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Abstract
The Internet of things (IoT) ecosystem has grown exponentially with the convergence of various technologies such as deep 
learning, sensor systems, and advances in computing platforms. With such a highly pervasive nature of “smart” devices, the 
nature of data being collected and processed can be increasingly private and require safeguards to ensure the data’s integrity 
and security. Physically unclonable functions (PUFs) have emerged as a lightweight, viable security protocol in the Internet 
of Things (IoT) framework. Malicious modeling of PUF architectures has proven to be difficult due to the inherently sto-
chastic nature of PUF architectures. In this work, we show that knowledge of the underlying PUF structure is unnecessary to 
clone a PUF. We tackle the problem of cloning PUF-based edge nodes in different settings such as unencrypted, encrypted, 
and obfuscated challenges in an IoT framework. We present a novel non-invasive, architecture-independent, machine learn-
ing attack for robust PUF designs and can handle encryption and obfuscation-based security measures on the transmitted 
challenge response pairs (CRPs). We show that the proposed framework can successfully clone different PUF architec-
tures, including those encrypted using two (2) different encryption protocols in DES and AES and with varying degrees of 
obfuscation. We also show that the proposed approach outperforms a two-stage brute force attack model. Finally, we offer 
a machine learning-based countermeasure, a discriminator, which can distinguish cloned PUF devices and authentic PUFs 
with an average accuracy of 96%. The proposed discriminator can be used for rapidly authenticating millions of IoT nodes 
remotely from the cloud server.
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Introduction

The Internet of things (IoT) ecosystem has grown exponen-
tially with the convergence of various technologies such as 
deep learning, sensor systems, and advances in computing 
platforms. The advent of 5G technology and the promise of 

higher bandwidth is expected to increase the highly con-
nected nature of today’s IoT ecosystem. The massive collec-
tion of ubiquitous and pervasive devices in the IoT ecosys-
tem has been deployed across a variety of environments to 
collect and process massive amounts of data. Applications 
of IoT devices range from wearable computing devices, bio-
implantable devices to monitor vital bodily functions for 
direct human interaction, as well as for “smart” devices that 
we interact with on a day-to-day basis. With such a highly 
pervasive nature of “smart” devices, the nature of data 
being collected and processed can be increasingly private 
and require safeguards to ensure the integrity and security 
of the data [5, 27].

With such highly private data, IoT nodes need to be ade-
quately authenticated before collecting and processing such 
data. The authentication protocol can be as simple as stor-
ing the secret key on physical, silicon-based devices or as 
complicated as cryptography-based protocols. Choosing the 
authentication protocol has the following set of challenges 
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that must be addressed: (1) IoT devices are typically resource 
constrained, thus requiring high energy efficient security 
protocols; (2) their distributed nature can provide easy 
physical access to the node; and (3) the highly connected 
nature of IoT framework requires fast and secure security 
protocols. Traditional approaches to cryptography, while 
useful, have not proven to be sufficiently lightweight and 
fast for IoT device authentication. For example, authentica-
tion protocols that require storing the secret key on each 
node device, while an effective strategy can be bypassed 
through physical and side-channel attacks on the node device 
[21] and compromise the integrity of the IoT network and 
associated data. Recent efforts have shifted to leveraging 
the inherent randomness induced in silicon devices during 
the manufacturing process as the secret key, opposed to the 
traditional binary key stored in silicon devices, which can 
be susceptible to physical attacks. Such approaches, called 
physically unclonable functions (PUFs), have helped provide 
a higher security level against direct physical attacks. This 
alleviates the need for costly physical protection measures. 
PUFs have become increasingly popular and have been used 
for IoT device authentication [1, 2, 4, 6, 7] and other security 
tasks [25, 30].

Today’s IoT nodes are designed such that they are tamper-
proof [16, 41], which makes it difficult or impossible for 
micro-probing. Even if the attacker is successful in micro-
probing, given the myriad of PUF architectures in literature, 
extracting information on the underlying PUF architecture 
is extremely difficult. Hence, earlier ML-based PUF attacks 
with the assumption of knowing underlying architecture are 
either not practical or extremely difficult to stage. Addition-
ally, these methods assume that the challenge is available to 
the attacker in plain-text, i.e., there is no encryption applied 
to the problem. Given that most communication through a 
wireless channel is encrypted, these are very strong assump-
tions to make, especially in the context of node security in an 
IoT framework. In this work, we present, for the first time, 
an ML-based attack that does not require PUF architecture 
information. We also offer a countermeasure for this attack 
that can be effectively used to evaluate an IoT node’s trust 
level remotely.

We focus on an architecture-independent attack that 
assumes no prior knowledge of the PUF architecture in 
the system. We show that observed challenge respose pairs 
(CRPs) are sufficient to improve the cloning accuracy of a 
strong PUF irrespective of the underlying architecture. The 
attack can simulate PUF-based data node without knowing 
underlying PUF architecture. To evaluate the effectiveness of 
our approach, we compare against a brute force attack model 
(Sect. Brute Force Attack on Strong PUFs) that leverages the 
current advances in PUF-architecture cloning. We leverage 
architecture-specific cloning [32] through a cascaded frame-
work of (1) PUF architecture identification; (2) employing 

architecture-specific cloning models; and (3) evaluate the 
prediction accuracy of the model by combining the archi-
tecture classification accuracy and the cloning accuracy in 
a harmonic mean.

