	 Bowman GR, Ensign DL, Pande VS. Enhanced modeling via net-
work theory: adaptive sampling of markov state models. J Chem
Theory Comput. 2010;6(3):787–94.

	22.	 Miron RA, Fichthorn KA. Accelerated molecular dynamics with
the bond-boost method. J Chem Phys. 2003;119(12):6210–6. https​
://doi.org/10.1063/1.16037​22.

	23.	 Voter AF. Parallel replica method for dynamics of infrequent
events. English. Phys Rev B. 1998;57(22):13985–8.

	24.	 Suárez E, Lettieri S, Zwier MC, Stringer CA, Subramanian SR,
Chong LT, Zuckerman DM. Simultaneous computation of dynam-
ical and equilibrium information using a weighted ensemble of
trajectories. J Chem Theory Comput. 2014;10(7):2658–67. https​
://doi.org/10.1021/ct401​065r.

	25.	 Dakka J, Balasubramanian KPV, Turilli M, Wright DW, Zasada
SJ, Wan S, Coveney PV, Jha S. [n. d.] Concurrent and adaptive
extreme scale binding free energy calculations. in review. arXiv​
:1801.01174​.

	26.	 Zwier MC, Adelman JL, Kaus JW, Pratt AJ, Wong KF, Rego NB,
Surez E, Lettieri S, Wang DW, Grabe M, Zuckerman DM, Chong
LT. Westpa: an interoperable, highly scalable software package
for weighted ensemble simulation and analysis. J Chem Theory
Comput. 2015;11(2):800–9. https​://doi.org/10.1021/ct501​0615.

	27.	 DeFever RS, Hanger W, Sarupria S, Kilgannon J, Apon AW, Ngo
LB. Building a scalable forward flux sampling framework using
big data and hpc. In: Proceedings of the practice and experience
in advanced research computing on rise of the machines (Learn-
ing) (PEARC’19). ACM, Chicago, IL, USA, 2019;3:1–3:8. ISBN:
978-1-4503-7227-5. https​://doi.org/10.1145/33321​86.33322​05

	28.	 Case DA, Cheatham TE, Darden T, Gohlke H, Luo R, Merz KM,
et al. The amber biomolecular simulation programs. J Comput
Chem. 2005;26(16):1668–88.

	29.	 Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E,
et al. Scalable molecular dynamics with namd. J Comput Chem.
2005;26(16):1781–802.

	30.	 Abraham MJ, Murtola T, Schulz R, Páall S, Smith JC, Hess B,
Lindahl E. Gromacs: high performance molecular simulations
through multi-level parallelism from laptops to supercomputers.
SoftwareX. 2015;1:19–25.

	31.	 Kasson PM, Jha S. Adaptive ensemble simulations of biomol-
ecules. Curr Opin Struct Biol. 2018;52:87–94.

	32.	 Balasubramanian V, Treikalis A, Weidner O, Jha S. Ensemble
toolkit: scalable and flexible execution of ensembles of tasks.
In: 2016 45th international conference on parallel processing
(ICPP). Volume 00, 2016;458–463. https​://doi.org/10.1109/
ICPP.2016.59.

	33.	 Turilli M, Balasubramanian V, Merzky A, Paraskevakos I, Jha
S. [n. d.] Middleware building blocks for workflow systems.
Computing in Science & Engineering (CiSE) special issue on
Incorporating Scientific Workflows in Computing Research Pro-
cesses. 2019; https​://doi.org/10.1109/MCSE.2019.29200​48. arXiv​
:1903.10057​.

	34.	 Balasubramanian V, Jha S, Merzky A, Turilli M. Radical-cyber-
tools: middleware building blocks for scalable science. CoRR.
2019; arXiv​:1904.03085​.

	35.	 Coulibaly P, Baldwin CK. Nonstationary hydrological time
series forecasting using nonlinear dynamic methods. J Hydrol.
2005;307(1–4):164–74.

	36.	 Behrens J, Rakowsky N, Hiller W, Handorf D, Läuter M, Päpke
J, et al. Amatos: parallel adaptive mesh generator for atmospheric
and oceanic simulation. Ocean Model. 2005;10(1–2):171–83.

	37.	 Casarotti C, Pinho R. An adaptive capacity spectrum method for
assessment of bridges subjected to earthquake action. Bull Earthq
Eng. 2007;5(3):377–90.

	38.	 Lan Z, Taylor VE, Bryan G. Dynamic load balancing for struc-
tured adaptive mesh refinement applications. In: International
Conference on Parallel Processing, 2001. IEEE, 2001; p. 571–579.

