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Abstract
Counterfeit electronics form a major roadblock towards a safe and successful economy. An increase in globalization has 
led to a major increase in the total number of counterfeit products all around the world. While several methods have been 
designed to detect counterfeits, very few of them have been applied to the system-on-chip (SoC). The influx of a variety of 
components in SoCs and the conglomeration of different types of properties makes it difficult to detect counterfeit SoCs. 
In this paper, we aim at detecting recycled counterfeit SoCs by evaluating the degradation of power supply rejection ratio 
(PSRR) of a low drop-out (LDO) regulator, a principal component of the power supply of the SoC. Since the power supply 
is a universal component in all SoCs, this method can be considered effective for most SoCs. We apply machine learning 
(ML) algorithms pertaining to the family of Gaussian mixture models to classify SoCs as recycled or new. Supervised and 
unsupervised ML algorithms show an accuracy of up to 90% and 74% of recycled detection. We also apply stand-alone 
LDO PSRR degradation to train the ML algorithm and test on PSRR from embedded LDOs in SoCs. This form of semi-
supervised ML performed well for our previous experiments of recycled detection with stand-alone LDOs but was not able 
to distinguish recycled SoCs from new SoCs, thus increasing the number of false detection.
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Introduction

Counterfeit electronics constitute a significant threat to 
the global supply chain and jeopardize the root of trust in 
consumer, military as well as other forms of electronics. A 
counterfeit electronic component is defined as an electronic 
part that is (1) an unauthorized copy, (2) does not conform 
to original component manufacturer’s design, model, or 

performance, (3) is not produced by the original component 
manufacturer or is produced by unauthorized contractors, 
(4) is an off-specification, defective, or used original com-
ponent manufacturer’s product sold as “new” or working, or 
(5) has incorrect or false markings and/or documentation. 
The taxonomy of counterfeit integrated circuits (ICs) has 
been described in detail in Ref. [9]. Among the different 
counterfeit types, Recycled and remarked counterfeits com-
prise more than 80% of reported counterfeits [8]. Recycled 
counterfeits are used ICs that are harvested from discarded 
printed circuit boards (PCBs) and sold as new to consumers 
without their knowledge.

Several methods have been described in the literature 
to detect and prevent counterfeit electronics. These meth-
ods can be broadly divided into three major categories: (1) 
Hardware security primitives: This is mostly applicable 
to new chip designs, where additional security primitives 
are designed along with existing chip architecture to detect 
cloned or recycled counterfeits. For cloned counterfeit detec-
tion, silicon fingerprints called physical unclonable func-
tions (PUFs) are developed [15]. For recycled detection, 
odometer or aging sensors called Combatting Die and IC 
Recycling (CDIRs) components are designed as described 
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in Ref. [24]; (2) Targeted electrical testing: This is appli-
cable to detect counterfeit legacy and current ICs: In this 
case, the addition of new circuits is not an option; thus, these 
detection methods focus on general electrical tests. These 
targeted electrical tests evaluate the performance of the ICs 
and compare the performance with respect to specification 
sheets or golden data. Most of these approaches (e.g., [25]) 
used to detect recycled ICs/FPGAs require data from known 
authentic chips (i.e., golden data), which is often unavail-
able; thus, it is a drawback. Another essential drawback is 
that most of these procedures are not automated and appli-
cable to all types of ICs. (3) Physical inspection: These pro-
cedures can detect new, active as well as legacy ICs, but 
require expensive imaging facilities or expert technical guid-
ance to detect discrepancies between the suspect and golden 
samples. The availability of golden samples is mandatory 
for most of these procedures. Advanced methods include 
high-tech imaging procedures involving X-ray tomography, 
scanning electron microscopy, etc. which are used to detect 
counterfeits [11]. Due to the wide variety of counterfeit 
components and their respective parameters, it is difficult to 
formulate a universal testing technique for detecting recy-
cled counterfeit ICs. In our attempt to devise a ubiquitous, 
automated method to detect recycled ICs, we have focused 
on the IC’s power delivery network (PDN). Evaluating deg-
radation in electrical properties like PSRR of common PDN 
elements like low-dropout (LDO) regulators, we have pre-
viously investigated a universal strategy to detect recycled 
counterfeits as described in Ref. [3]. At first, we observed 
that LDO PSRR is prone to degradation with accelerated 
transistor aging [4]. The effects of aging degradation on the 
pass transistor (PT) were depicted from the deviation in cur-
rent–voltage (IV) characteristics of the PMOS PT and also 
in the overall PSRR. However, the above strategy was only 
tested for stand-alone LDOs, and the applicability of the 
former strategy in a complex system on chips (SoCs) is still 
a question. In this paper, we have expanded our investigation 
of using LDO degradation towards the detection of recycled 
SoCs.

A major advantage of using PDNs to detect recycled ICs 
is that it is available in nearly every IC and SoC. However, 
this strategy is only applicable to SoCs, which consist of 
LDOs with output capacitors. To measure the PSRR for any 
LDO, the subject matter expert (SME) must have access to 
the LDO’s output pin. In most LDOs, the output is coupled to 
an external capacitor to stabilize the LDO loop. Certain LDO 
designs may not have an output capacitor; these are known 
as cap-less LDOs. For a cap-less LDO, reverse engineering, 
the LDO’s output pin may become challenging if embedded 
within an SoC. Thus, advanced reverse engineering techniques 
are required to solve the above issue, resulting in extra cost. 
Thus assuming that we have an SoC consisting of an LDO with 
an external capacitor, our proposed method can be applied to 

detect recycled SoCs. In this paper, we observe the degrada-
tion of the PSRR of LDOs embedded within SoCs and apply 
automated machine learning (ML) methods to detect recycled 
or new SoCs. The supervised and unsupervised algorithms we 
have used belong to the family of Gaussian mixture models. 
Our contributions can be summarized as follows:

• We extend the technology of recycled IC detection from 
stand-alone LDOs to LDOs embedded within SoCs. This 
extension enables the technique to be useful in most types 
of SoCs and increases the applicability of the procedure.

• To implement the above, we provide a comparison of the 
recycled detection in stand-alone LDOs and that in SoCs, 
providing a clear description of both techniques’ pros and 
cons.

• We also answer the relevant questions about the different 
challenges that may arise while implementing our process 
or any other process, in general, to detect recycled SoCs, 
such as the availability of golden data and whether they are 
applicable in our technique for recycled SoC detection.

• We implement supervised and unsupervised ML methods 
to detect recycled SoCs and provide insightful analysis 
for both techniques. The maximum accuracy of the above 
techniques is 90% and 74%, respectively. We also imple-
ment the detection of recycled SoCs using training data of 
PSRR degradation from stand-alone LDOs from four dif-
ferent vendors. This type of semi-supervised training was 
successful in recycled detection for stand-alone LDOs in 
Ref. [3]. But for SoCs, this method can either detect new 
or recycled SoCs and is unable to distinguish former from 
the latter; thus, increasing the risks of false identification. 
A detailed explanation of the applicability and limitations 
of the above algorithms are also provided.

We have explained the above contributions in the following 
sections. The rest of the paper is organized as follows. “Pre-
liminaries” discusses the preliminaries of transistor aging 
and the generic structure of an LDO with different metrics. 
“Recycled SoC Detection” describes the proposed approach of 
recycled SoC detection with a detailed description of the steps 
and the ML algorithms used. “Experimental Setup and Aging 
Analysis” describes the experiments performed along with the 
experimental set up used, and “Recycled Chip Classification 
Results and Discussion” analyzes the results. “Conclusion and 
Future Work” concludes the paper with possible future works.

Preliminaries

To explain the proposed technology, it is crucial to provide 
certain preliminaries on the important concepts used in this 
paper. In the following subsections, we explain the necessary 
background on LDOs and transistor aging models.
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General Concepts of Transistor Aging

Transistor aging is one of the major causes of reliabil-
ity issues faced by modern ICs. It is the result of trapped 
charges and broken bonds at gate dielectric interfaces, 
which increases threshold voltage (Vth) and switching activ-
ity, thereby deteriorating transistor performance in scaled 
modern devices. Bias temperature instability (BTI) results 
in a positive shift in the absolute value of Vth in both PMOS 
and NMOS. BTI is the condition often referred to as DC 
stress when the PMOS/NMOS has already pulled up/down, 
but the gate is still biased in strong inversion. The drain-to-
source voltage becomes zero signifying a negligibly small 
lateral electric field. For PMOS, the condition is called nega-
tive BTI (NBTI), whereas, for NMOS, it is positive BTI 
(PBTI). Hot carrier injection (HCI) occurs when the transis-
tor is switching under strong inversion (|vgs| ≈ Vdd) and the 
lateral electric field is high (|vds| ≈ Vdd) . During transistor 
switching, the accelerated carriers drift towards the drain 
under the influence of the lateral electric field. Channel 
hot carriers (CHC) are generated when the source-to-drain 
current flowing through the channel reaches energy above 
the lattice temperature. These hot carries gain energy and 
get injected into the gate oxide, forming charge traps. The 
charge traps cause a shift in the device performance like Vth , 
transconductance, and saturation current of the transistor, as 
discussed in Ref. [2]. HCI degradation increases by a fac-
tor of t1∕2 (where t is time) and BTI increases as a factor of 
tn where n = 0.1 – 0.2. Since the multiplicative constant of 
HCI is much smaller than that of BTI, BTI overshadows HCI 
for a short amount of time, as suggested in Ref. [22]. Long 
term, HCI may cause equal or higher degradation in device 
parameters than BTI.

