
Vol.:(0123456789)

SN Computer Science (2020) 1:178 
https://doi.org/10.1007/s42979-020-00184-1

SN Computer Science

ORIGINAL RESEARCH

Challenges in Fluid Flow Simulations Using Exascale Computing

Mahendra K. Verma1   · Roshan Samuel2   · Soumyadeep Chatterjee1   · Shashwat Bhattacharya2   · Ali Asad1 

Received: 27 May 2019 / Accepted: 2 May 2020 / Published online: 21 May 2020 
© Springer Nature Singapore Pte Ltd 2020

Abstract
In this paper, we briefly discuss the challenges in porting hydrodynamic codes to futuristic exascale HPC systems. In par-
ticular, we sketch the computational complexities of finite difference (FD) method, pseudo-spectral method, and fast Fourier 
transform (FFT). The global data communication among the compute cores brings down the efficiency of pseudo-spectral 
codes and FFT. A FD solver involves relatively lower data communication. However, an incompressible FD flow solver has a 
pressure Poisson equation, whose computation in multigrid scheme is quite expensive. Hence, a comparative study between 
the two sets of solvers on exascale system would be valuable. In this paper, we report a comparative performance analysis 
between a FD code and a spectral code on a relatively smaller grid using 1024 compute cores of Shaheen II; here, the FD 
code yields comparable accuracy to the spectral code, but it is relatively slower. The above features need to be retested on 
much larger grids with many more processors.

Keywords  Exascale computing · Computational fluid dynamics · Fast Fourier transform · Finite difference method · 
Pseudo-spectral method

Introduction

High-performance computing (HPC) or supercomput-
ing is an interdisciplinary area of research. In addition to 
strong proficiency in the scientific domain and numerical 
algorithms, scientists and engineers working in HPC need 
strong programming skills, as well as good knowledge of 
state-of-the-art computing hardware and software. What 
makes it even more challenging is the rapid evolution of 
computer hardware and software technologies in a race 
towards exascale HPC systems. In this article, we will pre-
sent the challenges faced by computational fluid dynami-
cists while using state-of-the-art supercomputers. Here, we 
explore how some applications could possibly be scaled to 

exascale systems. This paper is based on the talk given by 
one of us, Verma, at the conference “Software Challenges 
to Exascale Computing (SCEC)” held in Delhi on 13–14 
December 2018.

Computational fluid dynamics, CFD in short, is a major 
field of science and engineering with wide applications in 
weather predictions and climate modelling; in modelling 
interiors and atmospheres of stars and planets; in modelling 
flows in rivers, oceans, and astrophysical objects (in galax-
ies, black holes); in designing and optimising automobiles 
and airplanes; in space technology; in petrochemical indus-
try; in engineering appliances such as turbines, engines, 
etc. [2, 14]. Also, hydrodynamic simulations are used for 
understanding and modelling turbulence, which remains an 
unsolved problem till date. These CFD simulations consume 
a large fraction of computing resources in major HPC sys-
tems of the world. Given this, it is important to design large-
scale CFD applications that can be deployed on futuristic 
exascale supercomputers.

The leading methods of CFD are finite difference (FD), 
finite volume, finite elements, spectral or pseudo-spectral, 
spectral elements, vortex method, etc., each of which has its 
advantages and disadvantages [2, 14]. For example, a spec-
tral method is very accurate, but it is useful for simulating 
flows only in idealised geometries such as cubes, cylinder, 

This article is part of the topical collection “Software Challenges 
to Exascale Computing” guest edited by Amit Majumdar and Ritu 
Arora.

 *	 Mahendra K. Verma 
	 mkv@iitk.ac.in
	 http://turbulencehub.org

1	 Department of Physics, Indian Institute of Technology 
Kanpur, Kanpur 208016, India

2	 Department of Mechanical Engineering, Indian Institute 
of Technology Kanpur, Kanpur 208016, India

http://orcid.org/0000-0002-3380-4561
http://orcid.org/0000-0002-1280-9881
http://orcid.org/0000-0001-7957-1727
http://orcid.org/0000-0001-7462-7680
http://orcid.org/0000-0001-9704-6686
http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-020-00184-1&domain=pdf


	 SN Computer Science (2020) 1:178178  Page 2 of 14

SN Computer Science

and spheres [8, 10]. In addition, its parallel version is inef-
ficient due to MPI_Alltoall communications of data. 
In comparison, finite-difference and finite-volume schemes 
are less accurate, but they can simulate flows in complex 
geometries. In addition, finite-difference and finite-volume 
schemes are more amenable to parallelisation compared to 
spectral method [14].

Simulation of complex flows, specially in turbulent 
regime, involves a large number of mesh points, going up to 
trillions. For example, a spectral simulation on a 81923 grid 
has approximately trillion variables (velocity and pressure 
fields at the mesh points). A major challenge in HPC is how 
to design CFD codes for exascale systems that will have 
millions of processors connected via a network of intercon-
nects. In this paper, we will illustrate several parallelisation 
strategies for FD and spectral methods, and contrast their 
performance and limitations.

We illustrate the above methods for incompressible 
Navier–Stokes equations, which are

where �(�, t) is the velocity field, p(�, t) is the pressure field, 
and � is the kinematic viscosity. We assume incompressible 
limit for which the density is constant. In the following two 
sections, we will describe the parallel complexity of FD and 
spectral techniques, as well as that of fast Fourier transform 
(FFT) which takes 70% to 80% of the total time of a spectral 
run. In FD codes, the pressure Poisson solver is a complex 
function that takes a significant fraction of the total time. In 
this paper, we skip many algorithmic details of these meth-
ods. The reader is referred to Anderson [2] and Ferziger 
et al. [14] for details.

Let us review some of the key CFD works connected to 
spectral and FD methods. There are several FFT libraries 
available at present. Multicore-based FFTs are FFTW [16], 
P3DFFT  [29], PFFT  [30], FFTK  [11], hybrid (MPI + 
OpenMP) FFT [27], and FFT based on Charm++ [23]. 
There are several GPU-based FFTs as well [12, 26]. McCla-
nahan et al. [26], Czechowski et al. [12], and Ravikumar 
et al. [31] have studied the communication complexity of 
3D FFT and its implications to exascale computing. These 
libraries have been scaled up to several hundred thousand 
processors. For examples, FFTK scales reasonably well 
up to 196,608 cores of Cray XC40 [11], and Ravikumar 
et al. [31]’s FFT scales up to 18,432 NVIDIA Volta GPUs 
of Summit. Refer to Aseeri et al. [4] for a summary of paral-
lel scaling of the above FFT libraries and some others.

There have been many large-scale pseudo-spectral sim-
ulations. Here we list only some of them. In 2002 itself, 

(1)
��

�t
+ � ⋅ ∇� = −∇p + �∇2

�,

(2)∇ ⋅ � = 0,

Yokokawa et al. [44] performed a turbulence simulation on 
40963 grid using Earth Simulator. Chatterjee et al. [11] and 
Verma et al. [40] performed simulations of hydrodynamic 
turbulence and turbulent thermal convection on 40963 grid. 
Yeung et al. [43] performed 81923 grid simulation using 
262,144 cores of Blue Waters, a Cray XE/XK machine. 
Ishihara et al. [22] executed a pseudo-spectral simulation 
on a 12,2993 grid. Another notable high-resolution spectral 
simulation is by Rosenberg et al. [32]. Recently, Ravikumar 
et al. [31] simulated incompressible Navier–Stokes equa-
tions on maximum of 18,4323 grid using 3072 nodes (or 
18,432 GPUs) of Summit.

