
Vol.:(0123456789)

SN Computer Science (2020) 1:165
https://doi.org/10.1007/s42979-020-00170-7

SN Computer Science

ORIGINAL RESEARCH

Parallelized Training of Restricted Boltzmann Machines Using
Markov‑Chain Monte Carlo Methods

Pei Yang1 · Srinivas Varadharajan1 · Lucas A. Wilson1 · Don D. Smith II1 · John A. Lockman III1 · Vineet Gundecha1 ·
Quy Ta1

Received: 12 August 2019 / Accepted: 16 April 2020 / Published online: 12 May 2020
© Springer Nature Singapore Pte Ltd 2020

Abstract
Restricted Boltzmann machine (RBM) is a generative stochastic neural network that can be applied to collaborative filter-
ing technique used by recommendation systems. Prediction accuracy of the RBM model is usually better than that of other
models for recommendation systems. However, training the RBM model involves Markov-Chain Monte Carlo method,
which is computationally expensive. In this paper, we have successfully applied distributed parallel training using Horovod
framework to improve the training time of the RBM model. Our tests show that the distributed training approach of the
RBM model has a good scaling efficiency. We also show that this approach effectively reduces the training time to little over
12 min on 64 CPU nodes compared to 5 h on a single CPU node. This will make RBM models more practically applicable
in recommendation systems.

Keywords Restricted Boltzmann machine · Distributed training · Collaborative filtering · Recommendation systems

Introduction

The restricted Boltzmann machines (RBM) are generative
stochastic neural networks that were first proposed in 1980s
by Smolensky et al. [11] and intensively studied by Hinton
et al. [6, 7, 9]. Theoretically, RBM has one visible layer
and several hidden layers (one hidden layer in most cases),
with mutual connections between neurons in different layers
while connections between neurons within the same layer
are prohibited, as is shown in Fig. 3. Connections between
neurons are determined in a way such that the “energy” for
the system—consisting of all these neurons—is minimal.
As such, RBM is an energy-based bidirectional graphical
model, whose principles and topologies are quite differ-
ent from those of other neural networks such as multilayer

perceptrons (MLP), convolutional neural networks (CNN),
recurrent neural networks (RNN), etc.

One of the popular applications of RBM is collaborative
filtering for recommendation system [8], where the algo-
rithm needs to predict users’ interest levels for products that
they have not purchased based on the observed ratings for
other products. RBM model outperforms other models for
collaborative filtering (e.g., singular value decomposition
(SVD) model [12]) by predicting with better accuracy [8].
Considering large data sets with number of users and prod-
ucts (typically more than 100,000), the number of ratings
involved is at the scale of 1012 or even bigger, which also
requires a large memory space to train RBM models. Also,
the training algorithm involves Markov Chain Monte Carlo
(MCMC) step, which is very computationally expensive.
Hence, distributed training is a necessity in order to speed
up the training process and practically leverage RBM models
for recommendation problems in e-commerce, retails, online
entertainment, etc.

One efficient algorithm to train the RBM is the contrastive
divergence (CD) algorithm initially proposed by Hinton et al.
[1]. The basic idea behind CD algorithm is to approximately
draw samples from a joint distribution via sampling from a
Markov chain with up to a limited number of steps. CD algo-
rithm has been shown to work well even with just a few steps

This article is part of the topical collection “Software Challenges
to Exascale Computing” guest edited by Amit Majumdar and Ritu
Arora.

 * Lucas A. Wilson
 lucaswilson@acm.org

1 Dell Technologies HPC & AI Innovation Lab, Dell
Technologies, Austin, TX, USA

http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-020-00170-7&domain=pdf

 SN Computer Science (2020) 1:165165 Page 2 of 8

SN Computer Science

of the Markov chain [8]. However, for a large-scale training
data, it still takes a long time for the RBM model to converge
to a good solution. Hence, it is necessary to explore parallel
training techniques to reduce the time to solution. This would
make RBMs to be practically applied for collaborative filter-
ing in recommendation systems. This would also be useful
in recommendation systems where there is a need to retrain
the model frequently, and where training is constrained by the
available time. In this paper, we describe a parallelized training
approach using the Horovod [10] framework to significantly
scale-up RBM models with large-scale data sets for collabora-
tive filtering in recommendation systems.