Inspired from the pioneering work of Goodfellow et al. 
[13] on Generative Adversarial Networks (GANs), we pro-
pose a machine learning-based defense, a discriminator, to 
identify the possibility of cloning using any ML-based attack 
non-invasive attack. Extant countermeasures [23, 28] to ML-
based cloning have focused on creating complex cloning-
resistant PUF architecture. As we enter into a more realiz-
able IoT ecosystem, complex PUF architectures may not be 
suitable for lightweight IoT systems. Hence, we propose a 
lightweight, probabilistic identification of cloning through 
machine learning. To the best of the authors’ knowledge, 
this is the first such framework for the non-invasive attack 
of PUF-based IoT network authentication schemes and a 
proposed mechanism to differentiate original PUFs from 
cloned ones. In short, our paper makes the following novel 
contributions:

– propose a non-invasive, architecture-independent cloning 
attack on strong PUFs,

– show that a brute force attack on strong PUFs to identify 
the PUF architecture for cloning is increasingly complex 
and not trivial for feasible cloning,

– show that the proposed approach can successfully clone 
the PUF model even if the challenge–response pair is 
encrypted or obfuscated, and

– propose a probabilistic discriminator model to bolster the 
CRP protocol’s security by identifying possible instances 
of cloning attacks.

In summary, we present one of the first frameworks to 
clone PUF-based authentication in an IoT setting, without 
any physical access to the device and any prior knowledge 
of the underlying PUF architecture. We also show that the 
approach can be extended, through unsupervised noisy pre-
training to handle two (2) standard encryption protocols and 
three (3) common PUF architectures, which form some of 
the more common node authentication setups in practice. 
The preliminary version of this work has been published 
in [19, 26].

The rest of this paper is organized as follows. Sec-
tion Background presents the background on physically 
unclonable functions (PUFs), their usage in IoT nodes, and 
their security assumptions. Section Related Work briefly 
reviews existing machine learning attacks on PUFs and cor-
responding countermeasures. Section Brute Force Attack on 
Strong PUFs describes and evaluates a baseline brute force 
approach. Section Architecture-Independent PUF Modeling 
describes the proposed ML-based attack. Section Machine 
Learning-Based Countermeasure proposes a countermeasure 
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based on the discriminator model. Section Evaluation and 
Analysis presents our empirical evaluation of the proposed 
approach. Finally, Sect. Conclusions draws conclusions.

Background

In this section, we will present the background on silicon-
based physically unclonable functions (PUFs), their usage 
in IoT node authentication, and the common security 
assumptions.

Silicon-based PUF devices [25] are easily fabricated 
physical structures that leverage the stochastic nature of 
the manufacturing process to create physically unclonable, 
unique identifiers for each manufactured unit. This typically 
results in a one-way function. Given an electronic stimulus, 
the response of a PUF device is an unpredictable, repeatable 
function. This response identifies each device with a unique 
signature. This is primarily attributed to the interaction of 
the external stimulus and the physical structure of the PUF. 
This interaction is termed as the challenge–response pair 
(CRP), where the challenge is the external stimulus, and the 
PUF’s reaction is termed as the response. The unpredict-
able nature of the PUF can be highly sensitive to noise and 
error correction circuits [20]. This nature of PUF is used 
to reduce the uncertainty in the PUF’s response to make 

it more reliable. PUFs with a sufficiently large set of chal-
lenge–response pairs are called strong PUFs and are typi-
cally chosen for most practical security applications.

The use of PUFs as the basis for IoT node authentica-
tion has gained momentum in recent times [1, 2, 4, 6, 7]. 
Using PUFs for IoT security protocols typically involves an 
initial enrollment phase and an authentication protocol dur-
ing the actual data exchange. Figure 1 illustrates the typical 
architecture of an IoT network and the generic enrollment 
protocol. A typical IoT network consists of remote, resource-
constrained data nodes ( N1,N2,N3 …Nk ) connected to static 
server nodes ( S1, S2, S3 … Sn ) that transfer the acquired data 
to the cloud using routers ( R1,R2,R3 …Rm ). The data is 
transmitted from the routers to the cloud using a network 
gateway. IoT edge nodes can range from simple sensors to 
complex systems with a processor, memory, communication, 
etc. Strong PUFs implemented in complex IoT nodes are 
subject to attacks, which is the focus of this work. When a 
data node is added to the IoT network, the enrollment phase 
is executed to create a CRP database for the PUF within the 
data node. This database of CRPs is used in the authentica-
tion phase when two nodes corresponding to the same server 
node want to communicate. The shared server node authenti-
cates both data nodes, generates security key pairs, and helps 
secure key sharing. While practical, a malicious attacker can 
use the enrollment phase to eavesdrop and clone the set of 

Fig. 1  A typical IoT architecture 
is illustrated. The inner figure 
shows the enrollment phase and 
the authentication phase of a 
PUF-based IoT node authentica-
tion scheme. The pre-process 
block represents an optional 
encryption and/or obfuscation 
process
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CRPs, which can be used to bypass the PUF-based authen-
tication and compromise the security of the data nodes. 
There have been advances that the extraction of CRPs is then 
destroyed, i.e., fuse the extraction wires, thereby eradicating 
the possibility of cloning via this method.

