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Abstract
Restricted Boltzmann machine (RBM) is a generative stochastic neural network that can be applied to collaborative filter-
ing technique used by recommendation systems. Prediction accuracy of the RBM model is usually better than that of other 
models for recommendation systems. However, training the RBM model involves Markov-Chain Monte Carlo method, 
which is computationally expensive. In this paper, we have successfully applied distributed parallel training using Horovod 
framework to improve the training time of the RBM model. Our tests show that the distributed training approach of the 
RBM model has a good scaling efficiency. We also show that this approach effectively reduces the training time to little over 
12 min on 64 CPU nodes compared to 5 h on a single CPU node. This will make RBM models more practically applicable 
in recommendation systems.
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Introduction

The restricted Boltzmann machines (RBM) are generative 
stochastic neural networks that were first proposed in 1980s 
by Smolensky et al. [11] and intensively studied by Hinton 
et al. [6, 7, 9]. Theoretically, RBM has one visible layer 
and several hidden layers (one hidden layer in most cases), 
with mutual connections between neurons in different layers 
while connections between neurons within the same layer 
are prohibited, as is shown in Fig. 3. Connections between 
neurons are determined in a way such that the “energy” for 
the system—consisting of all these neurons—is minimal. 
As such, RBM is an energy-based bidirectional graphical 
model, whose principles and topologies are quite differ-
ent from those of other neural networks such as multilayer 

perceptrons (MLP), convolutional neural networks (CNN), 
recurrent neural networks (RNN), etc.

One of the popular applications of RBM is collaborative 
filtering for recommendation system [8], where the algo-
rithm needs to predict users’ interest levels for products that 
they have not purchased based on the observed ratings for 
other products. RBM model outperforms other models for 
collaborative filtering (e.g., singular value decomposition 
(SVD) model [12]) by predicting with better accuracy [8]. 
Considering large data sets with number of users and prod-
ucts (typically more than 100,000), the number of ratings 
involved is at the scale of 1012 or even bigger, which also 
requires a large memory space to train RBM models. Also, 
the training algorithm involves Markov Chain Monte Carlo 
(MCMC) step, which is very computationally expensive. 
Hence, distributed training is a necessity in order to speed 
up the training process and practically leverage RBM models 
for recommendation problems in e-commerce, retails, online 
entertainment, etc.

One efficient algorithm to train the RBM is the contrastive 
divergence (CD) algorithm initially proposed by Hinton et al. 
[1]. The basic idea behind CD algorithm is to approximately 
draw samples from a joint distribution via sampling from a 
Markov chain with up to a limited number of steps. CD algo-
rithm has been shown to work well even with just a few steps 
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of the Markov chain [8]. However, for a large-scale training 
data, it still takes a long time for the RBM model to converge 
to a good solution. Hence, it is necessary to explore parallel 
training techniques to reduce the time to solution. This would 
make RBMs to be practically applied for collaborative filter-
ing in recommendation systems. This would also be useful 
in recommendation systems where there is a need to retrain 
the model frequently, and where training is constrained by the 
available time. In this paper, we describe a parallelized training 
approach using the Horovod [10] framework to significantly 
scale-up RBM models with large-scale data sets for collabora-
tive filtering in recommendation systems.

The paper is organized as follows. In Sect. 3, the model 
architecture and mathematical principles of RBM are pre-
sented. Section 4 details the learning algorithm for RBM. Sec-
tions 5 and 6 describe how to perform parallelized training of 
RBM model and how to make predictions with a trained RBM 
model. In Sect. 7, some experimental results with the Mov-
ieLens data set [5] are presented. In the end, Sect. 8 presents 
our conclusions.

Restricted Boltzmann Machine Versus 
Singular Value Decomposition

Alternative approaches to RBM have been used in the past for 
the purpose of collaborative filtering, and require less compu-
tational processing. While RBMs require more training effort, 
they can produce higher quality recommendations than other 
traditionally used approaches. One such approach is singular 
value decomposition (SVD) [14].

Before testing parallelized training of RBM model, we first 
train an RBM model with a small subset of the MovieLens 
data and compare its performance with that of a model pro-
duced using the SVD method. The small data set has 84,313 
ratings for 9557 movies rated by 248 users. In this test, the first 
30 ratings for each user is held from the data as test set and the 
remaining part is used as training set.

