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Abstract Predicting demand for bike share systems
(BSSs) is critical for both the management of an existing
BSS and the planning for a new BSS. While researchers
have mainly focused on improving prediction accuracy
and analysing demand-influencing factors, there are few
studies examining the inherent randomness of stations’
observed demands and to what degree the demands at
individual stations are predictable. Using Divvy bike-share
one-year data from Chicago, USA, we measured demand
entropy and quantified the station-level predictability.
Additionally, to verify that these predictability measures
could represent the performance of prediction models, we
implemented two commonly used demand prediction
models to compare the empirical prediction accuracy with
the calculated entropy and predictability. Furthermore,
we explored how city- and system-specific temporally-
constant features would impact entropy and predictability
to inform estimating these measures when historical
demand data are unavailable. Our results show that
entropy and predictability of demands across stations are
polarized as some stations exhibit high uncertainty (a low
predictability of 0.65) and others have almost no check-out
demand uncertainty (a high predictability of around 1.0).
We also validated that the entropy and predictability are
a priori model-free indicators for prediction error, given a
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sequence of bike usage demands. Lastly, we identified that
key factors contributing to station-level entropy and
predictability include per capita income, spatial eccentric-
ity, and the number of parking lots near the station. Findings
from this study provide more fundamental understanding
of BSS demand prediction, which can help decision
makers and system operators anticipate diverse station-
level prediction errors from their prediction models both
for existing stations and for new ones.

Keywords bike share systems, demand prediction,
prediction errors, machine learning, entropy

1 Introduction

The bike share system (BSS) market has rapidly
expanded in recent years and is expected to triple by
2030 (Fishman and Allan, 2019; Straits Research, 2021).
The traditional BSS is station-based, allowing travellers
to pick up and return bikes at designated locations (Kou
and Cai, 2019). BSSs allow travellers to use bikes on a
need-basis either for a fee or for free, providing a conve-
nient and accessible mobility option, especially for their
first/last-mile trips (Bachand-Marleau et al., 2012; Fish-
man, 2016). As part of the sharing economy and as a
viable substitute for short private car-based trips, BSS
also has the potential to reduce greenhouse gas emissions
(Shaheen et al., 2010; Kou et al., 2020; Zhou et al., 2023).
However, these benefits may remain unattained if the
BSSs are not well planned or managed. Unplanned or
unmanaged BSS can lead to over- and under-supply,
inconvenient parking, lower service level, street safety
issues, and suboptimal business operations (Regue and
Recker, 2014; Chen et al., 2016). The rapid growth in
BSSs and the necessity for intelligent forward-looking
design has led researchers to study the implementation
and improvement of these systems (Luo et al., 2020; Kou
and Cai, 2021a).

Demand prediction for BSS stations is the foundation
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of planning and managing BSSs. Due to spatial and
temporal imbalance in BSS demand, it is common for
BSSs to suffer from disparity of either undersupply or
oversupply of bikes among different stations (Li et al.,
2015; Chen et al., 2016). Inaccurate demand prediction
can cascade to improper bike rebalancing, increased oper-
ational costs, reduced user satisfaction, and more green-
house gas emissions. Therefore, system operators and
researchers have devoted significant attention to predicting
the demands of BSS stations (EI-Assi et al., 2017; Hyland
et al., 2018; Zhou et al., 2018; Kou and Cai, 2021b).
Existing demand prediction studies have used traditional
regression, machine learning, or deep learning models to
predict BSS demand in different ways. For instance,
Médard de Chardon and Caruso (2015) used linear
regression-based method for estimating demands for
daily BSS trips using station-level data in six cities. Hulot
et al. (2018) used linear regression and machine learning
models to predict hourly demand and recommended
intervals for how regularly to rebalance the bikes. Convo-
lutional neural network based models have been used to
predict bike inflow and outflow at stations and station-
level hourly demand (Chai et al., 2018; Lin et al., 2018;
Yu et al., 2018). Cluster-based regressions have been
used to predict pickups and returns of bikes to stations
with similar characteristics and to predict citywide bike
usage (Chen et al., 2016; Jia et al., 2019; Li and Zheng,
2020). Additionally, a few studies have investigated
residual correction to reveal hidden stochasticity in time
series data to improve prediction (Kim et al., 2022;
Zheng et al., 2023). Among existing models, in order to
improve the prediction accuracy, previous studies also
integrated spatiotemporal variables to analyse their role
in impacting demand. Bao et al. (2017) investigated bike
share travel patterns and trip purposes by combining
smart card data and point of interests (POIs). Zhou (2015)
and Lin et al. (2020) revealed the spatiotemporal patterns
of bike sharing behavior and identified influential factors
such as the built environment on bike share trip demands.
Various features have been incorporated in demand
prediction as well, in addition to spatiotemporal informa-
tion. Yang et al. (2016; 2019) created a probabilistic
spatiotemporal model using dynamic networks, time
factors, and weather. Hulot et al. (2018) predicted
demand with temporal and weather variables using linear
regression and machine learning models. Singhvi et al.
(2015) used temporal, demographic, and weather factors
in their pairwise model. Chen et al. (2016) used the
temporal and weather factors but added social events
(such as city festivals, parades, or traffic accidents) in
their cluster-based prediction. However, despite the
advancement in demand forecasting techniques, existing
studies mainly focused on how to improve the prediction
of demands. The accuracy of demand prediction is only
known posteriorly after the prediction model has been
developed and it requires extensive domain-specific

