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Abstract
In this study, we present a new heuristic sparse approximate inverse (SPAI) preconditioning algorithm on graphics process-
ing unit (GPU), called HeuriSPAI. For the proposed HeuriSPAI, there are the following novelties: (1) a heuristic method 
is proposed, which gives the potential candidate indices of the nonzero entries of the preconditioner in advance to guide 
the selection of the new indices, so as to improve the quality of the obtained preconditioner; and (2) a parallel framework 
of constructing the heuristic SPAI preconditioner on GPU is presented on the basis of the new proposed heuristic SPAI 
preconditioning algorithm; and (3) each component of the preconditioner is computed in parallel inside a group of threads. 
HeuriSPAI fuses the advantages of static and dynamic SPAI preconditioning algorithms, and alleviates the drawback of the 
existing dynamic SPAI preconditioning algorithms on GPU that are not suitable for large matrices. Experimental results 
show that HeuriSPAI is effective for large matrices, and outperforms the popular preconditioning algorithms in three public 
libraries, as well as a recent parallel static SPAI preconditioning algorithm.

Keywords Sparse approximate inverse · Preconditioning · Heuristic · CUDA · GPU

1 Introduction

In the fields of science, engineering and economy etc., many 
problems can be modeled as the following linear system:

Here A is a large, sparse and nonsingular matrix, and x and 
b are unknown and known vectors, respectively. For solving 
the linear system in Eq. (1), the iterative methods such as 
the generalized minimal residual method (GMRES)(Saad 
and Schultz 1986) and the biconjugate gradient stabilized 
method (BICGSTAB)(van der Vorst 1992) have been widely 
applied. Furthermore, with a left or right preconditioner M, 

the original problem in Eq. (1) can be transformed into a 
more tractable form as:

A good preconditioner M should be easy to be constructed, 
and effective in reducing the iteration count of iterative meth-
ods. Popular preconditioners include the incomplete factor-
ization preconditioners(Saad 2003; Gao et al. 2014; Anzt 
et al. 2017), the sparse approximate inverse (SPAI) precon-
ditioners based on Frobenius norm minimization(Cosgrove 
et al. 1992; Grote and Huckle 1997; Chow 2000; Jia and 
Zhu 2009), the factorized sparse approximate inverse (FSAI) 
preconditioners(Kolotilina and Yeremin 1993; Benzi et al. 
1996, 2000; Ferronato et al. 2014; Bernaschi et al. 2016) and 
the preconditioners that consist of an incomplete factoriza-
tion followed by an approximate inversion of the incomplete 
factors(van der Vorst 1982; Duin 1999.)

The SPAI preconditioner based on Frobenius norm min-
imization uses approximate A−1 as the preconditioner M. 
As shown in Chow (2000), M is constructed to minimize 
‖AM − E‖ in the Frobenius norm:

(1)Ax = b, x, b ∈ Rn,A ∈ Rn×n.

(2)MAx = Mb or AMy = b, x = My.

(3)min ‖AM − E‖2
F
.
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Here E is an n × n unit matrix. The columns in M are 
independent of each other, and thus equation (3) can be 
transferred into the following n independent least squares 
problems:

where mk and ek represent the kth column of M and the unit 
matrix, respectively. Obviously, the construction of SPAI 
preconditioner is easily parallelized. Compared with the 
incomplete factorization preconditioners, SPAI precondi-
tioners require only a few sparse matrix-vector multiplica-
tion operations instead of triangular solves. Compared with 
FSAI preconditioners, SPAI preconditioners are suitable 
for various matrices such as A, not just symmetric positive 
definite matrices. Therefore, SPAI preconditioners have 
attracted considerable attention.

