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Abstract Air pollution poses a significant threat to
human health, particularly in urban areas with high levels
of industrial activities. In China, the government plays a
crucial role in managing air quality through the Air Pollution
Prevention and Control Action Plan. The government
provides direct financial support and guides the investment
direction of social funds to improve air quality. While
government investment has led to improvements in air
quality across China, concerns remain regarding the effi-
ciency of such large-scale investments. To address this
concern, we conducted a study using a three-stage data
envelopment analysis (DEA)-Malmquist model to assess
the efficiency of government investment in improving air
quality in China. Our analysis revealed regional disparities
and annual dynamic changes. Specifically, we focused on
the Beijing—Tianjin—Hebei areas as a case study, as the
investment primarily targeted industrial activities in urban
areas with the goal of improving living conditions for
urban residents. The results demonstrate significant differ-
ences in investment efficiency between regions. Beijing
exhibits relatively high investment efficiency, while cities
in Hebei Province require improvement. We identified
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scale inefficiency, which refers to the ratio of air pollutant
reduction to financial investment, as the main factor
contributing to regional disparities. However, we found
that increasing the total investment scale can help mitigate
this effect. Furthermore, our study observed positive but
fluctuating annual changes in investment efficiency within
this city cluster from 2014 to 2018. Investment-combined
technical efficiency, which represents the investment strat-
egy, is the main obstacle to improving yearly investment
efficiency. Therefore, in addition to promoting investment
strategies at the individual city level, it is crucial to
enhance coordination and cooperation among cities to
improve the investment efficiency of the entire city cluster.
Evaluating the efficiency of government investment and
understanding its influencing factors can guide future
investment measures and directions. This knowledge can
also support policymaking for other projects involving
substantial investments.

Keywords investment efficiency, government invest-
ment, air pollution control, three-stage DEA-Malmquist
model

1 Introduction

Air pollution poses a significant threat to the health of
urban residents. Industrial cities contribute significantly
to air pollution through the release of waste gases and
toxic chemicals from industrial production (Sun et al.,
2019a). China, as the world’s largest manufacturing and
industrial nation, emits massive amounts of pollutants
into the atmosphere, leading to increased risks of diseases
and premature death (Dong, 2019). In 2013, the average
concentration of PM, s was 58 pg/m? (Liu et al., 2021),
which exceeded the safe standards of global air quality
guidelines by 1060% (WHO, 2021), resulting in 123525
premature deaths from cardiovascular disease and 39165
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premature deaths from respiratory disease (Cui et al.,
2022).

To address the issue of air pollution, the Chinese
government implemented the 2013 Air Pollution Preven-
tion and Control Action Plan (Yu et al., 2022), which has
effectively improved air quality in China. Fiscal finances
have played a vital role in this atmospheric control effort
(Gramkow and Anger-Kraavi, 2018). Rationalizing
government investments has improved the efficacy of air
pollution control and facilitated sustainable fiscal distri-
bution across the country. Since 2013, the Chinese
government has allocated 179.95 billion yuan to air
pollution prevention and special control funds. This
substantial investment has resulted in 64.3% of Chinese
cities meeting air quality standards in 2021, a significant
increase from 4.1% in 2013.

Research on government investment in air pollution
control has become a prominent issue, as it guides future
investment measures and directions. Improving govern-
ment investment efficiency is crucial for the sustainable
development of atmospheric management (Florea et al.,
2021). Scholars have employed panel data (Xu, 2019;
Cheng et al., 2020) to measure investment efficiency in
air pollution control and have suggested the need to
improve the efficiency of national investments (Yu and
Lin, 2018; Sun et al., 2019b). Studies have also reported
investment redundancies (Guo et al., 2018). Inefficient
and redundant investments necessitate the optimization of
the current allocation of financial investment in air quality
control. To investigate the factors influencing air pollution
control, scholars have conducted research on the effects
of fiscal policy (Halkos and Paizanos, 2016; Akbar et al.,
2021), foreign direct investment (Akbar et al., 2021), and
taxation (Hu et al, 2019) on pollutant emissions. A
consensus has emerged that fiscal policy tools are more
reliable in controlling air pollution by reducing
emissions.

Existing studies have limitations that may result in
biased conclusions. While the Chinese government allo-
cates fiscal funds to cities separately, most previous studies
rely on provincial panel data, which fail to identify the
reasons for investment inefficiency and offer targeted
investment recommendations. Given that this research
focuses on an economic model with diverse inputs and
outputs, the use of the nonparametric data envelopment
analysis (DEA) model (Charnes et al., 1978; Banker et al.,
1984) would be more appropriate, as it does not require
assumptions of a particular functional form and is useful
for uncovering relationships that other methods might
overlook (Han and Wei, 2002; Halkos and Argyropoulou,
2021). Scholars have utilized the DEA model to appraise
environmental investment efficiency (Zhang et al., 2019;
Cheng et al., 2020; He et al., 2023). However, previous
studies on environmental investments have overlooked
macroenvironmental factors, which may lead to an unre-
alistic estimation of the efficiency value of environmental

investments. In particular, disparities in economic and
social progress across cities in China could impact fiscal
investment efficiency due to significant regional varia-
tions. Another drawback of the DEA model is its inability
to determine efficiency changes over successive years,
limiting the creation of annual investment strategies.