feature engineering from the researchers. No existing
studies have addressed the fundamental predictability of
demands at stations, and there is a gap in understanding
how the intrinsic randomness (i.e., the inherent variation
of BSS demands due to unpredictable factors such as
weather conditions and human behaviors) governs the
limit of future demand prediction. By understanding the
governing randomness in demand levels, system operators
and city administrators can better manage and maintain
stations. Meanwhile, little research has evaluated how
temporal invariant determinants shape the random nature
of demand patterns at individual stations. These temporal
invariant determinants intrinsically characterize the func-
tionalities of different zones in cities as well as shape the
heterogeneities among bike share stations. They are rela-
tively stable over time compared to time dependent deter-
minants, including seasonality and unique events. There
exists a research gap in studying variables accounting for
such randomness, where we could gain knowledge about
heterogeneous station-level demand predictability even
prior to the launch of a BSS in the city.

To evaluate the accuracy of the predictive models,
however, current demand prediction studies have primarily
applied one single model for the entire system and evalu-
ated prediction model performance at the system-level.
These studies rely on station-level data and employ eval-
uation metrics such as root mean squared error (RMSE)
and mean absolute percentage error (MAPE), but only
inspecting the aggregated outcome at the system-level
may fail to capture the variation and anomalies among
stations and dilute the local understanding of predictive
performance on station-level (Li et al., 2015; Médard de
Chardon and Caruso, 2015; Singhvi et al., 2015; El Sibai
et al., 2018; Liu et al., 2022). For instance, station-level
understanding is critical for rebalancing at the station-
level and maintaining efficient system operation. Conse-
quently, going beyond focusing on global average perfor-
mance, there exists a knowledge gap on how prediction
errors deviate at high resolution and how the inherent
predictability of demands differs at individual stations
(He and Shin, 2020).

To address the aforementioned research gaps, this
study quantified the randomness and predictability rooted
in time series bike check-out demands at individual
stations based on entropy and predictability from infor-
mation theory. The calculation of these two metrics was
based on one-year’s data, which can capture relatively
long-term variations and seasonal changes. To test the
validity of our measurements, we compared the station-
level entropy and predictability with the empirical predic-
tion performance from two benchmark prediction models
— Auto Regressive Moving Average (ARMA) and
XGBoost. This establishes a viable mapping from model-
based accuracy/error to model-free measurements, allow-
ing for anticipation of demand prediction performance
without the need of prior feature engineering and prediction
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algorithms. Additionally, to further examine how temporal
invariant factors of a city impact such intrinsic randomness
of BSS demands, this work used random forest regression
model to identify the most significant temporal invariant
factors (i.e., features that remain consistent over the study
period, without significant variation, such as infrastruc-
ture) in contributing to station-level entropy and
predictability. In the context of the existing literature, this
study makes three primary contributions:

(1) We adopted entropy and predictability as model-
free measurements for better investigating station-level
inherent demand predictability.

(2) Through empirical experiments, we further estab-
lished these two measurements as representative of the
practical prediction algorithm performance, without the
need of feature engineering and building prediction
models.

(3) We offered managerial insights for system operators
and city authorities who are considering launching new
BSS or expanding their existing BSS by identifying the
key factors impacting the entropy and predictability of
individual stations.

The subsequent sections of the paper are organized as
follows. Section 2 introduces the data, data processing
methods, demand randomness measurements, benchmark
demand prediction algorithms, and evaluation metrics. In
Section 3, we present the overview of the computed
entropy and predictability. We also show the association
between the entropy/predictability and empirical perfor-
mances achieved by demand prediction models at the
individual station-level. In addition, we determine the
most notable factors influencing station demands’
entropy and predictability. Last, Section 4 draws inferences
and implications about demand predictability from the
results, discusses the limitations, and suggests future
research directions.

2 Data and method

2.1 Data and data processing

In this study, our goal was to quantify the inherent
randomness and predictability of bike check-out demands
at individual bike share stations as well as identify what
city factors would contribute to such randomness. To
achieve this, we collected one year of historical Divvy
trip records (366 days, Aug. 1, 2015 — Aug. 1, 2016) as
demand data, where the record for each single trip
includes the trip ID, start and end time of the trip, the
check-out and check-in station IDs & names, and trip
duration. There are 534 stations in total with complete
trip records within our study period. Moreover, we parti-
tioned the pre-processed historical trip data into two sets:
One for training/analysis, spanning 361 days, and the
other for testing, spanning 5 days. We selected Chicago