For SVD method, the basic idea is to keep only a portion of 
singular values of the rating matrix

and reconstruct R via

Here � contains all the singular values of R and �′ is 
obtained by truncating � and keeping only the first q lead-
ing singular values. Then, the predicted rating for movie m′ 
by user n′ is defined as

(1)R = U�V
T

(2)R
� = U��

V
T .

(3)r�
n�m� = R

�

n�m� .

Readers may refer to [12] for more details on SVD method 
and its variations.

Since q is a hyper-parameter for SVD method, we tested 
SVD models with different values of q and computed their 
performance metric RMSE (Rooted Mean Square Error). 
The result is shown in Fig. 1. We can observe a distinct 
inflection point in the RMSE around q = 10 , after which 
normalized error continues to asymptotically increase.

The comparison of prediction accuracy for SVD with 
q = 10 and RBM is shown in Fig. 2. The RBM model has 
100 neurons in hidden layer ( F = 100 ) and is trained with 
global batch size of 50 for 100 epochs with a learning rate of 
0.001 on 2 processes in a single compute node. As is shown 
in Fig. 2, RMSE value for SVD model with the optimal q 
value ( q = 10 ) is still way larger than that for RBM model. 

Fig. 1  RMSE for SVD models with different q values

Fig. 2  Prediction accuracy comparison (SVD vs. RBM)
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In reality, RBM model produces more accurate predictions 
than SVD model in most cases.

While prediction accuracy of RBM model is usually 
higher than that of SVD model, training an RBM model 
could be computationally slow. This motivated us to explore 
on parallelized training of RBM model.

Restricted Boltzmman Machine 
for Collaborative Filtering

Usually, a RBM is a bidirectional network with one vis-
ible layer and one hidden layer. The neurons in visible and 
hidden layers are mutually connected, while connections 
between neurons within the same layers are restricted, as 
is shown in Fig. 3. If we try to predict the users’ ratings for 
some products using the collaborative filtering, the visible 
layer represents the ratings in a 5-way 0’s and 1’s as shown 
in Fig. 4.

Suppose, we have N users and M products. The N users 
have rated a portion of the M products, with rating val-
ues between 1 and K ( K = 5 for the case in Fig. 4). For 

example, if a visible neuron is in the state of [0, 0, 0, 1, 0], 
it suggests that the user has provided a rating value of 4 
for this product. The visible layer has M neurons, with 
each corresponding to one of the M products. The states 
of hidden neurons are binary (0 or 1).

RBM is an energy-based model. For the system 
(V,H) (V = {vk

i
},H = {hj}) , the “energy” is defined as

where Wk
ij
 models the interactions between visible and hid-

den layers, while bk
i
 and cj are bias terms for visible and 

hidden layers and F denotes the number of neurons in the 
hidden layer. The joint probability distribution is

where Z =
∑

V

∑
H
p(V,H) is the normalization factor. It can 

be shown that [8, 13]

and

where 
∑
(x) =

1

1+exp(−x)
 is the sigmoid function. Also, in [13] 

it was shown that

where � = (Wk
ij
, bk

i
, cj) are the parameters for RBM model, 

and

where H = (h1, h2,… , hF) . A detailed description of RBM 
can be found in [13].

(4)

E(V,H) = −

m∑

i=1
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j=1
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i
Wk

ij
hj

−

m∑
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vk
i
bk
i
−
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j=1

hjcj

(5)p(V,H) =
exp(−E(V,H))

Z

(6)
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+
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ij
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+
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∑
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i
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ij
)

(8)p(V;�) =
f (V;�)
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(9)
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h1,h2,…,hF

exp(−E(V,H))

=
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1∑

hj� =0

exp(
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i=1
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k=1
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i
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ij
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i
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i
+
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hjcj)

Fig. 3  RBM architecture

Fig. 4  RBM architecture (5-way softmax in visible layer)
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Learning Algorithm for RBM

Suppose, we have observed data {Vn}
N
n=1

 , then the likelihood 
with respect to such data is

To maximize L({Vn}
N
n=1

,�) is equivalent to minimizing the 
following objective function

Learning via Gradient Descent

The gradient of G with respect to � is

The second term is the expectation of log(f (V;�)) with 
respect to observed data {Vn}

N
n=1

 . For the first term, we have

That is, � log(Z(�))

��
 is the expectation of � log f (V,�)

��
 with respect 

to distribution p(V;�) . From Eq. 9, we have

(10)
L({Vn}

N
n=1

,�) = �N
n=1

p(Vn;�)

= �N
n=1

f (Vn;�)

Z(�)
.