Following the protocols established in [24], extant IoT 
networks using PUF authentication [1, 2, 4, 6, 7] make the 
following underlying security assumptions: 

1. cloning a PUF architecture, either physically or math-
ematically, is a difficult problem, especially if the under-
lying architecture is unknown;

2. an adversary has unrestricted physical access to the com-
munication channel;

3. the challenge–response characteristics of the PUF within 
the data IoT node is an implicit property and is not 
accessible to an adversary; and

4. the attacker can obtain access to the database of CRPs 
through malicious software attacks.

Given these security assumptions, the goal of the adversary 
then becomes straightforward. In essence, it must be able to 
spoof the server nodes into accepting a malicious node on 
behalf of the original data nodes without actual possession 
of the node in question. Any physical intrusions can com-
promise the integrity of the PUF and hence render the attack 
harmless. The underlying stochastic nature of PUFs and the 
above constraints lend itself to a robust security protocol 
that can be hard to breach. However, advances in machine 
learning have led to a vast majority of non-invasive attacks 
on PUF-based security. Machine learning-based approaches 
can be characterized by applying a learned mathematical 
model on a collected subset of valid CRPs. The curation 
of such data is typically assumed to be an eavesdropping 
protocol, which is not an unreasonable assumption. Prior 
works, especially the pioneering work of Rühmair et al. [32], 
have shown great success in cloning PUFs, gaining cloning 
accuracy of up to 99.99%. Such success does come with a 
caveat—the underlying architecture must be known a priori, 
either through invasive physical intrusions or explicit archi-
tecture knowledge.

Related Work

In this section, we briefly summarize related work on 
machine learning-based attack and prevention techniques 
in the strong PUF design.

Strong PUF Architectures

A strong PUF can support a large number of complex 
CRPs with physical access to the PUF for a query such 

that an attacker cannot generate correct response given 
finite resources and time [14, 17, 31]. While a weak PUF 
has only a few CRPs, which makes it difficult for the attack 
and prediction techniques, hence in this paper, we consider 
strong PUF. The number of CRPs of strong PUFs can grow 
exponentially depending on the number of module blocks 
available for generating responses for a large number of cor-
responding challenges. Error due to noise in the response of 
PUF can be minimized using helper data [10, 18]. For com-
pleteness, we assume such an error-correction mechanism 
incorporating temperature, voltage, and aging variations 
are already present in the PUF to be cloned. A strong PUF 
does not contain a read-out protection scheme assuming an 
attacker has to enumerate a large number of CRPs. Hence, it 
makes an invasive attack infeasible while impelling attackers 
to apply ML-based techniques to succeed beyond the under-
lying complexity of strong PUFs. For a detailed analysis of 
constructions and description of strong PUFs, we refer the 
reader to [14].

The linear additive behavior of Arbiter PUF (APUF) has 
made it an ideal target for ML attack. Hence, higher non-lin-
earity in a given PUF architecture can improve the unique-
ness and randomness with increased defense against mod-
eling attack. Other approaches to ML-resistant PUFs have 
been randomized challenges [42], obfuscation [12, 23], and 
sub-string-based challenges [28]. Rostami et al. presented 
a prover–verifier framework for successful authentication 
based on a subset of response substring [28]. Vijayakumar 
et al. proposed to utilize bagging and boosting ML algo-
rithms to improve the accuracy of classifiers given sufficient 
entropy of cascading PUFs [39].

The majority of works describing ML-resistant PUFs 
employ clearly defined architecture and adequately large 
CRPs for the training process. The randomness and unique-
ness, instead, deteriorate substantially when CRPs that do 
not belong to original CRPs for a particular PUF is used as 
the case we are tackling in this work. We present a discrimi-
nator model that permits the investigation of CRPs received 
at a PUF challenge–response interface to lower the attacker 
attempt in reverse-engineering the PUF model.

PUF‑Based IoT Security

Physical unclonable functions (PUFs) have, increasingly, 
been proposed as the basis for node security in the IoT 
framework [1, 2, 4, 6, 7, 15]. PUF-based IoT node security 
has primarily been implemented in two ways—CRP-based 
authentication and PUF-based key generation [37]. In the 
latter, a PUF’s response is typically used to create secret 
keys for use in traditional cryptography. The PUF’s response 
to a given challenge (processed through an error-correcting 
circuit) generally is hashed to generate the secret keys. The 
former approach, i.e., CRP-based authentication, is more 
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widely used, especially with strong PUF models, to create 
robust authentication protocols. The resulting authentication 
protocol involves evaluating the identity of a PUF model by a 
central authentication server by applying a set of pre-defined 
external challenges and validating the resulting response, as 
illustrated in Fig. 1. The CRPs are collected in an enrollment 
phase before deployment, and the resulting database forms 
the basis of authentication during deployment.