as our case study city because of Chicago’s long history
of operating station-based BSS (active since 2013) and
Divvy’s wide service coverage, spanning throughout both
downtown and suburban areas of the city. The start time
and check-out station ID for each ride were extracted
from the trip records for this study. Subsequently, we
aggregated check-out demands at individual stations
based on a certain time interval, A¢, which could range
from hourly (Af = 1h) to daily (Ar = 24 h) segments,
based on what were most used in previous works (Hulot
et al., 2018; Kou and Cai, 2021a). In this study, we
selected the time interval of four hours (At = 4 h) as the
base scenario and this resulted in a series of six demand
data points for each station per day (we also conducted
sensitivity analysis to examine how using different time
intervals may impact the results). We therefore formulated
a series of observed check-out demand level at station i
over the one-year timespan 7 as T; ={X;|, Xi2, Xi3, ---s
Xy Xivs1s -, Xir} where X;, indicates the aggregated
check-out demand level at time step z. For each of the
534 Divvy stations, we also acquired data consisting of
station ID, name, latitude, longitude, and capacity. We
used such station information as source data to construct
variables for the spatial network listed in Table 1. Addi-
tionally, we collected the point of interests (POIs) within
a 1000 ft (304.8 m) radius around each station based on
Google Maps Places API (application program interface).
POIs encompass a series of specific functional location,
such as bus station, school and parking lot. Furthermore,
we sourced socio-demographic data, specifically per
capita income and population density, from the American
Community Survey (US Census Bureau, 2012) at the
census-tract level. The spatial network, POIs, and socio-
demographic data prepared above were utilized in
Section 2.3 to analyze the key factors that contribute to
the entropy and predictability.

2.2 Measures of demand randomness and predictability

In the context of BSS demand prediction, prediction
models have been developed to statistically fit the rela-
tionship between the spatiotemporal variables and the
bike usage demands, via either linear or nonlinear
approaches (Senter, 2008). How much of the demands
can be predicted depend on the degree of uncertainty
rooted in the demand pattern at a station. Therefore, we
harnessed the concept of entropy in information theory
(Shannon, 1948) to measure the degree of randomness in
a sequence of demands at individual stations (Section
2.2.1). In addition to the entropy, we computed each
station’s predictability to capture the upper limit to which
these demands can be correctly forecasted (Section 2.2.2).
These two measurements thereby provide a quantitative
assessment of the inherent predictability of demands at
each installed bike share station, based on a stable and
relative long-term (one-year) trend of demands rather
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Table 1 Definitions of temporally-constant feature variables at the station-level used in this study
Category Variable Definition Unit
Land use Bus station The counts of POIs within a specified distance buffer 2 N/A
Subway station
Restaurant
Park
Parking lots
Museum
School
Spatial network Spatial eccentricity The average distance between station i and all other stations in the network b mile
(Zhang et al., 2016; Cazabet et al., 2017)
Station density The number of other stations located within each distance band of a station i, N/A
where distance bands are the concentric distance bands around each station with
a certain increment © (Hyland et al., 2018)
Station capacity The maximum number of bike docks in a station N/A
Socio-demographic 9 Per capita income Mean income earned of each person in a given area US dollar
Population density The population divided by the area of a census tract People/mile?

Notes: a) The POIs were collected using Google Maps Places API. We set the distance buffer as 1000 ft (304.8 m), representing a common walkable range for a
person between a bike share station and a POI; b) As BSS is under continuous expansion by installing new stations over time, the spatial eccentricity of a station
could vary. Therefore, we calculated the average spatial eccentricity within our studied time span; ¢) In this study, we set the increment as 0.1 miles (161 m) and
limited the calculation of station density to be within the range of 0.05 miles to 4.5 miles, as suggested by Kou and Cai (2021b); d) Socio-demographic data were
collected from the 2017 American Community Survey at the census-tract level. The values of one census tract are assigned to a station if the station is located within

the census tract.

than various short-term shifts (Lu et al., 2013). Addition-
ally, entropy and predictability imply the station-wise
theoretical upper bound of unexplained uncertainty and
potential margin of error associated with a given demand
prediction model (Song et al., 2010). These two metrics
can serve as a priori model-free evaluation for fundamental
station demand patterns.

2.2.1 Entropy

Given a sequence of observed check-out demand level T
for each station i€ {l, 2, 3, ..., 534}, we utilized three
entropy measurements to reflect the randomness of
station’s demands using different amount of information,
as proposed by Song et al. (2010):

(1) The random entropy S =log,N,, which indicates
the disorder of a station’s demand level, with the assump-
tion that each demand level is observed with equal proba-
bility among N, unique demand levels (with the resolution
of one bike check-out). As the random entropy increases,
more diverse levels of demands are likely to be observed
at a specific station.

(2) The temporal-uncorrelated entropy Si™ =
- 27:’1 pi()H)1og,p; (j), which characterizes the heterogene-
ity of observed demand levels, where p;(j) is the proba-
bility that the jth demand level is observed among N,
unique demand levels. The temporal-uncorrelated entropy
considers both the unique number of demand levels and
their frequency of being observed over the timespan.

(3) The actual entropy S*=-3,.p(T))
-log, [p(T})], which incorporates the probability of an

observed demand level as well as the order in which
demand levels are observed and the persistence of an
observed demand level (whether the observed demand
stays at a certain level for multiple time windows), where
p(T}) is the probability of finding a subsequent 7/ in the
observed full sequence T;. Due to the computational
complexity, the actual entropy could be estimated based
on Lempel-Ziv data compression (Kontoyiannis et al.,
1998).