The paper is organized as follows. In Sect. 3, the model
architecture and mathematical principles of RBM are pre-
sented. Section 4 details the learning algorithm for RBM. Sec-
tions 5 and 6 describe how to perform parallelized training of
RBM model and how to make predictions with a trained RBM
model. In Sect. 7, some experimental results with the Mov-
ieLens data set [5] are presented. In the end, Sect. 8 presents
our conclusions.

Restricted Boltzmann Machine Versus
Singular Value Decomposition

Alternative approaches to RBM have been used in the past for
the purpose of collaborative filtering, and require less compu-
tational processing. While RBMs require more training effort,
they can produce higher quality recommendations than other
traditionally used approaches. One such approach is singular
value decomposition (SVD) [14].

Before testing parallelized training of RBM model, we first
train an RBM model with a small subset of the MovieLens
data and compare its performance with that of a model pro-
duced using the SVD method. The small data set has 84,313
ratings for 9557 movies rated by 248 users. In this test, the first
30 ratings for each user is held from the data as test set and the
remaining part is used as training set.

For SVD method, the basic idea is to keep only a portion of
singular values of the rating matrix

and reconstruct R via

Here � contains all the singular values of R and �′ is
obtained by truncating � and keeping only the first q lead-
ing singular values. Then, the predicted rating for movie m′
by user n′ is defined as

(1)R = U�V
T

(2)R
� = U��

V
T .

(3)r�
n�m� = R

�

n�m� .

Readers may refer to [12] for more details on SVD method
and its variations.

Since q is a hyper-parameter for SVD method, we tested
SVD models with different values of q and computed their
performance metric RMSE (Rooted Mean Square Error).
The result is shown in Fig. 1. We can observe a distinct
inflection point in the RMSE around q = 10 , after which
normalized error continues to asymptotically increase.

The comparison of prediction accuracy for SVD with
q = 10 and RBM is shown in Fig. 2. The RBM model has
100 neurons in hidden layer (F = 100) and is trained with
global batch size of 50 for 100 epochs with a learning rate of
0.001 on 2 processes in a single compute node. As is shown
in Fig. 2, RMSE value for SVD model with the optimal q
value (q = 10) is still way larger than that for RBM model.

Fig. 1 RMSE for SVD models with different q values

Fig. 2 Prediction accuracy comparison (SVD vs. RBM)

SN Computer Science (2020) 1:165 Page 3 of 8 165

SN Computer Science

In reality, RBM model produces more accurate predictions
than SVD model in most cases.

While prediction accuracy of RBM model is usually
higher than that of SVD model, training an RBM model
could be computationally slow. This motivated us to explore
on parallelized training of RBM model.

Restricted Boltzmman Machine
for Collaborative Filtering

Usually, a RBM is a bidirectional network with one vis-
ible layer and one hidden layer. The neurons in visible and
hidden layers are mutually connected, while connections
between neurons within the same layers are restricted, as
is shown in Fig. 3. If we try to predict the users’ ratings for
some products using the collaborative filtering, the visible
layer represents the ratings in a 5-way 0’s and 1’s as shown
in Fig. 4.

Suppose, we have N users and M products. The N users
have rated a portion of the M products, with rating val-
ues between 1 and K (K = 5 for the case in Fig. 4). For

example, if a visible neuron is in the state of [0, 0, 0, 1, 0],
it suggests that the user has provided a rating value of 4
for this product. The visible layer has M neurons, with
each corresponding to one of the M products. The states
of hidden neurons are binary (0 or 1).

RBM is an energy-based model. For the system
(V,H) (V = {vk

i
},H = {hj}) , the “energy” is defined as

where Wk
ij
 models the interactions between visible and hid-

den layers, while bk
i
 and cj are bias terms for visible and

hidden layers and F denotes the number of neurons in the
hidden layer. The joint probability distribution is

where Z =
∑

V

∑
H
p(V,H) is the normalization factor. It can

be shown that [8, 13]

and

where
∑
(x) =

1

1+exp(−x)
 is the sigmoid function. Also, in [13]

it was shown that

where � = (Wk
ij
, bk

i
, cj) are the parameters for RBM model,

and

where H = (h1, h2,… , hF) . A detailed description of RBM
can be found in [13].