To address these research gaps, we constructed a three-
stage DEA-Malmquist model to assess fiscal investment
efficiency in air pollution control. The three-stage DEA
model, initially proposed by Fried et al. (1999) and later
expanded by Fried et al. (2002), considers environmental
factors and random noise and has been widely utilized in
various domains, including water pollution (Chen et al.,
2022), healthcare (Liu et al., 2022), municipal waste (Ye
et al., 2022), banking (Mei et al., 2014), transportation
(Song et al., 2020), and carbon emissions (Liu and Liu,
2016). Additionally, we utilized the DEA-Malmquist
index (Fére et al., 1992; 1994) to estimate the changes in
efficiency over time. The DEA-Malmquist combines the
DEA approach with the Malmquist productivity index to
assess efficiency and productivity changes over time. By
integrating these two methodologies, DEA-Malmquist
allows for the evaluation of dynamic changes, captures
technological progress, and enables the simultaneous
analysis of efficiency and productivity variations. Specif-
ically, we utilized municipal panel data from the
Beijing-Tianjin—Hebei areas (referred to as the BTH
region hereafter), a city cluster with severe air pollution,
as a case study. We assessed the investment efficiency of
local governments in this region at the city level and
analyzed the annual dynamic changes in efficiency from
2014 to 2018. Our research aims to evaluate the efficiency
of fiscal investment by municipal governments in air
pollution control within the framework of the Air Pollution
Prevention and Control Action Plan policy, investigate
the factors influencing investment efficiency in municipal
governments, and suggest appropriate investment strate-
gies. The outcomes can provide guidance to the Chinese
government in making informed decisions regarding
future air pollution prevention and control investments.

The remainder of this paper is organized as follows.
Section 2 presents our three-stage DEA-Malmquist
model to evaluate the efficiency of government investment
in air pollution control. Section 3 discusses the empirical
results of the evaluation of government investment effi-
ciency in the BTH region between 2014 and 2018.
Section 4 provides potential options for improving the
efficiency of government investment. Finally, Section 5
concludes the paper.

2 Materials and methods

2.1 Three-stage DEA-Malmquist model

This study constructs a three-stage DEA-Malmquist
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model to calculate the efficiency of financial investment
and its annual dynamic changes. This method eliminates
the influence of environmental factors and random inter-
ference on efficiency evaluation and improves the objec-
tivity and accuracy of the calculation results. Figure 1
shows the framework of the three-stage DEA-Malmquist
model constructed for this study.

2.1.1 Stage 1: Conventional DEA-BCC model

The DEA model is used to evaluate the relative efficiency
values of different decision units within the same period,
which represents static efficiency. When selecting a DEA
model, one must choose between input-oriented or output-
oriented approaches and consider the assumption of
constant returns to scale using the Charnes, Cooper, and
Rhodes model or variable returns to scale using the
Banker, Charnes, and Cooper (BCC) model (Daraio and
Simar, 2007; Cooper et al., 2011). The input-oriented
approach aims to minimize inputs while assuming
constant outputs, whereas the output-oriented approach
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aims to optimize outputs while assuming constant inputs.
The choice between input and output orientation depends
on whether input conservation or output augmentation is
more crucial (Daraio and Simar, 2007).

In the context of government investments in air pollution
control, the objective is to optimize the allocation of input
variables to maximize investment efficiency. This calls
for selecting an input-oriented model. Additionally, we
propose that the returns to scale can vary based on the
assessment of input—output indicators, indicating that the
investment input variables do not necessarily vary
proportionally with the pollution output variables. Hence,
we have chosen the input-oriented BCC model.

It is important to note that the model assesses the relative
efficiency of air pollution control investments made by
municipal governments, representing the efficiency of
investment for the current year. This value is not signifi-
cantly influenced by historical pollution levels. Therefore,
an investment can be deemed inefficient even if a city has
relatively good air quality. Conversely, the investment
efficiency of a city can be evaluated as high even if it has
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Framework of the three-stage DEA-Malmquist model.
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a history of significant air pollution problems.

The DEA model requires a set of input and output vari-
ables, as well as a set of decision-making units (DMUs).
For any DMU, the duality model of input-oriented DEA-
BCC is shown in Eq. (1).

minf—g(e'S™+e'S")
Z’/IZ|X!A!+S7 = GXO

s.I. Z.’/l-zl YJ/IJ_S+=Y() N
4,20, S, 520

(M

where 6 represents the efficiency value, & is the optimal
non-Archimedean epsilon, e represents units matrix, A;
represents weight coefficient, n denotes the number of the
DMUs, S- and S* denote slack variables for the input
and output indicators, respectively, and X, and Y, are the
input and output matrices, respectively, composed of all
DMUs. Only when the efficiency value §=1 and the
slack variables S~ =0, S* =0, can the DMU be called
efficient; otherwise, it is inefficient, implying that it has
potential for improvement.