2.2.2  Predictability

Naturally, a demand sequence with greater entropy would
have more randomness in its demand pattern, which in
turn decreases the predictability of future demands at this
station. Considering the entropy (S) that represents the
disorder of a series of demands, the upper bounds of
predictability (IT) that could be attained by a predictive
algorithm for correctly predicting future demands at a
station is subject to Fano’s inequality (Fano and Hawkins,
1961), when a station’s demands with entropy S range

between N distinct levels (Song et al., 2010):
IM<IO™ (S, N), 2.1

where I[1™* (S, N) has a relationship with S as outlined in
Eq. (2.2):

S = HII™)+ (1 -TI")1og,(N-1), 2.2)
and Eq. (2.3) describes the binary entropy function:

H(Hmax) — _HmaX]0g2 (Hmax) — (] — l_ll'na.)()log2 (] — Hmax) .
2.3)
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By solving Egs. (2.2) and (2.3) based on the specified
N and S calculated from a station’s demand series, we
could compute the predictability IT. Based on three types
of entropy defined in Section 2.2.1, for each station i,
we can thereby denote random predictability IT™ =
[T (S, N;), temporal-uncorrelated  predictability
e =TI (S, N;), and  actual  predictability
[Teeve = I1fre (S ;). Higher values of II indicate that
the demands could be better predicted. Comparing these
three predictability metrics enables us to examine how
temporal correlations within an individual station’s
demand sequence enhance potential predictive accuracy
(Lu et al., 2013). This also aligns with existing works
presented in Zhou (2015) and Lin et al. (2020) that incor-
porated different spatial and temporal variables into the
prediction model with the aim to reduce prediction errors.

Since the entropy and predictability are fully subject to
the time series of demands itself, we also performed a
sensitivity analysis to examine how entropy and
predictability of each station vary based on having different
demand observation intervals (Af). Specifically, we
computed the entropy and predictability corresponding to
six distinct demand observation intervals (Afr): 1 h, 2 h,
4 h, 6 h, 12 h, and 24 h. These observation intervals
embody the potential granularity of performing demand
monitoring and analysis by operators for each station.

2.3 Station-level temporally-constant features

The entropy and predictability of a station’s demand can
be measured using historical demand data. However, for
planning new systems or expanding an existing system to
build new stations, such historical demand data would be
unavailable. To examine whether the intrinsic demand
randomness is related to temporally-constant and city-
specific features that are available prior to launching new
stations, we adopted the temporally-constant features of
individual stations in Chicago as proposed in Kou and
Cai (2021b) and analyzed how such features contribute
to the entropy and predictability across stations. The
features are listed in Table 1 and they can be classified
into three categories: Land use characterization, spatial
network information of stations, and socio-demographics.
Furthermore, we applied a random forest regression
model to explore the importance of temporally-constant
variables to the entropy and predictability of demands at
each station. A random forest regression model is a
machine learning model that trains multiple decision trees
on different subsets of the dataset, aggregating their
results to improve overall predictive performance (Biau
and Scornet, 2016). We selected such a model because of
its powerful regression capability as well as interpretability
to the factor significance (Belgiu and Dragut, 2016).
Specifically, the variables listed in Table 1 are treated
as input variables in the model while the entropy
(Srend, Sure §ectal) and predictability (TT™, T, TT*T)

computed in Section 2.2 are dependent variables, respec-
tively. Once a random forest regression model is trained,
we can extract the feature importance according to each
feature’s contribution in making correct regression and
reducing loss. This enables the interpretability in under-
standing the contribution of temporally-constant featuring
in impacting the entropy and predictability of demands.

2.4 Benchmark prediction algorithms and evaluation
metrics

The entropy and predictability measurements discussed in
Section 2.2 could establish the theoretical upper limit of
the predictive power for demand prediction algorithms.
To verify the relationship between these theoretical upper
limits and the practical predictive performance at the
station level, we implemented two widely used benchmark
algorithms for BSS demand prediction: ARMA and
XGBoost. For each predictive performance (detailed in
Section 2.4.3) pertaining to the predictive algorithms, we
modelled their relationship and calculated R?> scores,
which shows how well such relationship holds. We also
did a sensitivity analysis to examine whether such rela-
tionship sustains when using different time intervals (i.e.,
six time-intervals as described in Section 2.2 were
analyzed), examining their fitted curves and associated R?
scores. Please note that we rounded the output of prediction
to the nearest integer as the demand level (i.e., the
number of bikes being checked-out) can only be integers.

241 ARMA

The ARMA algorithm is a widely recognized statistical
method for time series forecasting, which has been
applied to conduct demand prediction in various applica-
tions, such as stock price, inventory and disease infection
(Saboia, 1977; Nochai and Nochai, 2006; Chen et al.,
2008; Benvenuto et al., 2020). The ARMA model con-
sists of two main parameters: p (order of autoregression
(AR)) and g (order of moving average (MA)), denoted as
ARMA (p, q), which is equivalent to an ARIMA model
without differencing a time series. The future demand
X" to be forecasted at a specific station i at time step 7 is
a linear combination of past demands and past errors,
formulated as follows:

d
XZ;C = (/7,',1Xi,r—l + (/),',2Xi,r—2 +ee (oi,mXi,r—m +ot (/’i,pXi,t—p+

e, —be, 1 ——0,6,,—— gi,qei,r—q’ 2.4

where ¢,,, and 6, are the coefficients, ¢;,_, is the random
noise with E[e;,_,] =0 and variance o2, and p and ¢ are
the orders of AR and MA polynomials, respectively. In
our study, individual stations had their own ARMA
models and models were trained on stations’ historical
check-out demand data (i.e., the training dataset introduced
in Section 2.1) separately, so the ARMA model is station
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specific. In addition, the parameters of each ARMA (p, g)
model were determined through automatic ARMA algo-
rithm (Hyndman and Khandakar, 2008).

