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Abstract
The availability of fiber conductors that can be stretched to large extents without significantly changing resistance or con-
ductivity could enable the advances of elastic conductors as electronic interconnects, electronic skins, stretchable sensors, 
wearable systems, and medical robots. Therefore, the preparation of fiber conductors with high stretchability is crucial to 
the development of flexible electronic devices. This review summarizes the advances in constructing fiber conductors with 
an emphasis on recent developments of buckled structural design, fabrication methodologies, and strategies, with the ulti-
mate goal of achieving good stability of resistance or conductivity at large strains. This review classifies the buckled fiber 
conductors into inner buckling and outer buckling, and related examples are summarized, providing a context that buckled 
fiber conductors are geared towards applications in electrical interconnects, wearable systems, and smart medical robotics. 
The present challenges in this area are critically evaluated and our perspectives for improving the performance of the buckled 
fiber conductors for future applications are presented.
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Introduction

With the miniaturization and high integration of electronic 
devices, electronic products have become more portable to 
promote the development of wearable devices [1–11]. Wear-
able electronic devices are portable with the movement of 
the human body, including biomedical sensors [12–18], 
wearable heaters [19–24], human–machine interactors 
[25–29], intelligent prostheses [30–34], and so on. It can be 
worn directly on the body or integrated into clothes or acces-
sories. These wearable devices can adapt to different body 
types through deformation, and work normally when the 
body moves freely, such as walking, running, jumping, etc. 
[35–39]. With the advances of textile technology, stretch-
able fiber conductors have become crucial components of 
wearable devices [40–45]. The fiber diameter ranges from 
tens to hundreds of microns, and it has the advantages of 
being lightweight and stretchable. Fiber conductors already 
have applications such as energy harvesting [46–52], energy 
storage [53–57], sensors [58–63], and electrical actuators 

[64–68]. These electronic devices require stretchable fiber 
conductors as electrical interconnects. Traditional cables 
are not stretchable and cannot meet the needs of wearable 
devices. Moreover, there is an urgent need for a stretchable 
fiber conductor that maintains a constant resistance or con-
ductivity upon stretching [69, 70]. Conductive films or fib-
ers without buckled structure normally cannot resist larger 
deformation while maintain a stable electrical performance. 
Currently conductive materials such as metal fibers, CNTs, 
conductive polymers, graphene and other materials have lim-
ited stretchability. The purpose of designing the buckling 
structure inside the elastic conductive fiber or on the surface 
is to increase the stretchability of the fiber conductor while 
maintain the electrical performance.

It is known that the diameter of the fiber will reduce 
when it is stretched, which will lead to an increase in fiber 
resistance. Thus, to obtain resistance-stable fiber conductor 
under large strains has long been a challenging problem. 
Previously, a stretchable fiber conductor was constructed 
by encapsulating liquid metal [71] in elastic rubber tubes. 
Though they can achieve stable conductivity under large 
strain, the potential safety hazards of these fiber conductors 
(material leakage at large strain) and the durability of the 
material (resistance change at large strain) limit its devel-
opment towards application such demonstrated as charge 
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cables. On the other hand, generating composite fibers with a 
buckled conductive film on the surface or inside of the fiber 
has become the mainstream solution for current stretchable 
fiber conductors. These fiber conductors are light-weight, 
simple in manufacturing, and have good durability and 
repeatability. The buckling phenomenon is used to guide the 
construction of these stretchable fiber conductors in different 
ways. However, the fiber-based buckling mechanism and its 
structural design rules, as well as manufacturing methods are 
not yet summarized. Therefore, this review will start with 
the formation of buckled structures, and will mainly dis-
cuss the advantages, structural features, and manufacturing 
methods of buckled fiber conductors. Future applications, 
challenges and perspectives for buckled fiber conductors are 
also presented.

Formation of Buckled Structures

The buckling mechanism of a film on an on a substrate is 
well discussed in the literature[72–77]. Here, we first intro-
duce the buckling behavior of a two-dimensional bilayer 
structure, then describe the advances in how to construct 
fiber conductors with buckled structures[72]. As show in 
Fig. 1a, compressing a thin film on a pre-strained substrate 
can lead to buckling instability[73]. The thin film has a large 
Young’s modulus, Ef, which is difficult to deform in-plane. 
However, the film thickness , h, is much smaller than the 