This stage calculates the initial efficiency and slack
variables of the input variables using DEAP 2.1. The effi-
ciency value calculated by the BCC model is the compre-
hensive technical efficiency (TE), which can be further
decomposed into scale efficiency (SE) and pure technical
efficiency (PTE). These are related as shown in Eq. (2).

2

TE refers to the efficiency value that comprehensively
considers PTE and SE and represents the comprehensive
management ability of regional government investment in
air pollution control. PTE refers to the production effi-
ciency of the DMU under the influence of management
and technology with certain inputs, which in the text is
the efficiency of government investment. SE refers to
production efficiency due to the scale factor of the invest-
ment, reflecting the difference between the actual scale
and the optimal production scale. This study relates to
changes in air pollutants when the scale of government
investment is expanded.

TE =SEXPTE.

2.1.2  Stage 2: Similar stochastic frontier analysis for input
adjustment

The investment situation and air pollutant concentration
are closely related to regional production and operational
activities, particularly economic development and indus-
trial production. Therefore, investment efficiency calcula-
tion is inevitably influenced by the external environment,
which leads to the possibility of bias. By dividing
management inefficiencies, environmental factors, and
random noise, a similar stochastic frontier analysis (SFA)
regression can be used to provide proper weighting for
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efficiency evaluations. Thus, we used this model to
remove environmental factors and statistical noise. Based
on Fried et al. (2002) and the first-stage model, a similar
SFA regression function based on the input orientation
was constructed, as shown in Eq. (3).

Sui=f(Zu; B+ Viitp,n=1,2, ., N, i=12,..,1,

3)
where S,; denotes the slack of the input variable i for
the DMU n. There are several regression equations
for several input variables, including X;. f(Z.; B;) =
> (B:Z,) + C, indicates the effect of environmental factors
on the slack variables, where Z,; represents environmental
variables i for DMU n, B; is the coefficient of the envi-
ronmental variables, and C; is regression coefficient.
Vi + Wy refers to the mixed error term, where v,; is a
stochastic error term with a distribution of v ~ N(0, o2)
and ,,; is a management inefficiency term with a distri-
bution of u ~ N*(0, o). When the likelihood ratio (LR)
test rejects the null hypothesis that there is an inefficiency
term, ordinary least squares (OLS) can be used to eliminate
random interference without considering environmental
factors. At this stage, the estimated value of C, B, o2, y
was obtained using Frontier 4.1 software (regression
results are shown in Appendix A in the Supporting
Materials).

An  estimate of  management  inefficiency
E [tui] Vi + i ] 18 separated using Eq. (4) following the
methods proposed by Jondrow et al. (1982), Luo (2012),
and Chen et al. (2014).

“)
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where 0, = 0,0, /0, 0= \Joi+02, A=0,/0,, 0, =0,
g=v+u. ¢ and @ are the distribution and density func-
tions, respectively, of the standard normal distribution.
Equation (5) is used to separate the random error terms.

E [Vnil Vi +ﬂni] = Sni _f(Znn ﬂt) - E[/Jm'| Vi +/Jm'] . (5)

A similar SFA model can eliminate the influence of
environmental and random factors on the efficiency value
and adjust DMUs in the same external environment. The
adjustment formula is given by Eq. (6).

X, =X+ [max (f (Zm'; ,éz)) _f(Zni; ,é,)] + [max (v,) = vl
i=1,2,..,1I, n=1,2, ..., N,
(6)

where X', and X,;, are the adjusted and original input
values i for DMU n, respectively, and j3; denotes the esti-
mated value of the environmental variable. The subsequent
parts of this stage calculate the values using Microsoft
Excel.
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2.1.3 Stage 3: Improved DEA-Malmquist model

The third stage involves inputting the adjusted input vari-
ables from the second stage and the original output vari-
ables into the first-stage DEA model and the Malmquist
index to calculate the annual investment efficiency and
yearly dynamic efficiency changes with the aid of DEAP
2.1 software. The DEA-Malmquist index comprises total
factor productivity (TFPch), combined technical efficiency
(Effch), and technological progress efficiency (TEch), as
demonstrated in Eq. (7).

TFPch = Effchx TEch. 7

TFPch, in this study, refers to the additional production
efficiency achieved by maintaining a constant level of
production factors, excluding government investment
capital and labor. It captures the efficiency change result-
ing from factors such as technological development,
economies of scale, and technological levels. TFPch
values greater than 1 indicate an increase in productivity,
TFPch equals to 1 represents constant productivity, and
TFPch values less than 1 indicate decreased productivity.