There are many more numerical simulations using FD 
and finite-volume methods than those using pseudo-spectral 
method. A popular FD-based astrophysical code is ZEUS, 
which is detailed in Stone and Norman [35]. ENZO [9] and 
SpECTRE [24] are advanced versions of ZEUS, and they 
employ adaptive mesh refinement (AMR), etc. Some other 
major codes in this category are by Balsara [6] and Sam-
taney et al. [33]. Recently, Yang et al. [41] received the 2016 
Gordon Bell prize for a numerical simulation of atmospheric 
dynamics using 10 million cores. Due to lack of space, we 
apologetically skip many other works that merit mention 
here.

Many past codes were written in traditional computer lan-
guages, such as Fortran and C. However, a significant num-
ber of new codes are written in object-oriented languages, 
such as C++ and Java, and they exploit modern language 
features—objects, classes, templates, etc. Kale [23] designed 
a new parallel and efficient object-oriented language called 
Charm++ using asynchronous many-task (AMT) designs. 
Several petascale numerical applications—ChaNGa, 
NAMD, OpenAtom, XPACC, Enzo-P/Cello, SpECTRE—
have been written using Charm++. Some of these applica-
tions employ migratable-objects programming model and 
actor execution model. In addition, for fast development and 
efficiency, it is beneficial to employ efficient libraries, such 
as Blitz++, HDF5, cmake, etc. We have developed a spectral 
code TARANG and a FD code SARAS in C++ using many 
of the above features and libraries. We have also developed 
a FFT library, FFT Kanpur (FFTK), in C++. In this paper, 
we present several features and results of these codes.

In this paper, we present a bird’s-eye view of pseudo-
spectral and FD methods, and report results of a comparative 
study of two codes based on these methods. Our preliminary 
studies, performed on relatively smaller grids using 1024 
compute cores, are only illustrative; it needs to be extended 
to much larger grids using millions of processors. This paper 
also covers various issues faced by a computational scientist 
working in the area of CFD.

The outline of the paper is as follows: “Flow Solvers 
Based on FD Scheme” section contains a brief discussion 
on the FD method, while “Scaling Analysis of a Parallel 



SN Computer Science (2020) 1:178	 Page 3 of 14  178

SN Computer Science

FD Code” section briefs scaling analysis of the FD code 
SARAS. “Flow Solvers Based on Pseudo-Spectral Scheme” 
and “Parallel Computation of FFT” sections describe similar 
issues for the spectral code TARANG and FFTK. “Contrast-
ing the Performance of Pseudo-Spectral and FD Methods” 
section describes results of a comparative study between 
spectral and FD codes simulating decaying hydrodynamic 
turbulence. In “Challenges in Implementation of CFD Codes 
in Exascale Systems” and “Challenges Faced by an Applica-
tion Scientist for Using Large HPC Systems” sections, we 
discuss some of the challenges faced in CFD and in develop-
ing applications for large-scale HPC systems. We conclude 
in “Conclusions” section.

In the next two sections, we will describe the broad fea-
tures of a FD code, and its scaling for moderate grids.

Flow Solvers Based on FD Scheme

In a FD scheme, the real space domain is discretised; the grid 
points are labelled as (i, j, k), where i, j, and k are integers. 
The grid spacing is denoted by (�x,�y,�z) , hence, the real 
space coordinates for the grid point (i, j, k) is (i�x, j�y, k�z) . 
We discretise the field variables at N3 grid points.1

The grid points are divided evenly among p compute 
cores2 using pencil decomposition, as shown in Fig. 1. The 
compute cores themselves are divided equally along the x 
and y directions. Hence, each compute core has approxi-
mately (N∕

√
p) × (N∕

√
p) × N points, as shown in Fig. 1. 

In this figure, p = pxpy , with px = 4 and py = 4 , and the core 
indices vary from 0 to 15.

In Fig. 2, we illustrate how the data are shared among 
the compute cores. Each compute core shares data, such as 
the grid point (i�, j�, k�) of Fig. 2b. As a result of the shared 
data points, each compute core handles slightly more data 
than (N∕

√
p) × (N∕

√
p) × N . Sharing of data is important 

for derivative computation, as we describe below.
The derivatives are approximate in a FD scheme. For 

example, a formula for (�p∕�x)(i,j,k) in central difference 
scheme is

(3)
(
�p

�x

)

(i,j,k)

=
p(i+1,j,k) − p(i−1,j,k)

2�x
.

The above derivatives can be computed by a compute core 
if both the points, p(i+1,j,k) and p(i−1,j,k) , are present in the 
compute core. However, the derivatives cannot be com-
puted near the edges unless the data are shared among the 
neighbouring compute cores. This is the reason why some 
data near the edges need to be shared among the compute 
cores. The shared grid points are inside the orange-coloured 
regions of Figs. 2a, b; one of the shared points is illustrated 
as (i�, j�, k�) in Fig. 2b. After the computation of the deriva-
tives, the velocity field is time advanced. For example, in 
Euler’s scheme, Eq. (1) is time advanced as

where the right-hand-side (RHS) term � is

After computation of �(i,j,k)(t + �t) , as in Eq.  (4), each 
compute core shares the updated field variables at the four 
interfaces with four of its neighbouring compute cores. 
The amount of data to be shared is O(N2∕

√
p) , where O 

stands for “of the order of”. It is easy to see that in the above 
scheme, the total amount of data to be transmitted at every 
timestep is

In the above formula, the factors 4 × 4 are for the 4 field vari-
ables ( ux, uy, uz, p ) and for the 4 interfaces, respectively. Note 
however that some of these data exchanges occur within a 

(4)�(i,j,k)(t + �t) = �(i,j,k)(t) + (�t)�(i,j,k)(t),

(5)� = −� ⋅ ∇� − ∇p + �∇2
�.

(6)DFD ≈ 4 × 4 ×
N2

√
p
× p ≈ 16N2

√
p.

0 1 2

4

3

5

11

6 7

8 9

12

10

13 14 15

N/ p

N/
p

Fig. 1   Pencil decomposition of N3 grid points among p compute 
cores. The compute cores, numbered as 0 to 15, are divided equally 
among x and y axis. Each compute core has N∕

√
p × N∕

√
p × N grid 

points (apart from shared points of Fig. 2)

1  This simple arrangement is called collocated grid, in contrast to 
more complex one called staggered grid in which the velocity fields 
are represented at the face centres, and pressure at the centre of the 
cube. In this section, we assume collocated grid for simplicity.
2  In some CFD literature, compute cores are referred to as proces-
sors. In this paper, we reserve the word processor for a CPU that con-
tains many compute cores.



	 SN Computer Science (2020) 1:178178  Page 4 of 14

SN Computer Science

processor (that contains many cores), while some involving 
across the processors. Therefore, it is best to implement a 
hybrid version—OpenMP for the cores within a processor, 
and MPI for the communication across the processors; many 
FD codes have such arrangements.

For the pencil decomposition shown in Fig. 2, Torus-2 (T2) 
is the most efficient interconnect for inter-processor commu-
nications due to connections among the nearest neighbours. 
If sufficient number of ports (4 incoming and 4 outgoing) 
are available at compute nodes, direct connections among 
the neighbouring processors will minimise the communica-
tion time; this arrangement will be optimum for a small HPC 
cluster.