substrate. Its bending stiffness,D = Efh
3∕12 , is very small 

compared to its modulus. Therefore, the film usually under-
goes out-of-plane wrinkles and deformation, and the internal 
pressure stress is released by generating bending energy. We 
use simple illustrations (Fig. 1a) to describe the four stages 
of a buckled film on a soft substrate. Figure 1a(i) shows 
that the top conductive layer adheres to the substrate, under 
none to minor compression, the top layer does not buckle 
and remains flat. With the increases of compression, the top 
layer buckles into small waves on top of the elastic substrate 
but does not delaminate from the interface. The buckled sur-
face reduces the system energy of the film. The interface 
between the top layer and the elastic substrate usually has 
defects, and the degradation of the interface will reduce the 
adhesion. Under further compression, many small buckled 
structures converge to form a large buckled structure and the 
phenomenon of local separation from the substrate occurs, 
which is the partial delamination mode. This phenomenon 
will continue as the compression force increases. Until the 
film is completely separated from the surface of the soft 
substrate [74].

The buckling formation mechanism of thin films can be 
correlated to formation of fiber conductors with buckled 
structures. The conductive strips or films can be respectively 
designed to inside of a hollow elastic fiber or outside of a 
solid elastic fiber, generally presenting a coaxial structure 
of fibers. If the stretchability of the elastic fiber substrate 

Fig. 1  a Schematic illustration 
of the buckling structure for a 
thin film on a flexible substrate. 
(i) Wrinkle-free bilayer struc-
ture. (ii) Surface buckling with 
no delamination. (iii) Buckling 
with a partial delamination. (iv) 
Buckling with a total delamina-
tion. b Buckled structure of the 
conductive fiber. (i) Inner buck-
ling of fiber (top) and (ii) outer 
buckling of fiber (bottom)
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exceeds 1000%, larger compressive stress is generated when 
the elastic fiber relax from the stretch state, which is ben-
eficial to build the high-density buckling structure. Accord-
ing to the structural characteristics of fiber conductors, it 
is divided into an inner buckling type and outer buckling 
type, as shown in Fig. 1b. These fiber conductors require 
multimaterials to play different roles, and could be stretched 
until the buckled films become straight. In the case of inner 
buckling mode, the buckled and conductive strip is usu-
ally delamilated from the outer elastic tube, presenting a 
unique free standing, buckled structure. Thus, the effective 
total length of the conductive parts remains constant unpon 
stretching, which is the key concept for coaxial, and elas-
tic fiber conductors that can resist resistance change under 
larger strains. Thus, before the failure of mechanical exten-
sion, the resistance of the fiber will be stable. In an outer 
buckling mode, highly stretchable coaxial fiber conductors 
can be fabricated by wrapping conductive nanosheets on 
stretched rubber fiber cores. It was efficient in creating fiber 
with a stretch-insensitive resistance at very high strains by 
introducing hierachichally buckled structures, but with a sac-
rifice to expose conductive carbon nanomaterials.

Structural Design and Fabrication 
of the Fibers

Structural design is very important to achieve good stretch-
ability of the fiber conductors. We introduce the structure 
and performance of fiber conductors with inter buckling and 
outer buckling examples and briefly summarize the materials 
and structures, performance, and key fabrication methods 
in Table 1.

Figure 2a–d show examples of the inner buckling of 
fibers. Zhou et al. reported a buckled conductive polymer 

ribbons in elastomer channels as a stretchable fiber conduc-
tor through a combination of coaxial wet-spinning and solu-
tion stretching-drying-releasing process. The core layer of 
this fiber conductor is a conductive composite of a conduc-
tive polymer, (poly (3,4-ethylene dioxythiophene)/polysty-
rene sulfonate (PEDOT/PSS)) and a copolymer (polyeth-
ylene-block poly(ethylene glycol) (PBP)). The outer layer 
material is a thermoplastic elastomer. Skyscan CT (Fig. 2a) 
images and SEM images (Fig. 2b) show the morphology 
of the inner buckling conductive film varies with different 
fabrication pre-strains. Under low restrain, the conductive 
film buckles randomly inside, while under high pre-strains, 
the internal conductive film is closely buckled and stacked. 
Figure 2c shows the relative change in resistance,ΔR/R0, of 
the coaxial fiber under different strains, presenting the rela-
tive resistance changes of the fiber are less than 4% under 
680% strain [78].