Effch, the technical efficiency change index, measures
the relative degree of technical efficiency change
between two consecutive periods, often referred to as the
“catch-up effect” (Liu and Liang, 2010). It explores the
rate of change in government resource allocation effi-
ciency. Effch values greater than 1 indicate that the DMU
is closer to the production frontier in period ¢ + 1
compared to period ¢, indicating an increase in the relative
investment level. Effch equals to 1 suggests a constant
investment level, while Effch values less than 1 imply a
decrease in the investment level.

TEch, also known as the technological change index,
measures the level of technological advancement in the
production frontier over two consecutive periods,
commonly referred to as the “frontier moving effect” (Liu
and Liang, 2010). It represents the rate of change in tech-
nical development within the government investment
sector over two consecutive years. TEch values greater
than 1 signify technological progress, TEch values equal
to 1 indicate technological invariance, and TEch values
less than 1 denote technological decline.

2.2 Data sources

The data sources for this study include the China Statistical
Yearbook, China Statistical Yearbook on Environment,
China Environmental Yearbook, China Urban Statistical
Yearbook, China Urban Construction Yearbook, and
regional statistical yearbooks. The study focuses on 19
cities in the BTH region (details provided in Appendix B
in the Supporting Materials), which provided data on
investment in air pollution control and atmospheric pollu-
tion levels between 2014 and 2018 as the DMUs (95
DMUs).

It is worth noting that the Air Pollution Prevention and
Control Action Plan, initiated in 2013, consisted of ten
measures that were implemented over a period of five
years (2013-2017). National policy changes can result in
variations in the investment environment, such as invest-
ment objectives, investment structure, and investment
agents. To ensure a consistent and stable external policy
environment for evaluating investment efficiency using
DEA, we chose the study period as 20142018, which is
the second year after the implementation of fiscal funds.

The 19 cities selected for this study are representative
of the critical environmental cities in the studied area and
are part of BTH region air pollution transmission channel.
These cities, namely, Beijing; Tianjin; Shijiazhuang,
Tangshan, Handan, Baoding; Taiyuan, Yangquan,
Changzhi; Hohhot, Baotou, Chifeng; Jinan, Zibo, Jining;
Zhengzhou, Kaifeng, Anyang, Jiaozuo, correspond to
Beijing, Tianjin, Hebei, Shanxi, Inner Mongolia
Autonomous Region, Shandong, and Henan, respectively.

2.3 Indicators

Four input indicators, three output indicators, and one
environmental variable were selected based on the litera-
ture (Xu, 2019) and Chinese government investment, as
shown in Table 1.

Input indicators. The input index in this study repre-
sents government investment in air pollution control.
Based on the summary of environmental pollution control
investment in the China Statistical Yearbook on Environ-
ment, fiscal expenditure for air pollution control consists
of three components: Investment in urban environment
infrastructure facilities, Investment in treatment of indus-
trial pollution sources, and Environmental Protection
Investment in the environmental protection acceptance
projects in the year. Under atmospheric management,
Investment in urban environment infrastructure facilities
includes Gas supply, Central heating, and Gardening &
Greening. Investment in the treatment of industrial pollu-
tion sources involves the Treatment of waste gas.
However, there is no separate section on atmospheric
management in the Environmental Protection Investment
in the environmental protection acceptance projects in the
year. Therefore, we selected four input indicators: Gas
supply, Central heating, Gardening & Greening, and
Treatment of waste gas. These indicators were chosen
based on data availability and their relevance to air pollu-
tion control.

It is important to note that during the data collection
process, a small number of zero values were encountered
for the input indicators. The DEA model requires positive
data, which necessitates processing of these values. The
dimensionless method is the most widely used and effective
approach for processing such data, as it does not alter the
meaning of the data or the final result. In this study, the
data were transformed to a dimensionless interval using a
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Table 1 Assessment index system for government investment efficiency of air pollution control

Tier 1 indicators Secondary indicators Variables Variable type Unit
Urban environment infrastructure Gas supply Investment amount of gas Input yuan
facilities Central heating Investment amount of centralized heating Input yuan
Gardening & Greening Investment amount of landscaping Input yuan

Treatment of industrial pollution Treatment of waste gas Investment amount of treatment of waste gas Input yuan

sources

Major atmospheric pollutants Sulphur dioxide Inverse of the average SO, concentration Output m3/pg
Nitrogen oxides Inverse of the average NO, concentration Output m3/ug
Smoke (dust) Inverse of the average PM; 5 concentration Output m3/ug

Environmental effects Gross dom;sticlp;oduct (GDP), GDP per capita Environmental variable yuan

opulation

mapping technique (Mei et al., 2014), as shown in
Eq. (8).

Xivj _Xrinin
Y, =01+09————, 3
Xrlnax - X;nin

where X;; is the original variable, Y;; is the processed
variable, X', =min(X,, Xp, ..., X;;), and X =

min max

max(X;, Xa, ..., Xi;). i denotes the number of DMUSs,
i=1,2,..,19; j represents the number of periods,
j=12 ..,5.