2.4.2 XGBoost

XGBoost is a tree boosting machine learning algorithm
which is able to handle high-dimension data with selected
features (Chen and Guestrin, 2016). Within a XGBoost
model, the output forecasted demand X"* at station i at
time step ¢ is predicted by using K additive functions in a
tree-ensemble model:

X =0() =S i), ieF, (25)
where F is the space of regression trees; each f; represents
an independent tree structure within K additive functions;
and x;, corresponds to the set of input variables for
station i at time step t. To be more specific, the input
variables featuring each station include both time-invariant
variables described in Table 1 and weather variables
(average temperature, average humidity, average wind
speed, average precipitation, and average pressure).

2.4.3 Evaluation metrics for prediction algorithms

The models introduced in Sections 2.4.1 and 2.4.2 were
trained on the training dataset and then their prediction
performances were evaluated based on the testing dataset.
We selected Root Mean Square Error (RMSE) and
Cumulative Scores (CS) as the performance metrics,
which represent the absolute and relative errors, respec-
tively. Specifically, RMSE is defined as:

1 red 2
mase= s (reoxef. o)
The value of RMSE ranges from 0 to +oo. A lower
RMSE score indicates a better fitted regression model
while a higher RMSE indicates a large prediction error.
Because RMSE could be highly influenced by the
stations’ capacity (larger stations tend to have higher
RMSE), we further employed CS adopted from Kocer
(2013) and Niu et al. (2016) as a measurement of relative
prediction accuracy. The value of CS ranges from 0 to 1
and is defined as:

CS(n) = Dﬂ/D’ (2.7)

where D is the total number of tested time steps for each
station, and D, refers to the number of predicted demand
values whose predicted demands do not exceed the lower
and upper percentage bound 7 (%) of the ground truth
demand. In this study, we set the percentage bound 7 as
10%. A CS value closer to 1 signifies a higher prediction
accuracy.

3 Results and discussions

3.1 Overview of station-level demands, entropy, and
predictability

Figure 1(a) shows the distribution of demand levels X;
observed in each 4-hour time interval at individual
stations during the study period of 361 days. Aligning
with previous studies, e.g., Kou and Cai (2019), the
distribution of demand is heavy tailed. This indicates that
within each 4-hour window, the majority of stations have
low check-out demand while the number of stations with
high-volume demands is much smaller.

However, low demands do not necessarily mean low
entropy or high predictability. We calculated the entropy
and predictability across all stations based on their
demand sequences in the study period. The resulting
distribution for $™¢, S, and §*"! as well as I]rand, JJunc,
and T1actual are illustrated in Fig. 1(b) and 1(c), respec-
tively. The S*° encodes the additional frequency infor-
mation of demands compared to the S™¢ which only
considers the number of unique demand levels ;. Such
additional information explains partial randomness rooted
in the time series of demands, thus P(S"*) exhibits left
shift (i.e., lower entropy in general) comparing with
P(S™9). Likely, S*"* encodes the additional temporal
order information on top of the §", so P(S*™') is more
left shifted than P(S™°). With P(S™?) peaking at
Smnd ~ 4, one can expect that, if users come to rent bikes
at stations randomly, 25" ~ 16 different demand levels
can be observed in a station on average. In contrast, the
actual entropy reveals the real uncertainty considering the
sequence of demands that could be observed at a station.
Surprisingly, the actual entropy S*“* has two major
peaks at 0.1 and 2.5, respectively. For stations with
Saewal = ()1, they almost have no demand uncertainty. The
next demand that can be forecasted at those stations is
always at 2°' ~ 1 level, suggesting that these stations are
likely to have no check-out demand but could randomly
witness one check-out demand. While for stations with
Seemal =25, their future demands are likely to be at
2%3 2 5.66 (i.e., less than six) random levels. A consistent
conclusion is observed in terms of predictability. We find
that T > 1" > 1™ for demands at individual stations
on average as more information is incorporated. With
only the information of number of unique demand levels,
the majority of stations exhibit very low predictability.
As shown in Fig. 1(c), the distribution of actual
predictability has two peaks. One group of stations has
nearly perfect predictability for demands, which aligns
with our observation that these stations almost have no
check-out demands. The other group of stations has
predictability around 0.65. In other words, no matter how
good the predictive algorithm is, the future demand levels
of stations with IT*"* = (.65 has maximum prediction
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Fig. 1 Overview of a station’s demands and its entropy and predictability. (a) The distribution of demand levels observed across all
stations during the study period. (b) The distributions of random entropy, temporal-uncorrelated entropy, and actual entropy. (c) The distri-
butions of random predictability, temporal-uncorrelated predictability, and actual predictability. (d) The joint distribution of the number of
unique demand levels observed at stations (N;) and the actual entropy (52°"4"), showing the correlation between N; and §2!, () The joint
distribution of the number of unique demand levels observed at stations (¥;) and the actual predictability (I122!), showing the correlation

between N; and 12l

accuracy of 65%. Therefore, IT°™ serves as the intrinsic
limit for predictability of individual station. Notably, the
two-peaked distribution of S*™ and TT*™* indicates a
polarized demand predictability rooted in stations.
Despite that the overall station demands are very low
across stations, a significant number of stations exhibit
high entropy and reduced predictability. This implies that
system operators should pay particular attention to these
stations.