Encryption Protocols for IoT Node Authentication

Given that most of the communication in the IoT frame-
work occurs over an unsecured wireless network, the use of 
encryption protocols in communication and authentication 
has become essential [3, 34, 36, 38, 40]. There have been 
many encryption protocols proposed with the two commonly 
used protocols being Data Encryption Standard (DES) [8] 
and the Advanced Encryption Standard (AES) [9]. Given 
their widespread use and success, there have been numer-
ous cryptanalysis of both protocols and has led to successful 
attempts on the DES protocol. However, it takes tremendous 
computational power and large amounts of data to success-
fully break the DES protocol, whereas the 128-bit AES pro-
tocol has not been successfully broken. There have also been 
some alternatives to encryption protocols such as obfuscated 
CRPs [12] and substring matching [29], to name a few. In 
this work, we consider the encryption protocols AES and 
DES as the encryption mechanisms used for encrypting the 
CRPs in the IoT framework.

Machine Learning‑Based Attacks on PUF Models

Given the growing popularity of PUF-based authentication, 
there have been numerous attempts to test the approach’s 
effectiveness, primarily through mathematical modeling 
of the PUF’s characteristic function. Rührmair et al. [32] 
proposed an ML-based attack on strong PUFs based on a 
predictive model. The authors were able to clone the func-
tionality of the underlying PUF given the PUF model by 
evaluating model parameters using logistic regression (LR) 
with resilient backpropagation(RProp) and evolution strate-
gies (ES). Though the method was quite successful in clon-
ing, the attacker needs to know the underlying PUF archi-
tecture and the corresponding signature function, which are 
part of the security assumptions outlined in Sect. 1. While it 
is reasonable to assume that CRPs can be obtained by eaves-
dropping or other interfaces [31], it is not always possible to 
ascertain the underlying PUF model without physical access 
to the PUF. Although the presented attacks work better under 
a given PUF size and architectural complexity, an attacker 
should have the idea of underlying PUF architecture to make 
the generated clone samples match the statistics of the real 
CRPs. There have also been other approaches such as PAC 

[11] and hybrid methods [33] that have successfully cloned 
PUFs using a combination of ML and invasive techniques.

Brute Force Attack on Strong PUFs

The proposed models by Rühmair et al. [32] allows us to 
successfully clone strong PUF models with a prediction 
accuracy of 99.9%. The Brute Force method is a two-step 
process where we would first need to identify the underlying 
PUF architecture, as the approaches in [32] require intimate 
knowledge of the PUF architecture such as PUF type, num-
ber of stages and number of XOR gates, to name a few. Once 
the architecture is identified, we use the prior work to clone 
the PUF. We use the term brute force, because we search 
through all possible combination of PUF architectures to 
clone the PUF.

To address this, we propose the use of a machine learning 
model to identify the PUF architecture through observation 
of the challenge–response pairs, as illustrated in Fig. 2. One 
primary assumption in this approach is that there exists a 
subset of challenges C̃ ∈ C that is valid for all PUF archi-
tectures in a given network, where C is the collection of 
all valid CRPs. Given the number of PUF architectures 
and their use for authentication, this is not an unreasonable 
assumption.

Identifying PUF Architectures

Given the set of challenges C̃ , we can observe the set of valid 
responses Rci

 for each PUF architecture ci ∈ Cpuf , where 
Cpuf is the set of all known PUF architectures described in 
Sect. Related Work. Hence, the objective of the classification 
is to learn a function fc which maximizes the probability

where the objective is to find the PUF architecture ci given 
the challenge C̃i , and the subsequent response Rci

 . We use 
the following machine learning models as the basis for the 
function fc(⋅) : logistic regression, artificial neural network, 
and random forests.

Empirical Evaluation

We evaluate the performance of the proposed brute force 
attack to identify the architecture of eight common strong 
PUF architectures. We use a fixed number of randomly sam-
pled 100 CRPs for evaluation for each PUF architecture for 
a total of 800 CRPs. We report average results from five 
different runs, with the test set sampled each time randomly. 
We curate a collection of 100,000 CRPs for training the clas-
sification model.

(1)arg max
C̃i∈C̃

P(ci|C̃i,Rci
),
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As can be seen from Table 1, identifying the PUF architec-
ture from an observed set of CRPs is not a trivial task. Even 
with 100% cloning accuracy for a given PUF architecture, 
identifying the said architecture requires a large set of CRPs 
for training a model. The maximum performance that we were 
able to obtain was using the logistic regression model, which 
took 100 iterations to converge, resulting in the maximum clas-
sification rate for Arbiter PUF architecture. There was a large 

confusion among different design variations of each PUF type. 
The prediction rate for XOR PUFs decreased as the complexity 
of the architecture increased. It can be seen that identifying 
the PUF architecture requires significant training resources of 
100,000 CRPs while recognizing the arbiter PUF with an aver-
age accuracy of 81.49% . The classifier performed worst on the 
lightweight PUFs, yielding a maximum identification accuracy 
for the 3 bit XOR lightweight PUF. The identification rate also 
affected the cloning prediction rate of the brute force approach, 
with each misclassified PUF architecture affecting the cloning 
quality. While the average cloning accuracy can be as high as 
77.42% (for the Arbiter PUF), the numbers can be misleading 
in practice. The performance of the two-stage attack model 
is rather low; considering the possible gap between the intra-
Hamming and inter-Hamming distances of PUF CRPs, this 
prediction rate cannot be considered to be successful cloning.