Figure 2e–h shows examples of the outer buckling of 
fibers. The fiber conductors with a sheath-core structure 
were prepared by wrapping highly oriented carbon nano-
tubes (CNTs) aerogel on a stretched rubber fiber (Fig. 2e). 
The CNTs are arranged perpendicular to the surface of the 
rubber fiber and form a multi-level buckling structure after 
releasing the applied strains. This method gives the fiber a 
maximum stretchability of 1320%, and the relative resist-
ance changes less than 5% under 1000% applied strain [79]. 
Zhang et al. [84] designed a core-sheath stretchable con-
ductive fiber that can work in water. The fiber starts from 
pre-strained Lycra fiber followed by spray coating one-
dimensional conductive CNTs/silver nanowires (AgNWs) 
and wrapping styrene-(ethylene-butylene)-styrene (SEBS) 
thin film. Figure 3f shows the longitudinal section structure 
of the fiber, composed of polyurethane (PU) core fiber (light 
green) and conductive sheath. The left is the SEM image of 
the fiber surface, and the right is the SEM image of AgNWs 

Table 1  Summary of the properties and preparation methods of stretchable conductive fibers with buckled structures

Material and buckling structure Conductivity 
and resistivity

Max mechanical steatchabil-
ity&
highest tensile strain of con-
ductivity or resistance stable 
value

Key fabrication methods Ref

Metal and AgNW; Elastic channel buckling – 100%; 300% dip-coating and pretraining-releasing [66]
PEDOT/PSS; Elastic channel buckling 7.8 S  cm−1 680%; 900% Wet-spinning and solution stretching-dry-

ing-releasing
[78]

CNT; sheath-core structure 3.6 S  cm−1 1000%; 1320% Pretraining- CNT wrapping-releasing [79]
MWCNT; sandwich structured (180 Ω·  cm−1) 200%: - Pretraining- CNT wrapping-releasing [80]
CNT; supercoil structure – 1000%; 1500% Pretraining- CNT wrapping-Twisting-

releasing
[81]

CNT; supercoil structure – 600%; 800% Pretraining- CNT wrapping-Twisting-
releasing

[82]

Graphene; caterpillar structure 1.24S  cm−1 815%; 1010% Coating and pretraining-releasing [83]
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and MWCNTs of the conductive sheath. The fiber exhibits 
a stable core conductivity  (R0≈2 ×  104 S  m−1, ΔR/R0≈0.1 
at 100% strain). The thickness of SEBS can be adjusted to 
protect the skin from the exposure of CNT and AgNWs. Sun 
et al. [83] used graphene material to coat the surface of the 
pre-stretched PU fiber (Fig. 2g) and designed a conductivity 
stable fiber with a worm structure. Figure 3g shows the SEM 
image of graphene-free, 0-layer, and 300-layer graphene-
covered PU fibers. With 300 layers of graphene, the graphite 
sheath shows a clear buckling structure. Figure 3h shows 
the reversible relative resistance change of a typical 300-
layer graphene fiber, showing excellent resistance stability 
at 400% strain. Moreover, the fiber exhibits strain-insensitive 
characteristics (ΔR/R < 0.1) under a strain of less than 220%, 
which is significant for the communication stability of wear-
able devices.

Other than typical outer buckled structures of fibers, 
twistable, and stretchable fiber conductor with sandwich 
structures were also reported (Fig. 3a). The CNT electrodes 
are sandwiched on both sides of the insulating rubber core 
layer. In the process of fiber stretching, the CNT on both 

sides can absorb the sheer force brought by the deforma-
tion process to provide a constant electrical conductivity. 
Besides, the sandwich fibers provide the functions of strain 
sensing, by generating capacitance changes during stretch-
ing (200%) and giant twist (1700 rad·m−1 or 270 turns·m−1), 
respectively. This feature can be used for strain sensing and 
fiber energy devices [80]. Microscopically buckled coiled 
Fibers composed of coiled and pre-stretched rubber core 
layer wrapped with CNT film. Figure 3b is a schematic dia-
gram of the fiber structure (top) and the morphology under 
an optical microscope (bottom). The fiber shows a stable 
electrical conductivity at 400% strain with a 10-layer CNT 
[81]. Moreover, a fiber with a supercoiled structure can reach 
an ultra-high stretchability up to 1500%. The fibers present 
a highly ordered and dense structure along the fiber direc-
tion. When stretched to 1000% strain, the relative electrical 
resistance of the supercoil fiber increases by 4.2%, revealing 
excellent resistance stability at very large strain. Figure 3c 
shows the model of the supercoil fiber (left) and the SEM 
images of the fiber in three crimped states during the prepa-
ration process (right), indicating that the stretchability of 