(4)

E(V,H) = −

m∑

i=1

F∑

j=1

K∑

k=1

vk
i
Wk

ij
hj

−

m∑

i=1

K∑

k=1

vk
i
bk
i
−

F∑

j=1

hjcj

(5)p(V,H) =
exp(−E(V,H))

Z

(6)
p(vk

i
= 1�H) =

exp(bk
i
+
∑F

j=1
hjW

k
ij
)

∑K

l=1
exp(bl

i
+

F∑
j=1

hjW
l
ij
)

(7)p(hj = 1|V) =
∑

(cj +

m∑

i=1

K∑

k=1

vk
i
Wk

ij
)

(8)p(V;�) =
f (V;�)

Z

(9)

f (V;�) =
∑

h1,h2,…,hF

exp(−E(V,H))

=

F∑

j�=1

1∑

hj� =0

exp(

m∑

i=1

F∑

j=1

K∑

k=1

vk
i
Wk

ij
hj

+

m∑

i=1

K∑

k=1

vk
i
bk
i
+

F∑

j=1

hjcj)

Fig. 3 RBM architecture

Fig. 4 RBM architecture (5-way softmax in visible layer)

 SN Computer Science (2020) 1:165165 Page 4 of 8

SN Computer Science

Learning Algorithm for RBM

Suppose, we have observed data {Vn}
N
n=1

 , then the likelihood
with respect to such data is

To maximize L({Vn}
N
n=1

,�) is equivalent to minimizing the
following objective function

Learning via Gradient Descent

The gradient of G with respect to � is

The second term is the expectation of log(f (V;�)) with
respect to observed data {Vn}

N
n=1

 . For the first term, we have

That is, � log(Z(�))

��
 is the expectation of � log f (V,�)

��
 with respect

to distribution p(V;�) . From Eq. 9, we have

(10)
L({Vn}

N
n=1

,�) = �N
n=1

p(Vn;�)

= �N
n=1

f (Vn;�)

Z(�)
.

(11)

G({Vn}
N
n=1

;�) = −
1

N
log(L({Vn}

N
n=1

;�))

= log(Z(�)) −
1

N

N∑

n=1

log(f (Vn;�)).

(12)

�G

��
=

� log(Z(�))

��
−

1

N

N∑

n=1

� log(f (Vn;�))

��

=
� log(Z(�))

��
−

⟨
� log(f (V;�))

��

⟩

V∈{Vn}
N
i=n

.

(13)

� log(Z(�))

��
=

1

Z(�)

�Z(�)

��

=
1

Z(�)

∑

V

�f (V,�)

��

=
∑

V

f (V;�)

Z(�)

1

f (V,�)

�f (V,�)

��

=
∑

V

p(V;�)
� log f (V,�)

��

=

⟨
� log f (V;�)

��

⟩

p(V;�)

.

Similarly, it can be shown that

Then, the gradient descent learning algorithm for RBM is

where � is learning rate and ⟨⋅⟩data , ⟨⋅⟩model are the expecta-
tions corresponding to observed data and the true probability
distribution from RBM model, respectively.

Contrastive Divergence Algorithm with MCMC

Usually, p(V;�) is intractable since Z(�) is unknown.
Hence, it is infeasible to analytically compute
⟨vk

i
hj⟩model, ⟨vki ⟩model and ⟨hj⟩model in the learning algorithm

(17), (18) and (19). In practice, Monte Carlo method is
applied to compute these expectations approximately,
which uses sample mean from a large-size sampling set
for the joint distribution p(V,H) to estimate the theoreti-
cal expectations. Since p(V,H) is also unknown, it is also
infeasible to draw samples from it directly.

To resolve this difficulty, Hinton et al. [6] proposed the
contrastive divergence algorithm which utilizes Gibbs
sampling technique. It is a MCMC algorithm, to draw
samples that asymptotically follow the joint distribution
p(V,H).

