
Vol:.(1234567890)

CCF Transactions on High Performance Computing (2023) 5:160–170
https://doi.org/10.1007/s42514-023-00142-2

1 3

REGULAR PAPER

HeuriSPAI: a heuristic sparse approximate inverse preconditioning
algorithm on GPU

Jiaquan Gao1  · Xinyue Chu1 · Yizhou Wang1

Received: 29 July 2022 / Accepted: 14 March 2023 / Published online: 27 March 2023
© China Computer Federation (CCF) 2023

Abstract
In this study, we present a new heuristic sparse approximate inverse (SPAI) preconditioning algorithm on graphics process-
ing unit (GPU), called HeuriSPAI. For the proposed HeuriSPAI, there are the following novelties: (1) a heuristic method
is proposed, which gives the potential candidate indices of the nonzero entries of the preconditioner in advance to guide
the selection of the new indices, so as to improve the quality of the obtained preconditioner; and (2) a parallel framework
of constructing the heuristic SPAI preconditioner on GPU is presented on the basis of the new proposed heuristic SPAI
preconditioning algorithm; and (3) each component of the preconditioner is computed in parallel inside a group of threads.
HeuriSPAI fuses the advantages of static and dynamic SPAI preconditioning algorithms, and alleviates the drawback of the
existing dynamic SPAI preconditioning algorithms on GPU that are not suitable for large matrices. Experimental results
show that HeuriSPAI is effective for large matrices, and outperforms the popular preconditioning algorithms in three public
libraries, as well as a recent parallel static SPAI preconditioning algorithm.

Keywords  Sparse approximate inverse · Preconditioning · Heuristic · CUDA · GPU

1  Introduction

In the fields of science, engineering and economy etc., many
problems can be modeled as the following linear system:

Here A is a large, sparse and nonsingular matrix, and x and
b are unknown and known vectors, respectively. For solving
the linear system in Eq. (1), the iterative methods such as
the generalized minimal residual method (GMRES)(Saad
and Schultz 1986) and the biconjugate gradient stabilized
method (BICGSTAB)(van der Vorst 1992) have been widely
applied. Furthermore, with a left or right preconditioner M,

the original problem in Eq. (1) can be transformed into a
more tractable form as:

A good preconditioner M should be easy to be constructed,
and effective in reducing the iteration count of iterative meth-
ods. Popular preconditioners include the incomplete factor-
ization preconditioners(Saad 2003; Gao et al. 2014; Anzt
et al. 2017), the sparse approximate inverse (SPAI) precon-
ditioners based on Frobenius norm minimization(Cosgrove
et al. 1992; Grote and Huckle 1997; Chow 2000; Jia and
Zhu 2009), the factorized sparse approximate inverse (FSAI)
preconditioners(Kolotilina and Yeremin 1993; Benzi et al.
1996, 2000; Ferronato et al. 2014; Bernaschi et al. 2016) and
the preconditioners that consist of an incomplete factoriza-
tion followed by an approximate inversion of the incomplete
factors(van der Vorst 1982; Duin 1999.)

The SPAI preconditioner based on Frobenius norm min-
imization uses approximate A−1 as the preconditioner M.
As shown in Chow (2000), M is constructed to minimize
‖AM − E‖ in the Frobenius norm:

(1)Ax = b, x, b ∈ Rn,A ∈ Rn×n.

(2)MAx = Mb or AMy = b, x = My.

(3)min ‖AM − E‖2
F
.

 *	 Jiaquan Gao
	 springf12@163.com

 *	 Xinyue Chu
	 2316607219@qq.com

	 Yizhou Wang
	 1966224230@gmail.com

1	 Jiangsu Key Laboratory for NSLSCS, School of Computer
and Electronic Information, Nanjing Normal University,
Qixia street, Nanjing 210023, Jiangsu, China

http://orcid.org/0000-0002-2983-9921
http://crossmark.crossref.org/dialog/?doi=10.1007/s42514-023-00142-2&domain=pdf

161HeuriSPAI: a heuristic sparse approximate inverse preconditioning algorithm on GPU﻿	

1 3

Here E is an n × n unit matrix. The columns in M are
independent of each other, and thus equation (3) can be
transferred into the following n independent least squares
problems:

where mk and ek represent the kth column of M and the unit
matrix, respectively. Obviously, the construction of SPAI
preconditioner is easily parallelized. Compared with the
incomplete factorization preconditioners, SPAI precondi-
tioners require only a few sparse matrix-vector multiplica-
tion operations instead of triangular solves. Compared with
FSAI preconditioners, SPAI preconditioners are suitable
for various matrices such as A, not just symmetric positive
definite matrices. Therefore, SPAI preconditioners have
attracted considerable attention.

Considering the construction method of M, SPAI can be
categorized into static and dynamic types. If the sparsity of
M is prescribed a priori, we will have a static SPAI precon-
ditioning procedure. In contrast, the SPAI preconditioning
algorithm is a fully dynamic one. Because the SPAI precon-
ditioner construction is generally time-consuming for large
matrices, in recent ten years, with the advent of graphics
processing units (GPUs), many researchers have attempted
to accelerate them on the GPU architecture. There exists
some work on accelerating the construction of static SPAI
preconditioners with GPU(Dehnavi et al. 2013; Gao et al.
2017; Rupp et al. 2016; He et al. 2020; Gao et al. 2021),
However, in many applications, the difficulty lies in deter-
mining a good sparsity structure of the approximate inverse
in advance when the static SPAI preconditioner is applied.
Thus, the dynamic sparse approximate inverse algorithm
that aims at searching the sparsity pattern of M automati-
cally is proposed. As compared to the static SPAI precon-
ditioning algorithm, the advantage of the dynamic SPAI
preconditioning algorithm is that the sparsity pattern of M
is automatically exploited; however, its disadvantage is that
a great deal number of iterations is required to explore the
nonzero entries of M. Moreover, the research on accelerat-
ing the construction of the dynamic SPAI preconditioners
with GPU is scarce. Rupp et al. Rupp et al. (2016) present a
parallel dynamic SPAI implementation procedure on GPU in
the ViennaCL library but it works only for smaller matrices.