Considering the construction method of M, SPAI can be 
categorized into static and dynamic types. If the sparsity of 
M is prescribed a priori, we will have a static SPAI precon-
ditioning procedure. In contrast, the SPAI preconditioning 
algorithm is a fully dynamic one. Because the SPAI precon-
ditioner construction is generally time-consuming for large 
matrices, in recent ten years, with the advent of graphics 
processing units (GPUs), many researchers have attempted 
to accelerate them on the GPU architecture. There exists 
some work on accelerating the construction of static SPAI 
preconditioners with GPU(Dehnavi et al. 2013; Gao et al. 
2017; Rupp et al. 2016; He et al. 2020; Gao et al. 2021), 
However, in many applications, the difficulty lies in deter-
mining a good sparsity structure of the approximate inverse 
in advance when the static SPAI preconditioner is applied. 
Thus, the dynamic sparse approximate inverse algorithm 
that aims at searching the sparsity pattern of M automati-
cally is proposed. As compared to the static SPAI precon-
ditioning algorithm, the advantage of the dynamic SPAI 
preconditioning algorithm is that the sparsity pattern of M 
is automatically exploited; however, its disadvantage is that 
a great deal number of iterations is required to explore the 
nonzero entries of M. Moreover, the research on accelerat-
ing the construction of the dynamic SPAI preconditioners 
with GPU is scarce. Rupp et al. Rupp et al. (2016) present a 
parallel dynamic SPAI implementation procedure on GPU in 
the ViennaCL library but it works only for smaller matrices.

Based on the above motivation, in this study, we present 
a heuristic SPAI preconditioning algorithm on GPU, called 
HeuriSPAI. In our proposed HeuriSPAI, for each loop, we first 
present a heuristic method, which gives potential candidate 
indices of nonzero-entries of M in advance to guide the selec-
tion of new indices, and thus improves the quality of obtained 
M. Second, the loop-stopping condition adds l < lmax ( lmax is 
a small integer) and Jk ⩽ � ∗ n2k ( � is a small real number 
and n2k is the nonzero number of the kth column of A) besides 

(4)min ‖Amk − ek‖22, k = 1, 2,… , n,

‖rk‖ ⩽ � . This guarantees the sparsity of the preconditioner. 
Third, a parallel framework of constructing the heuristic SPAI 
preconditioner is presented. Finally, each component of the 
preconditioner, such as sparse matrix-matrix multiplication, 
finding J̃ , reducing J̃ , determining Ĩ , QR decomposition, and 
computing mk and rk , is computed in parallel inside a group of 
threads. HeuriSPAI fuses the advantages of static and dynamic 
SPAI preconditioning algorithms, and alleviates the drawback 
of the existing dynamic SPAI preconditioning algorithms on 
GPU that are not suitable for large matrices. Experimental 
results show that HeuriSPAI is effective, and outperforms sev-
eral popular preconditioned algorithms on GPU: CSRILU0 in 
the CUSPARSE library(NVIDIA 2021), the incomplete SPAI 
preconditioning algorithm in the MAGMA library(Anzt et al. 
2018), a parallel static SPAI preconditioning algorithm and a 
parallel dynamic SPAI preconditioning algorithm in the Vien-
naCL library(Rupp et al. 2016), and a recent parallel static 
SPAI preconditioning algorithm(He et al. 2020).

The rest of this paper is organized as follows. In the second 
section, a new heuristic SPAI preconditioning algorithm is 
proposed. In the third section, a heuristic SPAI preconditioning 
algorithm on GPU is presented. Experimental evaluation and 
analysis are presented in the fourth section. The fifth section 
contains our conclusions and points out our future research 
directions.

2  A Heuristic SPAI algorithm

Assuming that each value of A is greater than or equal to 0, 
based on the characteristic polynomial for A, we have

Therefore, the pattern of A−1 (denoted by S(A−1) ) is con-
tained in the pattern ∪j=n−1

j=0
S(Aj) . Thus we can obtain

Similarly, the Neumann representation

for small � shows that numerically S((E + A)j) is nearly con-
tained in S(A−1) for all j. Considering Eqs. (6) and (7), we 
can obtain

Let us assume that we have already computed an optimal 
solution mk , k = 1, 2,… , n , with the residual rk of the least 
squares problem relative to an initial index set J0

k
= {k} . 