(11)

G({Vn}
N
n=1

;�) = −
1

N
log(L({Vn}

N
n=1

;�))

= log(Z(�)) −
1

N

N∑

n=1

log(f (Vn;�)).

(12)

�G

��
=

� log(Z(�))

��
−

1

N

N∑

n=1

� log(f (Vn;�))

��

=
� log(Z(�))

��
−

⟨
� log(f (V;�))

��

⟩

V∈{Vn}
N
i=n

.

(13)

� log(Z(�))

��
=

1

Z(�)

�Z(�)

��

=
1

Z(�)

∑

V

�f (V,�)

��

=
∑

V

f (V;�)

Z(�)

1

f (V,�)

�f (V,�)

��

=
∑

V

p(V;�)
� log f (V,�)

��

=

⟨
� log f (V;�)

��

⟩

p(V;�)

.

Similarly, it can be shown that

Then, the gradient descent learning algorithm for RBM is

where � is learning rate and ⟨⋅⟩data , ⟨⋅⟩model are the expecta-
tions corresponding to observed data and the true probability 
distribution from RBM model, respectively.

Contrastive Divergence Algorithm with MCMC

Usually, p(V;�) is intractable since Z(�) is unknown. 
Hence, it  is infeasible to analytically compute 
⟨vk

i
hj⟩model, ⟨vki ⟩model and ⟨hj⟩model in the learning algorithm 

(17), (18) and (19). In practice, Monte Carlo method is 
applied to compute these expectations approximately, 
which uses sample mean from a large-size sampling set 
for the joint distribution p(V,H) to estimate the theoreti-
cal expectations. Since p(V,H) is also unknown, it is also 
infeasible to draw samples from it directly.

To resolve this difficulty, Hinton et al. [6] proposed the 
contrastive divergence algorithm which utilizes Gibbs 
sampling technique. It is a MCMC algorithm, to draw 
samples that asymptotically follow the joint distribution 
p(V,H).

(14)

� log f (V;�)

�Wk
ij

=
1

f

�f (V;�)

�Wk
ij

=
1

f

F∑
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1∑

hj� =0
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i
hjexp(
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F∑

j=1

K∑

k=1

vk
i
Wk

ij
hj

+

m∑

i=1

K∑

k=1

vk
i
bk
i
+

F∑
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hjcj)

=
1

f
vk
i
hjf

= vk
i
hj.

(15)
� log f (V;�)

�bk
i

= vk
i
,

(16)
� log f (V;�)

�cj
= hj.

(17)Wk
ij
← Wk

ij
+ �(⟨vk

i
hj⟩data − ⟨vk

i
hj⟩model),

(18)bk
i
← bk

i
+ �(⟨vk

i
⟩data − ⟨vk

i
⟩model),

(19)cj ← cj + �(⟨hj⟩data − ⟨hj⟩model))

Fig. 5  Gibbs sampling
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Figure 5 illustrates the Gibbs sampling algorithm. The 
algorithm generates a Markov chain with known condi-
tional probabilities p(H|V) and p(V|H) . When the chain 
is long enough, samples at the end of the chain will be 
theoretically close enough to true samples drawn from 
the unknown joint distribution p(V,H) . In reality, only a 
few Gibbs steps are enough to generate qualified samples 
that are needed to estimate the expectations in the learn-
ing algorithm (17), (18) and (19). Readers may refer to 
[4] for more details on MCMC and Gibbs sampling.

Contrastive Divergence Algorithm for Training RBM

The contrastive divergence learning algorithm for train-
ing RBM via T-step Gibbs sampling is summarized in 
Eqs. (20), (21) and (22).