Based on the above motivation, in this study, we present
a heuristic SPAI preconditioning algorithm on GPU, called
HeuriSPAI. In our proposed HeuriSPAI, for each loop, we first
present a heuristic method, which gives potential candidate
indices of nonzero-entries of M in advance to guide the selec-
tion of new indices, and thus improves the quality of obtained
M. Second, the loop-stopping condition adds l < lmax ( lmax is
a small integer) and Jk ⩽ � ∗ n2k ( � is a small real number
and n2k is the nonzero number of the kth column of A) besides

(4)min ‖Amk − ek‖22, k = 1, 2,… , n,

‖rk‖ ⩽ � . This guarantees the sparsity of the preconditioner.
Third, a parallel framework of constructing the heuristic SPAI
preconditioner is presented. Finally, each component of the
preconditioner, such as sparse matrix-matrix multiplication,
finding J̃ , reducing J̃ , determining Ĩ , QR decomposition, and
computing mk and rk , is computed in parallel inside a group of
threads. HeuriSPAI fuses the advantages of static and dynamic
SPAI preconditioning algorithms, and alleviates the drawback
of the existing dynamic SPAI preconditioning algorithms on
GPU that are not suitable for large matrices. Experimental
results show that HeuriSPAI is effective, and outperforms sev-
eral popular preconditioned algorithms on GPU: CSRILU0 in
the CUSPARSE library(NVIDIA 2021), the incomplete SPAI
preconditioning algorithm in the MAGMA library(Anzt et al.
2018), a parallel static SPAI preconditioning algorithm and a
parallel dynamic SPAI preconditioning algorithm in the Vien-
naCL library(Rupp et al. 2016), and a recent parallel static
SPAI preconditioning algorithm(He et al. 2020).

The rest of this paper is organized as follows. In the second
section, a new heuristic SPAI preconditioning algorithm is
proposed. In the third section, a heuristic SPAI preconditioning
algorithm on GPU is presented. Experimental evaluation and
analysis are presented in the fourth section. The fifth section
contains our conclusions and points out our future research
directions.

2 � A Heuristic SPAI algorithm

Assuming that each value of A is greater than or equal to 0,
based on the characteristic polynomial for A, we have

Therefore, the pattern of A−1 (denoted by S(A−1) ) is con-
tained in the pattern ∪j=n−1

j=0
S(Aj) . Thus we can obtain

Similarly, the Neumann representation

for small � shows that numerically S((E + A)j) is nearly con-
tained in S(A−1) for all j. Considering Eqs. (6) and (7), we
can obtain

Let us assume that we have already computed an optimal
solution mk , k = 1, 2,… , n , with the residual rk of the least
squares problem relative to an initial index set J0

k
= {k} .

Next, for each l, l = 1, 2,⋯ , utilizing the idea of Eq. (8),
we use

(5)A−1 = �0E + �1A +⋯ + �n−1A
n−1.

(6)S(A−1) ⊆ S((E + A)n−1).

(7)A−1 = �

∞∑
j=0

(E − �A)j

(8)S(A−1) ≃ S((E + A)n−1).

162	 J. Gao et al.

1 3

to generate the candidate indices that might be added to Jl
k
 ,

where C0

k
= J0

k
 , and |A| means to take the absolute value for

each value of A. Let J̃l
k
 equal to the set of indices that appear

in Cl
k
 but not in Jl−1

k
 . For each j ∈ J̃l

k
 , we consider the fol-

lowing one-dimensional minimization problem(Grote and
Huckle 1997):

F o r e v e r y j , �j = −rT
k
Aej∕‖Aej‖22 a n d t h u s

�2
j
= ‖rk‖22 − (rT

k
Aej)

2∕‖Aej‖22.
Obviously, indices with (rT

k
Aej)

2 = 0 lead to no improve-
ment in the one-dimensional minimization. We reduce J̃l

k

to the set of the most profitable indices j with smallest �j
and add it to Jl

k
 . Using the augmented set of indices Jl

k
 ,

we solve the least squares problems in Eq. (4) again. We
denote by Ĩl

k
 the set of new indices, which correspond to

the nonzero rows of A(., Jl−1
k

∪ J̃l
k
) not contained in Il−1

k
 ,

and by ñ1 and ñ2 the number of indices in Ĩl
k
 and J̃l

k
 , and

then have

Here Â ∈ Rn1×n2 is the submatrix of eliminating all zero rows
in A(., Jl−1

k
) , and Q and R are matrices obtained by the QR

decomposition of Â , and Q1 and Q2 are the first n2 columns
and the last (n1 − n2) columns of Q, respectively. Note that
the modified Gram-Schmidt method(Brandes et al. 2012) is
utilized to execute the QR decomposition in this study. We
require only the computation of the QR decomposition of

B =

(
QT

2
A(Il−1

k
, J̃l

k
)

A(Ĩl
k
, J̃l

k
)

)
 . Utilizing the QR decomposition, we

can obtain the solution of the least squares problems in
Eq. (4). If rk satisfies the loop-stopping condition, the algo-
rithm stops; otherwise, we set Il

k
= Il−1

k
∪ Ĩl

k
 and Cl = Jl

k
 and

l = l + 1 , and continue to execute the loop.
In order to decrease the computational complexity, the

loop-stopping condition is set to ‖rk‖ ⩽ � or l < lmax ( lmax
is a small integer) or Jk ⩽ � ∗ n2k ( � is a small real number
and n2k is the nonzero number of the kth column of A). We
summarize the sequential version of our proposed heuristic
SPAI algorithm in the following Algorithm 1.

Algorithm 1: Heuristic SPAI algorithm

Input	� : A, a tolerance � , the maximum number of the
heuristic computation lmax , and �

(9)Cl
k
= (E + |A|)Cl−1

k

(10)min
�j∈R

‖rk + �jAej‖ =∶ �j.