Next, for each l, l = 1, 2,⋯ , utilizing the idea of Eq. (8), 
we use

(5)A−1 = �0E + �1A +⋯ + �n−1A
n−1.

(6)S(A−1) ⊆ S((E + A)n−1).

(7)A−1 = �

∞∑
j=0

(E − �A)j

(8)S(A−1) ≃ S((E + A)n−1).
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to generate the candidate indices that might be added to Jl
k
 , 

where C0

k
= J0

k
 , and |A| means to take the absolute value for 

each value of A. Let J̃l
k
 equal to the set of indices that appear 

in Cl
k
 but not in Jl−1

k
 . For each j ∈ J̃l

k
 , we consider the fol-

lowing one-dimensional minimization problem(Grote and 
Huckle 1997):

F o r  e v e r y  j ,  �j = −rT
k
Aej∕‖Aej‖22  a n d  t h u s 

�2
j
= ‖rk‖22 − (rT

k
Aej)

2∕‖Aej‖22.
Obviously, indices with (rT

k
Aej)

2 = 0 lead to no improve-
ment in the one-dimensional minimization. We reduce J̃l

k
 

to the set of the most profitable indices j with smallest �j 
and add it to Jl

k
 . Using the augmented set of indices Jl

k
 , 

we solve the least squares problems in Eq. (4) again. We 
denote by Ĩl

k
 the set of new indices, which correspond to 

the nonzero rows of A(., Jl−1
k

∪ J̃l
k
) not contained in Il−1

k
 , 

and by ñ1 and ñ2 the number of indices in Ĩl
k
 and J̃l

k
 , and 

then have

Here Â ∈ Rn1×n2 is the submatrix of eliminating all zero rows 
in A(., Jl−1

k
) , and Q and R are matrices obtained by the QR 

decomposition of Â , and Q1 and Q2 are the first n2 columns 
and the last (n1 − n2) columns of Q, respectively. Note that 
the modified Gram-Schmidt method(Brandes et al. 2012) is 
utilized to execute the QR decomposition in this study. We 
require only the computation of the QR decomposition of 

B =

(
QT

2
A(Il−1

k
, J̃l

k
)

A(Ĩl
k
, J̃l

k
)

)
 . Utilizing the QR decomposition, we 

can obtain the solution of the least squares problems in 
Eq. (4). If rk satisfies the loop-stopping condition, the algo-
rithm stops; otherwise, we set Il

k
= Il−1

k
∪ Ĩl

k
 and Cl = Jl

k
 and 

l = l + 1 , and continue to execute the loop.
In order to decrease the computational complexity, the 

loop-stopping condition is set to ‖rk‖ ⩽ � or l < lmax ( lmax 
is a small integer) or Jk ⩽ � ∗ n2k ( � is a small real number 
and n2k is the nonzero number of the kth column of A). We 
summarize the sequential version of our proposed heuristic 
SPAI algorithm in the following Algorithm 1.

Algorithm 1: Heuristic SPAI algorithm 

Input  : A, a tolerance � , the maximum number of the 
heuristic computation lmax , and �

(9)Cl
k
= (E + |A|)Cl−1

k

(10)min
�j∈R

‖rk + �jAej‖ =∶ �j.

(11)

A(Il−1k ∪ Ĩlk, J
l−1
k ∪ J̃lk) =

(

Â A(Il−1k , J̃lk)
0 A(Ĩlk, J̃

l
k)

)

=
(

Q
Eñ1

)

⎛

⎜

⎜

⎜

⎝

R QT
1A(I

l−1
k , J̃lk)

0 QT
2A(I

l−1
k , J̃lk)

0 A(Ĩlk, J̃
l
k)

⎞

⎟

⎟

⎟

⎠

.

Output  : M For every column mk of M:

1) Set l = 1 and C0

k
= {k} , choose an initial sparsity 

J0
k
= {k}.