(14)

� log f (V;�)

�Wk
ij

=
1

f

�f (V;�)

�Wk
ij

=
1

f

F∑

j�=1

1∑

hj� =0

vk
i
hjexp(

m∑

i=1

F∑

j=1

K∑

k=1

vk
i
Wk

ij
hj

+

m∑

i=1

K∑

k=1

vk
i
bk
i
+

F∑

j=1

hjcj)

=
1

f
vk
i
hjf

= vk
i
hj.

(15)
� log f (V;�)

�bk
i

= vk
i
,

(16)
� log f (V;�)

�cj
= hj.

(17)Wk
ij
← Wk

ij
+ �(⟨vk

i
hj⟩data − ⟨vk

i
hj⟩model),

(18)bk
i
← bk

i
+ �(⟨vk

i
⟩data − ⟨vk

i
⟩model),

(19)cj ← cj + �(⟨hj⟩data − ⟨hj⟩model))

Fig. 5 Gibbs sampling

SN Computer Science (2020) 1:165 Page 5 of 8 165

SN Computer Science

Figure 5 illustrates the Gibbs sampling algorithm. The
algorithm generates a Markov chain with known condi-
tional probabilities p(H|V) and p(V|H) . When the chain
is long enough, samples at the end of the chain will be
theoretically close enough to true samples drawn from
the unknown joint distribution p(V,H) . In reality, only a
few Gibbs steps are enough to generate qualified samples
that are needed to estimate the expectations in the learn-
ing algorithm (17), (18) and (19). Readers may refer to
[4] for more details on MCMC and Gibbs sampling.

Contrastive Divergence Algorithm for Training RBM

The contrastive divergence learning algorithm for train-
ing RBM via T-step Gibbs sampling is summarized in
Eqs. (20), (21) and (22).

Parallelized Training

The learning algorithms (20), (21) and (22) are paral-
lel by nature. Suppose, we have a batch of training data
{(vm)

k
i
, (hm)j}

N
m=1

 where (vm)ki and (hm)j are vk
i
 and hj for the

mth data point in the training set. If N can be evenly divided
into P parts with N = Pn , then

(20)Wk
ij
← Wk

ij
+ �(⟨vk

i
hj⟩data − ⟨vk

i
hj⟩T−stepGibbssamples),

(21)bk
i
← bk

i
+ �(⟨vk

i
⟩data − ⟨vk

i
⟩T−stepGibbssamples),

(22)cj ← cj + �(⟨hj⟩data − ⟨hj⟩T−stepGibbssamples).

⟨vk
i
hj⟩data =

1

N

N�

m=1

(vm)
k
i
(hm)j

=
1

Pn

Pn�

m=1

(vm)
k
i
(hm)j

=
1

P
[
1

n

n�

m=1

(vm)
k
i
(hm)j

+
1

n

2n�

m=n+1

(vm)
k
i
(hm)j +⋯

+
1

n

Pn�

m=(P−1)n+1

(vm)
k
i
(hm)j)].

Similarly, it can be shown that other formulas for computing
expectations in algorithms (20), (21) and (22) are parallel
with respect to training data. So, we can distribute the com-
putations in the algorithms over P processes, as is illustrated
in Fig. 6.

We are performing distributed training of the RBM
with the Horovod framework developed by Uber [10].
Horovod uses a disrtibuted optimizer strategy which
wraps standard tf.Optimizer. This wrapper then
uses the MPI allreduce or allgather operation (based on
whether encoding is as dense tensors or sparse Index-
Slice, see [2]) to accumulate gradient values before
applying gradients to model weights. In essence, Horovod
is increasing the effective batch size, and performing a
lock-step backpropagation with the accumulated gradients
from all MPI processes.

Inference

After an RBM model is trained (i.e., Wk
ij
, bk

i
 and cj have been

learned from training data), we can make prediction for a user’s
potential rating for a given item via p(V;�) . Let
V

obs = {(vm)
k
i
}i∈I,k∈K be the observed ratings for user m, where

I,K are sets for indices i, k for which a rating of k for item i is
observed (for example, if a rating 4 is observed for item 221, then
4 is an element in K and 221 is an element in I). Given Vobs , the
probability that a user will rate item i′ with score k′ is:

Fig. 6 Parallel computing of gradients

 SN Computer Science (2020) 1:165165 Page 6 of 8

SN Computer Science

where g({vk
i
}i∈I,k∈K;{W

k
ij
}) =

∑
i∈I

∑
k∈K

vk
i
Wk

ij
 . Then the pre-

dicted rating that user m will give to item i′ is the one with
the highest S value, i.e.,

Readers can refer to [8] for more details about making pre-
dictions with RBM model.