Qutput indicators. Pollutant emissions directly reflect
the effects of government investment, with the ultimate
goal of reducing atmospheric pollutant concentrations.
Since 2013, the dominant atmospheric pollutants in BTH
region are Sulphur Dioxide, Nitrogen Oxides, Soot and
Dust (Feng et al., 2014; Wang et al., 2014). For this
reason, this study selected the annual average urban
concentrations of SO, (ug/m3?), NO, (ug/m3), and fine
particulate matter (PM;5 (ug/m3)) as output indicators.
Two reasons underpinned the selection of the average air
pollutant data. First, China recognized air quality control
as a matter of administrative area management, and using
average data to represent urban air quality was consistent
with this method of oversight. Second, China has adopted
a three-tier decentralized fiscal policy at the Central—
Provincial-Municipal level, assessing the efficiency of
government investment in air pollution on a city-by-city
basis. The DEA model necessitates a direct relationship
between the output indicator value and efficiency, meaning
that the higher the value, the more efficient the process.
However, when measuring atmospheric pollutants, the
inverse relationship is true, and the lower the concentration
of pollutants is, the higher the efficiency level. Conse-
quently, the inverse of the average annual concentration
of pollutants was employed as an output variable.

Environment variables. This study selected GDP per
capita (yuan) as the environmental variable in the three-
stage DEA model. Previous studies have highlighted the
urban population and GDP as significant factors that
affect industrial pollution emissions and government
investment (Liu et al., 2015; Wen and Zhang, 2020).

Economic imbalances may result in environmental
injuries. Hence, we selected GDP per capita as the envi-
ronmental variable to eliminate the impact of demographic
and economic factors on the findings.

3 Results

3.1 Government investment and air pollutants in 19 cities

Figure 2 illustrates the government’s investment in urban
air control, including Gas supply, Central heating, Treat-
ment of waste gas, and Gardening & Greening, along
with the reduction rates of three air pollutants (PM;s,
SO,, and NO;). Over the course of five years, the Chinese
government invested 363 billion yuan in the BTH region.
It is worth noting that Beijing accounted for a significant
portion of the financial investment in air pollution control,
representing 38.2% of the total investment. Conversely,
Yangquan had the lowest investment, accounting for only
0.5% of the total. There were also notable differences in
the amount of money invested across different compo-
nents. Gardening & Greening investment had the highest
ratio, comprising 48% of the total investment, while Gas
supply investment had the lowest ratio at 10.8%.

The concentrations of PM, 5, SO,, and NO, exhibited
significant improvements from 2014 to 2018, with reduc-
tions of 31% (28.3 pg/m3), 63% (38.9 pg/m3), and 9%
(5.5 pg/m3), respectively. The Air Pollution Prevention
and Control Action Plan policy set a target of a 25%
reduction in PM; 5 concentration within five years for the
BTH region (source: gov.cn/zwgk/2013-09/12/content
2486773.htm). However, this standard was not met in
Hohhot, Jiaozuo, Yangquan, Taiyuan, Changzhi, Kaifeng,
and Anyang. Additionally, the results revealed that the
most significant reduction occurred in SO, concentrations
over the five-year period. On the other hand, the reduction
in NO, concentrations was relatively small, and its
concentrations increased in Taiyuan, Chifeng, and
Yangquan. The government’s investment in atmospheric
management has yielded positive outcomes in this region;
however, urban air pollution still persists.
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derived from provincial data hold practical significance
for provincial administration and national fiscal distribu-
tion. Further, the analysis of urban efficiency underscores
the investment capacities of individual municipalities in
air pollution control.

3.2.1 Overall government investment efficiency
Regarding the overall government investment efficiency,
Fig. 3 presents a summary of the annual average efficiency
of government investments in air pollution control, which
exhibited fluctuating increases in overall investment effi-
ciency from 2014 to 2018. The overall combined TE was
calculated to be 0.901, representing the comprehensive
investment efficiency that encompasses various aspects,
such as the ability to allocate funds and the efficiency of
fund utilization. TE increased from 0.863 in 2014 to
0.921 in 2018, indicating an improvement in efficiency
over the study period. However, it is important to note
that investment efficiency remained below the optimal
level, as indicated by an efficiency value less than 1
(ineffective DEA).

Fig.3 Overall investment efficiency summary in air pollution
control (2014-2018).

The overall TE is influenced by PTE (0.985) and SE
(0.913). PTE represents the investment efficiency resulting
from factors such as management and technology, while
SE refers to the investment efficiency derived from the
influence of investment-scale factors. Notably, the trend
in SE exhibited fluctuating upward movements, similar to
the trend in TE, indicating an increase in SE. However,
PTE followed a fluctuating downward trend over the five-
year period, implying a decrease in investment manage-
ment capacity and technology level.