An implementation of a FD scheme involves many more 
steps. For example, the pressure for an incompressible flow is 
solved using a Poisson solver. We refer the reader to Ander-
son [2] and Ferziger [14] for further details.

In addition to the aforementioned data transmission cost, we 
also have significant computational cost. The computational 
cost of the multigrid Poisson solver is O(N3) ; the prefactor to 
N3 is quite large due to a series of restriction and prolongation 
operations [36]. Gholami et al. [17] showed that the compu-
tation cost of a parallel multigrid solver is comparable to or 
more than that of a parallel FFT. Thus, the total time taken by 
a FD-based flow solver depends on many factors, e.g. CPU 
speed, network bandwidth and topology, etc.

In the following section, we present the scaling analysis 
of a FD solver on a relatively smaller grid.

Scaling Analysis of a Parallel FD Code

In this section we present a scaling analysis of our FD code 
SARAS. This code has been developed using the object-
oriented features of C++. Our code is a general-purpose 

PDE (partial differential equation) solver for various kinds 
of boundary conditions (no-slip, free-slip, periodic, and 
mixture of these). The general functions offered in the 
code make it easy for a new user to add custom boundary 
and initial conditions.

At present, we employ central difference scheme on 
a staggered grid [21] for the derivative calculation. The 
staggered grid implementation, which is more complex 
than the collocated grid, is not detailed here. The reader is 
referred to Anderson [2] and Ferziger et al. [14] for details. 
Also, there is a plan to incorporate higher order schemes 
and Fourier continuation (see “Challenges in Implemen-
tation of CFD Codes in Exascale Systems” section) for 
the derivative computations. The solver uses semi-implicit 
method for pressure-linked equations (SIMPLE) algo-
rithm [28] along with Marker and Cell (MAC) method [21] 
to solve the Navier–Stokes equations. In this scheme, an 
intermediate (guessed) velocity field, u∗ , is computed 
iteratively using the velocity and pressure field at time t. 
The pressure correction is computed using this guessed 
velocity field by solving a Poisson equation. Finally, the 
velocity correction is calculated from the updated pressure 
field and added to u∗ to obtain ut+�t . A multigrid method is 
used for solving the pressure Poisson equation. We employ 
Blitz++ library [37] for efficient array operations.

For the scaling analysis, we simulate lid-driven cavity 
using the above FD solver on Shaheen II with a maximum 
of 1024 compute cores. Shaheen II of KAUST is a Cray 
XC40 system with 6174 compute nodes, each containing 
two Intel Haswell processors with 16 cores each. In total, 
the system has a total of 197,568 cores and 790 TB of 
memory. The compute nodes of Shaheen II are connected 
via Cray’s Aries high-speed network, which is based on 
a dragonfly topology [20]. The dragonfly is a hierarchical 

Fig. 2   a The orange-coloured 
regions exhibit the shared 
data among the compute 
cores (labelled as 0 to 15). b 
A zoomed view of the data 
decomposition in compute cores 
9 and 10. The grid point (i, j, k) 
belongs compute core 9 alone, 
while the grid point (i�, j�, k�) 
belongs to compute cores 9 
and 10

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15
(i, j, k)

(i′, j′, k′)

(a) (b)

N
p

9 10

N
p



SN Computer Science (2020) 1:178	 Page 5 of 14  178

SN Computer Science

topology that helps in reduction in number of long links 
and network diameter [25].

We performed seven simulations on a 5123 grid using 16, 
32, 64, 128, 256, 512, and 1024 cores. Keeping the number of 
OpenMP processes to be 16 for all the simulations, we varied 
the number of MPI processes from 1 to 64 with one MPI pro-
cess per node. The Reynolds number based on lid velocity is 
800. We ran the simulations till t = 0.1 nondimensional time 
using a time-step of 0.005.

In Fig. 3, we plot the inverse of total time taken (in sec-
onds) for each run versus the number of cores p used for the 
simulation. The data points follow the T−1 ∼ p curve to a good 
approximation. Thus, we claim that our FD solver exhibits 
strong scaling. We remark however that the present version of 
our code is not highly optimised, an exercise that is planned 
for the near future. We plan to study the scaling of multigrid 
Poisson solver and SARAS on all the cores of Shaheen II for 
simulating flows on as large as 81923 grid.

There are many FD and finite-volume codes for studying 
turbulence. Here we list several advanced codes. ZEUS [35] 
is a second-order accurate FD flow solver. ENZO [9] is an 
advanced code that employs block-structured adaptive mesh 
refinement for high spatial and temporal resolution. SpEC-
TRE [24] uses Charm++ for parallel implementation of dis-
continuation Galerkin method with a task-based parallelism 
model. SpECTRE shows excellent scaling up to 671,400 cores 
of Blue Waters. Yang et al.’s atmospheric code [41] too scales 
up to 10 million cores. Most of the past codes employ second-
order space and time discretisation.

In the next section, we discuss flow solvers based on 
pseudo-spectral scheme.

Flow Solvers Based on Pseudo‑Spectral 
Scheme

In Fourier space, Eqs. (1, 2) get transformed to

where � is the wavenumber, f̂  is the Fourier transform of 
field f, and N̂u,i is ith component of the nonlinear term:

The nonlinear term is computed using fast Fourier transform 
(FFT) to avoid convolution, whose computational complex-
ity is O(N6) for an N3 grid. Comparatively, the computation 
complexity of a FFT is O(N3 logN3) . The steps involved in 
the computation process are as follows (see Fig. 4) [8, 10, 
11, 39]: 

1.	 Compute �(�) from 𝐮̂(𝐤) using inverse FFT.
2.	 Compute ui(�)uj(�) in real space by multiplying the field 

variables at the space points.
3.	 Compute Fourier transform of ui(�)uj(�) using forward 

FFT that yields (̂uiuj)(�).
4.	 Compute 

√
−1

∑
j kj (̂uiuj)(�) , which is the desired N̂u,i(�)

.

Given N̂u,i(�) , the pressure field is easily computed using

The Fourier modes are time advanced using Euler or 
Runge–Kutta schemes. In Euler scheme,

where

(7)
d

dt
ûi(�, t) = −

√
−1kip̂(�, t) − N̂u,i(�) − 𝜈k2ûi(�),

(8)kiûi(�, t) = 0,

(9)N̂u,i =
√
−1

�
j

kj�ujui.

(10)p̂(�) =
√
−1

1

k2

�
j

kjN̂u,j(�).

(11)�(�, t + �t) = �(�, t) + (�t)�(�, t),

(12)�(�, t) = −�(�, t) −
√
−1�p(�, t) − �k2�(�, t).

Fig. 3   Scaling of FD solver for simulation of a lid-driven cavity using 
16, 32, 64, 128, 256, 512, and 1024 cores of Shaheen II. All the simu-
lations were performed on a 5123 grid

IFFT

(r) (r)
Mult FFT

 Mult 

̂ui(k)

ui(r) ̂ujui (k)

−1∑
j

kj ̂ujui (k)

−1kj

Fig. 4   The computation of the nonlinear term 
√
−1

∑
j kjûiuj(�) in a 

pseudo-spectral method



	 SN Computer Science (2020) 1:178178  Page 6 of 14

SN Computer Science

The FFT computations are also used for energy transfer 
computations [38].