Experiments

In this section, we test parallelized training of RBM model
with the MovieLens data [5]. The data set has 27,753,444
ratings for M = 53,889 movies by N = 283,228 users. A
piece of this data is shown in Table 1.

The rating matrix R ∈ �
N×M is defined as

with rnm being the rating score of user n for movie m. If rnm
is not observed yet, then, we let rnm = 0 in the rating matrix.

p((v)k
�

i�
= 1�Vobs)

=
1

p(Vobs)
p({(v)k

�

i�
}
�

V
obs)

∝ p({(v)k
�

i�
}
�

V
obs)

=
1

Z

�

H

exp[

F�

j=1

�

i∈{i�}
⋃

I

�

k∈{k�}
⋃

K

vk
i
Wk

ij
hj

+
�

i∈{i�}
⋃

I

�

k∈{k�}
⋃

K

vk
i
bk
i

+

F�

j=1

hjcj]

∝
�

H

exp[
�

i∈I

�

k∈K

+vk
�

i�
bk

�

i�
]

�F
j=1

exp[
�

i∈I

�

k∈K

vk
i
Wk

ij
hj + vk

�

i�
Wk�

i�j
hj + hjcj]

= exp[vk
�

i�
bk

�

i�
]

F

�
j=1

1�

hj=0

exp[
�

i∈I

�

k∈K

vk
i
Wk

ij
hj + vk

�

i�
Wk�

i�j
hj + hjcj]

= exp[vk
�

i�
bk

�

i�
]

F

�
j=1

(1 + exp[g({vk
i
}i∈I,k∈K;{W

k
ij
}) + vk

�

i�
Wk�

i�j
+ cj])

= S(k�;i�,Vobs)

(23)k0 = argmax({S(k�;i�,Vobs)}k�∈{1,…,K}).

(24)R = (rnm)n∈{1,…,N};m∈{1,…,M}

Parallelized Training of RBM Model

The data we used to test parallelized training of RBM model
are obtained by selecting observed ratings from users who
have rated at least 100 different movies. The selected data
set contains 21,595,144 ratings for 53,324 movies by 68,342
users. Similarly, 30 of the ratings from each user is held as
test data. The tests were run on the Zenith supercomputer at
Dell EMC HPC & AI Innovation Lab [3].

Strong Scaling

To test the performance of strong scaling for RBM model,
we fix the global batch size to be 512. Then, we train the
model for one epoch with 1, 2, 4,… , 64 nodes with 1 process
per node. This means that each MPI process will have a local
batch size of 512, 256, 128,… , 8 , respectively for each test.
Time-to-train and scaled speedup are shown in Figs. 7 and
8, respectively.

As can be seen from Figs. 7 and 8, parallelizing the train-
ing scaled close to ideal out to 8 nodes (23), and began to
taper off after that. This is due to the nature of strong scaling.
Since strong scaling keeps the total problem size fixed (in

Table 1 MovieLens data
samples

UserId MovieId Rating

1 1 4.0
1 3 4.0
1 6 4.0
1 47 5.0
1 50 5.0

Fig. 7 Time to solution (strong scaling)

SN Computer Science (2020) 1:165 Page 7 of 8 165

SN Computer Science

this case, the global batch size, which is fixed at 512 recom-
mendations), larger process counts are dramatically reducing
the number of recommendations processed per MPI process.
At 512 nodes, each node is processing only 8 recommenda-
tions before global communication occurs, meaning the ratio
of computation to communication is too low to maintain
efficient parallel performance.

Weak Scaling

For weak scaling test, the batch size for each node is fixed
to 100 recommendations. We run the test for one epoch for
1, 2, 4,… , 64 nodes. This means that the global batch (for
the entire run) is 100, 200, 400,… , 6400 recommendations,
respectively. Time-to-train and scaled speedup are shown in
Figs. 9 and 10 respectively.