2) Solve Eq. (4) to obtain mk , and compute rk = ek − Amk . 
while ‖rk‖2 > 𝜀 and l < lmax and Jk ⩽ � ⋅ n2k:

3) Cl
k
= (E + |A|)Cl−1

k
.

4) Let J̃l
k
 equal to the set of indices that appear in Cl

k
 but not 

in Jl−1
k

.
5) For every j ∈ J̃l

k
 , compute �2

j
= ‖rk‖22 − (rT

k
Aej)

2∕‖Aej‖22 , 
and delete from J̃l

k
 all but the most profitable indices.

6) Determine the new indices Ĩl
k
 , and execute the QR 

decomposition of B.
7) Solve the new least squares problem in Eq. (4) to obtain 

mk , and compute the new residual rk = ek − Amk.
8) Set Il

k
= Il−1

k
∪ Ĩl

k
 , Jl

k
= Jl−1

k
∪ J̃l

k
 , Cl = Jl

k
 , and l = l + 1.

It is observed that as compared to the popular dynamic SPAI 
preconditioning algorithm in Grote and Huckle (1997), our 
proposed heuristic SPAI algorithm has the following two 
main difference: (1) a heuristic method is proposed to give 
potential candidate indices; (2) the loop-stopping condition 
adds l < lmax and Jk ⩽ � ∗ n2k besides ‖rk‖ ⩽ � , which can 
better maintain the sparsity level of the preconditioner. For 
the proposed heuristic SPAI algorithm, its computational 
complexity is roughly O(maxI × maxJ × n) , and the two 
operations such as the sparse matrix-matrix multiplication 
and QR decomposition for each iteration are the most time-
consuming ones.

In this section, we present a parallel heuristic sparse 
approximate inverse preconditioning algorithm on GPU, 
called HeuriSPAI. Table 1 shows the main arrays used in 
HeuriSPAI. The parallel framework of HeuriSPAI is shown 
in Fig. 1, which includes three stages: Init-HeuriSPAI stage, 
Compute-HeuriSPAI stage, and Post-HeuriSPAI stage.

2.1  Init‑HeuriSPAI stage

In the Init-HeuriSPAI stage, the global memory of GPU to 
A is first allocated. A is stored in memory using the CSC 
(Compressed Sparse Column) storage format, and M is also 
stored in columns. Second, when computing mk (one column 
of M), k = 1, 2,⋯ , n , the dimensions of local submatrices 
Âk ( n1k , n2k ) are usually distinct for different k. To simplify 
the accesses of data in memory and enhance the coales-
cence, the dimensions of all local submatrices are uniformly 
defined as (maxI, maxJ), where maxJ = max

k
{⌈� ⋅ n2k⌉} and 

maxI = � ⋅ maxJ , where � is an integer. Utilizing maxI and 
maxJ, the main arrays that are used in HeuriSPAI (see 
Table 1) are defined, and the global memory of GPU to the 
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main arrays is allocated. Third, the initial values of mk and 
rk are obtained by setting Jk

0
= {k} on GPU.

2.2  Compute‑HeuriSPAI stage

In the Init-HeuriSPAI stage, the initial values of mk and rk 
are obtained. The aim of the Compute-HeuriSPAI stage is to 
achieve better values of mk, k = 1, 2,⋯ , n by the iteration. 
One mk vector is computed via one warp (32 threads in a 
block), many mk vectors are computed simultaneously via 
warps executing in parallel. The parallelism is also exploited 

in a warp by computing one mk vector in parallel using 32 
threads inside a warp.

Sparse matrix-matrix multiplication. This step is to com-
pute Cl

k
= (E + |A|)Cl−1

k
 , k = 1, 2,⋯ , n . In fact, each warp 

finishes a sparse matrix-sparse vector multiplication. Here 
we present a novel sparse matrix-matrix multiplication 
on GPU, and its main procedure is shown in Fig. 2. In a 
warp, the sparse matrix-sparse vector multiplication, e.g., 
(E + |A|)Cl−1

k
 , is computed as follows. First, the row indices 

of the first column referenced in CIndexk are loaded into Ik , 
and the row index vector of successive columns referenced 
by CIndexk are then compared in parallel with values in Ik 
and new indices are appended to Ik using the atomic opera-
tions. Second, each thread computes one row whose indices 
is in Ik and the values are saved to Âk . Finally, threads in 
a warp read CDatak into shared memory sCData in paral-
lel, and then each thread computes one row of Âk ⋅ sCData , 
and save values to CDatak and the corresponding indices to 
CIndexk.