Fig. 2  Buckled structural designs of fibers. a Skyscan CT images of 
the buckled ribbons in the elastomer sheath with different fabrica-
tion pre-strains. b Cross-sectional SEM images of the coaxial fiber 
fabricated without pre-strain process and SEM images of buckled 
PEDOT/PSS/PBP ribbons inside the TPE channel at 100%, 300%, 
500%, and 700% pre-strain. c Resistance change diagram under dif-
ferent stretching ranges. d Picture of the conductive film under an 
optical microscope. Reproduced with permission [78]. Copyright 
2019, WILEY–VCH. e Illustration of the structure of a longitudinal 

section of the CNT. Reproduced with permission [79]. Copyright 
2015, SCIENCE. f SEM image of fiber surface structure (left) and 
inner layers of AgNWs and MWCNTs (right)Longitudinal section 
structure of fiber (center). Reproduced with permission [84]. Copy-
right 2019, WILEY–VCH). g SEM image of graphene-free, 0-layer, 
and 300-layer PU fibers. h Resistance change graph under different 
stretch ratios Reproduced with permission [83]. Copyright 2019, 
Nano Letters
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the fiber can be further improved through over-twisting and 
knitting technologies [82].

At present, conductive fibers with buckling structures 
are constructed with a typical “prestrain-release” concept. 
Figure 4a shows the process of “solution stretching-dry-
ing-buckling” for preparing a buckled conductive film in 
an elastic channel. After the coaxial fiber is prepared by 
wet spinning, the solvent in the conductive polymer dis-
persion volatilizes from the porous TPE material to form 
a conductive film. After releasing the pre-stretched fiber, 
the inner dried films were compressed by the TPE sheath 
and buckled structures are obtained, leading to resistance 
and conductivity stability under large tensile strains. Fig-
ure 4b shows the preparation process of PU/graphene con-
ductive fibers. The original PU filaments are pre-stretched 
and immersed in graphene/PU ink for absorption, and the 

PU fibers form a graphite microlayer on the PU filaments 
impregnated in the coagulating water bath. After releasing 
the pre-strain applied on the PU filaments, a worm-shaped 
graphene microlayer can be obtained. Figure 4c schemati-
cally illustrates the preparation process of a buckled and 
coiled fiber. First, the silicone rubber fiber prepared by twist-
ing a capillary tube, and then a pre-strain is applied to the 
rubber fiber and then wrapped with CNT thin film. Finally, 
buckled coiled fiber is obtained after releasing the pre-strain. 
Figure 4d shows the fabrication of core-sheath stretchable 
conductive fiber, which is composed of PU fiber as the core 
and the sheath layer. The addition of metallic AgNWs is to 
further enhance the conductivity of the fiber. The fiber was 
prepared by pre-straining the PU fiber, then the MWCNT 
layer and the AgNWs layer are sprayed on the pre-stretched 
fiber surface, then a SEBS layer is coated. The SEBS layer 

Fig. 3  Buckled structure of twisted fiber conductors. a Schematic 
illustration of a twist-inserted rectangular sandwich fiber. Reproduced 
with permission [80]. Copyright 2016, Nano Letters. b Schematics 
illustration of the highly twisted spandex@carbon nanotube fiber, 

consisting of first-coils and supercoils. Reproduced with permission 
[81]. Copyright 2019, Nature communication. c Schematic illustra-
tion of the surface of buckled electrode fiber. Reproduced with per-
mission [82]. Copyright 2016, WILEY–VCH
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is coated as the outer protective material, which can give 
the fiber waterproof, as well as wear-resistant properties. 
Figure 4e shows the fabrication process of the hierarchically 
buckled sheath-core conductive fibers. First, the rubber fiber 
core was stretched, then wrapping of CNT aerogel film as 
the sheath. The orientation of individual CNTs was perpen-
dicular to the rubber fiber direction. Finally, the hierarchi-
cally buckled sheath-core fiber was obtained after releasing 
the pre-strain. In summary, the “prestrain-release” concept 
is generally used as the key step and mainstream to con-
struct either inner or outer buckled layers of the fibers. The 
fabrication methods based on this concept is versatile to cre-
ate buckled fibers that can meet different needs. Yet, in the 
future, a continuous process is needed to make continuous 
fiber conductors that possess resistance/conductivity stabil-
ity at large strains.