Low Dropout (LDO) Regulators

An LDO is a type of linear regulator capable of maintain-
ing an output voltage even when the input is very close to 
the output (low drop-out). Drop-out voltage is defined as 
the input-to-output differential voltage, where the regulator 
fails to regulate the output voltage until the further reduction 
of the input voltage. The role of an LDO is indispensable 
in the power supply of any SoC/IC. It provides isolation 
between the input and output, thus rejecting the noise and 
ripples (glitches) in the input supply at the output to provide 
a stable, low noise, fixed output voltage.

As shown in Fig. 1a, the block diagram of an LDO con-
sists of a feedback loop with an error amplifier (EA), a pass 
transistor (single NMOS or PMOS), and a resistor divider. 
A bandgap circuit provides a fixed reference voltage to the 
EA. The pass transistor (PT) acts as a variable resistor con-
trolled by the EA, and the feedback resistor divider circuit 
level-shifts the output voltage to the EA input. The EA 

monitors the error between the input and the output voltage 
and accordingly controls the gate-to-source voltage ( vgs ) of 
the PT to regulate the output at a fixed voltage. If the feed-
back voltage is smaller than the reference voltage, then the 
gate voltage of the PT is lowered, increasing the vgs as well 
as the current flowing through the PT, thus increasing the 
output voltage. If the feedback voltage is higher than the 
reference voltage, vgs of PT decreases, reducing current and 
output voltage. The drop-out voltage for a generic LDO, as 
shown in Fig. 1a, is the drain-to-source voltage drop, which 
appears across PT. One of the major performance metrics of 
an LDO is its capability of rejecting the ripples of the input 
supply at its output. This metric is known as the power sup-
ply rejection ratio (PSRR) of the LDO. The ripple can origi-
nate from the power supply or from a DC/DC converter or 
even due to sharing an input supply between different circuit 
blocks in the system. PSRR is expressed as 
PSRR = 20 log(

vout

vin
) where, vout and vin are magnitudes of 

voltage glitch at output and input, respectively. Apart from 
PSRR, the quality of voltage regulation provided by an LDO 
is specified by metrics like transient line regulation and load 
regulation. Metrics like power efficiency and current effi-
ciency determine the power and current consumption effi-
ciency of the LDO [17].

To observe the effect of accelerated transistor aging on 
the PSRR and other properties of an LDO, we previously 
fabricated an LDO in TSMC 65nm process in Ref. [4]. Our 
experimental results in Fig. 1b–d show the effect of acceler-
ated transistor aging on the PT and the PSRR of the LDO. 
The effect of DC stress mainly involves operating at a con-
stant supply voltage ( VDD ), which is increased by 10% over 
the normal VDD and at a higher temperature of either 85 or 
105 ◦ C. But the LDO is providing a constant current at the 
load. The phenomena of BTI (“General Concepts of Transis-
tor Aging”) are mainly observed with DC stress. During AC 
stress, the operating temperature and VDD is increased like 
DC stress, but the output current also fluctuates from 0.9 to 
1.1 mA. This results in a combined effect of both HCI and 
BTI on the LDO. The degradation of the PSRR was recorded 
for both AC and DC stresses and showed an approximate 
variation of 1.6 dB for DC stress and 2–5 dB for AC stress. 
We also observed the degradation of DC stress on the Id
/Vgs characteristics of the PT of the LDO and observed suf-
ficient degradation. In conclusion, the above experiments 
provide proof of considerable degradation of LDO PSRR 
due to accelerated transistor aging, which can be used to 
detect recycled SoC containing LDOs.

In Ref. [3], we applied the above degradation to detect 
recycled stand-alone LDOs across four vendors. The 
PSRR degradation varied from vendor to vendor and also 
across process variation, but even with small PSRR degra-
dation [for vendor 3 (V3) and vendor 4 (V4)], supervised 
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ML algorithms were able to detect recycled LDOs till a 
maximum accuracy of 90% as reported in Ref. [3]. The 
primary applicability of the paper targeted universal recy-
cled detection for both digital and analog mixed-signal 
(AMS) ICs at zero cost with no hardware overhead and 
minimum measurement equipment. Supervised and unsu-
pervised ML algorithms were used to detect the recycled 
stand-alone LDOs. For the supervised ML method, the 
training set involved a specific vendor, and the testing set 
also pertained to the same vendor. In unsupervised ML, 
no labels were provided, and thus, the drawback of the 
requirement of golden data was nullified. The maximum 
average accuracy for unsupervised ML was 74%. Since the 
supervised algorithm was more successful than unsuper-
vised applications, we reduced the requirement of golden 
data using semi-supervised training and improved accu-
racy. In this case, the training set comprised of one vendor, 
whereas the testing set consisted of other vendors. Both 

supervised and semi-supervised applications resulted in 
detection accuracy greater than 90% . The biggest takea-
way from the semi-supervised detection is that there exist 
certain similarities in PSRR degradation despite design 
differences existing in the LDO ICs across vendors. This 
similarity increases the scope of ML algorithms’ applica-
tion to detect recycled LDOs and reduces the requirement 
of golden data.

It must be noted that the previous work only focuses on 
the detection of stand-alone LDOs and does not explore the 
application of the proposed technique to SoCs. While the 
presence of LDOs in most SoCs/PCBs expands the scope of 
application of the technique, the aforementioned prior papers 
do not provide any conclusive results which proves that the 
same method can be applied to LDOs that are embedded in 
SoCs. In this paper, we expand the above detection strategy 
and apply it to LDOs within SoCs and discuss the scope of 
such detection.

Fig. 1  a LDO block diagram with PSR (linear scale) curve [3]; b 
Drain current with respect to gate voltage ( Id/Vgs ) curve degradation 
of LDO PT with 6 h of DC stress at 105◦ C and 10% VDD increase [4]; 

c Degradation of PSRR of LDO under DC stress of 4 h and 6 h at 105 
◦ C [4]; d Degradation of LDO PSRR under combined AC and DC 
stress for four hours at 105 ◦ C [4]
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Recycled SoC Detection

Recycled IC detection has been a targeted research initia-
tive, and there are many methods that have been proposed 
before to detect IC recycling. Some approaches use statisti-
cal methods to detect degradation, as shown in Ref. [16]. 
Some use low-cost on-chip sensors called CDIRs to detect 
the transistor aging due to recycling like in Refs. [10, 12], 
etc. While they are very effective, most of these sensors 
require additional circuitry adding to hardware design efforts 
and increased silicon area; hence, to our knowledge, no ven-
dor has adopted them yet. Some other detection methods 
include side-channel analysis, including power and current 
analysis [26], require golden data. Compared to the recy-
cled detection of stand-alone ICs, much less work has been 
done to detect recycled SoCs. In Ref. [13, 14], the authors 
have proposed a framework to detect recycled SoCs by an 
aging-sensitive SRAM selection algorithm. The method is 
applicable to SoCs consisting of embedded SRAMs and 
can be applied at near zero-cost1 to most SoCs. While the 
above holds for most digital SoCs, which contains embedded 
SRAM, it may not be applicable to purely analog or analog-
mixed signal (AMS) SoCs which do not contain embed-
ded SRAM memories. Compared to existing methods, our 
proposed method involves using a power supply component 
like an LDO, which is present in most digital, analog-mixed 
signal SoCs as well as stand-alone ICs and thus can be uni-
versally applied. Further, it is free from enrollment steps and 
does not require any additional silicon area or memory. This 
makes it applicable even to legacy and commercial-off-the-
shelf (COTS) components.