(11)

A(Il−1k ∪ Ĩlk, J
l−1
k ∪ J̃lk) =

(

Â A(Il−1k , J̃lk)
0 A(Ĩlk, J̃

l
k)

)

=
(

Q
Eñ1

)

⎛

⎜

⎜

⎜

⎝

R QT
1A(I

l−1
k , J̃lk)

0 QT
2A(I

l−1
k , J̃lk)

0 A(Ĩlk, J̃
l
k)

⎞

⎟

⎟

⎟

⎠

.

Output	� : M For every column mk of M:

1)	 Set l = 1 and C0

k
= {k} , choose an initial sparsity

J0
k
= {k}.

2)	 Solve Eq. (4) to obtain mk , and compute rk = ek − Amk .
while ‖rk‖2 > 𝜀 and l < lmax and Jk ⩽ � ⋅ n2k:

3)	 Cl
k
= (E + |A|)Cl−1

k
.

4)	 Let J̃l
k
 equal to the set of indices that appear in Cl

k
 but not

in Jl−1
k

.
5)	 For every j ∈ J̃l

k
 , compute �2

j
= ‖rk‖22 − (rT

k
Aej)

2∕‖Aej‖22 ,
and delete from J̃l

k
 all but the most profitable indices.

6)	 Determine the new indices Ĩl
k
 , and execute the QR

decomposition of B.
7)	 Solve the new least squares problem in Eq. (4) to obtain

mk , and compute the new residual rk = ek − Amk.
8)	 Set Il

k
= Il−1

k
∪ Ĩl

k
 , Jl

k
= Jl−1

k
∪ J̃l

k
 , Cl = Jl

k
 , and l = l + 1.

It is observed that as compared to the popular dynamic SPAI
preconditioning algorithm in Grote and Huckle (1997), our
proposed heuristic SPAI algorithm has the following two
main difference: (1) a heuristic method is proposed to give
potential candidate indices; (2) the loop-stopping condition
adds l < lmax and Jk ⩽ � ∗ n2k besides ‖rk‖ ⩽ � , which can
better maintain the sparsity level of the preconditioner. For
the proposed heuristic SPAI algorithm, its computational
complexity is roughly O(maxI × maxJ × n) , and the two
operations such as the sparse matrix-matrix multiplication
and QR decomposition for each iteration are the most time-
consuming ones.

In this section, we present a parallel heuristic sparse
approximate inverse preconditioning algorithm on GPU,
called HeuriSPAI. Table 1 shows the main arrays used in
HeuriSPAI. The parallel framework of HeuriSPAI is shown
in Fig. 1, which includes three stages: Init-HeuriSPAI stage,
Compute-HeuriSPAI stage, and Post-HeuriSPAI stage.

2.1 � Init‑HeuriSPAI stage

In the Init-HeuriSPAI stage, the global memory of GPU to
A is first allocated. A is stored in memory using the CSC
(Compressed Sparse Column) storage format, and M is also
stored in columns. Second, when computing mk (one column
of M), k = 1, 2,⋯ , n , the dimensions of local submatrices
Âk ( n1k , n2k ) are usually distinct for different k. To simplify
the accesses of data in memory and enhance the coales-
cence, the dimensions of all local submatrices are uniformly
defined as (maxI, maxJ), where maxJ = max

k
{⌈� ⋅ n2k⌉} and

maxI = � ⋅ maxJ , where � is an integer. Utilizing maxI and
maxJ, the main arrays that are used in HeuriSPAI (see
Table 1) are defined, and the global memory of GPU to the

163HeuriSPAI: a heuristic sparse approximate inverse preconditioning algorithm on GPU﻿	

1 3

main arrays is allocated. Third, the initial values of mk and
rk are obtained by setting Jk

0
= {k} on GPU.

2.2 � Compute‑HeuriSPAI stage

In the Init-HeuriSPAI stage, the initial values of mk and rk
are obtained. The aim of the Compute-HeuriSPAI stage is to
achieve better values of mk, k = 1, 2,⋯ , n by the iteration.
One mk vector is computed via one warp (32 threads in a
block), many mk vectors are computed simultaneously via
warps executing in parallel. The parallelism is also exploited

in a warp by computing one mk vector in parallel using 32
threads inside a warp.

Sparse matrix-matrix multiplication. This step is to com-
pute Cl

k
= (E + |A|)Cl−1

k
 , k = 1, 2,⋯ , n . In fact, each warp

finishes a sparse matrix-sparse vector multiplication. Here
we present a novel sparse matrix-matrix multiplication
on GPU, and its main procedure is shown in Fig. 2. In a
warp, the sparse matrix-sparse vector multiplication, e.g.,
(E + |A|)Cl−1

k
 , is computed as follows. First, the row indices

of the first column referenced in CIndexk are loaded into Ik ,
and the row index vector of successive columns referenced
by CIndexk are then compared in parallel with values in Ik
and new indices are appended to Ik using the atomic opera-
tions. Second, each thread computes one row whose indices
is in Ik and the values are saved to Âk . Finally, threads in
a warp read CDatak into shared memory sCData in paral-
lel, and then each thread computes one row of Âk ⋅ sCData ,
and save values to CDatak and the corresponding indices to
CIndexk.

Finding Ĵ : Each warp finds a subset of J̃ in this step. In
a warp, a subset of J̃ , e.g., J̃k , is computed by the following
procedure: the indices in CIndexk are compared in parallel
with values in Jk and the different indices are written into Ĵk.

Reducing J̃ : In this step, from each subset in J̃ (e.g., J̃k )
all but the most profitable indices are deleted. Each subset
of J̃ , e.g., J̃k , is reduced via one warp, which includes the
following three stages. In the first stage, the threads in a
warp compute �j , j ∈ J̃k , in parallel, and save them to shared
memory. In the second stage, the values in shared memory
are sorted in ascending order. The threads in a warp read �j
that is smaller than � from shared memory in parallel and
rewrite their corresponding indices to J̃k in the third stage.