The most complex computation in a spectral method is 
the FFT, whose parallel implementation is described in the 
next section.

Parallel Computation of FFT

As in P3DFFT library [29], for large N, we divide the data 
among p processors using pencil decomposition, as shown 
in Fig. 1. The forward and inverse FFT of the above data 
are defined as

(13)

f̂ (kx, ky, kz) =
1

N3

�
x,y,z

f (x, y, z) exp[−
√
−1(kxx + kyy + kzz)],

(14)

f (x, y, z) =
�

kx,ky,kz

f̂ (kx, ky, kz) exp[
√
−1(kxx + kyy + kzz)].

These operations involve sums along the three directions. 
Note that a FFT computation involves all the data, and hence 
it requires global communication among many cores. This is 
contrary to the FD scheme that involves data transfers among 
the neighbouring cores.

In Fig. 5, we illustrate the steps involved in forward trans-
form (real space to Fourier space). In this figure, the cores 
with same X or Y proc-coordinates form a set of commu-
nicators—MPI_COMM_ROW and MPI_COMM_COL. Note 
that the division of cores in Fig. 5 is slightly different from 
that of Fig. 1. Now, the steps involved in a FFT operation 
are [10, 11]: 

1.	 We perform one-dimensional (1D) forward FFT, r2c 
real-to-complex, along the Z-axis for each data column.

2.	 We perform MPI_Alltoall operation among the 
cores in a MPI_COMM_COL communicator to transform 
the data of Fig. 5a to the intermediate configuration of 
Fig. 5b. This process is repeated for all MPI_COMM_
COL communicators.

(d) (e) (f)

(a) (b) (c)

Fig. 5   Illustration of data and operations involved during a Forward 
FFT transform: a real space data, b intermediate configuration, c 
data in Fourier space. d, e, f Division of cores into prow and pcol with 
p = prow × pcol as in XY, XZ, and YZ projections, respectively. Here 

Nx = Ny = Nz = 12 . In the subfigures a, d, prow = 3 , pcol = 4 , thus 
each core contains Nx∕pcol × Ny∕prow × Nz = 3 × 4 × 12 data points. 
From Chatterjee et  al.  [11]. Reproduced with the permission from 
Springer Nature



SN Computer Science (2020) 1:178	 Page 7 of 14  178

SN Computer Science

3.	 After interprocess communication, we perform forward 
c2c (complex-to-complex) transform along the Y-axis 
for each pencil of the array.

4.	 We perform MPI_Alltoall operation among the 
cores in a MPI_COMM_ROW communicator to trans-
form the data of Fig. 5b to the Fourier configuration of 
Fig. 5c. This process is repeated for all MPI_COMM_
ROW communicators.

5.	 In the last step, we perform forward c2c transform 
along the X-axis for each pencil [see Fig. 5c].

The MPI_Alltoall communications are the most expen-
sive operations in the above. Let us estimate the amount of 
data being communicated in a FFT operation.

Assuming equal division of cores along the X and Y direc-
tions, each core has N3∕p data. In MPI_Alltoall com-
munication within a communicator, each core sends and 
receives 

√
p − 1 packets of N3∕(p

√
p) data. Hence, within 

each communicator, the amount of data exchanged is

Therefore, the total amount of data communicated across √
p communicator is

Hence, using Eqs. (6, 16) we deduce that the ratio of data 
communicated in FFT scheme and FD scheme is

which is large when N ≫ p . Since the communication time 
for the two methods is proportional to the amount of trans-
mitted data, the ratio of the corresponding communication 
times is expected to be

Equation (18) is only an estimate. The net communication 
cost of a FFT operation also includes latency. In addition, 
the MPI_Alltoall communications across distant pro-
cessors may require expensive multi-hops within an inter-
connect [12, 26]. Note that Eq. (18) is expected to work 
for large-grid size. McClanahan et al.  [26], Czechowski 
et al. [12], and Ravikumar et al. [31] performed detailed 
analysis of the communication performance in a parallel 
FFT.

The total time is a sum of communication and com-
putation costs. As we show below, communication cost 
dominates the computation cost in a FFT. In comparison, 

(15)D0 =
N3

p
√
p

√
p(
√
p − 1)

2

(16)DPS ≈
√
pD0 ≈ N3

(17)
DPS

DFD

∼
N√
p
,

(18)
Tcomm
PS

Dcomm
FD

∼
N√
p
.

FD-based flow solvers have multigrid Poisson equation, 
which is quite expensive computationally.

FFT computations by various researchers show that data 
communication among the processors takes much longer 
than the computation time [12, 29]. Here, we report the per-
formance of FFTK written by Chatterjee et al. [11]. Chat-
terjee et al. performed FFT on two parallel systems: Blue 
Gene/P (Shaheen I of KAUST), and Cray XC40 (Shaheen II 
of KAUST). The specification of Shaheen II is described in 
“Scaling Analysis of a Parallel FD Code” section. The Blue 
Gene/P supercomputer, an older system than Cray XC40, 
had 16 racks with each rack containing 1024 compute nodes. 
Each node contained a 32-bit 850-MHz quad-core PowerPC 
processor. Hence, the total number of cores in the system 
was 65,536. The Blue Gene/P nodes were connected via a 
three-dimensional Torus interconnect. Note that the above 
Blue Gene/P system has now been decommissioned.

For the runs on Cray XC40 for 7683 , 15363 , and 30723 
grids, Chatterjee et al. reported the computation time, com-
munication time, and total time taken for a pair of FFT com-
putations (forward and inverse). They employed a maximum 
of 196,608 cores, which are all the compute cores of 
Shaheen II. The computation time decreases linearly with 
number of cores, i.e. T−1

comp
∼ p . Chatterjee et al. character-

ised the communication time using an exponent �2 : 
T−1
comm

∼ n�2 , where n is the number of nodes. They found the 
exponent �2 for the three grids to be 0.43 ± 0.09 , 0.52 ± 0, 04 , 
and 0.60 ± 0.02 , respectively. Since the communication time 
dominates the computation time, the exponents for the total 
time are close to �2 . The above scaling is illustrated in Fig. 6. 
Figure 6c, d show, respectively, the strong and weak scaling 
of FFT.

In addition to the above scaling, Chatterjee et al. [11] 
estimated the efficiency of a FFT operation as the ratio of 
the effective FLOP (floating point operations) rating and 
the peak FLOP rating.3 The effective FLOP rating was esti-
mated as the ratio of the total number of floating point opera-
tions and the total time taken. For the three grids employed, 
Chatterjee et al. reported the efficiencies to be 0.013, 0.015, 
and 0.018, respectively. Such a low efficiency is due to the 
extreme data communication involved in FFT.

Chatterjee et al. [11] carried out similar analysis on 
maximum of 65,536 cores of Blue Gene/P, which is an 
older machine compared to Cray XC40. They tested FFT 
scaling for 20483 , 40963 , and 81923 grids using 1, 2, and 
4 processors per node. Surprisingly, Blue Gene/P yields 
better scaling—higher �2 and efficiency—than that on 

3  The usual definition of efficiency, Tserial∕(pTparallel) , is not suitable 
for large grids. This is because such large data cannot be accommo-
dated within a single processor, hence, a sequential run for a large 
grid is impossible.