Parallelized Training

The learning algorithms (20), (21) and (22) are paral-
lel by nature. Suppose, we have a batch of training data 
{(vm)

k
i
, (hm)j}

N
m=1

 where (vm)ki  and (hm)j are vk
i
 and hj for the 

mth data point in the training set. If N can be evenly divided 
into P parts with N = Pn , then

(20)Wk
ij
← Wk

ij
+ �(⟨vk

i
hj⟩data − ⟨vk

i
hj⟩T−stepGibbssamples),

(21)bk
i
← bk

i
+ �(⟨vk

i
⟩data − ⟨vk

i
⟩T−stepGibbssamples),

(22)cj ← cj + �(⟨hj⟩data − ⟨hj⟩T−stepGibbssamples).

⟨vk
i
hj⟩data =

1

N

N�

m=1

(vm)
k
i
(hm)j

=
1

Pn

Pn�

m=1

(vm)
k
i
(hm)j

=
1

P
[
1

n

n�

m=1

(vm)
k
i
(hm)j

+
1

n

2n�

m=n+1

(vm)
k
i
(hm)j +⋯

+
1

n

Pn�

m=(P−1)n+1

(vm)
k
i
(hm)j)].

Similarly, it can be shown that other formulas for computing 
expectations in algorithms (20), (21) and (22) are parallel 
with respect to training data. So, we can distribute the com-
putations in the algorithms over P processes, as is illustrated 
in Fig. 6.

We are performing distributed training of the RBM 
with the Horovod framework developed by Uber [10]. 
Horovod uses a disrtibuted optimizer strategy which 
wraps standard tf.Optimizer. This wrapper then 
uses the MPI allreduce or allgather operation (based on 
whether encoding is as dense tensors or sparse Index-
Slice, see [2]) to accumulate gradient values before 
applying gradients to model weights. In essence, Horovod 
is increasing the effective batch size, and performing a 
lock-step backpropagation with the accumulated gradients 
from all MPI processes.

Inference

After an RBM model is trained (i.e., Wk
ij
, bk

i
 and cj have been 

learned from training data), we can make prediction for a user’s 
potential rating for a given item via p(V;�) . Let 
V

obs = {(vm)
k
i
}i∈I,k∈K  be the observed ratings for user m, where 

I,K  are sets for indices i, k for which a rating of k for item i is 
observed (for example, if a rating 4 is observed for item 221, then 
4 is an element in K  and 221 is an element in I  ). Given Vobs , the 
probability that a user will rate item i′ with score k′ is:

Fig. 6  Parallel computing of gradients
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where g({vk
i
}i∈I,k∈K;{W

k
ij
}) =

∑
i∈I

∑
k∈K

vk
i
Wk

ij
 . Then the pre-

dicted rating that user m will give to item i′ is the one with 
the highest S value, i.e.,

Readers can refer to [8] for more details about making pre-
dictions with RBM model.

Experiments

In this section, we test parallelized training of RBM model 
with the MovieLens data [5]. The data set has 27,753,444 
ratings for M = 53,889 movies by N = 283,228 users. A 
piece of this data is shown in Table 1.

The rating matrix R ∈ �
N×M is defined as

with rnm being the rating score of user n for movie m. If rnm 
is not observed yet, then, we let rnm = 0 in the rating matrix.

p((v)k
�

i�
= 1�Vobs)

=
1

p(Vobs)
p({(v)k

�

i�
}
�

V
obs)

∝ p({(v)k
�

i�
}
�

V
obs)

=
1

Z

�

H

exp[

F�
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⋃

I
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⋃

K
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�
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K
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= exp[vk
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exp[
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= exp[vk
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�
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(1 + exp[g({vk
i
}i∈I,k∈K;{W

k
ij
}) + vk

�

i�
Wk�

i�j
+ cj])

= S(k�;i�,Vobs)

(23)k0 = argmax({S(k�;i�,Vobs)}k�∈{1,…,K}).

(24)R = (rnm)n∈{1,…,N};m∈{1,…,M}

Parallelized Training of RBM Model

The data we used to test parallelized training of RBM model 
are obtained by selecting observed ratings from users who 
have rated at least 100 different movies. The selected data 
set contains 21,595,144 ratings for 53,324 movies by 68,342 
users. Similarly, 30 of the ratings from each user is held as 
test data. The tests were run on the Zenith supercomputer at 
Dell EMC HPC & AI Innovation Lab [3].