Different Types of Power Supplies in ICs

Increased scaling and requirement of efficient power supply 
units have revolutionized the power architecture in electronic 
circuits. Power converter systems in ICs/SoCs mainly con-
sist of a DC-DC converter, as shown in Fig. 2. The power 
from DC–DC converters is either stepped up (boost) or 
down (buck) to supply a required amount of current at the 

load, regulating the output voltage with varying load, line, 
and pressure–voltage–temperature (PVT) variations. There 
are two different topologies of power converters used in 
SoCs: switching topologies, and linear topologies. Switch-
ing topologies use passive storage elements like capacitors 
and inductors to convert and store the power, whereas lin-
ear topologies use resistive elements to dissipate the power. 
Switching mode power supplies (SMPS) consist of an induc-
tor and capacitor (LC tank) circuit which stores or dissipates 
the power and charges the capacitor at the output. Different 
types of SMPS converters include buck and boost convert-
ers, etc. Another type of switching topology includes switch 
capacitor (SC) power converters, which are often referred to 
as charge pumps and mainly use a capacitor and a switch for 
the conversion. Linear power converters are used to convert 
a DC source from one voltage level to another by dissipating 
the excess power in the resistive output device. LDO is an 
example of linear power converters, which can only be used 
to step down from a given voltage level and fail to step up 
to a higher voltage level. With increased technology scaling 
leading to the development of low power designs, LDOs 
are used in most modern SoCs to step down the off-chip/
battery supply voltage to lower levels for the majority of the 
embedded digital and mixed-signal blocks. A comparison 
of the different converters is shown in Table 1. It can be 
seen that LDOs provide proper regulation with small physi-
cal area requirements, which makes it suitable for on-chip 
integration specifically for SoCs. A detailed explanation of 
the general architecture of the SoC power supply with LDOs 
is given below.

Table 1  Comparison of 
switching mode power supplies 
(SMPS), switch capacitor (SC) 
and LDO power converters [23]

Power converter SMPS SC LDO

Step-up conversion Possible Possible Not possible
Power efficiency High Medium Limited to Vout

Vin

Load regulation Good Poor Good
Physical area Large Medium Small
Applications Microprocessors, DSPs, 

SRAMs, hard-discs
EEPROM, DRAM, flash, and 

mixed-signal
DRAM, SoCs

Fig. 2  Block diagram showing general architecture of power supply 
in a SoC1 Enrollment tests are needed as well as non-volatile storage.
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General Architecture for Power Supply in SoCs

A generic block diagram of the power supply architecture in 
modern SoCs is provided in Fig. 2. The SoC consists of mul-
tiple blocks that require different reference or supply volt-
ages due to original specifications. The on-chip voltage sup-
ply is significantly lesser than the off-chip supply. It ranges 
from a fraction of volts for digital modules to a couple of 
volts for high-precision ADCs, buffers, and analog modules. 
The supply voltage is provided to the power management 
integrated circuit (PMIC), which mainly consists of DC–DC 
converters used to up-convert or down-convert the supply 
voltage according to the requirement of individual sub-cir-
cuits. There can be various sub-circuits associated with an 
SoC, including digital, analog/analog to digital converters 
(ADCs), RF modules, etc., as shown in Fig. 2. Each of these 
modules requires their supply voltage levels, provided by 
the DC–DC converters and the LDOs. The LDOs perform a 
major task in these systems of isolating the SoC power from 
the PMIC. For AMS blocks, suppression of the power supply 
noise is critical and thus requires LDOs, which can provide a 
ripple-free regulated output by suppressing the power supply 
noise appearing at the output of the battery or the DC–DC 
converter. In digital blocks, there is a substantial amount of 
switching noise, which should be prevented from getting 
coupled at the DC–DC converter’s output. An LDO also 
provides this reverse-isolation, which prevents this switch-
ing noise from appearing at the converter outputs. Thus, the 
main functionality of an LDO includes ripple suppression, 
isolation, and noise regulation, making LDOs an essential 
component in the power management units (PMUs) of SoCs.

Proposed Methodology

The degradation of electrical parameters like PSRR in 
Ref.  [4] for stand-alone LDOs demonstrates the possi-
bility of degradation over usage/recycling. The success-
ful implementation of recycled detection for stand-alone 

commercial-off-the-shelf (COTS) LDOs in Ref.  [3] dis-
cussed in “Low Dropout (LDO) Regulators” and the pres-
ence of LDOs in modern SoCs described in “General Archi-
tecture for Power Supply in SoCs” motivates the application 
of the technology to detect recycled SoCs. Apart from the 
universal applicability of the method, there are also other 
advantages of the proposed method. It does not require any 
enrollment tests or other non-volatile storage requirements. 
The hardware overhead is minimum, and the only cost of 
application pertains to the experimental setup which consists 
of basic electrical test components that are easily available in 
most testing labs. The proposed approach can be divided into 
the following steps: (1) Identifying the type of SoCs where 
the proposed technology can be implemented; (2) Reverse 
engineering the position of the LDO within the SoC and 
identifying the output of the LDO to measure PSRR; (3) 
Measuring the PSRR of the sample LDO embedded within 
the suspect SoC; (4) Identifying the correct set of ML tools 
developed later on in this paper to classify the SoCs as 
recycled or new; (5) Identifying correct ML algorithms to 
develop the ML tools. An elaborate description of the flow-
chart is shown in Fig. 3.

Identifying Type of SoCs

The essential requirement of our method involves the pres-
ence of linear regulators or LDOs within the power supply 
architecture of the SoC. Since most SoC power converters 
use LDOs for on-chip integration due to low area require-
ments, most state-of-art SoCs consist of LDOs. For simple 
reverse engineering of the LDO output pin, we restrict our 
proposed approach to only SoCs consisting of embedded 
LDOs with an output capacitor. A typical LDO regulator 
requires an external capacitor for better transient operation, 
improved PSRR, and stability of the LDO. However, the 
presence of an external capacitor can cost extra area and 
output pins for on-chip integration in SoCs. Thus, there 
are LDOs that eliminate such capacitors to save area and 

Fig. 3  Flowchart showing the 
proposed approach for recycled 
SoC detection
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extra pin-outs. These LDO architectures are known as 
capacitor-less or cap-less. While it may seem that cap-less 
LDOs are an obvious choice for SoCs, such implementa-
tions undermine the LDO performance and result in poor 
PSRR performance and lesser stability. Due to the advantage 
of integration, efforts have been made both by researchers 
and industry to provide practical cap-less LDOs. Neverthe-
less, cap-less LDOs consist of severe limitations preventing 
them from usage in practical applications like SoCs. Several 
reported architectures of cap-less LDOs provide acceptable 
performance but only for a single parameter like line regula-
tion, load regulation, settling time, etc. rather than multiple 
parameters. Most of these LDOs can only load control for 
a narrow range of load capacitance (1–100 pF) and fail to 
provide regulation at higher load currents ( ≈ 100 mA, which 
is typical for commercial LDOs with cap). Cap-less LDOs 
also suffer from lower performance in terms of PSRR and 
dynamic performance [21]. Thus, due to the performance 
restrictions of cap-less LDOs, most SoCs still use LDO 
architectures with output capacitors where the LDO output 
pin can be easily reverse-engineered, and the proposed tech-
nology can be applied [21].

Inquiries may arise regarding the scalability of the pro-
posed method to state-of-the-art technology nodes like 5 
nm or 7 nm. While analyzing transistor aging LDOs we 
observed the aging degradation in 65nm technology node. 
It must be understood that for lower technology nodes, 
the effect of transistor aging is even worse, as suggested 
in Ref. [19]. Though with technology scaling, the tran-
sistor geometries have scaled-down, the supply voltages 
have not scaled proportionately for performance require-
ments. Thus, the applied electric field across gates has 
increased with lower technology nodes, leading to worse 
aging effects. Thus, the aging behavior analytically should 
be more prominent for lower technology nodes that would 
improve our case’s detection accuracy. Another concern 
regarding lower technology nodes would be the availabil-
ity of an output pin of the LDO. Since LDOs with an out-
put capacitor requires additional hardware overhead, some 
SoCs in lower (advanced) technology nodes use cap-less 
LDOs. The technology nodes applicable specifically for 
AMS and analog ICs are older compared to digital ICs. 
A detailed explanation of this has been given in Ref. [1], 
where a comparison has been shown between digital and 
AMS SoCs. The comparison suggests that AMS SoCs con-
sist of lesser number of transistors (in count of 1000 s) 
compared to digital SoCs where millions of transistors are 
present. Also, AMS SoCs require higher supply voltage 
compared to digital SoCs and are custom designed follow-
ing older technology nodes. Thus, several AMS, analog, 
and legacy SoCs use older technology nodes with LDOs 

containing output capacitors. Since recycling is more prev-
alent for these SoCs/ICs [1], the application of the pro-
posed method is appropriate. Even for lower technology 
nodes with cap-less LDOs, reverse engineering methods 
can be applied to track the embedded LDO’s output. This 
would surely result in excess costs but remains as a possi-
ble option. Nonetheless, for SoCs in general, the proposed 
approach is still an attractive choice as many of them use 
LDOs with an output capacitor as described in Ref. [21].

Reverse Engineering Output Pin of LDOs

Since we have chosen embedded LDOs with an output 
capacitor for our proposed method, it is easy to detect the 
output pin from the SoC specification sheet. Most SoCs 
containing LDOs with output capacitors contain a dedi-
cated output pin for the external capacitor of the LDO 
that can be chosen by the user within the specified limits 
mentioned in the specification sheet. Since the capacitor 
needs to be attached to the output node of a generic LDO, 
this pin-out can be considered as the output of the LDO.