	 SN Computer Science (2020) 1:178178  Page 8 of 14

SN Computer Science

Cray XC40. The peak efficiency of Blue Gene/P is 0.11, 
which is approximately 6 times the peak efficiency of Cray 
XC40. See Chatterjee et al. [11] for further details. Note 
that each core of Cray XC40 is around 100 times faster 
than that of Blue Gene/P; however, the interconnect speed 
of Cray XC40 has not improved in a similar proportion. 
Also, the Torus architecture of Blue Gene/P is better suited 
for MPI_Alltoall communications than the Dragonfly 
architecture of Cray XC40. These are the prime factors for 
the lower efficiency of FFT on Cray XC40 compared to 
Blue Gene/P. There could be other factors involving cache, 
memory access, etc., that needs to be examined carefully. 
A lesson to be learnt from this exercise is that efficiency 
of a code crucially depends on the speeds and architecture 
of processors, interconnects, memory, and cache. Hence, 
these issues are as important as the algorithms designed 
to solve the problems.

Let us contrast the above two results with those of Earth 
Simulator that operated in early 2000’s. Earth Simulator had 
640 vector processors that were connected to each other via 
a 640 × 640 crossbar switch [18, 19]. The crossbar intercon-
nect offers an efficient implementation of MPI_Alltoall 
communication with a single hop. This architecture led to 
a remarkably efficient implementation of a spectral code 
on the Earth Simulator. For example, the Earth Simulator 
achieved an efficiency of 64.9% for a global atmospheric 
circulation model, which is based on spectral method. Note 
that on Earth Simulator, the N3 data were divided into slabs 
because its total number of processors, 640, was much 
smaller than N = 4096.

The enhanced efficiency of spectral codes on the Earth 
Simulator indicates a need for specially-designed and novel 
hardware for FFT. We may generalise the efficient design 
of Earth Simulator to pencil decomposition, for which the 
optimum communication requires a fully connected network 
within each communicator. Such schemes are not available 
on Torus architecture or on Dragonfly architecture. We plan 
an approximate implementation of the above on Shaheen II.

The aforementioned discussion indicates that on mas-
sively parallel supercomputers, the most expensive opera-
tion is data communication, specially for communication-
intensive applications like FFT. It is often quoted that the 
“FLOPS are free, but data communications are expensive”. 
Hence, even though the algorithm of parallel FFT is well 
known, its efficient implementation requires optimisation on 
communications (often involving network topology). Such 
issues need to be explored for exascale computing that con-
sists of millions of processor and complex communication 
networks.

Before we close our discussion on FFT, we also report the 
comparative performance of FFTK and P3DFFT libraries. 
Chatterjee et al. [11] ran both these libraries on Blue Gene/P 
(Shaheen I) and observed their performance to be nearly 
the same. This is consistent with the fact that both these 
libraries employ the same algorithm. PFFT library too has 
comparable efficiency.

FFTs take 60% to 80% of the total compute time in a 
spectral code. Hence, the performance of a spectral code is 
close to that of FFT. This is in addition to input/output of 
large data, which is typically implemented using parallel 

Fig. 6   Scalings of FFTK on 
Cray XC40: a Plots of T−1

comp
 

versus p (number of cores) 
for 7683 , 15363 , and 30723 
grids. b Plots of T−1

comm
 versus n 

(number of nodes) using 
the above convention. The 
curves follow T−1

comm
∼ n�2 with 

�2 = 0.43 ± 0.09 , 0.52 ± 0, 04 , 
and 0.60 ± 0.02 for the 7683 , 
15363 , and 30723 grids. c 
Plots of T−1 versus p for 7683 , 
15363 , and 30723 grids exhibit 
strong scaling. d Plots of T−1 
versus p∕N3 exhibits weak 
scaling with an exponent of 
� = 0.72 ± 0.03 . Adopted 
from the figures of Chatterjee 
et al. [11]

(c)(a)

(b) (d)



SN Computer Science (2020) 1:178	 Page 9 of 14  178

SN Computer Science

I/O, e.g. HDF5 library. Refer to Chatterjee et al. [11] for the 
details on the scaling analysis of TARANG.

In the next section we compare the performance of the 
spectral and FD codes.

Contrasting the Performance 
of Pseudo‑Spectral and FD Methods

In this section we simulate decaying turbulence using spec-
tral and FD codes, and compare their results. We employ 
Taylor–Green vortex [34] as the initial condition for both 
the runs. That is,

where u0 = 1 and k0 = 1 . We perform our simulation in a 
periodic box of size 1 × 1 × 1 with a grid resolution of 5123 . 
These simulations were performed on Shaheen II, which is 
a Cray XC40 system. We perform both the simulations up 
to three nondimensional time units; here time is nondimen-
sionalised using L∕u0 , with L = 1 , as the time scale. The 
initial Reynolds number of the flow was Re = 1000 . The 
pseudo-spectral solver employs fourth-order Runge–Kutta 
scheme (RK4) for time integration. In “Scaling Analysis of 
a Parallel FD Code” section we described the time evolution 
scheme for the FD scheme. We choose constant dt = 0.001 
for time-stepping both the solvers. Also, we employ 1024 
compute cores for both the runs.

The two methods exhibit similar results. The tempo-
ral evolution of total kinetic energy ( ∫ d�(u2∕2) , plot-
ted in Fig. 7a, are nearly equal for both the runs, with 
the maximum difference between the two energies being 

(19)

�(x, y, z, t = 0) = u0

⎡⎢⎢⎣

sin(2�k0x) cos(2�k0y) cos(2�k0z)

− cos(2�k0x) sin(2�k0y) cos(2�k0z)

0

⎤⎥⎥⎦
,

approximately 3.4% . The flow profiles of the two runs are 
quite similar, as is evident from the density plots of Fig. 8 
that illustrates the vertical vorticities ( �z ) of the two runs 
at the horizontal mid-plane at t = 0 and t = 1 . We also 
compute the energy spectra for the two runs at different 
times and find them to be approximately equal, thus illus-
trating similar multiscale evolution of the flow fields for 
the two runs. See Fig. 7b for an illustration of the energy 
spectra of the two runs at t = 1 . Interestingly, for both the 
runs, the energy spectra in the inertial range are closer to 
Kolmogorov’s k−5∕3 prediction.

The above results indicate that the spectral and FD 
schemes yield similar results even though the FD method 
employs lower-order schemes for space and time discreti-
sation. This is an encouraging result considering that the 
derivative calculation by spectral method is much more 
accurate than the FD method [2, 14]. It may be possible that 
the spectral and FD flow solvers converge to the solution, 
at least for smooth flows. Possibly, the flow with Reynolds 
number of 1000 is resolved quite well by the FD scheme. 
We need to investigate this issue in detail using simulations 
on larger grids.

On Shaheen II, the spectral and FD codes took approxi-
mately 2803 and 11,657 s, respectively. Thus, the FD scheme 
is approximately four times slower than the spectral method. 
One would expect the FD scheme to be faster than the spec-
tral method due to communication issues. However, in the 
FD scheme, the multigrid pressure Poisson solver involves a 
series of restriction and prolongation operations. In contrast, 
FFT provides the pressure directly. The larger time taken by 
the FD solver may be due to these reasons. Resolution of 
these issues requires detailed analysis (communication and 
computation) of the two flow solvers, as well as accurate 
time complexity computation of Poisson solver. We plan 
to perform these computations in future. Note that Eq. (18) 

(a) (b)(a)

Fig. 7   For the flow simulation of decaying turbulence on a 5123 grid using 1024 processors with pseudo-spectral code TARANG (red lines) and 
FD code SARAS (black-dashed lines): a plot of the total energy Eu = ∫ d�u2∕2 versus t, b plot of Eu(k) versus k at t = 1



	 SN Computer Science (2020) 1:178178  Page 10 of 14

SN Computer Science

only reflects the data transfer complexity, that too, for large 
grids.