Finding Ĵ : Each warp finds a subset of J̃ in this step. In 
a warp, a subset of J̃ , e.g., J̃k , is computed by the following 
procedure: the indices in CIndexk are compared in parallel 
with values in Jk and the different indices are written into Ĵk.

Reducing J̃ : In this step, from each subset in J̃ (e.g., J̃k ) 
all but the most profitable indices are deleted. Each subset 
of J̃ , e.g., J̃k , is reduced via one warp, which includes the 
following three stages. In the first stage, the threads in a 
warp compute �j , j ∈ J̃k , in parallel, and save them to shared 
memory. In the second stage, the values in shared memory 
are sorted in ascending order. The threads in a warp read �j 
that is smaller than � from shared memory in parallel and 
rewrite their corresponding indices to J̃k in the third stage.

Determine Ĩ and QR decomposition: This step is used to 
determine Ĩ and decomposes the local submatrix into QR 
using Gram-Schmidt method. Each warp determines one set 
of Ĩ , e.g., Ĩk . For each j ∈ J̃k , all threads inside a warp search 
the row indices in the jth column of A in parallel to find 
indices that are not included in Ik , and then write them to Ĩk 
using the atomic operation. In the following, Ĩk are sorted 

Fig. 1  Parallel framework of HeuriSPAI

Table 1  Arrays used in HeuriSPAI

Arrays Size Type Arrays Size Type

AData nonzeros Double JPTR n Integer
AIndex nonzeros Integer J n × maxJ Integer
APtr n + 1 Integer IPTR n Integer
CData n × maxI Double I n × maxI Integer
CIndex n × maxI Integer Ĵ n × maxJ Integer
CPtr n Integer J̃PTR n Integer

Â n × maxI × maxJ Double Ĩ n × maxI Integer
Q n × maxI ×maxJ Double ĨPTR n Integer
R n × maxJ ×maxJ Double m̂ n × maxJ Double
atom n Integer r̂ n × maxI Double

Fig. 2  Main procedure of sparse matrix-matrix multiplication
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in parallel in an ascending order. In addition, each warp is 
also responsible for one QR decomposition in this step, and 
its main procedure is exhibited in Fig. 3. In a warp, the QR 
decomposition of the local submatrix, e.g., Âk , is composed 
of three steps at each iteration i. First, all threads compute 
the ith row of the upper triangle matrix Rk in parallel and 
put them into shared memory sR. Second, the threads in the 
warp concurrently normalize column i of Qk , and compute 
the projection factors Rk and sR. The values of all columns 
of Qk are updated by using shared memory sR and column i 
of Qk in parallel in the third step.

Computing mk and rk : This step is used to compute mk 
and rk . As we know, mk is obtained by scattering m̂k , and 
rk = ek − Amk . Therefore, the key of this step is to com-
pute m̂k by solving Rkm̂k = QT

k
êk . Each warp is responsi-

ble for computing one m̂k . In a warp, computing values of 
m̂k includes two steps. In the first step, all threads inside 
a thread group compute QT

k
êk in parallel and save values 

to shared memory xE. In the second step, the values of m̂k 
are obtained by solving the upper triangular linear system, 
Rkm̂k = xE , in parallel using shared memory.

2.3  Post‑HeuriSPAI stage

The Post-HeuriSPAI stage is to assemble M in the CSC stor-
age format, and store it to the MPtr, MIndex, and MData 
arrays. The Post-HeuriSPAI stage includes the following 
steps: 

1) On the GPU, we assemble MPtr using JPTR, as shown 
in Fig. 4.