Strong Scaling

To test the performance of strong scaling for RBM model, 
we fix the global batch size to be 512. Then, we train the 
model for one epoch with 1, 2, 4,… , 64 nodes with 1 process 
per node. This means that each MPI process will have a local 
batch size of 512, 256, 128,… , 8 , respectively for each test. 
Time-to-train and scaled speedup are shown in Figs. 7 and 
8, respectively.

As can be seen from Figs. 7 and 8, parallelizing the train-
ing scaled close to ideal out to 8 nodes ( 23 ), and began to 
taper off after that. This is due to the nature of strong scaling. 
Since strong scaling keeps the total problem size fixed (in 

Table 1  MovieLens data 
samples

UserId MovieId Rating

1 1 4.0
1 3 4.0
1 6 4.0
1 47 5.0
1 50 5.0

Fig. 7  Time to solution (strong scaling)
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this case, the global batch size, which is fixed at 512 recom-
mendations), larger process counts are dramatically reducing 
the number of recommendations processed per MPI process. 
At 512 nodes, each node is processing only 8 recommenda-
tions before global communication occurs, meaning the ratio 
of computation to communication is too low to maintain 
efficient parallel performance.

Weak Scaling

For weak scaling test, the batch size for each node is fixed 
to 100 recommendations. We run the test for one epoch for 
1, 2, 4,… , 64 nodes. This means that the global batch (for 
the entire run) is 100, 200, 400,… , 6400 recommendations, 
respectively. Time-to-train and scaled speedup are shown in 
Figs. 9 and 10 respectively.

Time to train on 1 node is slightly lower for our weak 
scaling tests than for our strong scaling tests (see Figs. 7 
and 8, respectively). This is due to the larger batch size 

with the strong scaling test on one node. Scaling is 
extremely efficient for the weak scaling case, staying very 
close to ideal performance (linear scaling, see Fig. 10). 
While batch size can have an effect on resulting model 
accuracy, this effect is data set dependent and many mod-
els can be trained with very large batches [2].

Prediction Accuracy

We trained an RBM model with global batch size 512 over 
8 processes for 100 epochs. The model has 100 neurons 
in the hidden layer. The trained model was then applied 
to make predictions for 10, 963 ratings in the test data set. 
The RMSE value is about 1.62. In future work, we will 
train RBM models with larger global batch size and test 
the prediction accuracy for them.

In order to evaluate whether the accuracy of the result-
ing model is affected by the parallelization process, we also 
trained RBM model with global batch size 128 with multiple 
processes ranging from 1 to 8 for 100 epochs. The network 
has 100 neurons in the hidden layer. The data set used was a 
subset of 100,000 recommendations extracted from the full 
movie lens data. We chose not to use the full data set as the 
time required to fully train the network using a single pro-
cess would have been prohibitively high. For 100 epochs, the 
time to train the single-process model using the full data set 
would have been approximately 20 days (assuming 17,902 
seconds per epoch—see Fig. 7).

The results shown in Fig. 11 clearly indicate that even 
as we parallelize the RBM model the resulting model 
accuracy does not exhibit significant variation. RMSE 
after 100 epochs for single process non-distributed RBM 
model is 1.27 where as RMSE for 8 process distributed 

Fig. 8  Scaled speedup for strong scaling (1 epoch)

Fig. 9  Time to solution (weak scaling)

Fig. 10  Scaled speedup for weak scaling (1 epoch)
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RBM model is 1.29, with a standard deviation across all 
four runs of � = 0.007757151.

Conclusion and Future Work

In this paper, we studied the principles of RBM model and par-
allelized training with Horovod framework for it. As is shown 
in the paper, parallelized training can significantly shorten the 
training time. Only in this way, RBM models can be practically 
applied for collaborative filtering in recommendation systems.

Experiments using our technique to train a Restricted 
Boltzmann Machine with the MovieLens data set showed 
that both strong and weak scaling could be maintained out 
to 64 compute nodes while producing quality models in 
accordance with the scale of the data set used. Future work 
will focus on training at greater scale using larger data sets.

Going forward, we also intend to explore additional data 
sets in order to show better generality of the approach, as well 
as evaluate the performance on other hardware architectures, 
such as GPUs and special-purpose neural network chips.

Source Code Available

The code for this research is available on GitHub at: https ://
githu b.com/delle mc-hpc-ai/rbm-recom menda tion.
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Fig. 11  RMSE comparison for multiple processes (100 epochs)
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