There are some past works that compare the above two 
methods. For example, Fornberg [15] simulated elastic wave 
equation using FD and spectral methods. He showed that for 
the same grid, spectral method provides much more accurate 
solution than the FD scheme, but the spectral method takes 
longer time than the FD method for the same grid. Note 
however that incompressible flow solvers take longer time 
than the elastic wave simulations due to the pressure Pois-
son solver. We need to analyze the time and space complexity 

of incompressible and compressible flow solvers, including 
the Poisson solver. For the same, we will compare the per-
formance of SARAS with other flow solvers, such as ENZO, 
OpenFOAM, etc.

In the next two sections, we present the challenges in CFD 
and in writing software for exascale systems.

Fig. 8   For the flow simulation of decaying turbulence on a 5123 grid 
using 1024 processors, vector plots of the velocity field and density 
plots of the vertical vorticity fields ( �z ) for the horizontal mid plane 
at z = 1∕2 : for the data from a, b pseudo-spectral code TARANG, 

and c, d FD code SARAS at t = 0 and t = 1 . These plots and Fig. 7 
show the good agreement between the pseudo-spectral and FD meth-
ods



SN Computer Science (2020) 1:178	 Page 11 of 14  178

SN Computer Science

Challenges in Implementation of CFD Codes 
in Exascale Systems

In previous sections, we summarised the complexities of 
FD and spectral codes, as well as that of FFT. Using these 
examples we can conclude that in modern supercomput-
ers, communication across interconnect is the one of the 
leading bottlenecks for the efficiency of CFD codes. For 
flow simulations on a smaller grid with smaller number of 
cores, both spectral and FD codes yield somewhat similar 
results. Here, the FD code is slower than the spectral code. 
However, for large grids with larger number of cores, a FD 
implementation may become more efficient than a spectral 
one. As described earlier, a FD code requires communica-
tion of much smaller dataset, that too among neighbouring 
processors. In comparison, the MPI_Alltoall com-
munications in a spectral code requires transfer of much 
larger datasets among distant processors. These commu-
nications may involve multi-hops within an interconnect. 
However, the pressure Poisson solver could be a bottleneck 
for the FD codes. Due to these competing performance 
bottlenecks for the two methods, we need to perform com-
parative studies of these schemes on large grids with many 
processors.

Spectral simulations could be performed efficiently 
on Earth Simulator due to the crossbar architecture of its 
interconnect. Modern parallel computers do not allow such 
possibilities because the crossbar architecture requires 
enormous connectivity ( n2 for n nodes). Note however that 
modern compute nodes offer 4 to 8 processors, each hav-
ing up to 64 cores. A fully connected network for limited 
number of such compute nodes may offer large efficiency 
for a FFT.

Recent spectral simulations employ a fraction of mil-
lion processors. However, to the best of our knowledge, 
the scaling studies on FFT have been performed up to 
maximum of 196,608 processors [11]; in this study, the 
scaling curves tend to saturate near 196,608 cores. Though 
FFT implementation on multi-GPUs remains a major chal-
lenge due to communication issues, there are significant 
successes in this front [12, 26, 31]. The upcoming HPC 
system Fugaku that hosts 150,000 nodes with 48/52 core 
CPUs connected via Tofu-D 6D torus network yielding 
60 Petabps injection bandwidth could be one of the ideal 
platforms for highly efficient FFT. Since a FFT involves 
communication data size to be of the order N3 , 60 Petabps 
injection bandwidth can facilitate efficient communication 
for (105)3 grid simulation, which is very significant. Note 
that Fugaku is projected to be one of the first exascale 
HPC systems.

FD and finite-volume schemes scale up to millions of 
cores. For example, Yang et al. [41] ran an atmospheric 

dynamics code on 10 million cores. The efficiencies of the 
explicit and implicit versions of their code are approxi-
mately  100% and  52%, respectively, which are much 
higher than those of spectral codes. As described earlier, 
higher efficiency for the above FD code is due to its lower 
communication complexity. Hence, FD and finite-volume 
schemes may be good candidates for exascale systems. As 
described in “Flow Solvers Based on FD Scheme” section, 
Torus interconnect could provide an optimum data transfer 
for FD codes.

Spectral elements  [13] and Fourier continuation [1] 
offer promises for exascale computing. These schemes 
provide flexibility of finite-element/FD methods, as well as 
spectral accuracy. In Fourier continuation, the real space 
domain (within a processor) is extended so as to make it 
periodic. After this, accurate derivatives are computed by 
the respective processor using FFT, as in “Flow Solvers 
Based on Pseudo-Spectral Scheme” and “Parallel Compu-
tation of FFT” sections. Since these derivatives are com-
puted using partial data (within the processor), they are not 
as accurate as those of pseudo-spectral method. But, there 
is an enormous saving in communication costs. In a spec-
tral-element method, the derivatives are computed using 
polynomials. Thus, codes based on spectral elements and 
Fourier continuation could scale well in exascale systems. 
Higher-order FD schemes, including compact schemes, 
yield reasonably accurate results that are comparable to 
those from spectral codes [7]. It is however claimed that 
for the same accuracy, the resolution required in a FD code 
is more than that in a spectral code [15]. Note however 
that our comparative study of turbulence simulations indi-
cate that FD codes yield similar accuracy as the spectral 
code, possibly due to the role played by iterations in Pois-
son solver, or due to sufficient resolution of the FD code; 
These issues need to be tested in future.

We also remark that shared-memory HPC systems with 
a hybrid implementation (OpenMP+MPI) provide inter-
esting possibilities for efficient implementation of both 
spectral and FD codes. Several existing codes including 
SARAS and that by Rosenberg et al. [32] employ such 
ideas.

Large-scale numerical simulations generate big data, 
extending up to tens and hundreds of terabytes. Exascale 
computing will generate even larger data. Hence, input/
output and processing of big data is an enormous chal-
lenge [3]. Parallel I/O libraries, such as HDF5 or Hadoop, 
are employed for handling large data. There are significant 
efforts for in-situ data processing, for example, for generat-
ing images and videos in real time, using libraries such as 
Paraview and Visit.

In the next section we detail some general computing 
issues in creating new scientific applications for large HPC 
systems.



	 SN Computer Science (2020) 1:178178  Page 12 of 14

SN Computer Science

Challenges Faced by an Application Scientist 
for Using Large HPC Systems

In this section, we will describe some of the difficul-
ties faced by an application scientist in HPC. The issues 
involved in modern HPC are quite complex requir-
ing expertise in software, hardware, and in application 
domain. On top of them, one needs to keep track of rapid 
development in hardware and software technologies, with-
out which it is impossible to implement the applications 
efficiently.

New processors have large number of cores and large 
caches. In addition, modern interconnects are much faster 
than those of previous generation. Exploitation of the 
above features requires hybrid codes—OpenMP imple-
mentation for the internal cores, and MPI implementation 
across nodes. As described in this paper, appropriate net-
work architecture and job scripts are required for efficient 
implementation of FFT and FD codes.