Architecture‑Independent PUF Modeling

In this section, we describe our proposed approach for a PUF-
independent attack model on various PUF architectures by 
exploiting the CRP authentication protocol. We begin with a 
discussion on using machine learning models to capture the 

Fig. 2  The proposed attack model on oblivious PUF architecture. The brute force attack has an additional PUF architecture detection process as 
indicated by the block in red

Table 1  Brute force attack: PUF architecture classification perfor-
mance and subsequent cloning accuracy

PUF model PUF Cloning rate (%)
Classification rate 
(%)

APUF 81.49 77.42
3 XOR APUF 76.53 72.71
4 XOR APUF 65.01 61.76
5 XOR APUF 63.57 60.39
6 XOR APUF 61.31 58.25
LW 3 XOR APUF 76.91 73.05
LW 4 XOR APUF 65.37 62.10
LW 5 XOR APUF 59.32 56.33
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underlying correlation between challenge–response pairs to 
model the randomness unique to a given PUF architecture. 
We then introduce a noisy autoencoder-based pretraining of 
the neural network model for handling noise and obfuscation-
based techniques for more robust feature learning. We then 
follow with a discussion on defending against such attacks 
using complementary machine learning models.

Attack Model

Each PUF is made unique through a digital signature char-
acterized by its response to a given challenge. This signature 
is representative of the randomness encoded in its state due 
to manufacturing variations and other physical disorders. 
To compromise the integrity of the CRP protocol, one has 
to model this randomness to generate a response representa-
tive of the PUF’s signature. There are two approaches to this 
problem: a model-based solution and a model-agnostic solu-
tion. The model-based solution, explored in [32], attempted 
to capture this randomness through modeling the character-
istics of a PUF using domain knowledge (PUF architecture) 
and characteristics (delay model, thermal response charac-
teristics, etc.). Thus, the attack consists of a regression of 
the model’s parameters.

However, we consider an architecture-independent 
approach to the solution by disregarding the need for a 
characteristic equation for the PUF. We postulate that the 
challenge and subsequent response of any given PUF is rep-
resentative of its characteristic function. Thus, modeling the 
dependency between the various features of a given chal-
lenge and the target response allows us to capture the ran-
domness of a given PUF architecture. To this end, we use 
several approaches to capture the dependency between the 
challenge and response pairs of various PUF architectures. 
Since the underlying dependency is not linear or non-linear, 
we explore several different machine learning models that 
characterize the dependence with a linear decision boundary 
(logistic regression) or with a non-linear decision boundary 
(random forest and artificial neural networks).

The attack model consists of learning the optimal func-
tion that maps the given n-bit challenge C = c1, c2,… , cn 
to an appropriate output response R ∈ {−1, 1} with a prob-
ability p(R|C). The objective of the attack model is to learn 
the function f ∶ C → R such that the difference between 
the generated and actual response of the PUF is minimized. 
Hence, the best attack model is characterized by the search 
for the optimal function f given by

where f̂ (C) is the characteristic function of the given 
PUF architecture and (Cs,Rs) represents the space of all 
known challenge–response pairs obtained through the 

(2)arg min
(Cs,Rs)

E[(f̂ (C) − f (C))2],

eavesdropping protocol. We search for the optimal func-
tion f(C) through the characteristic equation of the different 
machine learning models defined above. For example, in a 
logistic regression model, f is defined as

where � is a learned vector that represents the decision 
boundary (d) for the logistic regression model and � is the 
logistic function.

Denoising Autoencoders for Robust Feature 
Learning

While the attack model presented in "Attack Model" can 
handle clear-text challenges, the encryption protocols such 
as AES and DES can inject noise into the relationship 
between the challenge and the response, hence obscuring the 
characteristic function of the PUF architecture. To account 
for this, one must either: (1) break the encryption through 
traditional cryptanalysis; or (2) learn robust representa-
tions that can decouple the noise from essential information 
within the input challenge. Since the computational resource 
for pursuing the former can be expensive, we take the latter 
approach and attempt to learn robust representations through 
unsupervised pretraining using a denoising autoencoder. In 
this approach, we train a neural network (multilayer percep-
tron, MLP) as our attack model.

A traditional autoencoder is an unsupervised neural net-
work, whose objective is to learn a compressed representa-
tion of the input data through a cascaded encoding–decoding 
operation. The network architecture comprises two neural 
networks, an encoder network and a decoder network, work-
ing together to learn an encoded representation or latent 
space. The encoder’s role is to compress the input data into 
a lower-dimensional representation that captures the under-
lying pattern of the data by learning to ignore as much of 
the spurious patterns or noise as possible. This compressed 
representation represents the bottleneck layer of the net-
work. The role of the decoder is to learn to reconstruct the 
original input from this compressed representation. This 
process is represented in Fig. 3, where it can be seen that 
the latent space has a lower dimensionality compared to the 
larger-dimensional input and output. The input and output of 
the autoencoder framework have the same dimensions. An 
autoencoder network’s training objective is to minimize the 
reconstruction loss, which is typically an L2 loss or binary 
cross-entropy.