Determine Ĩ and QR decomposition: This step is used to
determine Ĩ and decomposes the local submatrix into QR
using Gram-Schmidt method. Each warp determines one set
of Ĩ , e.g., Ĩk . For each j ∈ J̃k , all threads inside a warp search
the row indices in the jth column of A in parallel to find
indices that are not included in Ik , and then write them to Ĩk
using the atomic operation. In the following, Ĩk are sorted

Fig. 1   Parallel framework of HeuriSPAI

Table 1   Arrays used in HeuriSPAI

Arrays Size Type Arrays Size Type

AData nonzeros Double JPTR n Integer
AIndex nonzeros Integer J n × maxJ Integer
APtr n + 1 Integer IPTR n Integer
CData n × maxI Double I n × maxI Integer
CIndex n × maxI Integer Ĵ n × maxJ Integer
CPtr n Integer J̃PTR n Integer

Â n × maxI × maxJ Double Ĩ n × maxI Integer
Q n × maxI ×maxJ Double ĨPTR n Integer
R n × maxJ ×maxJ Double m̂ n × maxJ Double
atom n Integer r̂ n × maxI Double

Fig. 2   Main procedure of sparse matrix-matrix multiplication

164	 J. Gao et al.

1 3

in parallel in an ascending order. In addition, each warp is
also responsible for one QR decomposition in this step, and
its main procedure is exhibited in Fig. 3. In a warp, the QR
decomposition of the local submatrix, e.g., Âk , is composed
of three steps at each iteration i. First, all threads compute
the ith row of the upper triangle matrix Rk in parallel and
put them into shared memory sR. Second, the threads in the
warp concurrently normalize column i of Qk , and compute
the projection factors Rk and sR. The values of all columns
of Qk are updated by using shared memory sR and column i
of Qk in parallel in the third step.

Computing mk and rk : This step is used to compute mk
and rk . As we know, mk is obtained by scattering m̂k , and
rk = ek − Amk . Therefore, the key of this step is to com-
pute m̂k by solving Rkm̂k = QT

k
êk . Each warp is responsi-

ble for computing one m̂k . In a warp, computing values of
m̂k includes two steps. In the first step, all threads inside
a thread group compute QT

k
êk in parallel and save values

to shared memory xE. In the second step, the values of m̂k
are obtained by solving the upper triangular linear system,
Rkm̂k = xE , in parallel using shared memory.

2.3 � Post‑HeuriSPAI stage

The Post-HeuriSPAI stage is to assemble M in the CSC stor-
age format, and store it to the MPtr, MIndex, and MData
arrays. The Post-HeuriSPAI stage includes the following
steps:

1)	 On the GPU, we assemble MPtr using JPTR, as shown
in Fig. 4.

2)	 Utilizing m̂k and J to assemble MData and MIndex. Each
warp is responsible for assembling one m̂k to MData and
one Jk to MIndex in parallel.

Obviously, MPtr, MIndex, and MData arrays are generated
on the GPU memory and do not need to be transferred to
the CPU.

3 � Evaluation and analysis

We evaluate the performance of HeuriSPAI in this section.
Table 2 shows the overview of NVIDIA GPUs that are
used in the performance evaluation. The test matrices are
selected from the SuiteSparse Matrix Collection(Davis and
Hu 2011). Table 3 summarizes the information of the sparse
matrices, including the name, kind, number of rows, and
total number of non-zeros. The test matrices are chosen due
to the fact that they have been widely used in some previous
work(Grote and Huckle 1997; Dehnavi et al. 2013; He et al.
2020; Gao et al. 2021).The source codes are compiled and
executed using the CUDA toolkit 11.1(NVIDIA 2021). Note
that in the following experiments, all algorithms use the
double-precision floating point numbers in all computations.

3.1 � Effectiveness analysis

First, we test the effectiveness of the approximate inverse
matrices that are obtained by HeuriSPAI. For each matrix,
both GPUBICGSTAB and GPUPBICGSTAB are called to

Fig. 3   Main procedure of decomposing Â into QR 

Fig. 4   Assemble M 

Table 2   Overview of GPUs

Hardware GTX1070 RTX3090

Cores 1920 10496
Clock speed (GHz) 1.56 1.70
Memory type GDDR5 GDDR6X
Memory size (GB) 8 24
Max-bandwidth (GB/s) 256 384
Compute capability 6.1 8.6

165HeuriSPAI: a heuristic sparse approximate inverse preconditioning algorithm on GPU﻿	

1 3

solve Ax = b , where all elemental values of b are 1, and the
produced M is used as the preconditioner, and the initial
x0 = b . GPUBICGSTAB and GPUPBICGSTAB are the par-
allel implementations of BICGSTAB and preconditioned
BICGSTAB on GPU using the CUBLAS 11.1(NVIDIA
2021) and CUSPARSE 11.1(NVIDIA 2021) libraries,
respectively, and stop when the residual error, which is
defined as ‖b−Ax‖2‖b−Ax0‖2 , is less than 1e−7 or the number of itera-
tions exceeds 10,000. Tables 4 and 5 show the number of
iterations and execution time after the convergence of GPU-
BICGSTAB and GPUPBICGSTAB on GTX1070 and
RTX3090, respectively. The time unit is second (s). Note
that the execution time of GPUPBICGSTAB in Tables 4
and 5 includes the execution time of HeuriSPAI that is used
to obtain the preconditioner; and "/" means that the execu-
tion time of the algorithm is not counted because its itera-
tions exceed 10,000.