2) Utilizing m̂k and J to assemble MData and MIndex. Each 
warp is responsible for assembling one m̂k to MData and 
one Jk to MIndex in parallel.

Obviously, MPtr, MIndex, and MData arrays are generated 
on the GPU memory and do not need to be transferred to 
the CPU.

3  Evaluation and analysis

We evaluate the performance of HeuriSPAI in this section. 
Table 2 shows the overview of NVIDIA GPUs that are 
used in the performance evaluation. The test matrices are 
selected from the SuiteSparse Matrix Collection(Davis and 
Hu 2011). Table 3 summarizes the information of the sparse 
matrices, including the name, kind, number of rows, and 
total number of non-zeros. The test matrices are chosen due 
to the fact that they have been widely used in some previous 
work(Grote and Huckle 1997; Dehnavi et al. 2013; He et al. 
2020; Gao et al. 2021).The source codes are compiled and 
executed using the CUDA toolkit 11.1(NVIDIA 2021). Note 
that in the following experiments, all algorithms use the 
double-precision floating point numbers in all computations.

3.1  Effectiveness analysis

First, we test the effectiveness of the approximate inverse 
matrices that are obtained by HeuriSPAI. For each matrix, 
both GPUBICGSTAB and GPUPBICGSTAB are called to 

Fig. 3  Main procedure of decomposing Â into QR 

Fig. 4  Assemble M 

Table 2  Overview of GPUs

Hardware GTX1070 RTX3090

Cores 1920 10496
Clock speed (GHz) 1.56 1.70
Memory type GDDR5 GDDR6X
Memory size (GB) 8 24
Max-bandwidth (GB/s) 256 384
Compute capability 6.1 8.6
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solve Ax = b , where all elemental values of b are 1, and the 
produced M is used as the preconditioner, and the initial 
x0 = b . GPUBICGSTAB and GPUPBICGSTAB are the par-
allel implementations of BICGSTAB and preconditioned 
BICGSTAB on GPU using the CUBLAS 11.1(NVIDIA 
2021) and CUSPARSE 11.1(NVIDIA 2021) libraries, 
respectively, and stop when the residual error, which is 
defined as ‖b−Ax‖2‖b−Ax0‖2 , is less than 1e−7 or the number of itera-
tions exceeds 10,000. Tables 4 and 5 show the number of 
iterations and execution time after the convergence of GPU-
BICGSTAB and GPUPBICGSTAB on GTX1070 and 
RTX3090, respectively. The time unit is second (s). Note 
that the execution time of GPUPBICGSTAB in Tables 4 
and 5 includes the execution time of HeuriSPAI that is used 
to obtain the preconditioner; and "/" means that the execu-
tion time of the algorithm is not counted because its itera-
tions exceed 10,000.

From Tables 4 and 5, we can observe that on two GPUs, 
without the preconditioner, for af25600, Zhao2, imagesen-
sor, venkat01, nv2, G3_circuit, ss, and stokes, GPUBICG-
STAB cannot converge to the 10−7 residual error in 10,000 
iterations while GPUPBICGSTAB with HeuriSPAI can. 
For apache2, t2em, thermal2, and atmosmodd, GPUBICG-
STAB can converge under 10,000 iterations, but the number 

of iterations decreases dramatically using the preconditioner. 
GPUPBICGSTAB has smaller execution time than GPU-
BICGSTAB for these matrices except for atmosmodd. These 
observations validate the effectiveness of the approximate 
inverse matrices that are obtained by HeuriSPAI.