From 2014 to 2018, scale inefficiency emerged as the
primary factor influencing low investment efficiency. By
combining Eq. (2) with the observed efficiency trends,
we found that the impact of SE on overall TE was
stronger, indicating a significant influence of SE on TE.
To quantify the relationship and determine the specific
impact level, we conducted a correlation analysis of the
three efficiency values across the 19 cities. The correlation
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coefficient between TE and SE (0.97) was higher than the
correlation coefficient between TE and PTE (0.56). This
indicates that low investment efficiency was primarily
affected by SE, which was 41% higher than PTE over the
five-year period. Notably, with the exception of Beijing
in 2017, all other regions experienced increasing returns
to scale from 2014 to 2018. This implies that the reduction
in pollutant concentrations surpassed the proportional
increase in investment elements within those regions.

3.2.2 Provincial investment efficiency

Figure 4(a) shows a summary of government investment
efficiency at province-level in the studied cities in
2014-2018. Beijing ranked first in terms of investment
efficiency at 0.994. The cities in Hebei Province had the
lowest investment efficiency at 0.776. The PTE and SE
of this region are 0.988 and 0.925, respectively, which
are 2.6% and 12.8% lower than the average, respectively.
Therefore, we can conclude that scale inefficiency led to
low investment efficiency in Hebei Province from
2014-2018.

Figure 4(b) shows the investment efficiency of air
pollution control in the BTH region from 2014-2018,
indicating significant inter-province differences and
slight intra-province differences. To explore the degree of
efficiency difference, we introduced a variation coefficient
to compare the magnitude of dispersion. A difference of
less than 10% was considered slight. The mean efficiency
difference among the provinces was 10%, indicating
significant inter-province differences. We also calculated
the degree of difference among cities within different
provinces and found that the intra-provincial difference
was only 6%. This implies slight intra-provincial
differences.

3.2.3 Urban investment efficiency

Figure 5(a) illustrates the 5-year average efficiency of

(a) Province-level investment efficiency summary
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each city. Hohhot and Chifeng in Inner Mongolia and
Kaifeng in Henan Province ranked first in investment
efficiency every year, which suggests that they reached
DEA effectiveness with TE, PTE, and SE efficiencies of
1. Shijiazhuang had the lowest efficiency, 20% lower
than the city average. Its PTE and SE were 7.6% and 13.3%
below the mean, respectively, resulting in DEA ineffec-
tiveness. The results demonstrate an improvement in
government investment efficiency in most cities, excluding
Hohhot, Chifeng, and Kaifeng. However, SE needs
improvement in Zhengzhou, Beijing, Jiaozuo, Yangquan,
Jining, and Taiyuan. In addition, both SE and PTE need
to be improved for the remaining cities.

Figures 5(b)-5(d) display the annual efficiency differ-
ences for cities concerning combined TE, SE, and PTE
from 2014-2018. The scattered distribution of the TE
values of government investment in cities indicates a gap
in investment efficiency among cities in the BTH region.
The point distribution of SE values was denser in 2018
than in 2014, showing a narrowing gap over the five
years. The gap in PTE values between cities was small
but broadened in 2017. Furthermore, we calculated the
coefficients of variation to accurately describe the degree
of variation among cities. The outcomes demonstrate that
the overall investment efficiency difference tended to
fluctuate downward across the five years, dropping by
5.8% but still high (11%). This illustrates the persistence
of disparities in investment efficiency among cities
during 2014-2018.

The disparity in SE was found to be the primary factor
contributing to the variation in investment efficiency
among cities. Although SE increased over the five-year
period, the average coefficient of variation for PTE was
less than 4%. This indicates that the differences in PTE
among cities were relatively insignificant. On the other
hand, although the coefficient of variation for SE slightly
decreased, its average value remained above 10%. This
suggests that the substantial differences in SE among cities
contribute to the significant gap in investment efficiency.

(b) Province-level investment efficiency difference
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Fig. 4 Province-level investment efficiency in air pollution control and efficiency difference (2014-2018).
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(b) Combined technical efficiency (TE)
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Fig. 5 Urban investment efficiency in air pollution control and efficiency difference (2014-2018).

Notably, there was a significant decline in SE in 2017,
leading to an overall decrease in investment efficiency.
By examining the efficiency change ratios, we found that
the decline in investment efficiency in 2017 was mainly
driven by decreases in Shijiazhuang, Tangshan, and
Changzhi, which accounted for 70.8% of the overall
decline. In Shijiazhuang, the TE, PTE, and SE values
were 0.597, 0.752, and 0.794, respectively, representing
decreases of 19.2%, 62.2%, and 0.8% compared to the
previous year. Tangshan experienced decreases of 10.8%
in PTE and 38.7% in SE, while in Changzhi, the PTE and
SE decreased by 16.0% and 26.1%, respectively. Overall,
the decrease in investment efficiency in 2017 was primarily
due to lower PTE in Shijiazhuang and lower SE in Tang-
shan and Changzhi.