	39.	 Okamoto Y. Generalized-ensemble algorithms: enhanced sam-
pling techniques for monte carlo and molecular dynamics simula-
tions. J Mol Graph Model. 2004;22(5):425–39.

	40.	 Babin V, Roland C, Sagui C. Adaptively biased molecu-
lar dynamics for free energy calculations. J Chem Phys.
2008;128(13):134101.

	41.	 Chodera JD, Swope WC, Pitera JW, Dill KA. Long-time protein
folding dynamics from short-time molecular dynamics simula-
tions. Multiscale Modeli Simul. 2006;5(4):1214–26.

	42.	 Mattoso M, Dias J, Ocaña KACS, Ogasawara E, Costa F, Horta
F, et al. Dynamic steering of hpc scientific workflows: a survey.
Future Gen Comput Syst. 2015;46:100–13.

	43.	 Pronk S, Pouya I, Lundborg M, Rotskoff G, Wesen B, Kasson
PM, Lindahl E. Molecular simulation work-flows as parallel
algorithms: the execution engine of copernicus, a distributed
high-performance computing platform. J Chem Theory Comput.
2015;11(6):2600–8.

	44.	 McKinley PK, Sadjadi M, Kasten EP, Cheng BHC. Composing
adaptive software. Computer. 2004;37(7):56–64.

	45.	 Barducci A, Bonomi M, Parrinello M. Metadynamics. Wiley
Interdiscip Rev Comput Mol Sci. 2011;1(5):826–43. https​://doi.
org/10.1002/wcms.31.

	46.	 Chelli R, Signorini GF. Serial generalized ensemble simulations
of biomolecules with self-consistent determination of weights. J
Chem Theory Comput. 2012;8(3):830–42.

	47.	 Comer J, Phillips JC, Schulten K, Chipot C. Multiple-replica
strategies for free-energy calculations in namd: multiple-walker
adaptive biasing force and walker selection rules. J Chem Theory
Comput. 2014;10(12):5276–85.

	48.	 Pande VS, Beauchamp K, Bowman GR. Everything you wanted to
know about markov state models but were afraid to ask. Methods.
2010;52(1):99–105.

	49.	 Singhal N, Pande VS. Error analysis and efficient sampling in
markovian state models for molecular dynamics. J Chem Phys.
2005;123(20):204909.

	50.	 Hinrichs NS, Pande VS. Calculation of the distribution of eigen-
values and eigenvectors in markovian state models for molecular
dynamics. J Chem Phys. 2007;126(24):244101.

	51.	 Scherer MK, Trendelkamp-Schroer B, Paul F, Perez-Hernandez G,
Hoffmann M, Plattner N, Wehmeyer C, Prinz J-H, Noe F. Pyemma
2: a software package for estimation, validation, and analysis of
markov models. J Chem Theory Comput. 2015;11(11):5525–42.

	52.	 van der Aalst WMP, Jablonski S. Dealing with workflow change:
identification of issues and solutions. Comput Syst Sci Eng.
2000;15(5):267–76.

	53.	 Balasubramanian V, Turilli M, Hu W, Lefebvre M, Lei W, Modrak
RT, Cervone G, Tromp J, Jha S. Harnessing the power of many:
extensible toolkit for scalable ensemble applications. In: 2018
IEEE International Parallel and Distributed Processing Sympo-
sium, IPDPS 2018, Vancouver, BC, Canada, May 2018;21-25,
536–545. https​://doi.org/10.1109/IPDPS​.2018.00063​.

	54.	 [n. d.] Rabbitmq. https​://www.rabbi​tmq.com/ (Accessed 03/2018).
	55.	 Merzky A, Turilli M, Maldonado M, Santcroos M, Jha S. Using

pilot systems to execute many task workloads on supercomputers.
Job Scheduling Strategies for Parallel Processing - 22nd Inter-
national Workshop, JSSPP 2018. Vancouver. 2018;2018:61–82.
https​://doi.org/10.1007/978-3-030-10632​-44.