Measuring PSRR of Sample LDOs Embedded in Suspect SoC

This step involves the measurement of PSRR of the LDO 
embedded within suspect SoC, which needs to be identi-
fied as recycled (counterfeit) or new (genuine). The experi-
mental setup will be described in later sections. The output 
pin of the LDO and the VDD supply pin is identified from 
the previous step of reverse engineering. A small noise 
signal is coupled to the VDD pin, and the corresponding 
power spectrum at the LDO output is recorded. The PSRR 
is calculated by subtracting the input noise spectrum (in 
dB) from the output power spectrum (also in dB). Like-
wise, sample PSRR data from suspect SoCs containing 
LDOs are recorded and are given as input to the ML tool 
for automated detection.

Identifying Correct Set of ML Tools

In this paper, we have used ML tools to detect SoC recy-
cling as described in our later sections. The technology 
is provided with three different types of ML approaches 
that can be used to detect a suspect, SoC. (1) Supervised 
ML requires golden data of authentic samples of the sus-
pect SoC. The training for this ML tool is executed with 



 SN Computer Science (2020) 1:312312 Page 8 of 21

SN Computer Science

PSRR data from genuine new and aged samples.2 This 
method provides an accuracy of up to 90%, as discussed 
later. Though it provides good accuracy, the stringent 
requirement of golden data may prove as a drawback 
for the process. If the subject matter expert (SME) pos-
sesses the correct set of golden data, this ML tool can 
prove to be extremely beneficial. (2) Semi-supervised ML 
can detect recycled SoCs even if the golden data from 
the specific category of SoC is unavailable. If the SME 
possesses PSRR data from new and aged samples of 
other categories of SoC or even other stand-alone COTS 
LDOs, semi-supervised ML can effectively detect recycled 
SoCs. Its training set involves new and aged PSRR data 
from other SoCs or stand-alone LDOs, thus alleviating 
stringent requirements of golden data. This method also 
provides high accuracy of 98%, making it a good choice 
for the SME, requiring golden data from any other LDO 
chip belonging to different vendors. But, according to our 
results, it is observed that the classifier obtained with the 
above semi-supervised training can either detect a new or a 
recycled SoCs and not both. Thus, this method has the risk 
of an increased number of false negatives that limits the 
applicability of the method; (3) Unsupervised ML can be 
used when no golden data is available to the SME (worst 
case scenario). Unsupervised ML requires no label for 
training and clusters the available PSRR data from suspect 
samples into new and recycled. Though the requirement of 
golden data is completely nullified in unsupervised ML, 
the accuracy obtained is comparatively lower than the 
other ML approaches. Nonetheless, it provides maximum 
accuracy of 74% and can prove beneficial in cases where 
no golden data is available to the SME.

Identifying Correct ML Algorithms to Develop ML Tools

Identification of the correct set of ML tools is an important 
decision for the SME, as discussed in our previous section. 
From the point of view of the tool developer, it is also impor-
tant to understand the specific ML algorithms that must be 
applied to develop the above set of ML tools discussed. We 
have used the algorithms belonging to the family of Gauss-
ian mixture models (GMMs) to develop the ML tools that 
are used to detect recycled SoCs in this paper. A detailed 
explanation of the algorithms used is discussed below.

Gaussian Mixture Models A dynamic system is dependant 
on multiple regimes and thus switches its behavior by shift-
ing from one regime to another. To efficiently describe such 

systems, a mixture of models or components is required. 
Thus, mixture models are universally applied to describe 
such dynamic systems. A system state is an unobservable 
variable that appears within the bounds of the above individ-
ual regimes. To estimate the state variable, each of the above 
regimes is represented by state-space models (SSMs). An 
SSM is a common approach to analyze structured, sequential 
data representing a time-series. In ML, one of the founda-
tion steps involves representing the data with the help of a 
mathematical algorithm.

Here, we will explain the applicability of GMM algo-
rithms to represent the PSRR data. It must be noted that 
the data is multi-dimensional and is collected over a range 
of frequency consistently across a predetermined aging 
time. We collected PSRR data after every hour of acceler-
ated aging over a continuous 8 h range. Thus, our PSRR 
data can be viewed as a time series. By analyzing from the 
other dimension of frequency, it can be seen that the data set 
is ordered and exhibits irregularities due to environmental 
noise and process variation. Our data set represents a multi-
dimensional dynamic system that can be represented as a 
time series despite being non-temporal naturally. Thus, clas-
sification or clustering of the SoC PSRR data can be seen 
as a sequence labeling problem for a non-temporal data set 
exhibiting properties of a time-series. In ML literature, such 
problems are analyzed effectively by time-series analysis 
that reflects the non-temporal behavior of the data, as can 
be seen in Refs. [6, 7] etc.

The SSM model described above is a popular method of 
tacking the above problem. In an SSM, it is assumed that 
a sequence of measured data y (in a vector form) �1, �2,⋯ 
is generated by some hidden state variables �1, �2,… with 
joint probability,

where � is the model parameter, �1∶F and �1∶F are the 
sequence of F sequences of the hidden state variables and 
the measurements, respectively. The indices f signify that 
the PSRR data has been recorded over a specific frequency 
range in an ordered manner. We have analyzed the SoC 
PSRR data with linear Gaussian SSMs, composed of mul-
tivariate Gaussian variables associated in a linear fashion, 
according to the following equation [6].

The matrices C and A represent the linear relationship while 
the vectors � and � represent uncertainty. These vectors have 
a covariance of R and Q and follow Gaussian distributions. 
Thus, the embedded LDO parameters can be described by 

p(�1∶F, �1∶F ∣ �) =

F∏

f=1

p(�f ∣ �f−1, �) p(�f ∣ �f , �),

(1)
�f = C�f + �f

�f = A�f−1 + �f .

2 Aged samples could correspond to accelerated aging of SoC/IC 
samples to represent synthetic recycled samples or to real-time aging 
of SoC/IC samples. In our experiments, we use the former for sim-
plicity.



SN Computer Science (2020) 1:312 Page 9 of 21 312

SN Computer Science

the function � = (A,C,Q,R) . The vectors � and � model 
all the different uncertainties that can be encountered by 
the system, including the impact of transistor-level aging, 
environmental noise, measurement noise, and other process 
variations. Although transistor aging is a physical phenom-
enon and is difficult to be visualized as an uncertainty, the 
heterogeneous models of SoCs and the different design com-
ponents introduce sufficient variability within the aging pro-
file of the LDOs embedded within the SoC. Thus, our ML 
algorithm models the effect of aging as an uncertainty rep-
resented by a Gaussian variable instead of characterizing the 
gate-level-transistor aging model  [5]. It is common, in many 
works of ML literature, to assume a Gaussian distribution 
for other unknowns like environmental and measurement 
noise, etc.

Markov Assumption Another important aspect of the 
linear Gaussian SSMs discussed before is the dependency 
of the hidden state variables �f  on one another or, in other 
words, the characteristics of first-order Markov dynamics. 
In our problem, we adopt the frequency from which we start 
measuring the PSRR data. This can be derived from the 
PSRR equation of the LDO defined later in Eq. (3), which 
shows that the PSRR is dependant on the loop gain or LG. 
The component LG varies for frequency but can be depicted 
as a fraction of the LG at DC. Thus, if the PSRR is recorded 
over two successive frequency points, say fi and fi+1 , then 
the PSRR at frequency fi+1 is dependant on the PSRR at the 
previous frequency fi.

Parameter optimization To learn the parameters of the 
linear Gaussian SSM defined above, we employ a k-means 
algorithm for unsupervised clustering. Given a set of n 
observations of d dimensional vectors (�1, �2...�n) , the 
K-means algorithm partitions the set of n observations into 
k sets (�1, �2, ...�k) where k < n by minimizing the sum of 
squares (or variance) within each cluster as shown in Eq. (2) 
below, where �i is the mean of the points within the ith set Si

The k-means algorithm has much in common with the 
Expectation–Maximization (EM) algorithm, which is a 
well-studied approach to learn parameters for linear Gauss-
ian SSMs [6]. The recycled detection of LDOs presents a 
complex model with several uncertainties, as described 
above. It may be difficult for the EM model to determine 
the model size for such a complex model. Therefore, in 
Ref. [3], we employed a variational Bayesian inference over 
the parameters of the probabilistic models in conjunction 
with the EM algorithm. We called this approach the VB 
algorithm and compared its performance with that of the 
k-means algorithm for stand-alone LDOs. It was concluded 
that the k-means algorithm performed better in terms of 

(2)argmin
S

k�

i=1

�

x∈Si

‖a − �i‖2 = argmin
S

k�

i=1

�Si��2(Si).

accuracy. Since detection of recycled stand-alone LDOs and 
LDOs embedded in SoCs has considerable similarities in the 
physical aging procedure and other uncertainties, we only 
used the k-means algorithm in this paper for unsupervised 
detection.