We depicted Figs. 1(d) and 1(e) to further reconcile the
contradiction that, overall, stations have low observed
demands but with two peaks in the distributions of $t!

and 1", For the group of stations with low predictability
(high entropy), they span a broad spectrum of unique
levels of historically observed demands from 0 to approx-
imately 100. In particular, the peak corresponds to an
average of 30 unique demand levels. Contrastingly, the
stations associated with high predictability (low entropy)
span a narrower range of unique levels from 0 to around
25, with an average of 1. Therefore, while both groups of
stations could experience low level of demands, the
stations within the high entropy group can be anticipated
to present a broader spectrum of demand variation. The
increased variation of demand spectrum at individual
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stations introduces more randomness into the time series
of observed demands, which inherently leads to higher
entropy and lower predictability. In addition, the contrast
of polarized stations is also illustrated in Fig. 2, which
displays the overall spatial distribution of stations with
varying §*"! and IT°", Stations with high S*" but low
[Tw (smaller circles in dark red) mainly locate within
the downtown area whereas stations with low S*™! but
high IT*™ (larger circles in dark blue) mostly distribute
in the suburban regions.
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Fig.2 The distribution of stations with different actual
entropy S and actual predictability 1122 Jevels in Chicago
(each circle represents a station).

3.2 Relationship between entropy/predictability and
prediction performance

In this section, we confirm that the entropy and
predictability, which measures the randomness rooted in
a station’s demands, are feasible and model-free estimators
for empirical prediction errors and accuracy of demand
prediction models, respectively.

In Figs. 3(a)-3(f), the RMSE of each data point repre-
sents the average RMSE over the testing horizon of a
single station derived from a single predictive algorithm.
The results reveal the presence of an exponential associa-
tion between the entropy over one year’s historical
demands at individual stations and the resulting RMSE
values from future demand prediction. This relationship
shows an R?>=0.94 for ARMA and an R*>=0.88 for
XGBoost when correlating S™ and RMSE. Likewise,
Figs. 3(g)-3(1) demonstrate a logistic relationship estab-
lished between the predictability of demands and the CS
values, where R? ranges from 0.81 to 0.87 for ARMA
between CS and [T while R? ranges from 0.59 to 0.74 for
XGBoost between CS and []. Note that we paired RMSE
with entropy and CS with predictability because each of
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the paired values share the same unit of measurement.
RMSE and entropy are expressed in terms of absolute
magnitude of errors, while CS and predictability are
expressed as the percentage scale of accuracy.

Figures 3(i) and 3(1) validate predictability as a theoret-
ical limit for prediction accuracy, which is consistent
with the upper limit identified in Lu et al. (2013).
Entropy and predictability capture the theoretical limits
for the predictive analysis of BSS demand prediction,
offering an approachable upper bound of predictive
power for such BSS demand data. For instance, for the
group of stations with average IT*“ =0.65, their CS
values stay below 0.5 in both ARMA and XGBoost
models. Even though some stations are expected to reach
maximum [T =0.8, they still exhibit practical CS
values under 0.5, verifying that [T*® bounds the empirical
prediction accuracy. This is in line with data point distri-
bution shown in Figs. 3(i) and 3(l) that corresponding
practical CS from predictive models is always smaller
than the theoretical predictability. That being said, by
applying the same demand prediction model across all
stations and regressing models on certain variables to
forecast station-level demands, it can be anticipated that
various prediction errors across different stations are
bounded by their inherent predictability. Furthermore, it
is worth noting that entropy and predictability are model-
free estimators, as they are derived exclusively from
historical demands at individual stations. Their calculations
are independent of any predictive models and serves as a
priori measurements in lieu of extensive domain-specific
feature engineering for the input variables of the prediction
models.

3.3 The impact of features on entropy and predictability

After verifying that entropy and predictability were feasible
and model-free representations of practical prediction
effects, we then identified which temporally-invariant
factors are most significant contributors to entropy and
predictability of station demands. In this work, we ran the
random forest regression model whose inputs are tempo-
rally-constant variables listed in Table 1 and whose
outputs are either the set of entropy (S™9, SU°, §*m!) or
the set of predictability (IT™, 1, TT*"). Based on five-
fold cross validation, our results show that the model
achieved an RMSE of 0.66 for entropy and 0.83 for
predictability. This highlights that a statistically significant
relationship holds between the temporally-constant
factors and the entropy/predictability of a station’s
demands.

In Table 2, we present three most significant tempo-
rally-constant attributes affecting entropy and predictabil-
ity, respectively (see the full list of ranked feature impor-
tance in Supplementary Information Tables Al and A2).
Our findings indicate that per capita income, spatial
eccentricity, and the number of parking lots hold significant
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Fig. 3 (a)—(f) present correlation between entropy and RMSE; (g)—(l) present correlation between predictability and CS. The orange
bound lines in (i) and (1) show that the practical CS from predictive models for each station stayed below its theoretical predictability.

Table 2 Significant temporally-constant variables and their feature
importance in the models for entropy/predictability

Variable Feature importance
Entropy Predictability
Per capita income 0.542 0.494
Spatial eccentricity 0.113 0.170
Parking lot 0.107 0.0916

importance for both entropy and predictability. Notably,
each of these top three variables comes from a different
variable category: Per capita income is a socio-demo-
graphic variable; spatial eccentricity is a spatial network
variable; and the number of parking lots is a land use
variable.