Future Applications

Flexible and stretchable electronics are widely used in flex-
ible displays [85–87], electronic skins [88–90], flexible 
sensors [91–94] and bio-electronic devices [8, 95]. Flexible 
electronic devices need the fiber conductors that maintain 
good conductivity under different strain to connect devices. 
Therefore, the preparation of elastic fiber conductors has 
become the key to the development of flexible electronic 
devices. The traditional method is to make the wire into a 
spring-like structure for connecting wearable devices [96]. 
However, the distribution of the thread increases, when 
bending joints such as the wrist, slack, or tangles tend to 
form. At the same time, it will cause inconvenience to the 
wearable device and affect the appearance of the device and 
the comfort of the wearer. One of a commercial stretchable 
cable was made by winding traditional copper cables on 
rubber (Fig. 5a left), and protected with textile covering, 
but its stretchability is less than 40%. Traditional stretch-
able cables could soon be replaced by inner buckled fiber 

Fig. 4  Fabrication methods to create buckled fiber conductors. a 
Schematic illustration of PEDOT/PSS PBP fiber, using the “solu-
tion–stretching–drying–buckling” method. Reproduced with permis-
sion [78]. Copyright 2019, WILEY–VCH. b Schematic diagram of 
preparing the worm-shaped fibers [83]. Reproduced with permission. 
Copyright 2019, Nano Letters. c Schematic illustration of the fabrica-

tion of a buckled electrode fiber. Reproduced with permission [81]. 
Copyright 2016, WILEY–VCH. d Schematic diagram of the fabrica-
tion process of core-sheath stretchable conductive fiber. Reproduced 
with permission [84]. Copyright 2019, WILEY–VCH). e Schematic 
diagram of the preparation of sheath-core fibers. Reproduced with 
permission [79]. Copyright 2015, Science
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conductors, features a stretchability of 680% with relative 
resistance change less than 4%. It can meet the stretching 
requirements of most weak current devices and possibly save 
space for the consumable electronics such as phone chargers 
(Fig. 5a right).

The flexible, wearable system is a new integrated system, 
which integrates human–computer interaction equipment, 
wearable heaters [97], artificial muscles, etc. Based on the 
characteristics that the stretchable fiber conductors can with-
stand large deformation and is suitable for complex surfaces 
such as head, joints, they can be widely used in wearable 
sensing systems as electrical interconnects or as heating ele-
ments in wearable heaters (Fig. 5b).

Stretchable fiber conductors are also the key to break-
throughs in robotics technology. Soft robots [98–100] 
(Fig. 5c) can bend, twist, and grab objects more than 100 
times their weight, which stretchable fiber conductor makes 
a great contribution to the flexibility, conductivity, and 
toughness. They can also replace humans to finish danger-
ous tasks such as defusing a bomb and putting out the fire. 
Microrobots [101] also need stretchable fiber conductors. 
Microrobots are also a new current of medical equipment 
with a diameter of about 2 mm which are known as “The 

Never Tremulous Hands”. The use of microrobots can 
reduce the wound area of patients and can accurately com-
plete the surgery even with slight disturbance thanks to the 
stretchable fiber conductor featuring fast conduction and 
precise operation.

Outlook and Conclusion

In summary, buckled fiber conductors that can resist large 
strains without a dramatic change in resistance or conduc-
tivity are crucial for next-generation flexible or stretchable 
electronics. The majority of current conductive materials 
for buckled fiber conductors are CNTs, graphene, metal 
nanowires, and conductive polymers. However, the intrin-
sic, non-stretchable nature of these materials has hindered 
the widespread use of fibers. Secondly, the conductivity of 
fibers is much lower than that of metallic wires or fibers, 
thus they cannot meet the normal working requirements 
of electronic devices. Most reported fiber conductors are 
prepared at a lab scale, and a continuous preparation route 
should be considered. To realize the commercial product 
of fiber conductors, the development of mass production 

Fig. 5  Applications of stretchable fiber conductors. a Stretchable 
cables for mobile devices (charging cables, earphone cables). b appli-
cation of stretchable fiber as a communication cable and heating com-

ponent in wearable systems. c Application of stretchable fiber as a 
communication cable in the smart robots



156 Advanced Fiber Materials (2021) 3:149–159

1 3

technology to create buckled structure in-situ is essential. 
Besides, fiber conductors with exposed conductive materials 
are not compatible with mature textile technologies, which 
also requires researchers to develop new textile encapsula-
tion technologies and unify smart textile standards. What is 
more, it is difficult to compare the reported performance of 
fiber conductors because of the lack of appropriate evalua-
tion systems. In addition to conductivity, stretchability, and 
resistance stability at certain strain levels, other data such 
as cyclic mechanical or electrical repeatability should also 
be reported.
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