We also analyze the scenario of recycled SoC detection 
using supervised and semi-supervised ML tools. In this 
case, we use the KNN algorithm, which is one of the closest 
approaches to the VB and k-means method. The idea behind 
this approach is that instances with similar properties will 
be near to each other in a given data set. Thus, when a new 
sample is provided to the algorithm, the label of the provided 
sample should be similar to that of its nearest neighbors. The 
k nearest neighbors are calculated using the Euclidean dis-
tance metric, and the label of the new sample is the common 
label of its nearest neighbors. To accurately classify new 
samples, the number of neighbors is vital. Thus, for noisy 
data sets with complex structures and uncertainties, a high 
value of k is selected, whereas, for intimately placed data 
samples, a smaller k needs to be chosen. Nevertheless, when 
applying KNN algorithm, the value of k can be automatically 
chosen by fitting the best classifier to the data.

Experimental Setup and Aging Analysis

Compared to recycled IC detection, there are many more 
challenges that need to be answered for recycled SoC detec-
tion: (1) Difficulty in automation: In Ref.  [3], entire test 
setup for stand-alone LDO PSRR measurement was easy to 
automate. Since most LDOs have similar characteristics, it 
was easier to obtain multiple vendors producing LDOs with 
similar footprints and related specifications. Whereas SoCs 
are completely different from one another, and thus meas-
uring PSRR from each type of SoC cannot be automated 
easily; (2) Increased cost: Compared to stand-alone LDOs, 
SoCs containing LDOs are much more expensive; thus, the 
increased cost, lack of automation, and increased time for 
PSRR measurements served as a bigger challenge in this 
paper; (3) Lack of samples: The increase in cost and the 
required time, limited the total number of samples which 
could be tested. Even allowing more time, the heterogeneous 
property of SoCs requires different test benches for different 
vendors and types of SoCs, which also limited the number 
of samples that can be tested; (4) The reverse engineering of 
output pin of LDO: In recycled IC detection that only targets 
individual ICs, output pins are easily available. For recycled 
SoCs, the output of LDOs needs to be reverse engineered, 
thus requiring more time and effort than individual ICs.

It is difficult to automate the measurement of SoC 
PSRR, and also the number of samples recorded is less 
due to increased cost and time requirement. In this paper, 
we have explored supervised, semi-supervised, as well as 
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unsupervised ML approach for recycled SoC detection. 
Some of these techniques, like semi-supervised and unsu-
pervised ones, reduces the requirement of a large number of 
golden samples. For the unsupervised approach, no labels 
are required, which completely negates the requirement of 
golden data. But this comes at the cost of detection accuracy, 
which was approximately a maximum of 86% for stand-alone 
LDOs in Ref. [3]. For a semi-supervised detection approach 
for recycled SoCs, the entire training is done with previous 
recorded PSRR data from COTS stand-alone LDOs, which 
can be easily automated and obtained at a comparatively 
lower price, as described in [3]. In Ref. [3], we explored 
recycled detection on stand-alone LDOs from four differ-
ent vendors. The supervised ML approach trained on sam-
ples from a specific vendor. The testing for the supervised 
approach was also done on the same vendor from which 
training samples were obtained. This method provided an 
accuracy of up to 97%. Another successful attempt of recy-
cled detection performed in Ref. [3] was the semi-supervised 
approach, where training samples were provided from a spe-
cific vendor, but the testing was performed on suspect sam-
ples from all other vendors except the above specific vendor. 
This strategy worked (with maximum accuracy greater than 
90% ) and was able to detect recycled and new LDOs of a 
different vendor after being trained on samples from another 
vendor. The successful implementation of semi-supervised 
ML for stand-alone LDOs motivated us to observe the same 
for LDOs embedded in SoCs in this paper. The analysis 
and results of all the above supervised, unsupervised, and 
semi-supervised techniques for recycled SoC detection have 
been documented in “Recycled Chip Classification Results 
and Discussion”. We have also answered the challenge of 
reverse engineering of output pin by restricting the type of 
SoCs where this technology can be applied. The increased 
usage of LDOs with output capacitors for on-chip integra-
tion owing to better performance is also an advantage that 
supports our technology and reduces the complications of 
reverse engineering. Since recycled samples are mostly una-
vailable in the market for inspection, we have followed a pro-
cedure of accelerated aging to produce a synthetic recycled 
counterfeit version of the corresponding samples. It must be 

noted that the amount of accelerated aging can be translated 
to the correct amount of real-time aging using certain equa-
tions shown in Ref. [18].

We have executed the following experiments; (1) Initial 
Data Collection: At first, we have obtained the initial PSRR 
data from the LDO embedded within an SoC. In this paper, 
we have used a Delta-Sigma ADC containing an embedded 
LDO as a sample SoC. We obtained initial PSRR from four 
such ADC SoC samples, which constituted the set of the 
PSRR data for new SoCs. The experimental setup consisted 
of a 2-channel 24-bit delta-sigma ADC SoC, which is con-
nected to the function generator and the power supply to turn 
on. The SoC evaluation board came with a software portal 
that recorded the digitally encoded signal of the analog input 
signal that was provided to the SoC that was constantly made 
to run through scripts from the software portal. The initial 
task was to reverse-engineer the output port of the LDO 
located within the SoC. Since this type of SoC mainly used 
LDOs with output capacitors for precise performance and 
specifications, reverse-engineering the LDO’s output pin 
was easy. The LDO output was provided as one of the pin-
outs of the SoC, which provided easy access to the PSRR 
of the LDO. In order to record the PSRR, a tracking spec-
trum analyzer was used to generate an output noise signal of 
magnitude 1 dBm, and it was coupled to the VDD of the SoC 
using a summing amplifier as shown in Ref. [20]. The input 
power spectrum at the VDD and the output power spectrum at 
the LDO output was recorded. Subtracting the input power 
spectrum from the output provided the initial PSRR of the 
LDO embedded within the SoC. The detailed experimental 
setup has been shown in Fig. 4. After the initial PSRR data 
was recorded from four SoCs, we move on to the accelerated 
aging of the SoCs as our next step.

(2) Accelerated Aging: We executed accelerated aging 
at a high temperature of 105 ◦C for eight consecutive hours, 
and PSRR data was recorded every hour. This comprised the 
PSRR data set for recycled SoCs. This step involves acceler-
ated aging of the SoCs at a high temperature of 105 ◦ C while 
the SoC was always active. The temperature was increased 
using a thermostream maintaining the SoC at 105 ◦ C for 8 
consecutive hours. In this paper, we implement accelerated 

Fig. 4  Block diagram of the 
experimental setup
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aging to mimic IC recycling. To emulate the real-time aging, 
we utilize synthetic aging acceleration. To understand how the 
artificial aging acceleration correlates to real-time aging, we 
must consider the accelerating factors like supply voltage and 
temperature in our case. The calculation of the acceleration 
factors and the amount of aging time can be used to predict the 
amount of real-time aging, as shown in paper [3]. According to 
our calculation, for 65 nm technology node, aging acceleration 
for 9 h results in approximately 10 days of constant real-time 
use as shown in the paper [3].

During accelerated aging, the SoC was allowed to continu-
ously operate and the PSRR data was collected every hour to 
determine the degradation of PSRR across time. The PSRR 
data collection setup is similar to that of the previous step as 
shown in Fig. 4. As described in “General Concepts of Tran-
sistor Aging”, the HCI and BTI effect on the transistor during 
accelerated aging degrades the performance and other speci-
fications for transistors like threshold voltage ( vth ), transcon-
ductance ( gm ), etc. This cumulatively degrades the DC PSRR 
of the LDO as described in Ref. [3]. A simplified equation of 
the PSRR is given as below:

where k is a constant, �o is the pole originating at the output 
of the LDO in Fig. 1a and LG is the loop gain of the LDO 

(3)PSR =
vout(s)

vdd(s)
=

K

(1 +
s

�o

)(1 + LG(s))
,

(4)LG∝gm, gm∝veff, veff = vgs − vth,

feedback loop. vgs is the gate to source voltage and vth is the 
threshold voltage of the transistors. We see that the LG is 
dependant on gm , which again degrades with the deteriora-
tion of the vth of the transistors. The PSRR data generated 
form accelerated aging of the LDO comprises the data set 
of recycled SoCs’ PSRR responses, which were later used 
in our ML analysis. In Refs. [3, 4], accelerated aging on 
stand-alone LDOs were observed. Both the papers enlisted 
the degradation of several parameters and the effect of the 
same on the LDO’s PSRR across hours. In this paper, we 
have investigated the same structure of an LDO but within 
an SoC. Thus, the aging response was similar in certain 
aspects yet dissimilar in other aspects compared to stand-
alone LDOs. Compared to stand-alone LDOs (refer: Fig. 5), 
the amount of noise was more in the SoC (refer: Fig. 6) due 
to the increased number of modules and other switching 
activities occurring within the SoC. The spikes, appear-
ing in Fig. 6 is proof of the variance that appeared across 
certain frequencies in the distribution. As it can be seen in 
Fig. 6, the variance increased much more between 1–1.5 
MHz and 2–2.5 MHz for the PSRR in case of SoCs. But for 
stand-alone LDOs, the variance was almost similar across 
the frequency range, and no sudden spikes appeared. This 
kind of variance was mostly attributed by the process vari-
ation among the ICs and not due to frequency dependant 
noise. Apart from that, the initial degradation was more for 
stand-alone LDOs as we see that the maximum degradation 
occurred within the first two-four hours of the accelerated 
aging (refer Fig. 7a). For SoCs, we found the PSRR degrad-
ing consistently across eight hours, as can be seen in Fig. 7b. 