While autoencoders learn useful features (the latent 
space) that can be used for downstream classification 
tasks, noise or perturbations in the input can drastically 
change the representations unless added during training. 
To account for noise injected through encryption, we 

(3)f = argmax (�(R × d(�,C))),
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train the autoencoder as a denoising autoencoder. The 
idea is to train the autoencoder to reconstruct the input 
from a corrupted or randomly perturbed version of the 
input. This training strategy is applied to force the hid-
den layer to discover more robust features and prevent it 
from merely learning the identity function. We construct 
the denoising autoencoder by adding a stochastic corrup-
tion step to the input. While the input can be perturbed 
in many ways, we want our representations to handle the 
inherent noise applied to the wireless channel, obfusca-
tion, and encryption. Hence, in our implementation, we 
apply the following perturbations: (1) randomly mask 
part of the input by making them zero; (2) add random 
white noise to the input; and (3) add a hashing function 
to the CRP to simulate the encryption techniques. At 
every training iteration, one of the above perturbations 
is applied to the input, and the output of the decoder net-
work is compared to the original input.

Implementation and Training Details

Due to the complex nature of the proposed network, we 
present the implementation details for understanding. 
The encoder network is a four-layer network of fully con-
nected layers. Between each subsequent layer is a dropout 
layer [35], which helps prevent overfitting. Each dropout 
layer has a dropout probability of 50% . The number of 
neurons in each layer is reduced by 0.5× to reduce the 
dimensionality of the processed data. This follows the 
standard protocol in autoencoders to induce the bottle-
neck at the end of the encoding network. The decoding 
network is a mirror of the encoding network, with the 
number of neurons increasing to match the output dimen-
sions. We train the network for ten epochs at a learning 
rate or 1e−4 using the standard gradient descent optimizer.

Machine Learning‑Based Countermeasure

The modeling of the internal randomness of a given PUF 
architecture puts the integrity of the CRP-based authen-
tication into question. Hence, it becomes critical that we 
are able to differentiate between the original PUF and an 
adversarial attack, such as the ones described in Sects. Brute 
Force Attack on Strong PUFs and Architecture-Independent 
PUF Modeling. To this end, we introduce a mathematical 
model that is able to discriminate between an original and 
a cloned PUF called the discriminator model, as illustrated 
in Fig. 4. The discriminator decides whether each instance 
of the response belongs to the actual PUF or a malicious 
attacker. As seen in Fig. 4, the discriminator model takes in 
the response of the original PUF along with the response of 
the PUF cloned with several ML attacks as the input to pre-
dict whether the PUF is an original or a cloned and returns 
the probabilities. The cloned part of the response is shown in 
red. The output of this discriminator is a single scalar value 
D(C), indicative of an adversarial attack. The value D(C) is 
a probability function that maps a given response (R) to the 
distribution belonging to either the original PUF ( f̂ (C) ) or 
an attacker (f(C)) for a given n-bit challenge C. Hence, the 
optimal discriminator model is given by

where D⋆(C,R) is a mathematical model that maps the 
response R for a given challenge (C) into the probability 
space of either the original PUF ( f̂ (.)) or the attack model 
(f(.)). Again, we explore the use of well-known machine 
learning models as the basis for our discriminator math-
ematical model.

The search space for the optimal discriminator is simi-
larly characterized by the optimization function defined in 

(4)D⋆(C,R) =
p(f̂ (C))

p(f (C)) + p(f̂ (C))
,

Fig. 3  A typical autoencoder structure is illustrated. In our approach, we use a denoising autoencoder. Hence, the input is a randomly perturbed 
input and the output is the original, clean challenge
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Eq. (2). However, the search is represented by the discrimi-
nator to distinguish between the original PUF’s response 
and a cloning attack.

The search space for the optimal attack model and dis-
criminator model is defined by the optimizer functions 
defined in Eq. (2) and its subsequent adaptation for the dis-
criminator, respectively. We employ a simple grid search 
algorithm to find the optimal attack model (f(.)) from a 
given set of possible models (F). The attack model’s space, 
F, comprises all transformation functions that satisfy the 
condition f ∶ C → R . We restrict the search space to the 
given three machine learning models: logistic regression 
(LR), random forest (RF), and neural network (NN). We 
also ensure that the optimal discriminator is chosen from 
a set of discriminative functions G(.) ∈ Gs , where Gs is the 
collection of all discriminative functions that optimize the 
probability function defined in Eq. (4). Again, we restrict 
the search space to the three aforementioned models. While 
the grid search suffers from the curse of dimensionality and 
does not scale to large search spaces of F and Gs , limiting 
the number of plausible functions allows us to exhaustively 
search for the optimal discriminator for a given attack model 
and a target PUF. Additionally, the grid search is a reason-
able approach, given that it can be embarrassingly parallel.