Second, we test the effectiveness of HeuriSPAI by com-
paring it with a recent static SPAI algorithm suggested in 
He et al. (2020)(denoted by SSPAI) and a popular dynamic 
SPAI algorithm by Grote and Huckle(Grote and Huckle 
1997) (denoted DSPAI) from the viewpoint of accelerating 
the convergence. The first eleven small matrices in Table 3 
are used in this test. The small matrices are chosen for the 
the following two reasons: (1) DSPAI is not suitable for large 
matrices; (2) they are the same as those in Grote and Huckle 
(1997). Similar to Grote and Huckle (1997), the precondi-
tioned BICGSTAB is called to solve Ax = b , and stops when 
the residual error is less than 1e−8 or the number of iterations 

Table 3  Descriptions of test matrices

Name Kind Rows Nonzeros

Orsreg_1 CFD 2,205 14,133
Orsirr_1 CFD 1,030 6,858
Orsirr_2 CFD 886 5,970
Sherman1 CFD 1,000 3,750
Sherman2 CFD 1,080 23,094
Sherman3 CFD 5,005 20,033
Sherman4 CFD 1,104 3,786
Sherman5 CFD 3,312 20,793
Pores_2 CFD 1,224 9,613
Pores_3 CFD 532 3,474
Saylr4 CFD 3,564 22,316
Af23560 CFD 23,560 460,598
Zhao2 Electromagnetics 33,861 166,453
Venkat01 CFD sequence 62,424 1,717,792
Imagesensor semiconductor device 118,758 1,446,396
Apache2 structural 715,176 4,817,870
T2em electromagnetics 921,632 4,590,832
Thermal2 thermal 1,228,045 8,580,313
Atmosmodd CFD 1,270,432 8,814,880
Nv2 semiconductor device 1,453,908 37,475,646
G3_circuit circuit simulation 1,585,478 7,660,826
Ss semiconductor process 1,652,680 34,753,577
Stokes semiconductor process 11,449,533 349,321,980

Table 4  Iterations and execution time of two algorithms on GTX1070

Matrix GPUBICGSTAB GPUPBICGSTAB

Iter Exe time Iter Exe time

Af23560 > 10000 / 291 1.959
Zhao2 > 10000 / 1269 0.746
Venkat01 > 10000 / 21 1.656
Imagesenor > 10000 / 31 1.069
Apache2 4207 8.852 566 3.855
T2em 1581 3.861 573 3.387
Thermal2 6620 23.947 1399 13.417
Atmosmodd 241 1.621 78 1.652
Nv2 > 10000 / 38 26.444
G3_circuit > 10000 / 324 3.376
Ss > 10000 / 81 31.663
Stokes > 10000 / 775 288.501

Table 5  Iterations and execution time of two algorithms on RTX3090

Matrix GPUBICGSTAB GPUPBICGSTAB

Iter Exe time Iter Exe time

Af23560 > 10000 / 291 0.902
Zhao2 > 10000 / 1269 0.352
Venkat01 > 10000 / 21 0.902
Imagesenor > 10000 / 31 0.439
Apache2 4207 2.885 566 1.349
T2em 1581 1.285 573 1.084
Thermal2 6620 7.743 1399 4.424
Atmosmodd 241 0.621 78 0.653
Nv2 > 10000 / 38 14.813
G3_circuit > 10000 / 324 1.206
Ss > 10000 / 81 17.676
Stokes > 10000 / 775 170.154
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exceeds 10,000. Table 6 shows the convergence results of 
four algorithms. The second, third, fourth, and fifth columns 
are the convergence results without the preconditioner, and 
with the preconditioner that is obtained by SSPAI, and with 
the preconditioner that is obtained by DSPAI, and with the 
preconditioner that is obtained by HeuriSPAI, respectively.

As compared to SSPAI, for all test cases, the precondi-
tioned BICGSTAB with the preconditioner that is obtained 
by HeuriSPAI has smaller number of iterations than that 
with preconditioner that is obtained by SSPAI. Especially, 
for sherman2 and pores_2, the preconditioned BICGSTAB 
with SSPAI cannot converge to the 10−8 residual error in 
10,000 iterations while the preconditioned BICGSTAB with 
HeuriSPAI can. This verifies that HeuriSPAI is better than 
SSPAI. As compared to DSPAI, the preconditioned BICG-
STAB with the preconditioner that is obtained by HeuriSPAI 
has smaller number of iterations than that with precondi-
tioner that is obtained by DSPAI for all test matrices except 
for sherman3 and pores_2. Especially, for sherman2, the 
preconditioned BICGSTAB with DSPAI cannot converge 
to the 10−8 residual error in 10,000 iterations while the pre-
conditioned BICGSTAB with HeuriSPAI can. This means 
that HeuriSPAI is effective.