Fig. 5  Silicon data showing 
mean PSRR degradation of 
LDO for Vendor 1 (V1) and 
Vendor 3 (V3) for 1 h (a, b) 
and 4 h (c, d), respectively. This 
data is provided to solely com-
pare the degradation profile of 
the LDO embedded in an SoC 
to that of stand-alone LDOs [3]
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Though this is difficult to explain without understanding the 
inherent design of the SoC and may vary from one SoC to 
another. An instinctive conclusion can be made by under-
standing that apart from the LDOs, other components may 
degrade within the SoC, affecting the PSRR degradation 
of the embedded LDO. There were also other consistent 
changes in the PSRR degradation across time, which were 
not that prominent for stand-alone LDOs. As can be seen in 
Fig. 7b, the peak at ≈ 1.2 MHz consistently shifted towards 
right across aging time for all the four SoC samples which 
we observed. This can be because of sudden changes in the 
parasitics due to the effect of aging, which was a striking 
feature we obtained from SoCs and were not that evident 
from stand-alone LDOs. For stand-alone LDOs, though, 
there were bumps on the PSRR due to accelerated aging, as 
seen in Fig. 7a, but the effect was not that consistent across 
aging hours as we saw in case of the SoCs.

Despite the dissimilarities mentioned above, the inherent 
aging principle was still similar for both stand-alone and 
embedded LDOs. As we can see in Figs. 5 and 6, the dif-
ference between the mean of new ( �new ) and aged ( �aged ) 
PSRR distribution increased with the increase in aging hours 
for both stand-alone LDOs and LDOs embedded in SoCs. 
It was seen that the mean difference, �new − �aged for SoCs 

had an average of ≈ 1.5 dB across frequency for four hours 
of aging, while it was ≈ 0.14 dB across frequency for one 
hour of aging (refer: Fig. 6). For stand-alone LDOs also 
the difference in the mean PSRR across aging can be seen 
clearly (refer: Fig. 5). While this difference is higher for cer-
tain vendors like V1, V2, etc. it is comparatively smaller for 
many vendors like V3, V4, etc. Also, the DC PSRR shifted 
in LDOs embedded in SoC like the stand-alone LDOs fol-
lowing the same principle of aging phenomena as described 
in Eq. (3). Thus it may be concluded that the initial PSRR 
was different for each of the above cases, but the differ-
ence obtained between the initial PSRR and the resultant 
PSRR after aging bore similarities in both the cases. In other 
words, the trend of aging degradation was similar across 
aging hours, which can be modeled by ML algorithms. This 
similarity could be of great significance when we use the 
semi-supervised ML tool in our future analysis. The above 
similarities in the aging trend motivated us to observe the 
second type (Case 2) of semi-supervised training, which 
is explained in “Recycled Chip Classification Results and 
Discussion”. In this scenario, we have used the difference 
between a new and an aged PSRR to train and test the clas-
sifiers. The idea behind such an experiment originates from 
the identical aging trends of stand-alone LDOs and that of 

Fig. 6  Silicon data showing PSRR degradation distribution of original SoCs for 1 and 4 h of accelerated aging

Fig. 7  Comparison between the 
aging profiles of stand-alone 
LDOs and LDOs embedded in 
SoC
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LDOs within SoCs, which can be manifested in the differ-
ence of new and aged PSRRs of both LDOs and SoCs. In 
other words, the initial PSRR or the aged PSRR values of a 
stand-alone LDO may vary from that of the LDO within an 
SoC. But, the difference between the initial and aged PSRR 
is similar due to the similar physical aging phenomenon that 
impacts both the structures.

After the data collection, a set of ML tools were devel-
oped to analyze and aid the detection of recycled SoCs. As 
described earlier, three different ML tools were developed; 
namely, (i) Supervised ML tool using k nearest neighbor-
hood (KNN) algorithm. (ii) Unsupervised ML tool using 
k-means clustering algorithm (iii) Semi-supervised ML tool 
again using the KNN algorithm. A detailed analysis of the 
accuracy along with the advantages and disadvantages of 
the above algorithms are provided in the following section.

Recycled Chip Classification Results 
and Discussion

We used the data and the experimental setup discussed in 
“Experimental Setup and Aging Analysis” and conducted 
ML analysis. Before elaborating on our experimental results, 
we stress that the constraints linked to the number of avail-
able SoC samples, as mentioned earlier, can be overcome 
by applying data augmentation techniques. In this context, 
standard, commonly-used data augmentation techniques 
improve the diversity of data available for training ML mod-
els. Thus, we followed a method of data augmentation to 
strengthen our framework, as explained below.

Data Augmentation

We used a widely applied approach, namely principal com-
ponent analysis (PCA), to augment our data set. PCA is a 

linear orthogonal transformation of a data set to a new set 
of coordinates, where the first coordinate is the greatest 
variance of the scalar projection of the data set, the second 
coordinate is the second greatest variance, and so on. PCA 
analyzes any data set and provides n eigenvalues to repre-
sent the principal components of the data set. Out of those, 
k values were kept similar to that of the original data set, 
whereas the n − k values were replaced and randomly cho-
sen from a Gaussian distribution to represent the augmented 
data set. This type of augmentation fitted our needs since 
we were majorly looking for the same SoC data only with 
a wider range of process variation than that obtained from 
the original data set of four SoCs. In this way, a set of 48 
augmented PSRR data set was derived from 4 original chips. 
It must be noted that the augmented distribution was verified 
with respect to the original distribution, and both appeared 
similar with respect to statistical properties.

Since we augmented the data set of PSRR from a specific 
SoC of a particular vendor, we took eigenvalues with the 
higher variance as the intrinsic aging property, which would 
remain similar for all the SoCs. Since we had the PSRR 
data for each hour of aging across a range of 600 frequency 
points, each separated by 5 KHz, the total number of features 
was large enough for PCA analysis. To prevent information 
loss, we randomly altered the lesser varying eigenvalues to 
reflect the changes that can occur due to process variations. 
Since our entire data set represented the same unit (dB vs. 
MHz), there was no requirement of data standardization as 
mostly required for applying PCA analysis. The distribution 
of augmented data of 48 SoCs obtained from using PCA to 
the original four SoCs can be seen in Fig. 8. It can be seen 
that it is similar to the distribution obtained for the original 
four SoCs, as seen in Fig. 6.

It must be noted that for SoC recycled detection, we com-
bined the original data from four SoCs and the augmented 
data from 48 SoCs to generate our final data set for the 

Fig. 8  Augmented distribution of the aging profile of 48 chips obtained by applying PCA to original SoC aging distribution shown in Fig. 6
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experiments. Thus, we have in total 52 SoCs on which the 
ML analysis was performed. The sequence of study can be 
divided into the following categories.

(1) Supervised classification: In this type of classification, 
we provide the PSRR recorded from a subset of the SoCs 
with their labels, i.e., new or aged, and the algorithm tries 
to learn the age of the remaining samples of the SoCs and 
classify them as either new or recycled. Thus training over 
a small sample set of the SoCs, it is tested whether the tool 
can generalize the learning for the entire subset of the SoCs.

Results for Supervised Classification

For supervised classification, the labels of PSRR data from 
a small set of the SoCs, including new and aged ones, are 
provided to the tool for supervised learning. We ran KNN 
algorithm package provided by the Matlab software, and the 
value of k is set as five by the automatic classifier as the best 
possible parameter. The results for supervised classification 
are shown in Fig. 9, showing the accuracy of detecting aged 
and new SoCs, respectively. While calculating the classifica-
tion accuracy, we use ten-fold cross-validation methods, and 
the average is reported along with the standard deviation. In 
simple terms, the results reported in Fig. 9, is the average of 
the accuracy obtained by running the algorithm ten times for 
ten sub-sets of the data. In each round of the experiment, the 
tool is trained over nine parts (sub-sets, or so-called folds) of 
the data set, whereas the testing is conducted on the remain-
ing one part of the data set. In this way, it is confirmed that 
the training and suspect data are chosen uniformly across the 
data set, and there is less bias while computing the accuracy.