In Fig. 4, we showcase the specific quantities of these
three temporally-constant variables identified above for
the top ten stations with the highest and lowest actual
predictability TT*"*!, respectively, in order to examine the
positive/negative impact of variables on entropy and
predictability. One can observe that per capita income
negatively impacts predictability since stations with
lower predictability exhibit higher per capita income.
Similarly, the number of parking lots negatively influences
the predictability. On the other hand, spatial eccentricity
positively influences predictability, with more eccentric
stations exhibiting higher predictability. Furthermore, in
Fig. 5, we depict the spatial distribution of stations in the
entire systems and their associated three temporally-
constant variables, showing the spatial interplay between
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Fig. 5 The spatial distribution of stations in terms of the attributes of (a) per capita income, (b) spatial eccentricity, and (c) parking lots.

entropy and predictability and three variables across the
service region. For per capita income (Fig. 5(a)), we
observed that stations exhibiting higher predictability and
lower entropy as shown in Fig. 2 are typically located in
suburban areas with lower per capita income. Conversely,
stations with lower predictability are often found in
downtown area with higher per capita income. In terms
of spatial eccentricity, one can observe that in suburban
areas, stations with higher predictable demands are
sparsely located from their neighbouring stations. In
contrast, stations with less predictable demands tend to be
concentrated in the urban center, where stations are
denser. Additionally, for parking lot, stations exhibiting
lower predictability have more parking lots surrounding
them in the downtown compared with their more
predictable, lower entropy counterparts.

The significant city- or system-specific, temporally-
constant variables impacting entropy and predictability
can be interpreted in several ways. From the significance
of per capita income, we can infer that in census tracts
with higher wealth, more stations could serve leisure-
based or recreational trips (Stromberg, 2015), which
would induce more entropy compared to stations that
serve regular commute- or errand-based trips. On the
other hand, high entropy in high-income areas could be a
symptom of the accessibility to various transportation
options in high per capita income (Smith et al., 2020),
inducing a higher variety of trips and options in those
places. The spatial eccentricity implies that those stations
located farther from other stations are more predictable.
That is, demands of suburban stations are generally more
predictable. This could be the result of suburban places
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having lower accessibility to diverse trip purposes, or it
may be representative of low overall use in suburban
stations. The quantity of parking spaces may signal an
area’s capacity to accommodate various trip purposes.
Figure 5(c) reveals that parking lots mainly concentrate in
the downtown region. Considering the functionality of
BSS in first/last mile trips, customers are able to park
their private cars in the parking spaces (e.g., public parking
lot and street parking) and continue the subsequent trips
by using shared bikes in the downtown area. Such a
capacity of hosting various trips increases the variation of
number of trips that can be anticipated in the downtown
area, which leads to high entropy and in turn reduces the
predictability of demands.

3.4 Sensitivity analysis

3.4.1 Entropy and predictability under different observation
intervals

Entropy and predictability distribute differently under
different demand observation intervals. Figure 6 suggests
the distinct effects of demand observation frequencies:
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enhances the predictability and decreases the entropy of
those stations initially characterized by low predictability.
However, this increase in observational frequency
appears to have no impact on the stations that already
exhibit high levels of predictability. More specifically, in
Figs. 6(a) and 6(d), as the frequency of observation
lowers, stations tend to have higher S™¢ and lower [T,
respectively. This is because demands cumulate to higher
levels when less frequently monitored. For instance, the
demand level of one unit over two consecutive hours
could aggregate to the demand level recorded for two
units within a two-hour observation window. This is also
in line with the distribution of P(X;) displayed in
Fig. 6(g), where the peak slightly shifts towards zero and
the variance of distribution decreases when implementing
more frequent monitoring. Moreover, in Figs. 6(b), 6(c),
6(e) and 6(f), one can observe that the peaks of high
predictability stations (i.e., low entropy stations) stays
aligned regardless of variations in the monitoring
frequency. This is because these stations are typically
associated with very low demand levels (typically zero or
one), resulting in unvarying time series of demands even
though the monitoring changes drastically from hourly to
daily. In contrast, it is also noticeable that the peaks
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Fig. 6 The (a)(c) entropies, (d)—(f) predictabilities, as well as (g) demand level distribution under different demand observation

intervals.
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of low predictability stations shift towards higher
predictability when de-escalating the monitoring interval
from 24 hours to 1 hour.

This sensitivity analysis also delivers implication of
potential operational strategies to mitigate the low
predictability associated with certain stations. Operators
could heterogeneously monitor the demands across
stations situated in various locations: The downtown area
may necessitate more frequent monitoring (such as every
half an hour or every hour); conversely, suburban areas
may require less frequent observations (such as every
12 hours or every day). By shortening the time interval
between demand observations, the time series of
demands tend to be less random so operators can anticipate
more accurate predictions with less errors in their predic-
tive models. This strategy also suggests a practical way to

Front. Eng. Manag. 2023, 10(4): 551-565

balance operational resources for different service regions
while keeping service reliability and predictability.