From Tables 4 and 5, we can observe that on two GPUs,
without the preconditioner, for af25600, Zhao2, imagesen-
sor, venkat01, nv2, G3_circuit, ss, and stokes, GPUBICG-
STAB cannot converge to the 10−7 residual error in 10,000
iterations while GPUPBICGSTAB with HeuriSPAI can.
For apache2, t2em, thermal2, and atmosmodd, GPUBICG-
STAB can converge under 10,000 iterations, but the number

of iterations decreases dramatically using the preconditioner.
GPUPBICGSTAB has smaller execution time than GPU-
BICGSTAB for these matrices except for atmosmodd. These
observations validate the effectiveness of the approximate
inverse matrices that are obtained by HeuriSPAI.

Second, we test the effectiveness of HeuriSPAI by com-
paring it with a recent static SPAI algorithm suggested in
He et al. (2020)(denoted by SSPAI) and a popular dynamic
SPAI algorithm by Grote and Huckle(Grote and Huckle
1997) (denoted DSPAI) from the viewpoint of accelerating
the convergence. The first eleven small matrices in Table 3
are used in this test. The small matrices are chosen for the
the following two reasons: (1) DSPAI is not suitable for large
matrices; (2) they are the same as those in Grote and Huckle
(1997). Similar to Grote and Huckle (1997), the precondi-
tioned BICGSTAB is called to solve Ax = b , and stops when
the residual error is less than 1e−8 or the number of iterations

Table 3   Descriptions of test matrices

Name Kind Rows Nonzeros

Orsreg_1 CFD 2,205 14,133
Orsirr_1 CFD 1,030 6,858
Orsirr_2 CFD 886 5,970
Sherman1 CFD 1,000 3,750
Sherman2 CFD 1,080 23,094
Sherman3 CFD 5,005 20,033
Sherman4 CFD 1,104 3,786
Sherman5 CFD 3,312 20,793
Pores_2 CFD 1,224 9,613
Pores_3 CFD 532 3,474
Saylr4 CFD 3,564 22,316
Af23560 CFD 23,560 460,598
Zhao2 Electromagnetics 33,861 166,453
Venkat01 CFD sequence 62,424 1,717,792
Imagesensor semiconductor device 118,758 1,446,396
Apache2 structural 715,176 4,817,870
T2em electromagnetics 921,632 4,590,832
Thermal2 thermal 1,228,045 8,580,313
Atmosmodd CFD 1,270,432 8,814,880
Nv2 semiconductor device 1,453,908 37,475,646
G3_circuit circuit simulation 1,585,478 7,660,826
Ss semiconductor process 1,652,680 34,753,577
Stokes semiconductor process 11,449,533 349,321,980

Table 4   Iterations and execution time of two algorithms on GTX1070

Matrix GPUBICGSTAB GPUPBICGSTAB

Iter Exe time Iter Exe time

Af23560 > 10000 / 291 1.959
Zhao2 > 10000 / 1269 0.746
Venkat01 > 10000 / 21 1.656
Imagesenor > 10000 / 31 1.069
Apache2 4207 8.852 566 3.855
T2em 1581 3.861 573 3.387
Thermal2 6620 23.947 1399 13.417
Atmosmodd 241 1.621 78 1.652
Nv2 > 10000 / 38 26.444
G3_circuit > 10000 / 324 3.376
Ss > 10000 / 81 31.663
Stokes > 10000 / 775 288.501

Table 5   Iterations and execution time of two algorithms on RTX3090

Matrix GPUBICGSTAB GPUPBICGSTAB

Iter Exe time Iter Exe time

Af23560 > 10000 / 291 0.902
Zhao2 > 10000 / 1269 0.352
Venkat01 > 10000 / 21 0.902
Imagesenor > 10000 / 31 0.439
Apache2 4207 2.885 566 1.349
T2em 1581 1.285 573 1.084
Thermal2 6620 7.743 1399 4.424
Atmosmodd 241 0.621 78 0.653
Nv2 > 10000 / 38 14.813
G3_circuit > 10000 / 324 1.206
Ss > 10000 / 81 17.676
Stokes > 10000 / 775 170.154

166	 J. Gao et al.

1 3

exceeds 10,000. Table 6 shows the convergence results of
four algorithms. The second, third, fourth, and fifth columns
are the convergence results without the preconditioner, and
with the preconditioner that is obtained by SSPAI, and with
the preconditioner that is obtained by DSPAI, and with the
preconditioner that is obtained by HeuriSPAI, respectively.

As compared to SSPAI, for all test cases, the precondi-
tioned BICGSTAB with the preconditioner that is obtained
by HeuriSPAI has smaller number of iterations than that
with preconditioner that is obtained by SSPAI. Especially,
for sherman2 and pores_2, the preconditioned BICGSTAB
with SSPAI cannot converge to the 10−8 residual error in
10,000 iterations while the preconditioned BICGSTAB with
HeuriSPAI can. This verifies that HeuriSPAI is better than
SSPAI. As compared to DSPAI, the preconditioned BICG-
STAB with the preconditioner that is obtained by HeuriSPAI
has smaller number of iterations than that with precondi-
tioner that is obtained by DSPAI for all test matrices except
for sherman3 and pores_2. Especially, for sherman2, the
preconditioned BICGSTAB with DSPAI cannot converge
to the 10−8 residual error in 10,000 iterations while the pre-
conditioned BICGSTAB with HeuriSPAI can. This means
that HeuriSPAI is effective.

3.2 � Performance analysis

In this section, we first take GTX1070 to investigate the
fraction of the total time spent in the Init-HeuriSPAI, Com-
pute-HeuriSPAI, Post-HeuriSPAI stages in Fig. 5. We can
observe that for all the matrices, the fractions of the Init-
HeuriSPAI and Post-HeuriSPAI stages are at most 1

10
 and 1

20
 ,

respectively. This further verifies that the time of HeuriSPAI
is mainly attributed to the cost of the Compute-HeuriSPAI
stage. Second, we take the Compute-HeuriSPAI stage to
explore the ratio of its execution time on the CPU to its
execution time on the GPU, as shown in Fig. 6. It can be

seen that the ratios of the execution time on the CPU to the
execution time on the GTX1070 range roughly from 41.38
to 63.33 for the 12 test matrices, and the average ratio is
51.05; the ratios of the execution time on the CPU to the
execution time on the RTX3090 range roughly from 53.43 to
79.44 for the 12 test matrices, and the average ratio is 63.89.
These results show that computing the preconditioner for our
proposed HeuriSPAI has higher parallelism.