Evaluation and Analysis

In this section, we quantitatively evaluate and analyze the 
performance of the three machine learning-based models 
proposed in Sects. Brute Force Attack on Strong PUFs 
and Architecture-Independent PUF Modeling. We begin 
with a discussion on the experimental setup and met-
rics. We then evaluate the proposed approaches in three 

different settings: (1) unencrypted authentication protocol; 
(2) encrypted authentication protocol; and (3) authentication 
using obfuscated challenges. We conclude with an evalu-
ation of the machine learning-based countermeasure, pro-
posed in Sect. Machine Learning-Based Countermeasure, 
for each of the proposed approaches.

Experimental Setup

We follow the same experimental setup by [32] and report 
the upper bound of the attacker’s ability to successfully clone 
a given PUF architecture as its accuracy in a supervised set-
ting. We report all results as the average of ten experimen-
tal runs. For evaluating under the unencrypted setting, we 
consider three strong PUF architectures (Arbiter, XOR, and 
Lightweight), while each of them contains three stages (64, 
128, and 256) and the number of XOR is limited to (3, 4, 
and 5) for both XOR and lightweight PUFs. This gives us a 
total of 24 different strong PUF architectures for validating 
the efficacy of the proposed cloning models. For evaluat-
ing under the encrypted setting, we consider two conven-
tional encryption techniques—the Data Encryption Standard 
(DES) and the Advanced Encryption Standard (AES). We 
use the 128-bit versions of both encryption methods. We 
consider two strong PUF architectures in a 64-stage Arbiter 
PUF and XOR PUFs, as well as two variations of the XOR 
PUF—3-XOR and 4-XOR PUFs to evaluate the ability of 
the proposed approach to generalize to more complex archi-
tectures. We present the average results of the experiments 
conducted on a limited CRP regime of less than 250 CRP 
pairs for both training and testing. Although DES is suscep-
tible to cryptanalysis, it is a non-trivial task. 128-bit AES is 
resistant to brute force attacks, given that there can exist as 
much as 3.4 × 1038 key combinations. Such characteristics 

Fig. 4  ML-based discriminator model to ascertain a PUF integrity
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make the task of cloning an encrypted PUF a challenging 
problem. For evaluating under the obfuscated challenge set-
ting, we use a simplified version of the OB-PUF proposed 
in [12]. We use the arbiter 64-stage PUF as the base PUF 
architecture. We randomly perturb the n% of the challenge 
and evaluate the ability of the cloning model to reconstruct 
and generate the cloned response.

Unencrypted PUF‑Based Authentication

We evaluate the ability of the proposed approaches in the 
unencrypted PUF-based authentication setting. This is the 
commonly used setting in machine learning-based cloning 
attacks, such as [32] on PUF architectures. We summa-
rize the cloning results in Table 2, from the optimization 

process described in Sect. Brute Force Attack on Strong 
PUFs. Results for each machine learning model can be seen 
in Fig. 5. Our approach does not require physical access 
or prior knowledge on the PUF architecture. The average 
cloning accuracy of our approach can be as high as 93.50% . 
It is to be noted that while [32] achieve cloning accuracy of 
99.9% , they do require that the underlying architecture is 
known, and physical access is available. The cloning accu-
racy of the proposed model drops as the complexity of the 
PUF architecture grows, with the lightweight 5-XOR Arbi-
ter PUF being the hardest to clone. This could arguably be 
attributed to the randomness introduced by the complex PUF 
architecture. From Table 2, we can see that, on average, a 
strong PUF can be cloned with a cloning error of 10.83% 
irrespective of its underlying architecture of the PUF. The 

Fig. 5  Comparison of cloning 
and discriminator accuracies for 
cloning models under differ-
ent PUF architectures. Along 
X-axis, X(Y) refers to machine 
learning model X is used for 
tasks Y-cloning model (CM) or 
discriminator model (DM)
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aging of the PUF [22] affects the delay characteristic, which 
produces a different pattern of the responses compared to the 
compromised node. It can be seen that the cloning time is 
reasonable, particularly given the complexity and stochastic 
nature of the considered PUFs.

Encrypted PUF‑Based Authentication

In this setting, we evaluate the cloning ability of machine 
learning models when the challenge is encrypted, which is 
the standard practice in most practical IoT systems. We sum-
marize the cloning rates and times for different PUF archi-
tectures under different encryption protocols in Table 3. We 
observe that adding the encryption protocols cause signifi-
cant problems to standard machine learning cloning models. 
For example, Arbiter PUFs are often considered by many 
to be strongly predictable and hence more susceptible to 
machine learning-based attacks. However, with the added 
security of an encryption protocol, the predictability of an 
arbiter PUF model can be considered to lower significantly. 
We can corroborate this in our experiments with a 64-stage 
arbiter PUF. It can be seen that the standard attacks do not 
perform well on this task, although some, such as logistic 
regression, have shown up to 99.9% accuracy in cases when 
the challenge is not encrypted. Further, the addition of even 
a relatively weak encryption scheme such as 128-bit DES 
significantly degrades the performance of machine learning 
models. On the other hand, the autoencoder-based approach 
can clone the Arbiter PUF model with significantly higher 
accuracy. There is a significant difference in performance 
between the proposed approach and the brute force models.