Time to train on 1 node is slightly lower for our weak
scaling tests than for our strong scaling tests (see Figs. 7
and 8, respectively). This is due to the larger batch size

with the strong scaling test on one node. Scaling is
extremely efficient for the weak scaling case, staying very
close to ideal performance (linear scaling, see Fig. 10).
While batch size can have an effect on resulting model
accuracy, this effect is data set dependent and many mod-
els can be trained with very large batches [2].

Prediction Accuracy

We trained an RBM model with global batch size 512 over
8 processes for 100 epochs. The model has 100 neurons
in the hidden layer. The trained model was then applied
to make predictions for 10, 963 ratings in the test data set.
The RMSE value is about 1.62. In future work, we will
train RBM models with larger global batch size and test
the prediction accuracy for them.

In order to evaluate whether the accuracy of the result-
ing model is affected by the parallelization process, we also
trained RBM model with global batch size 128 with multiple
processes ranging from 1 to 8 for 100 epochs. The network
has 100 neurons in the hidden layer. The data set used was a
subset of 100,000 recommendations extracted from the full
movie lens data. We chose not to use the full data set as the
time required to fully train the network using a single pro-
cess would have been prohibitively high. For 100 epochs, the
time to train the single-process model using the full data set
would have been approximately 20 days (assuming 17,902
seconds per epoch—see Fig. 7).

The results shown in Fig. 11 clearly indicate that even
as we parallelize the RBM model the resulting model
accuracy does not exhibit significant variation. RMSE
after 100 epochs for single process non-distributed RBM
model is 1.27 where as RMSE for 8 process distributed

Fig. 8 Scaled speedup for strong scaling (1 epoch)

Fig. 9 Time to solution (weak scaling)

Fig. 10 Scaled speedup for weak scaling (1 epoch)

 SN Computer Science (2020) 1:165165 Page 8 of 8

SN Computer Science

RBM model is 1.29, with a standard deviation across all
four runs of � = 0.007757151.

Conclusion and Future Work

In this paper, we studied the principles of RBM model and par-
allelized training with Horovod framework for it. As is shown
in the paper, parallelized training can significantly shorten the
training time. Only in this way, RBM models can be practically
applied for collaborative filtering in recommendation systems.

Experiments using our technique to train a Restricted
Boltzmann Machine with the MovieLens data set showed
that both strong and weak scaling could be maintained out
to 64 compute nodes while producing quality models in
accordance with the scale of the data set used. Future work
will focus on training at greater scale using larger data sets.

Going forward, we also intend to explore additional data
sets in order to show better generality of the approach, as well
as evaluate the performance on other hardware architectures,
such as GPUs and special-purpose neural network chips.

Source Code Available

The code for this research is available on GitHub at: https ://
githu b.com/delle mc-hpc-ai/rbm-recom menda tion.

Compliance with Ethical Standards

Conflicts of interest On behalf of all authors, the corresponding author
states that there is no conflict of interest.

References

 1. Carreira-Perpiñán MÁ, Hinton GE. On contrastive divergence
learning. In: AISTATS 2005.

 2. Cavdar D, Codreanu V, Karakus C, Lockman JA, Podareanu D,
Saletore V, Sergeev A, Smith DD, Suthichai V, Ta Q, Varadhara-
jan S. Densifying assumed-sparse tensors. In: International con-
ference on high performance computing. Cham: Springer; 2019.
p. 23–39. https ://doi.org/10.1007/978-3-030-20656 -7_2.

 3. Dell EMC: HPC & AI Innovation Lab. 2019. https ://www.delle
mc.com/en-us/solut ions/high-perfo rmanc e-compu ting/HPC-AI-
Innov ation -Lab.htm. Accessed 2 Nov 2019.

 4. Gilks WR, Richardson S, Spiegelhalter D, editors. Markov Chain
Monte Carlo in practice. New York: Chapman and Hall/CRC;
1996. https ://doi.org/10.1201/b1483 5.