3.4.2 Relationship between theoretical upper limits and
practical predictive performances under different
observation intervals

Our sensitivity analysis solidifies the relationship
between entropy/predictability (theoretical upper limits)
and RMSE/CS (practical predictive performances) identi-
fied in Section 3.2. Figure 7 presents the fitted curves
under different observation intervals for both predictive
algorithms with both performance metrics and Table 3
lists the associated R? score of each fitted curve in Fig. 7.
Same as Fig. 3, RMSE and entropy follows an exponential
relationship while the relationship between CS and
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Fig. 7 Relationship between (a)-(c) RMSE of ARMA and entropy, (d)—(f) RMSE of XGBoost and entropy, (g)—(i) CS of ARMA and
predictability, and (j)—(1) CS of XGBoost and predictability under different demand observation intervals.
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Table 3 g2 scores of fitted curves for Fig. 7
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Observation RMSE of ARMA for Figs. 7(a—)
interval

RMSE of XGBoost for Figs. 7(d-f)  CS of ARMA for Figs. 7(g-1)

CS of XGBoost for Figs. 7(j-1)

S rand S unc S actual S rand S unc S actual S rand S unc S actual S rand S unc S actual
lh 0.93 0.86 0.52 0.90 0.76 0.38 0.90 0.94 0.87 0.77 0.78 0.71
2h 0.95 0.79 0.42 0.87 0.66 0.31 0.89 0.92 0.87 0.82 0.78 0.71
4h 0.94 0.71 0.37 0.88 0.61 0.26 0.87 0.86 0.81 0.74 0.65 0.59
6h 0.91 0.63 0.38 0.81 0.56 0.31 0.83 0.80 0.75 0.67 0.58 0.55
12h 0.81 0.65 0.42 0.75 0.57 0.40 0.61 0.55 0.55 0.41 0.27 0.32
24h 0.70 0.60 0.26 0.67 0.58 0.34 0.47 0.42 0.29 0.32 0.29 0.31

predictability is logistic. When monitoring the demands
more frequently (the time interval is smaller), the R?
score becomes higher for the corresponding fitted curve.
This is because for a given fixed period (i.e., 366 days in
this work), the observation with higher frequency results
in more data points for both training and testing the
model and the model gets better trained.

4 Conclusions

In summary, this study measured the inherent randomness
of station demands via entropy and predictability based
on information theory. We validated those metrics against
empirical performance metrics to show that entropy and
predictability are applicable to function as model-free
estimators to anticipate the error and accuracy in prediction
models. Furthermore, we identified three most significant
temporally-constant factors — per capita income, spatial
eccentricity, and the number of parking lots — that influ-
ence station demand entropy and predictability. The
results we obtained from this study can serve as a priori
implication for BSS management, operation, expansion,
and launch, without the need of domain-specific feature
engineering and modelling demand prediction algo-
rithms.

For cities with active BSSs, our findings imply that
there are inherent errors and randomness that existing
predictive models might fail to capture, so the operators
could apply customized monitoring strategies in different
service regions to escalate the demand predictability and
service reliability. For instance, for stations with high
entropy and low predictability, monitoring and mainte-
nance (e.g., rebalancing) can be employed more
frequently so as to improve operational functionality. On
the other hand, for cities considering an expansion or
investment in a BSS, the identified temporally-invariant
key factors associated with high entropy stations can be
qualitatively taken into account when deciding where to
add new stations to the BSS. Moreover, measuring the
entropy and predictability at station-level allows for a
finer resolution of operation among stations and offers
the possibility to enhance the specificity of management
tailored for each station. Thus, these results have direct

implications for operators to make decisions about station
monitoring, rebalancing, capacity design, siting, or
decommissioning.

In a broader context, for cities without BSSs, the
municipal officials and potential system operators can
utilize entropy and predictability to link temporally-
constant city and system characteristics to potential
demand prediction efficacy. These a priori measurements
can help inform future planning and designing of the
BSSs as well as corresponding infrastructure such as
parking lots and bike lanes in a city. Our model is also
adaptable so when there are significant changes occurred
for temporally-constant city characteristics, operators can
re-implement it to update their planning decisions for the
next stage.

Suggested next stages of this research are 1) to perform
a large-scale analysis to generalize the entropy and
predictability in other cities and 2) to compare entropy
and predictability to other evaluation metrics (which
could emphasize prediction error by how often rather
than how much) with more predictive algorithms. In the
first case, BSS demand prediction performance could be
heavily influenced by the number of high-entropy
stations in a specific system, thus case study selection and
generalization of results must consider this aspect of BSS.
A large-scale analysis could help determine generalization
possibilities of these methods and provide more insight
on the dynamics of individual BSS throughout the world.
In the second case, it could be just as valuable to know
how often demand prediction is wrong as by how much
the demand prediction was wrong, especially for dynamic
rebalancing of bikes. Therefore, an evaluation metric that
captures the temporal prediction error of demand could
be useful in relating to the different forms of entropy and
predictability calculated herein. Furthermore, the expo-
nential and logistic association found in our results in
Section 3.2 were slightly different from the linear associ-
ation identified in the literature on entropy. Investigating
the reason for this is a direction for future research.

One challenge in BSS research regarding demand
prediction has been the absence of trip purpose data.
Without knowing the purpose of people’s trips at bike
sharing stations, it has been more difficult to predict the
demand. High entropy at stations could suggest a diversity
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and heterogeneity of trip purposes, whereas stations with
low entropy could mean consistent travellers using BSS
for similar trip purposes. Future research could explore
how entropy is related to trip purpose for predicting
demand, when trip purpose data become available.
Furthermore, future research can explore in more detail
the operational costs of high- versus low-entropy stations.
If a relationship between entropy measurement and main-
tenance costs of a station exists, our method could be
employed to anticipate the operational costs of adding
new stations or, in the case of cities without active BSS
yet, investing in a BSS.
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