Obfuscated PUF‑Based Authentication

We also evaluate the performance of the cloning models 
when the challenge is obfuscated, as postulated in obfus-
cated PUF architectures such as [12, 23]. We consider a 

simpler version of these approaches for our experiments. 
We use the 64-stage Arbiter PUF as the base PUF model. We 
randomly perturb or obfuscate the plain text challenge to an 
arbitrary constant. This results in an obfuscated challenge, 
which is then presented to the cloning model to generate a 
response. We present results in Fig. 6. It can be seen that 
traditional machine learning-based cloning models such 
as logistic regression (LR), random forests (RF), and neu-
ral networks (MLP) are drastically affected by increasing 
amounts of obfuscation. The autoencoder models, on the 
other hand, can maintain their performance to reasonable 
levels, with the denoising autoencoder performing a little 
better at higher obfuscation levels.

Table 2  Cloning error and time for different PUF models

*Note that in the literature [30, 32], the maximum number of XORs 
used is 6. It is known that six XORs is sufficient to give a strong PUF

PUF Model Cloning error (%) Cloning time (min)

APUF 6.50 0.00001
3 XOR APUF 8.20 1.18083
4 XOR APUF 10.70 1.63333
5 XOR APUF 9.00 62.8010
6 XOR APUF* 10.70 240.040
LW 3 XOR APUF 12.00 0.02650
LW 4 XOR APUF 12.50 30.9667
LW 5 XOR APUF* 17.00 180.025
Average 10.83 64.5759

Table 3  Cloning rates and times for different PUF architectures under 
different encryption protocols

Acc stand for Accuracy

Approach PUF Model DES AES

Acc. Time(s) Acc. Time(s)

LR 64-Stage Aribter 46.9 1.2 48.7 1.9
3-XOR 60.9 26.2 53.8 30.2
4-XOR 43.8 53.9 40.6 49.9

RF 64-Stage Arbiter 51.6 0.001 54.7 0.007
3-XOR 59.4 0.31 54.7 29.4
4-XOR 42.2 1.8 48.4 1.3

MLP 64-Stage Arbiter 56.1 35.8 53.6 33.1
3-XOR 51.1 70.8 52.3 46.7
4-XOR 50.1 98.7 50.2 112.9

Standard Autoen-
coder

64-Stage Arbiter 58.7 43.1 57.4 48.3
3-XOR 54.5 44.0 55.4 56.9
4-XOR 51.9 46.7 53.6 53.1

Denoising 
Autoencoder

64-Stage Arbiter 65.6 45.6 63.9 47.2
3-XOR 58.1 43.6 58.9 43.6
4-XOR 57.3 42.6 59.2 47.6

Fig. 6  Effect of challenge obfuscation on cloning performance. Accu-
racy is shown in comparison with varying amounts of challenge 
obfuscation



 SN Computer Science (2020) 1:282282 Page 12 of 13

SN Computer Science

It should be noted that the performance is tested only 
on a limited evaluation set of 200 CRPs. More complicated 
obfuscation techniques such as those proposed in [12, 23] 
and less training would further degrade the performance of 
machine learning-based cloning attacks.

Discriminator Performance

Given the competitive performance of the machine learning 
models for cloning PUF architectures under different condi-
tions, it becomes imperative that we are able to distinguish 
between a cloned PUF and the original PUF. We evaluate the 
ability of the proposed discriminator model (Sect. Machine 
Learning-Based Countermeasure) to identify a cloned PUF. 
We present the results in Fig. 5. It can be seen that it is pos-
sible to identify a cloned PUF with a high degree of con-
fidence from its response to the presented challenge. We 
are able to identify cloned PUFs with up to 95% accuracy 
(Fig. 5a, e,h) for some PUF architectures such as lightweight 
XOR PUFs and Arbiter PUFs. Other architectures such as 
4-XOR and 5-XOR PUFs are harder to clone and harder to 
discriminate between cloned and original PUFs.

Conclusions

In this work, we presented and evaluated three different 
machine learning approaches to attack PUF-based edge node 
authentication through cloning the underlying PUF model. 
To the best of our knowledge, we are the first to address the 
problem of encrypted and obfuscated CRPs. We showed that 
a priori knowledge and physical access to the PUF archi-
tecture is not necessary to clone the PUF model. Addition-
ally, autoencoder-based pre-training allowed us to handle 
additional challenges such as encryption and simple obfus-
cation. We showed that machine learning models could be 
powerful enough to clone PUF models in different settings 
successfully. We also introduce a novel discriminator model 
to identify cloned and original PUFs with a high degree of 
confidence. Extensive experiments show that the proposed 
approach can generalize even with a limited number of CRPs 
and show significantly higher cloning accuracy than brute 
force machine learning models. We aim to show that the pro-
posed approach can recover CRPs that are transmitted with 
complex obfuscation techniques and handle noise induced 
through channels and aging of PUF devices.
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