Regarding returns to scale, most relatively inefficient
cities exhibited increasing returns to scale in investment,
indicating that increased investment was beneficial. In
contrast, Beijing experienced decreasing returns to scale
in investment in 2017, while the majority of relatively
inefficient cities witnessed increasing returns. It is impor-
tant to note that the model does not specify the returns to
scale value for cities that achieve optimum relative effi-
ciency, such as Hohhot, Chifeng, and Kaifeng. Increasing
returns to scale suggest that when investment expands,

the improvement in air quality surpasses the proportional
increase in investment size, leading to a higher marginal
return on investment.

3.3 Annual efficiency changes in government investment
in air pollution control of 19 cities

The results show that the average overall comprehensive
investment efficiency (TFPch) change rate increased by
37.9% between 2014 and 2015. The cumulative growth
rate (TFPch cumulative multiplier) reached 3.617, indi-
cating that the comprehensive efficiency of government
investment increased significantly over the five-year
period. The Effch and TEch increased by 1.9% and
35.4%, respectively, representing the progress in invest-
ment management ability and the advances and innovation
of investment technology, respectively. It is inferred that
technological progress in investment mainly influenced
the improvement in integrated investment efficiency.
Furthermore, we performed a correlation analysis of the
three efficiency change rate indices for 19 cities to deter-
mine the specific impact level. The correlation coefficient
between TFPch and TEch was 0.91, which was higher
than that between TFPch and Effch (0.17). This demon-
strates that the change rate of investment efficiency was
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affected by technological progress 74% more than invest-
ment efficiency progress over the five years.

Figure 6 shows the TFPch index of the 19 cities to
analyze the rate of change in investment efficiency for
different years. From 2014 to 2015, the TFPch of the 19
cities was greater than two, representing rapid growth. In
2015-2016, the TFPch fold was generally below “y = 17,
meaning that the change rate decreased. From 2016 to
2017, the TFPch line was generally within the range of
“y =17 and “y = 27, indicating an increase in 2017. In
2017-2018, they were stable around “y = 1 except for
Beijing (3.957), which indicates stability in investment
efficiency. In summary, the yearly changes in investment
efficiency experienced yearly fluctuations, with positive
trends from 2014-2018.

4 Discussion

This study introduces innovative methods to improve
investment strategies for cities by analyzing the efficiency
of municipal government investment in air pollution
prevention and control during the 2014-2018 period. The
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study sheds light on the investment challenges faced by
city governments under the Chinese government invest-
ment model and recommends regional cooperative invest-
ment in air pollution prevention and control.

During the 2014-2018 period, Hohhot, Chifeng, and
Kaifeng achieved optimal investment efficiency by prior-
itizing desulfurization, denitrification, dust removal, and
controlling urban dust. Chifeng became the first city in
Inner Mongolia, with over a million people meeting the
PM, 5 standards through efficient management of industrial
pollution, while Kaifeng successfully reduced coal
combustion-induced air pollution by implementing “coal
to electricity” clean heating projects. Under certain condi-
tions, such as similar pollution sources, climatic environ-
ments, and industrial structures, policy migration is possi-
ble, enabling cities with similar conditions to collaborate
or learn from each other.

The study revealed significant intercity and inter-
provincial differences in government investment efficiency
among the 19 cities during 2014-2018, with minor intra-
provincial variation. Investment efficiency improved
across the 19 cities over the study period, and the degree
of difference among cities decreased. The primary reason
for the difference in efficiency was attributed to variations
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Fig. 6 TFPch index of 19 cities (2014-2018).
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in SE among cities. Understanding the factors that influ-
ence investment efficiency and the underlying mechanisms
is crucial in addressing how to invest efficiently. Based
on the results, three recommendations are offered for
government investment strategies.

First, increasing government investment in air pollution
control to improve its effectiveness should be considered.
From 2014 to 2018, the Chinese government provided a
substantial amount of financial support for atmospheric
pollution control in BTH cities, which led to remarkable
results. Nevertheless, some cities experienced an ongoing
increase in pollutant levels that did not meet the required
standards, indicating suboptimal efficiency in investment
planning across the region. Scale ineffectiveness, which
comprises inadequate investment and unreasonable
investment allocation, was the main factor contributing to
this nonoptimal efficiency. The average annual proportion
of GDP invested in environmental protection between
2014 and 2018 was 1.25%. However, the World Bank
(1997) concluded that the environment deteriorates when
the proportion of GDP invested in environmental protec-
tion is less than 1.5%. Despite fluctuating and rising envi-
ronmental investment in recent years, its share of GDP
has declined by 1%. China’s increased economic strength
has not been accompanied by a parallel increase in envi-
ronmental protection investment, which poses a serious
threat to air pollution and other ecological problems.
Thus, expanding financial investment in air control is
essential. Additionally, the proportion of pollutant
improvement increased compared to the proportion of
investment scale, thereby indicating that expanding
government investments in air control could lead to more
effective air quality improvement. In addition to direct
investment, the government should consider expanding
investment in energy conservation and emission reduc-
tion, technological progress, and industrial restructuring
to rationalize the distribution of financial investment.
Furthermore, the government should mobilize multiple
parties to participate in air pollution control investments
and promote collaborative investment by society as a
whole.