The main conclusion from the results is that the model 
which is extracted from the PSRR of a given set of SoCs 
can be used to predict the age of the other SoCs up to a 
maximum accuracy of ≈ 90% for new SoCs and ≈ 83% 
for aged/old SoCs. While explaining the results, it must be 
understood that the average detection accuracy improves 
with the increase in aging time, as can be seen in the Fig. 9. 
This trend can be seen for the detection accuracy of both 
the new and aged (recycled) SoCs. The reason for such an 

improvement is intuitive and can be obtained from the dis-
cussion in “Experimental Setup and Aging Analysis” per-
taining to the Fig. 6. As we see, the difference between the 
mean PSRR of the new chip distribution and the PSRR of 
the aged chip distribution ( �new − �aged ) increases with the 
accelerated aging time; it becomes easier for the classifier 
to distinguish a new chip compared to a recycled one. In 
conclusion, as the aging time increases, the new chip PSRR 
distribution separates from the aged chip PSRR, and the 
classifier can detect the difference even across the process 
variation and the measurement noise. For only one hour of 
accelerated aging, the mean difference between the new and 
aged PSRR is approximately 0.14 dB which can be easily 
mistaken by the classifier as process variation, but with an 
increase in the difference, which is about 1.5 dB after four 
hours of aging, the classifier can distinguish this difference 
over process variation. The same trend of detection accu-
racy was seen for supervised classification for stand-alone 
LDOs in Ref. [3], where we observe the average accuracy 
increasing with the aging hours for a few vendors (V1 and 
V2). But for other vendors (V3 and V4) of LDOs in Ref. 
[3], the detection accuracy was more or less constant across 
aging hours since, the degradation of PSRR saturated after 
approximately three hours of accelerated aging. But for the 
case of LDOs within the SoC observed in this paper, we saw 
a continuous degradation of PSRR across aging hours till the 
fifth hour of aging, as seen in Fig. 7b. Thus, the accuracy 
of detection also saturates after the fifth hour of aging, as 
seen in Fig. 9.

(2) Unsupervised classification: In this setting, no label 
is provided to the algorithm, i.e., only PSRR data from one 
SoC (new/aged) is chosen by the SME to be provided to the 
algorithm. This is considered as the golden sample. While 
calculating the accuracy, the PSRR from unseen SoC sam-
ples is provided to the algorithm. If the unseen LDO and the 
golden sample are of a similar age, they should be catego-
rized in the same cluster as the tool. If there are differences 
in the age of the golden and the unknown sample, then the 
algorithm should be able to assign one of them to the new 
cluster and the other to the recycled cluster. Two types of 

Fig. 9  Supervised classification: 
detecting accuracy of new and 
aged SoCs over hours of aging 
by applying KNN classifiers to 
our dataset [dot: mean ( � ) ; bar: 
standard deviation ( 3�)]



SN Computer Science (2020) 1:312 Page 15 of 21 312

SN Computer Science

approaches can be followed in this clustering algorithm. In 
Case 1, we only measure the PSRR of the component pro-
vided to us. Then we give the measured PSRR values to the 
tool in a pair-wise manner (i.e., golden and suspect). The 
suspect PSRR is further determined as new or recycled by 
the k-means algorithm. In Case 2, we measure the initial 
PSRR of the unknown component and then follow a proce-
dure of artificial aging for either 1 or 4 h. These measured 
PSRR values, along with the initial ones, are provided to the 
algorithm. This case can be applied only when additional 
aging can be performed.

Results for Unsupervised Clustering

As discussed earlier, no labels are provided to the tool dur-
ing unsupervised clustering using k-means algorithm and 
PSRR data from one golden SoC (new or old) along with 
that of the suspect SoC is provided to the tool. We use the 
k-means function embedded in the Matlab software pack-
age for this clustering. During clustering with k-means, we 
apply the Silhouette method to validate the consistency of 
the clusters, thus increasing our accuracy. We also use the 
re-sampling technique to find lower local minima of the 
Euclidean distances between the examples. For this purpose, 
the centroids, which are determined by running the k-means 
algorithm once, are again utilized while re-running the algo-
rithm. This helps to tackle the noisy samples and provide 
better accuracy in such cases. The results for k-means clus-
tering is presented in Fig. 10. As can be seen, the results are 
divided into two cases. In this figure, Case 1 and Case 2 refer 
to what has been explained above. In brief, in Case 1, only 
the initial PSRR measured from the golden sample, and the 
suspect sample are provided to the algorithm. But, in Case 
2, the SME is allowed to perform artificial aging on both 
these samples. We have selected one hour and four hours 
of artificial aging due to the sufficient separation observed 
between the initial PSRR values and ones collected after 
one hour and four hours of aging (see Fig. 5). To conduct 
experiments corresponding to Case 2, the aged PSRR data 
of both the golden and suspect samples, along with the data 
provided in Case 1, are fed into the algorithm to improve the 
learning accuracy further. In this case, we offered the 1-h 
aged data and also the 4-h aged data separately to the tool. 
The accuracy for each of the above instances is calculated 
for components of various ages, as depicted in Fig. 10. In 
this figure, the x-axis shows the minimum age of the SoCs 
under test. Here if the age equals zero, it refers to the initial 
data from the sample. Also, the figures show the accuracy 
of clustering the unseen samples as either new or aged. The 
maximum accuracy for Case 1 was approximately 74%, 
while that for Case 2 was approximately 73%.

The results obtained from unsupervised classification 
provide an accuracy better than random, but the average 

accuracy is much degraded compared to the supervised 
classification. The major reason for such degradation of 
accuracy is due to the fact that the amount of noise and 
process variation is overpowering the PSRR degradation in 
this case. Since no labels are provided, it is difficult for the 
classifier to distinguish the new and recycled SoCs with 
only a single PSRR (aged/new) as a reference. The high 
variability across samples which is projected by the stand-
ard deviation ( 3� ) in Fig. 6 is a major roadblock for unsu-
pervised clustering in these data sets. Similar challenges 
were also seen in the case of the stand-alone LDOs in Ref. 
[3], where the detection accuracy was also a maximum of 
74% for Case 1. But the detection accuracy improved to 
a maximum of 86% with Case 2. In other words, provid-
ing the aged PSRR of the suspect stand-alone LDOs dur-
ing testing helped the classifier to obtain better accuracy. 
For, recycled SoC detection, providing the aged PSRR of 
the LDO within the suspect SoC, while training did not 
improve the accuracy, rather, in some cases, worsened the 
detection. This can be understood by the spikes and irregu-
larities that are seen in the data set, which clearly indi-
cates that providing the aged version of the PSRR while 
testing can sometimes worsen the detection accuracy. In 
Fig. 5, the noise/process variation profile for stand-alone 
LDOs was similar across both the new and aged PSRR 
distribution. There were no irregularities obtained in the 
distribution with aging that was not initially present in 
the new chip data set. Thus, when both the new and aged 
PSRR was provided during testing, the process variation 
and noise got nullified to a large extent, which helped 
the algorithm to cluster correctly. But, for an SoC which 
is continuously active during the aging time, the clock, 
switching, and other activities caused differences in the 
noise profile of the new and aged PSRR. Thus, the aged 
distribution can have certain irregularities that were not 
initially present in the new SoC distribution. As a result, 
providing the aged PSRR of the suspect SoC, along with 
the initial PSRR during testing in Case 2, was not able to 
reduce the noise or help the algorithm to provide better 
accuracy.

(3) Semi-supervised classification: The classification 
format is much similar to the supervised classification 
described above. It uses the same strategy and algorithm, 
but there is a striking difference in the training set. In this 
case, we only provide the algorithm the PSRR recorded 
(new and/or aged) from stand-alone LDOs collected 
beforehand. The algorithm is then provided with unknown 
PSRR from the current data set of 52 SoCs for classifi-
cation as new or recycled. This type of classification is 
extremely beneficial for our case, where the requirement of 
golden data is relaxed. Also, the fact that measured PSRR 
data from stand-alone LDOs can be used to classify PSRR 



 SN Computer Science (2020) 1:312312 Page 16 of 21

SN Computer Science



SN Computer Science (2020) 1:312 Page 17 of 21 312

SN Computer Science

data obtained from embedded LDOs in SoC can bolster the 
detection procedure of recycled SoCs.

Results for Semi‑supervised Classification

An obvious question that can be asked is whether the tool 
constructed above for detecting recycled SoCs using super-
vised classification can be generalized across other stand-
alone LDO ICs available commercially. This is an impor-
tant aspect since, most of the time, golden data required 
for supervised classification is not available, and it is easier 
to procure PSRR data from stand-alone LDOs compared 
to LDOs embedded in SoCs. Thus, if the supervised ML 
tool can be generalized to train on other stand-alone LDO 
PSRR data (aged and/or new), then the entire process can 
be hugely simplified. For this purpose, we utilized the data 
we have collected for our previous experiments reported in 
Ref. [3]. We collected PSRR data from 32 LDOs across four 
vendors over an aging experiment for over nine hours. The 
data was recorded hourly after performing aging, similar to 
our procedure described in “Experimental Setup and Aging 
Analysis”. We utilized this data for training the algorithm. 
In this regard, we carried out two experiments, referred to 
Case 1 and Case 2, explained below.