https://doi.org/10.1021/jp506593t
https://doi.org/10.1021/jp506593t
https://doi.org/10.1063/1.1603722
https://doi.org/10.1063/1.1603722
https://doi.org/10.1021/ct401065r
https://doi.org/10.1021/ct401065r
http://arxiv.org/abs/1801.01174
http://arxiv.org/abs/1801.01174
https://doi.org/10.1021/ct5010615
https://doi.org/10.1145/3332186.3332205
https://doi.org/10.1109/ICPP.2016.59
https://doi.org/10.1109/ICPP.2016.59
https://doi.org/10.1109/MCSE.2019.2920048
http://arxiv.org/abs/1903.10057
http://arxiv.org/abs/1903.10057
http://arxiv.org/abs/1904.03085
https://doi.org/10.1002/wcms.31
https://doi.org/10.1002/wcms.31
https://doi.org/10.1109/IPDPS.2018.00063
https://www.rabbitmq.com/
https://doi.org/10.1007/978-3-030-10632-44

SN Computer Science (2020) 1:104	 Page 15 of 15  104

SN Computer Science

	56.	 Balasubramanian V. https​://radic​alent​k.readt​hedoc​s.io/en/lates​t/
advan​ced_examp​les.html. (2019).

	57.	 Balasubramanian V. https​://githu​b.com/radic​al-exper​iment​s/adap-
bms-exps-ipdps​18/blob/maste​r/expan​ded-ensem​ble/bin/runme​.py.
2019.

	58.	 [n. d.] Stress-ng. http://kerne​l.ubunt​u.com/~cking​/stres​s-ng/stres​
s-ng.pdf (accessed March 2018). ().

	59.	 [n. d.] Openmm. https​://githu​b.com/pande​group​/openm​m
(Accessed March 2018). ().

	60.	 Monroe Jacob I, Shirts Michael R. Converging free energies of
binding in cucurbit[7]uril and octa-acid host-guest systems from
SAMPL4 using expanded ensemble simulations. J Comput Aided
Mol Des. 2014;28(4):401–15. https​://doi.org/10.1007/s1082​
2-014-9716-4.

	61.	 Muddana HS, Fenley AT, Mobley DL, Gilson MK. The sampl4
host-guest blind prediction challenge: an overview. J Comput
Aided Mol Des. 2014;28(4):305–17. https​://doi.org/10.1007/
s1082​2-014-9735-1.

	62.	 [n. d.] Md trajectories of ala2. https​://figsh​are.com/artic​les/new_
files​et/10261​31 (accessed March 2018). ().

	63.	 Wang F, Landau DP. Efficient, multiple-range random walk
algorithm to calculate density of states. Phys Rev Lett.
2001;86:2050–3.

	64.	 Shirts MR, Chodera JD. Statistically optimal analysis of samples
from multiple equilibrium states. J Chem Phys. 2008;129:124105.

	65.	 Tiwary P, Berne BJ. Spectral gap optimization of order parameters
for sampling complex molecular systems. Proc Natl Acad Sci.
2016;. https​://doi.org/10.1073/pnas.16009​17113​ eprint: http://
www.pnas.org/content/early/2016/02/24/1600917113.full.pdf.

Publisher’s Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://radicalentk.readthedocs.io/en/latest/advanced_examples.html
https://radicalentk.readthedocs.io/en/latest/advanced_examples.html
https://github.com/radical-experiments/adap-bms-exps-ipdps18/blob/master/expanded-ensemble/bin/runme.py
https://github.com/radical-experiments/adap-bms-exps-ipdps18/blob/master/expanded-ensemble/bin/runme.py
http://kernel.ubuntu.com/%7ecking/stress-ng/stress-ng.pdf
http://kernel.ubuntu.com/%7ecking/stress-ng/stress-ng.pdf
https://github.com/pandegroup/openmm
https://doi.org/10.1007/s10822-014-9716-4
https://doi.org/10.1007/s10822-014-9716-4
https://doi.org/10.1007/s10822-014-9735-1
https://doi.org/10.1007/s10822-014-9735-1
https://figshare.com/articles/new_fileset/1026131
https://figshare.com/articles/new_fileset/1026131
https://doi.org/10.1073/pnas.1600917113

	Adaptive Ensemble Biomolecular Applications at Scale
	Abstract
	Introduction
	Related Work
	Science Drivers
	Expanded Ensemble
	Markov State Modeling

	Software Design Considerations for Adaptive Ensemble Workflows
	Execution of Adaptive Workflows
	Types of Adaptations
	Challenges in Encoding Adaptive Workflows

	Ensemble Toolkit
	Design
	Implementation
	Enhancements for Adaptive Execution

	Experiments
	Characterization of Adaptation Overhead
	Validation of Science Driver Implementations
	Expanded Ensemble
	Markov State Modeling

	Evaluation of Methodological Efficiency Using Adaptive Capabilities in EnTK

	Conclusion
	Acknowledgements
	References