Regarding software, large codes need to be structured 
and flexible. They need to be readable and easy to mod-
ify so that new users/developers can expand the codes to 
newer applications. For the same, an application scientist 
needs to learn object-oriented programming. Also, the fea-
tures of parallel tools such as MPI and OpenMP are chang-
ing rapidly. In addition, new and efficient language tools 
and libraries, such as Charm++, are being created con-
stantly. Porting the codes to multi-GPUs and implementa-
tion of parallel I/O and version control are quite complex.

Lastly, some computational algorithms (e.g. optimum 
cache usage) are sometimes too complex for an applica-
tion scientist. It is difficult to find physics and engineering 
students who are skilled in these areas. On top of it, there 
is pressure to deliver results in science and engineering 
domain. Hence, one does not get sufficiently long time for 
developing efficient and robust codes.

The above difficulties could be alleviated in a cross-
disciplinary group having computational and application 
scientists. Such groups are being formed these days, and 
we hope that they will become common in near future.

We conclude in the next section.

Conclusions

Futuristic exascale computers offer immense opportunities 
as well as challenges to application scientists. In this paper, 
we present computational challenges in computational 
fluid dynamics (CFD). We present two generic schemes, 
FD and pseudo-spectral; the latter involves FFT. For FFT 
and pseudo-spectral codes, inter-node communication is 

the biggest bottleneck in a generic HPC system. Faster 
processors and relatively slower interconnects bring down 
the efficiency of a FFT library. Higher efficiency of FFT 
on Earth Simulator indicates that a fully connected net-
work could yield an enhanced FFT; such network however 
would be very expensive. Quantum Fourier Transform may 
offer an alternative, but its discussion is beyond the scope 
of this paper [42]

In comparison, FD codes require communication of 
smaller datasets across neighbouring processors. Incom-
pressible flow solvers however require pressure Poisson 
solver, which is quite expensive computationally. Due to 
less communication cost, such codes tend to scale well on 
large number of processors. Yang et al. [41] demonstrated 
how a finite-volume based atmospheric physics code could 
be ported to 10 million cores. For better efficiency of such 
codes, it is important that the processors communicate 
among themselves in a single hop, or in least possible hops. 
To test the efficacy of flow solvers, we need to perform com-
parative studies of the two methods on very large grids using 
millions of processors.

In this paper, we performed a preliminary set of runs to 
compare the performance of FD and spectral codes. We per-
formed these tests on a relatively smaller grid ( 5123 ) with 
smaller number of processors (up to 1024) and observed that 
the accuracy of the FD code is comparable to that of spectral 
code. For such runs, the FD code takes longer than the spec-
tral code. However, we need to perform very large resolution 
runs using many processors to ascertain this observation. 
In addition, we need to scale the Poisson solver that takes 
approximately half of the total time taken by a FD code. 
Such simulations and scaling analysis will be performed in 
near future. We will also perform comparative performance 
analysis of SARAS, OpenFOAM, ENZO-P/Cello, SpEC-
TRE, etc.

A complex application involves many subsystems. For 
example, weather prediction codes have the following com-
ponents: atmosphere, oceans, land, ice, etc. [5]. For such 
codes, it is advisable to simulate the subsystems in different 
sets of processors, and then communicate the data among 
the subsystems. Such software architecture would be robust, 
as well as less communication intensive. Such codes too will 
be suitable for exascale systems.

Finally, there are design and documentation issues for 
large codes. All the above concerns need to be kept in 
mind while developing large-scale CFD codes for exascale 
systems.

Acknowledgements  The authors thank all the co-developers of FFTK, 
TARANG, and SARAS. Some of the key contributors to the codes are 
Anando Chatterjee, Ravi Samtaney, Fahad Anwer, Gaurav Gautam, 
Abhishek Kumar, Mani Chandra, Akash Anand, and Awanish Tiwari. 
In addition, we thank Akash Anand, Samar Aseeri, Rooh Khurram, 
Bilel Hadri, V. Balaji, and Preeti Malakar for discussion and ideas; and 



SN Computer Science (2020) 1:178	 Page 13 of 14  178

SN Computer Science

to Ritu Arora, Venkatesh Shenoy, and Amitava Majumdar for organzing 
wonderful conference “Software Challenges to Exascale Computing 
(SCEC)”.

Funding  This study was funded by research Grants 6104-1 from Indo-
French centre (CEFIPRA), and STC/PHY/2018037 from Indian Space 
Research Organization. Our numerical simulations were performed 
on Blue Gene/P (Shaheen I) and Cray XC40 (Shaheen II) of KAUST 
supercomputing laboratory, Saudi Arabia, through Projects k1052 and 
k1416.

Compliance with Ethical Standards 

Conflict of interest  The authors declare that they have no conflict of 
interest.

References

	 1.	 Albin N, Bruno OP. A spectral FC solver for the compressible 
Navier–Stokes equations in general domains I: explicit time-
stepping. J Comput Phys. 2011;230(16):6248–70.

	 2.	 Anderson JD. Computational Fluid Dynamics: The Basics with 
Applications. New York: McGraw-Hill; 1995.

	 3.	 Arora R. Conquering Big Data with High Performance Comput-
ing. Berlin: Springer; 2016.

	 4.	 Aseeri S et al. Solving the Klein–Gordon equation using Fourier 
spectral methods: a benchmark test for computer performance. In: 
Symposium on High Performance Computing. Society for Com-
puter Simulation International 2015; p. 182–91.

	 5.	 Balaji V. Scientific computing in the age of complexity. XRDS. 
2013;19(3):12–7.

	 6.	 Balsara DS, Balsara D, Jongsoo K, Mac Low MM, Mathews GJ. 
Amplification of interstellar magnetic fields by supernova-driven 
turbulence. ApJ. 2004;617:339–49.

	 7.	 Balsara DS. Higher-order accurate space-time schemes for com-
putational astrophysics—Part I: finite volume methods. Liv Rev 
Comput Astrophys. 2017;3(1):1–138.

	 8.	 Boyd JP. Chebyshev and Fourier spectral methods. second revised 
ed. New York: Dover Publications; 2003.

	 9.	 Bryan GL, Norman ML, O’Shea BW, Abel T, Wise JH, Turk 
MJ, Reynolds DR, Collins DC, Wang P, Skillman SW, Smith B, 
Harkness RP, Bordner J, Kim J, Kuhlen M, Xu H, Goldbaum N, 
Hummels C, Kritsuk AG, Tasker E, Skory S, Simpson CM, Hahn 
O, Oishi JS, So GC, Zhao F, Cen R, Li Y, The Enzo Collaboration. 
ENZO: an adaptive mesh refinement code for astrophysics. ApJS. 
2014;211(2):19–52.

	10.	 Canuto C, Hussaini MY, Quarteroni A, Zang TA. Spectral meth-
ods in fluid dynamics. Berlin: Springer; 1988.

	11.	 Chatterjee AG, Verma MK, Kumar A, Samtaney R, Hadri B, 
Khurram R. Scaling of a fast Fourier transform and a pseudo-
spectral fluid solver up to 196608 cores. J Parallel Distrib Comput. 
2018;113:77–91.

	12.	 Czechowski K, Battaglino C, McClanahan C, Iyer K, Yeung PK, 
Vuduc R. On the communication complexity of 3D FFTs and 
its implications for Exascale. In: Proceedings of the 26th ACM 
international conference on Supercomputing. ACM, New York, 
2012; p. 205–14.