 5. Harper FM, Konstan JA. The MovieLens datasets: history and
context. ACM Trans Interact Intell Syst. 2015;5(4):19.

 6. Hinton G. 2017. https ://www.cs.toron to.edu/~hinto n/csc32 1/readi
ngs/boltz 321.pdf. Accessed 1 Nov 2019.

 7. Hinton GE, Sejnowski TJ. Learning and relearning in Boltzmann
machines. In: Rumelhart DE, McClelland JL, editors. Parallel dis-
tributed processing: explorations in the microstructure of cogni-
tion, vol. 1. Cambridge: MIT Press; 1986. p. 282–317.

 8. Salakhutdinov R, Mnih A, Hinton G. Restricted Boltzmann
machine for collaborative filtering. In: Proceedings of the 24th
international conference on machine learning 2007.

 9. Salakhutdinov R, Hinton G. Deep Boltzmann machines. In: van
Dyk D, Welling M, editors. Proceedings of the twelth interna-
tional conference on artificial intelligence and statistics, proceed-
ings of machine learning research, vol. 5. PMLR, Hilton Clear-
water Beach Resort, Clearwater Beach, Florida USA; 2009. pp.
448–455. http://proce eding s.mlr.press /v5/salak hutdi nov09 a.html.

 10. Sergeev A, Balso MD. Horovod: fast and easy distributed deep
learning in TensorFlow. arXiv preprint arXiv :1802.05799 2018.

 11. Smolensky P. Parallel distributed processing: explorations in
the microstructure of cognition. In: Information processing in
dynamical systems: foundations of harmony theory, vol. 1. Cam-
bridge: MIT Press; 1986. pp. 194–281. http://dl.acm.org/citat ion.
cfm?id=10427 9.10429 0.

 12. Xian Z, Li Q, Li G, Li L. New collaborative filtering algorithms
based on SVD++ and differential privacy. Math Probl Eng.
2017;2017:1–14. https ://doi.org/10.1155/2017/19757 19.

 13. Yu H. A gentle tutorial on restricted Boltzmann machine and con-
trastive divergence 2017. https ://doi.org/10.13140 /RG.2.2.26119
.60326 .

 14. Zhang S, Wang W, Ford J, Makedon F, Pearlman J. Using singular
value decomposition approximation for collaborative filtering. In:
Seventh IEEE international conference on e-commerce technology
(CEC’05). IEEE; 2005. pp. 257–264.

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Fig. 11 RMSE comparison for multiple processes (100 epochs)

https://github.com/dellemc-hpc-ai/rbm-recommendation
https://github.com/dellemc-hpc-ai/rbm-recommendation
https://doi.org/10.1007/978-3-030-20656-7_2
https://www.dellemc.com/en-us/solutions/high-performance-computing/HPC-AI-Innovation-Lab.htm
https://www.dellemc.com/en-us/solutions/high-performance-computing/HPC-AI-Innovation-Lab.htm
https://www.dellemc.com/en-us/solutions/high-performance-computing/HPC-AI-Innovation-Lab.htm
https://doi.org/10.1201/b14835
https://www.cs.toronto.edu/%7ehinton/csc321/readings/boltz321.pdf
https://www.cs.toronto.edu/%7ehinton/csc321/readings/boltz321.pdf
http://proceedings.mlr.press/v5/salakhutdinov09a.html
http://arxiv.org/abs/1802.05799
http://dl.acm.org/citation.cfm?id=104279.104290
http://dl.acm.org/citation.cfm?id=104279.104290
https://doi.org/10.1155/2017/1975719
https://doi.org/10.13140/RG.2.2.26119.60326
https://doi.org/10.13140/RG.2.2.26119.60326

	Parallelized Training of Restricted Boltzmann Machines Using Markov-Chain Monte Carlo Methods
	Abstract
	Introduction
	Restricted Boltzmann Machine Versus Singular Value Decomposition
	Restricted Boltzmman Machine for Collaborative Filtering
	Learning Algorithm for RBM
	Learning via Gradient Descent
	Contrastive Divergence Algorithm with MCMC
	Contrastive Divergence Algorithm for Training RBM

	Parallelized Training
	Inference
	Experiments
	Parallelized Training of RBM Model
	Strong Scaling
	Weak Scaling
	Prediction Accuracy

	Conclusion and Future Work
	Source Code Available
	References