Case 1 First, we extracted classifiers from data sets con-
taining a new and an aged (e.g., aged for one hour) sample of 
stand-alone LDOs of one vendor at a time. For each vendor, 
the classifier model obtained was tested to categorize PSRR 
of embedded LDOs within SoCs that are used in this paper. 
In doing so, the accuracy of training on each vendor was 
computed to determine how well the classifier can catego-
rize an SoC as new or aged. Figure 11 illustrates the clas-
sification accuracy for both new (aging hour shown as zero) 
and aged SoCs using model trained on each of the vendors 
(V1–V4) of stand-alone LDOs. It can be concluded that the 
classifier obtained can categorize aged (recycled) SoCs cor-
rectly up to a ≈ 97%, 98% , and 92% after training on V1, V2, 
and V3, respectively. However, the classification accuracy 
for detecting a new SoC, in this case, is not high.

In this experiment, the classifiers’ inability to classify 
a new SoC is intuitive as the initial PSRR data is differ-
ent. Thus, with no aging, the PSRR data obtained from a 
new SoC can be much different than that of the stand-alone 
LDO. But, the similarities in the aging trend observed in 
our prior “Experimental Setup and Aging Analysis” inspired 
us to provide the difference in the new and aged PSRR of 

the samples during both training and testing to improve the 
detection accuracy of new SoCs.

Case 2 Inspired by the above observation, in an attempt to 
simultaneously improve the classification accuracy for new 
and aged SoCs, we conducted another experiment (Case 2) 
as follows. In the training phase, the ML algorithm was 
given a dataset composed of the differences between the 
initial PSRR values measured from a new and an aged stand-
alone LDOs as well as their corresponding measurements 
collected after 1 h of synthetic aging. To classify the SoCs, 
this trained model was applied to the differences between 
initial PSRR values and ones collected after 1 h of synthetic 
aging. In this case, as can be seen in Fig. 12, the classifica-
tion accuracy was improved significantly (up to 96%), when 
the stand-alone LDOs from V1 was taken into account3. 
Note that this positive result was achieved solely for V1, 
which was the same manufacturer as that of the SoCs used 
in our experiments. This further highlights the fact that if 
stand-alone LDOs and SoCs do not have similarities in terms 
of the initial PSRR classification of the new SoCs based 
on stand-alone LDOs may not be feasible. Nevertheless, 
according to results depicted in Fig. 12, unfortunately, the 
classification accuracy is not acceptable for the aged SoCs.

Finally, we stress that the classification accuracy for aged 
SoC is satisfactory in both of the cases (Case 1 and Case 2) 
when the model is trained using the measurements collected 
from stand-alone LDOs produced by V2, V3, and V4. For 
the latter vendor, in Case 2, the average maximum accuracy 
was improved to ≈ 96% from ≈ 77% that was reported for 
Case 1. Nonetheless, a key conclusion that we can draw from 
our experiments (Case 1 and Case 2) is that the ML models 
trained to conduct semi-supervised learning can distinguish 
either the new or the aged SoCs, which limits their applica-
bility in practice.

Summary of Results

In previous sections, we provided the advantages and limita-
tions of the application of ML tools to distinguish recycled 
SoCs. The most straightforward approach would be to model 
a classifier with golden new and recycled SoC PSRR data 
using a supervised ML tool. This provides maximum accu-
racy of 90% but limits the algorithm with the requirement 
of golden samples. This limitation can be removed entirely 
with unsupervised clustering methods, which requires no 
labels during training, but solely a golden sample (new or 
aged). However, the accuracy degrades and reduces to the 
maximum accuracy of 74%, which is lower compared to 

Fig. 10  Unsupervised classification: Detecting accuracy of new and 
aged SoCs over hours of aging by applying k-means clustering for 
both Case 1: initial PSRR provided for both golden and unseen sam-
ple and Case 2: initial and synthetically aged (1 h and 4 h) PSRR pro-
vided for samples. [dot:mean ( � ) ; bar: standard deviation ( 3�)]

◂

3 Interestingly enough, if the synthetic aging was conducted for 4 h, 
none of the trained models obtained for our four vendors was useful 
to classify a new SoC.
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supervised classification. To offer a trade-off between golden 
data requirement and accuracy, we propose semi-supervised 
classification. This type of classification partially removes 
the constraint of golden data. Here, the classifier is trained 
on PSRR samples of stand-alone LDOs from four differ-
ent vendors [3]. Compared to PSRR of embedded LDOs 
in SoCs, PSRR from stand-alone LDOs are simpler to 
record and more comfortable to obtain. This improves the 
accuracy of recycled SoC detection, up to 98% , in our vari-
ous experiments after training on the data collected from 
stand-alone LDOs from all the four vendors. Although it 
is tempting to apply this type of detection, we observe that 
the trained models cannot simultaneously improve the clas-
sification accuracy for new and aged SoCs. Hence, our final 
conclusion is that the ML models trained to conduct semi-
supervised suffer from this limitation, which restricts their 
applicability in practice.

A detailed comparison of the performance of the pro-
posed recycled SoC detection and recycled LDO detection 
[3] is provided in Table 2, discussing the advantages and 
limitations of each procedure. We agree that existing meth-
ods for recycled detection rely on golden data, and the pro-
posed method provided also requires some form of golden 
data, which is a drawback. But the major highlight of the 
proposed method is its applicability to analog, AMS, and 
legacy ICs, which are not fulfilled by existing detection 
methods. The analogy provided in the paper for the advo-
cated method clearly states the requirement of golden data 
for supervised, semi-supervised, and unsupervised ML tech-
niques. In comparison to the recycled detection using stand-
alone LDOs in Ref. [3], the proposed recycled SoC detection 
suffers many challenges. But, the challenges are justified if 
we observe the complications that arise with an SoC. The 
inability of the semi-supervised algorithm to distinguish 
between new and aged SoCs simultaneously, is a major 

Fig. 11  Semi-supervised classification: case 1: detecting accuracy of 
unseen SoCs over hours of aging by applying KNN classifiers to data 
set containing standalone LDOs of four different vendors (V1, V2, 

V3, V4) [dot:mean ( � ) ; bar: standard deviation ( 3�)]. Testing was 
done only on initial SoC PSRR
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challenge we faced. The performance of semi-supervised 
algorithm could have been improved if different vendors of 
SoCs with similar specifications were obtained. Though, it 
is simpler to obtain multiple LDOs from different vendors 
with similar specifications, footprints, and electrical param-
eters; it is equally difficult to achieve the same for SoCs, 
where the performance metrics are unique for every SoC. 
Nonetheless, the proposed recycled SoC detection approach 
performs with equivalent accuracy for the supervised and 
unsupervised techniques, when compared to the stand-alone 
LDO approach.

Conclusion and Future Work

In this paper, we proposed a universal approach for recy-
cled SoC degradation that relies on the power delivery 
network available in most SoCs. The degradation of LDO 
embedded within an SoC can be detected using ML algo-
rithms. Application  of supervised and unsupervised ML 
algorithms provides maximum accuracy of 90% and 74%, 
respectively. To alleviate the limitation of the golden sam-
ple requirement in supervised learning and to improve the 
accuracy of unsupervised clustering, we employ a semi-
supervised learning approach. Though, the semi-super-
vised method was successful in detecting stand-alone 
recycled LDOs in our previous works, it failed to detect a 
new and a recycled SoC simultaneously in the proposed 
approach. The semi-supervised algorithm was only able 
to detect either a new or a recycled SoC, which increases 

Fig. 12  Semi-supervised classification: case 2: detecting accuracy of 
unseen SoCs over hours of aging by applying KNN classifiers to data 
set containing stand-alone LDOs of four different vendors (V1, V2, 
V3, V4) [dot:mean ( � ) ; bar: standard deviation ( 3�)]. In the train-

ing phase, the initial PSRR values in conjunction with ones collected 
after 1 h of synthetic aging is given to the algorithm. Testing is per-
formed using the initial SoC PSRR values combined with ones meas-
ured from 1 h aged SoCs
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risks of false detection and restricts its applicability for 
recycled SoC detection. Aging degradation of transistors 
is helpful for recycled counterfeit detection and has been 
used extensively for recycled detection in literature. But, 
it is detrimental for performance and yield. Thus in the 
future, smart LDO designs can be implemented for new 
IC/SoC designs that aids recycled detection but do not 
affect overall chip performance with its aging degrada-
tion. In addition, degradation of other metrics of LDOs 
like transient line/load regulation or efficiency can also be 
investigated to facilitate recycled detection.
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