3.3 � Performance comparison

We evaluate the performance of HeuriSPAI by compar-
ing it with several popular preconditioning algorithms,
i.e., CSRILU0 in the CUSPARSE 11.1 library (denoted by
CSRILU)(NVIDIA 2021), the incomplete SPAI precondi-
tioning algorithm in the MAGMA 2.6.2 library (denoted
by ISAI)(Anzt et al. 2018), a static SPAI preconditioning
algorithm (denoted by S-VCL) and a dynamic SPAI precon-
ditioning algorithm (denoted by D-VCL) in the ViennaCL

Table 6   Convergence results of all algorithms

Matrix No precond SSPAI DSPAI HeuriSPAI

Orsreg_1 347 94 47 27
Orsirr_1 1671 118 55 29
Orsirr_2 1039 163 45 30
Sherman1 391 54 41 26
Sherman2 > 10000 > 10000 > 10000 37
Sherman3 > 10000 235 72 108
Sherman4 100 34 28 26
Sherman5 2021 48 41 37
Pores_2 > 10000 > 10000 78 212
Pores_3 1597 141 118 47
Saylr4 4055 1474 285 163

Fig. 5   The fraction of total time spent in the Init-HeuriSPAI, Com-
pute-HeuriSPAI, Post-HeuriSPAI stages

Fig. 6   Ratio of the execution time on CPU to the excution time on
GPU

167HeuriSPAI: a heuristic sparse approximate inverse preconditioning algorithm on GPU﻿	

1 3

Table 7   Execution time of all preconditioning algorithms and GPUPBICGSTAB on GTX1070

Matrix CSRILU+ ISAI+ S-VCL+ SSPAI+ HeuriSPAI+
GPUPBICGSTAB GPUPBICGSTAB GPUPBICGSTAB GPUPBICGSTAB GPUPBICGSTAB

Af23560 / 0.027 / / 1.562
/ 0.316 / / 0.397
>10000 743 >10000 >10000 291
/ 0.343 / / 1.959

Zhao2 0.337 / 1.380 / 0.091
2.942 / 0.853 / 0.655
7009 >10000 1848 >10000 1269
3.279 / 2.233 / 0.746

Venkat01 1.185 N/A 3.692 1.128 1.358
0.535 N/A 0.163 0.303 0.298
11 N/A 48 35 21
1.720 N/A 3.855 1.431 1.656

Imagesensor / 0.073 / 0.338 0.780
/ 4.131 / 0.319 0.289
>10000 4809 >10000 52 31
/ 4.204 / 0.657 1.069

Apache2 2.950 0.398 4.925 0.226 1.043
8.296 7.044 8.142 3.594 2.812
517 2138 2503 1090 566
11.246 7.442 13.067 3.820 3.855

T2em 24.440 1.004 N/A 0.089 0.634
2.657 2.756 N/A 2.718 2.753
409 746 N/A 755 573
27.097 3.760 N/A 2.807 3.387

Thermal2 5.234 0.594 / 0.423 2.901
63.285 13.675 / 11.721 10.516
2047 2094 >10000 2086 1399
68.519 14.269 / 12.144 13.417

Atmosmodd 5.580 0.669 6.123 0.385 1.002
2.031 0.985 0.549 1.065 0.650
76 169 91 135 78
7.611 1.654 6.672 1.450 1.652

Nv2 16.307 N/A N/A / 25.343
64.807 N/A N/A / 1.101
1072 N/A N/A >10000 38
81.114 N/A N/A / 26.444

G3_circuit 4.881 0.698 / 0.161 1.018
14.114 23.335 / 2.887 2.358
303 3682 >10000 468 324
18.995 24.033 / 3.048 3.376

Ss 14.791 N/A N/A / 29.012
4.779 N/A N/A / 2.651
79 N/A N/A >10000 81
19.570 N/A N/A / 31.663

Stokes 214.791 N/A N/A / 223.134
84.821 N/A N/A / 65.367
1087 N/A N/A >10000 775
299.612 N/A N/A / 288.501

168	 J. Gao et al.

1 3

Table 8   Execution time of all preconditioning algorithms and GPUPBICGSTAB on RTX3090

Matrix CSRILU+ ISAI+ S-VCL+ SSPAI+ HeuriSPAI+
GPUPBICGSTAB GPUPBICGSTAB GPUPBICGSTAB GPUPBICGSTAB GPUPBICGSTAB

Af23560 / 0.014 / / 0.781
/ 0.131 / / 0.121
>10000 743 >10000 >10000 291
/ 0.145 / / 0.902

Zhao2 0.167 / 0.595 / 0.043
1.576 / 0.512 / 0.309
7009 >10000 1848 >10000 1269
1.743 / 1.107 / 0.352

Venkat01 0.691 N/A 1.748 0.783 0.809
0.296 N/A 0.206 0.101 0.093
11 N/A 48 35 21
0.987 N/A 1.954 0.884 0.902

Imagesensor / 0.031 / 0.200 0.353
/ 2.087 / 0.110 0.086
>10000 4809 >10000 52 31
/ 2.118 / 0.310 0.439

Apache2 1.780 0.162 2.061 0.130 0.432
4.628 2.938 3.353 1.170 0.917
517 2138 2503 1090 566
6.408 3.100 5.414 1.300 1.349

T2em 6.983 1.015 N/A 0.044 0.138
1.759 1.099 N/A 0.929 0.946
409 746 N/A 755 573
8.742 2.114 N/A 0.973 1.084

Thermal2 3.096 0.197 / 0.262 0.996
35.188 6.081 / 3.755 3.432
2047 2094 >10000 2086 1399
38.284 6.278 / 4.017 4.424