Second, the government should enhance its management
of investments in air pollution control and maintain tech-
nological progress. The study reveals that the primary
reason for the increase in government investment effi-
ciency across 19 cities between 2014 and 2018 was the
increase in investment technological progress (35.4%).
This indicates the development of technological progress
and innovation in terms of government investment factors
and assets. Unfortunately, the level of organizational
investment management increased by only 1.9%. The
organization and management of investment include both
the technological capacity of investment management and
the scale and factor allocation of investment. The govern-
ment needs to improve investment patterns and enhance
the investment evaluation process to promote investment

efficiency in atmospheric management. Additionally, by
improving the integrity of the investment chain, resource
allocation capacity, and regeneration efficiency of cities,
the government can increase the marginal efficiency of
investment and the level of investment scale economies.
In addition to enhancing its investment management
capacity and technology, the studied area can achieve
clean air by enhancing the allocation of government
investments in energy, industrial, and transportation
structures.

Finally, the government must strengthen investment
cooperation among cities in various provinces within the
BTH region, eliminate interprovincial barriers, and real-
locate funds for efficient management. Current adminis-
trative regions are divided by provinces, which is incon-
sistent with atmospheric transmission channels and can
lead to unreasonable allocations. Each year, provinces
allocate fiscal funds based on city importance and the
severity of air pollution to meet environmental perfor-
mance regulations. However, owing to variations in
economic conditions and atmospheric pollution levels,
provinces implement different air control fund allocation
programs that can cause significant inter-province effi-
ciency differences in government investment, as seen in
Hebei and Shanxi. Interestingly, cities with low investment
efficiency, including Shijiazhuang, Baoding, Handan, and
Tangshan in Hebei Province, Zibo and Jinan in Shandong
Province, and Anyang in Henan Province, were in the
inner circle of the BTH atmospheric transmission region
and on multiple provincial border lines. Baoding in Hebei
Province, for example, had 12% higher PM; s pollution
than Anyang in Henan, but the investment was just about
half of that given to Anyang, which ranked first in funding
for air pollution control despite being in the middle of the
air pollution level in Henan. Similarly, although Handan
in Hebei was heavily polluted compared with Zibo in
Shandong, it received less investment. This unreasonable
investment allocation intensifies the overall low invest-
ment efficiency. In the next phase, the government
should redefine its investment strategy from a regional
perspective and reallocate the fiscal fund management
area under the BTH atmospheric transmission corridor.
Special funds for atmospheric control could be uniformly
allocated to the middle region and redistributed, consider-
ing each city’s economic conditions and pollution
situation.

This model was subject to certain assumptions.
Climatic factors, such as annual precipitation and wind
speed, can impact air quality, which in turn may reduce
the accuracy of investment efficiency results. Therefore,
this model is suitable for city clusters with similar
climatic conditions. The BTH region has a temperate
monsoon climate with a low occurrence of drought and a
high incidence of severe winter haze. The findings of this
study were not significantly affected by climate variables.
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5 Conclusions

Following the termination of the Air Pollution Prevention
and Control Action Plan, this study set out to assess the
effectiveness of municipal investments in curbing air
pollution and the factors influencing them. The research
offers insights into enhancing investment efficiency in
municipal-level air pollution control via national financial
resource allocation and ensuring sustainable investment.
The input-oriented three-stage DEA-Malmquist model
was employed to analyze government investment effi-
ciency and year-over-year efficiency changes among 19
cities in the BTH region. The findings reveal a marked
improvement in investment efficiency over the past five
years, largely due to technological advancements in
financial investment. While government investments
between 2014 and 2018 notably ameliorated the atmo-
sphere, they yielded low overall government investment
efficiency due to imperfect SE. Areas of low efficiency
were predominantly found at the interprovincial junction
within the inner circle of the BTH region. Additionally, it
was found that enhancing investment management capac-
ity is essential. Expanding the investment scale is necessary
for bolstering investment efficiency and management
capacity and fostering yearly efficiency improvement.
Significantly, the research determined that discrepancies
in intercity investment efficiency were more substantial
than interprovincial efficiency differences. A restricted
allocation of resources was observed in high pollution
regions with low investment, leading to an overall low
efficiency of government investment in air pollution
control across the BTH region. To refine the regional air
pollution control investment initiative, a shift from the
traditional province-centric investment model to a collab-
orative investment model with cities as cooperative units
is recommended. This could potentially increase the
effectiveness of investment and promote more equitable
resource distribution.
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