	13.	 Deville M, Fischer PF, Mund EH. High-order methods for incom-
pressible fluid flow. Cambridge: Cambridge University Press; 
2004.

	14.	 Ferziger JH, Peric M. Computational methods for fluid dynamics. 
3rd ed. Berlin: Springer; 2001.

	15.	 Fornberg B. The pseudospectral method: comparisons with 
finite difference for the elastic wave equation. Geophysics. 
1987;52:483–501.

	16.	 Frigo M, Johnson SG. The design and implementation of FFTW3. 
Proc IEEE. 2005;93(2):216–31.

	17.	 Gholami A, Malhotra D, Sundar H, Biros G. FFT, FMM, or mul-
tigrid? A comparative study of state-of-the-art poisson solvers 
for uniform and nonuniform grids in the unit cube. SIAM J Sci 
Comput. 2016;38(3):C280–306.

	18.	 Habata S, Umezawa K, Yokokawa M, Kitawaki S. Hard-
ware system of the Earth Simulator. Parallel Comput. 
2004;30(12):1287–313.

	19.	 Habata S, Yokokawa M, Kitawaki S. The earth simulator system. 
NEC Res Dev. 2003;44:21–6.

	20.	 Hadri B, Kortas S, Feki S, Khurram R, Newby G Overview of the 
KAUST’s Cray X40 System–Shaheen II. In: CUG2015 Proceed-
ings 2015.

	21.	 Harlow FH, Welch JE. Numerical calculation of time-dependent 
viscous incompressible flow of fluid with free surface. Phys Flu-
ids. 1965;8(12):2182–9.

	22.	 Ishihara T, Morishita K, Yokokawa M, Uno A, Kaneda Y. Energy 
spectrum in high-resolution direct numerical simulations of tur-
bulence. Phys Rev Fluids. 2016;1(8):9–299.

	23.	 Kale LV, Krishnan S Charm++: a portable concurrent object ori-
ented system based on c++. In: OOPSLA. vol 93. Citeseer, 1993; 
p. 91–108

	24.	 Kidder LE, Field SE, Foucart F, Schnetter E, Teukolsky SA, 
Bohn A, Deppe N, Diener P, Hébert F, Lippuner J, Miller J, Ott 
CD, Scheel MA, Vincent T. SpECTRE: a task-based discontinu-
ous Galerkin code for relativistic astrophysics. J Comput Phys. 
2017;335:84–114.

	25.	 Kim J, Dally WJ, Scott S, Abts D. Technology-driven, highly-
scalable dragonfly topology. In: 2008 international symposium 
on computer architecture. IEEE 2008, p. 77–88.

	26.	 McClanahan C, Czechowski K, Battaglino C, Iyer K, Yeung PK, 
Vuduc R. Prospects for scalable 3d ffts on heterogeneous exascale 
systems. In: ACMIEEE conference on supercomputing, SC 2011.

	27.	 Mininni PD, Rosenberg DL, Reddy R, Pouquet AG. A hybrid MPI-
OpenMP scheme for scalable parallel pseudospectral computa-
tions for fluid turbulence. Parallel Comput. 2011;37(6–7):316–26.

	28.	 Patankar SV. Numerical heat transfer and fluid flow. London: Tay-
lor and Francis; 1980.

	29.	 Pekurovsky D. P3DFFT: a framework for parallel computations 
of fourier transforms in three dimensions. SIAM J Sci Comput. 
2012;34(4):C192–209.

	30.	 Pippig M, Potts D. Scaling parallel fast Fourier transform on 
bluegene/p. In: Jülich BlueGeneP Scaling Workshop. Jülich 
BlueGene/P Scaling Workshop; 2010.

	31.	 Ravikumar K, Appelhans D, Yeung PK. GPU acceleration of 
extreme scale pseudo-spectral simulations of turbulence using 
asynchronism. In: SC ’19. New York: ACM; 2019, p. 1–22.

	32.	 Rosenberg DL, Pouquet AG, Marino R, Mininni PD. Evidence 
for Bolgiano–Obukhov scaling in rotating stratified turbulence 
using high-resolution direct numerical simulations. Phys Fluids. 
2015;27(5):055105.

	33.	 Samtaney R, Pullin DI, Kosović B. Direct numerical simulation 
of decaying compressible turbulence and shocklet statistics. Phys 
Fluids. 2001;13:1415–30.

	34.	 Schranner F, Hu X, Adams N. Long-time evolution of the incom-
pressible three-dimensional Taylor–Green vortex at very high 
Reynolds number. In: Proceedings of the eighth international 
symposium on turbulence and shear flow phenomena (TSFP-8), 
Poitiers, France; Aug 2013.

	35.	 Stone JM, Norman ML. ZEUS-2D: a radiation magnetohydro-
dynamics code for astrophysical flows in two space dimensions. 



	 SN Computer Science (2020) 1:178178  Page 14 of 14

SN Computer Science

2. The magnetohydrodynamic algorithms and tests. ApJS. 
1992;80:791.

	36.	 Trottenberg U, Oosterlee CW, Schüller A. Multigrid. San Diego: 
Academic Press; 2001.

	37.	 Veldhuizen TL. Arrays in blitz++. In: Caromel D, Oldehoeft RR, 
Tholburn M, editors. Computing in object-oriented parallel envi-
ronments. Berlin: Springer; 1998. p. 223–30.

	38.	 Verma MK. Energy trasnfers in fluid flows: multiscale and spectral 
perspectives. Cambridge: Cambridge University Press; 2019.

	39.	 Verma MK, Chatterjee AG, Yadav RK, Paul S, Chandra M, 
Samtaney R. Benchmarking and scaling studies of pseudospec-
tral code Tarang for turbulence simulations. Pramana J Phys. 
2013;81(4):617–29.

	40.	 Verma MK, Kumar A, Pandey A. Phenomenology of buoyancy-
driven turbulence: recent results. New J Phys. 2017;19:025012.

	41.	 Yang C, Xue W, Fu H, You H, Wang X, Ao Y, Liu F, Gan L, Xu 
P, Wang L, Yang G, Zheng W. 10M-core scalable fully-implicit 

solver for nonhydrostatic atmospheric dynamics. In: International 
conference for high performance computing, networking, storage 
and analysis. IEEE Press, IEEE; Sep 2016.

	42.	 Yanofsky NS, Mannucci MA. Quantum computing for computer 
scientists. Cambridge: Cambridge University Press; 2008.

	43.	 Yeung PK, Zhai XM, Sreenivasan KR. Extreme events in compu-
tational turbulence. PNAS. 2015;112(41):12633.

	44.	 Yokokawa M, Itakura K, Uno A, Ishihara T. 16.4-Tflops direct 
numerical simulation of turbulence by a fourier spectral method 
on the earth simulator. In: ACM/IEEE 2002 conference. IEEE; 
2002.

Publisher’s Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.


	Challenges in Fluid Flow Simulations Using Exascale Computing
	Abstract
	Introduction
	Flow Solvers Based on FD Scheme
	Scaling Analysis of a Parallel FD Code
	Flow Solvers Based on Pseudo-Spectral Scheme
	Parallel Computation of FFT
	Contrasting the Performance of Pseudo-Spectral and FD Methods
	Challenges in Implementation of CFD Codes in Exascale Systems
	Challenges Faced by an Application Scientist for Using Large HPC Systems
	Conclusions
	Acknowledgements 
	References