Atmosmodd 3.329 0.233 3.148 0.232 0.404
0.912 0.422 0.384 0.339 0.249
76 169 91 135 78
4.241 0.655 3.532 0.571 0.653

Nv2 9.059 N/A N/A / 14.079
36.004 N/A N/A / n0.734
1072 N/A N/A >10000 38
45.063 N/A N/A / 14.813

G3_circuit 3.073 0.329 / 0.094 0.403
8.755 n9.365 / 0.994 0.803
303 3682 >10000 468 324
11.828 9.694 / 1.088 1.206

Ss 8.701 N/A N/A / 16.117
2.811 N/A N/A / 1.559
79 N/A N/A >10000 81
11.512 N/A N/A / 17.676

Stokes 126.347 N/A N/A / 131.703
47.123 N/A N/A / 38.451
1087 N/A N/A >10000 775
173.470 N/A N/A / 170.154

169HeuriSPAI: a heuristic sparse approximate inverse preconditioning algorithm on GPU﻿	

1 3

1.7.1 library(Rupp et al. 2016), and a recent sparse approxi-
mate inverse preconditioning algorithm (denoted by SSPAI)
He et al. (2020). We choose CSRILU because CUSPARSE
is an open popular library for NVIDIA GPUs and ILU0
is a classic incomplete factorization method and has been
widely applied as the preconditioner. ISAI is chosen because
MAGMA is an open popular library for GPU and mutlicore
architectures and ISAI preconditioner is a new one. S-VCL,
D-VCL and SSPAI are chosen because D-VCL is the only
existing dynamic sparse approximate inverse precondition-
ing algorithm on GPU and S-VCL and SSPAI both are one
of the latest static sparse approximate inverse precondition-
ing algorithms on GPU. GPUPBICGSTAB with CSRILU,
GPUPBICGSTAB with S-VCL/D-VCL and GPUPBICG-
STAB with ISAI are implemented using the functions in
CUBLAS and CUSPARSE, ViennaCL, MAGMA, respec-
tively. GPUPBICGSTAB with SSPAI is implemented based
on CUBLAS and CUSPARSE. The last 12 large matrices
in Table 3 are used for this test. Tables 7 and 8 show the
comparison results of all algorithms on GTX1070 and
RTX3090, respectively. In each table, for each matrix and
the preconditioner, the first row is the execution time of the
preconditioning algorithms, the second and third rows are
the execution time of GPUPBICGSTAB and the number
of iterations when GPUPBICGSTAB converges to the 1e−7
residual error in 10,000 iterations, and the fourth row is
the total of the execution time of the preconditioning algo-
rithm and GPUPBICGSTAB. If the number of iterations for
GPUPBICGSTAB exceeds 10,000 for a matrix, the corre-
sponding rows will be denoted by "/" except that the third
row is denoted by ">10000". If GPUPBICGSTAB encoun-
ters the error that the size of system is too large for ISAI L
or the floating point exception or the out-of-memory error,
the four rows will be denoted by "N/A". The time unit is s.

From Tables 7 and 8, we observe that on the two GPUs,
for the chosen 12 large matrices except for venkat01, ss,
and stokes, HeuriSPAI has smaller execution time than
CSRILU. Furthermore, the total execution time of HeuriS-
PAI and GPUPBICGSTAB is less than that of CSRILU and
GPUPBICGSTAB for the chosen 12 large matrices except
for ss. This verifies that HeuriSPAI is better than CSRILU in
general for the test cases. Compared to ISAI, the total time of
HeuriSPAI and GPUPBICGSTAB is less than that of ISAI
and GPUPBICGSTAB, and GPUPBICGSTAB with HeuriS-
PAI has smaller number of iterations than GPUPBICGSTAB
with ISAI for the 12 large matrices except for af23560. Espe-
cially, GPUPBICGSTAB with ISAI encounters the error that
the size of system is too large for ISAI L for venkat01, nv2,
ss, and storkes, and cannot convergence in 10,000 itera-
tions for Zhao2 while GPUPBICGSTAB with HeuriSPAI
can converge to the 1e−7 residual error in 10,000 iterations.
This shows that HeuriSPAI usually has better behavior than
ISAI for the test cases. GPUPBICGSTAB with D-VCL is

not applicable for the 12 large matrices because of the out-
of-memory error while GPUPBICGSTAB with HeuriSPAI
can converge in 10,000 iterations. This further validates the
fact that HeuriSPAI can alleviate the drawback of D-VCL.
Because D-VCL always encounters the out-of-memory
error for the 12 large matrices, its results are not shown in
Tables 7 and 8. As compared to S-VCL, whether the num-
ber of iterations or the total time of the preconditioner and
GPUPBICGSTAB, HeuriSPAI outperforms S-VCL. As
compared to SSPAI, GPUPBICGSTAB with HeuriSPAI
can converge to the 1e−7 residual error in 10,000 iterations
for all test cases. However, for the five matrices such as
af23560, Zhao2, nv2, ss, and stokes, GPUPBICGSTAB with
SSPAI cannot converge to the 1e−7 residual error in 10,000
iterations. For venkat01, imagesensor, apache2, t2em, ther-
mal2, atmosmodd, and G3_circuit, GPUPBICGSTAB with
HeuriSPAI has much smaller number of iterations than
GPUPBICGSTAB with SSPAI, and although the total time
of HeuriSPAI and GPUPBICGSTAB is more than that of
SSPAI and GPUPBICGSTAB, their difference are slight.
Therefore, we can conclude that as compared to SSPAI,
HeuriSPAI can in general decrease the iteration count of
iterative solvers significantly, and can alleviate the drawback
that SSPAI cannot converge for some matrices.

4 � Conclusion

In this paper, we present a parallel heuristic dynamic sparse
approximate inverse (SPAI) preconditioning algorithm on
GPU, called HeuriSPAI. HeuriSPAI fuses the advantages
of static and dynamic SPAI preconditioning algorithms,
and alleviates the drawbacks of the existing dynamic SPAI
preconditioning algorithms on GPU that can encounter the
out-of-memory error for large matrices. Experimental results
validate the effectiveness and high parallelism of the pro-
posed HeuriSPAI.

Next, we will further do research in this field, and apply
the proposed HeuriSPAI to more practical problems to
improve it.

Acknowledgements  This work was funded by the Natural Science
Foundation of China under grant number 61872422.

Declarations 

Conflict of interest  On behalf of all authors, the corresponding author
states that there is no conflict of interest.

References

Anzt, H., Gates, M., Dongarra, J., et al.: Preconditioned Krylov solvers
on GPUs. Parallel Comput. 68, 32–44 (2017)

170	 J. Gao et al.

1 3

Anzt, H., Huckle, T.K., Brackle, J., Dongarra, J.: Incomplete sparse
approximate inverses for parallel preconditioning. Parallel Com-
put. 71, 1–22 (2018)

Benzi, M., Meyer, C.D., Tuma, M.: A sparse approximate inverse
preconditioner for the conjugate gradient method. SIAM J. Sci.
Comput. 17(5), 1135–1149 (1996)

Benzi, M., Cullum, J., Tuma, M.: Robust approximate inverse precondi-
tioning for the conjugate gradient method. SIAM J. Sci. Comput.
22(4), 1318–1332 (2000)

Bernaschi, M., Bisson, M., Fantozzi, C., Janna, C.: A factored sparse
approximate inverse preconditioned conjugate gradient solver on
graphics processing units. SIAM. J. Sci. Comput. 38(1), C53–C72
(2016)

Brandes, T., Arnold, A., Soddemann, T., Reith, D.: CPU vs. GPU -
performance comparison for the Gram-Schmidt algorithm. Eur
Phys J Spec Top 210(1), 73–88 (2012)

Chow, E.: A priori sparsity patterns for parallel sparse approximate
inverse preconditioners. SIAM J. Sci. Comput. 21(5), 1804–1822
(2000)

Cosgrove, J.D.F., Diaz, J.C., Griewank, A.: Approximate inverse
preconditioning for sparse linear systems. Int. J. Comput. Math.
44(1–2), 91–110 (1992)

Davis, T.A., Hu, Y.: The university of florida sparse matrix collection.
ACM T. Math. Software 38(1), 1–25 (2011)

Dehnavi, M.M., Fernández, D. M., Gaudiot, J. L., Giannacopoulos,
D. D.: Parallel sparse approximate inverse preconditioning on
graphic processing units. IEEE T. Parall. Distr 24(9), 852–1861
(2013)

Duin, A.C.N.V.: Scalable parallel preconditioning with the sparse
approximate inverse of triangular systems. SIAM J. Matrix Anal.
Appl. 20(4), 987–1006 (1999)

Ferronato, M., Janna, C., Pini, G.: A generalized block FSAI precondi-
tioner for nonsymmetric linear systems. J. Comput. Appl. Math.
256, 230–241 (2014)

Gao, J., Liang, R., Wang, J.: Research on the conjugate gradient algo-
rithm with a modified incomplete Cholesky preconditioner on
GPU. J. Parallel Distr. Com. 74(2), 2088–2098 (2014)

Gao, J., Wu, K., Wang, Y., Qi, P., He, G.: GPU-accelerated precondi-
tioned GMRES method for two-dimensional Maxwell’s equations.
Int. J. Comput. Math. 94(10), 2122–2144 (2017)

Gao, J., Chen, Q., He, G.: A thread-adaptive sparse approximate inverse
preconditioning algorithm on multi-GPUs. Parallel Comput. 101,
102724 (2021)

Grote, M., Huckle, T.: Parallel preconditioning with sparse approxi-
mate inverses. SIAM J. Sci. Comput. 18(3), 838–853 (1997)

He, G., Yin, R., Gao, J.: An efficient sparse approximate inverse pre-
conditioning algorithm on GPU. Concurr. Comput.-Pract. Exp.
32(7), e5598 (2020)

Jia, Z., Zhu, B.: A power sparse approximate inverse preconditioning
procedure for large sparse linear systems. Numer. Linear Algebr.
16(4), 259–299 (2009)

Kolotilina, L.Y., Yeremin, A.Y.: Factorized sparse approximate inverse
preconditioning I. Theory. SIAM J. Matrix Anal. Appl. 14(1),
45–58 (1993)

NVIDIA, CUBLAS Library, v11.1 (2021)
NVIDIA, CUDA C Programming Guide, v11.1 (2021)
NVIDIA, CUSPARSE Library, v11.1 (2021)
Rupp, K., Tillet, R., Rudolf, F.: ViennaCL–linear algebra library for

multi- and many-core architectures. SIAM J. Sci. Comput. 38(5),
S412–S439 (2016)

Saad, Y.: Iterative Methods for Sparse Linear Systems, second version.
SIAM, Philadelphia, PA (2003)

Saad, Y., Schultz, M.H.: GMRES: a generalized minimal residual algo-
rithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat.
Comput. 7(3), 856–869 (1986)

van der Vorst, H.A.: A vectorizable variant of some ICCG methods.
SIAM J. Sci. Stat. Comput. 3(3), 350–356 (1982)

van der Vorst, H.A.: Bi-CGSTAB: A fast and smoothly converging
variant of Bi-CG for the solution of non-symmetirc linear systems.
SIAM J. Sci. Stat. Comput. 12(3), 631–644 (1992)

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of
such publishing agreement and applicable law.

	HeuriSPAI: a heuristic sparse approximate inverse preconditioning algorithm on GPU
	Abstract
	1 Introduction
	2 A Heuristic SPAI algorithm
	2.1 Init-HeuriSPAI stage
	2.2 Compute-HeuriSPAI stage
	2.3 Post-HeuriSPAI stage

	3 Evaluation and analysis
	3.1 Effectiveness analysis
	3.2 Performance analysis
	3.3 Performance comparison

	4 Conclusion
	Acknowledgements
	References