3.2  Performance analysis

In this section, we first take GTX1070 to investigate the 
fraction of the total time spent in the Init-HeuriSPAI, Com-
pute-HeuriSPAI, Post-HeuriSPAI stages in Fig. 5. We can 
observe that for all the matrices, the fractions of the Init-
HeuriSPAI and Post-HeuriSPAI stages are at most 1

10
 and 1

20
 , 

respectively. This further verifies that the time of HeuriSPAI 
is mainly attributed to the cost of the Compute-HeuriSPAI 
stage. Second, we take the Compute-HeuriSPAI stage to 
explore the ratio of its execution time on the CPU to its 
execution time on the GPU, as shown in Fig. 6. It can be 

seen that the ratios of the execution time on the CPU to the 
execution time on the GTX1070 range roughly from 41.38 
to 63.33 for the 12 test matrices, and the average ratio is 
51.05; the ratios of the execution time on the CPU to the 
execution time on the RTX3090 range roughly from 53.43 to 
79.44 for the 12 test matrices, and the average ratio is 63.89. 
These results show that computing the preconditioner for our 
proposed HeuriSPAI has higher parallelism.

3.3  Performance comparison

We evaluate the performance of HeuriSPAI by compar-
ing it with several popular preconditioning algorithms, 
i.e., CSRILU0 in the CUSPARSE 11.1 library (denoted by 
CSRILU)(NVIDIA 2021), the incomplete SPAI precondi-
tioning algorithm in the MAGMA 2.6.2 library (denoted 
by ISAI)(Anzt et al. 2018), a static SPAI preconditioning 
algorithm (denoted by S-VCL) and a dynamic SPAI precon-
ditioning algorithm (denoted by D-VCL) in the ViennaCL 

Table 6  Convergence results of all algorithms

Matrix No precond SSPAI DSPAI HeuriSPAI

Orsreg_1 347 94 47 27
Orsirr_1 1671 118 55 29
Orsirr_2 1039 163 45 30
Sherman1 391 54 41 26
Sherman2 > 10000 > 10000 > 10000 37
Sherman3 > 10000 235 72 108
Sherman4 100 34 28 26
Sherman5 2021 48 41 37
Pores_2 > 10000 > 10000 78 212
Pores_3 1597 141 118 47
Saylr4 4055 1474 285 163

Fig. 5  The fraction of total time spent in the Init-HeuriSPAI, Com-
pute-HeuriSPAI, Post-HeuriSPAI stages

Fig. 6  Ratio of the execution time on CPU to the excution time on 
GPU
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Table 7  Execution time of all preconditioning algorithms and GPUPBICGSTAB on GTX1070

Matrix CSRILU+ ISAI+ S-VCL+ SSPAI+ HeuriSPAI+
GPUPBICGSTAB GPUPBICGSTAB GPUPBICGSTAB GPUPBICGSTAB GPUPBICGSTAB

Af23560 / 0.027 / / 1.562
/ 0.316 / / 0.397
>10000 743 >10000 >10000 291
/ 0.343 / / 1.959

Zhao2 0.337 / 1.380 / 0.091
2.942 / 0.853 / 0.655
7009 >10000 1848 >10000 1269
3.279 / 2.233 / 0.746

Venkat01 1.185 N/A 3.692 1.128 1.358
0.535 N/A 0.163 0.303 0.298
11 N/A 48 35 21
1.720 N/A 3.855 1.431 1.656

Imagesensor / 0.073 / 0.338 0.780
/ 4.131 / 0.319 0.289
>10000 4809 >10000 52 31
/ 4.204 / 0.657 1.069

Apache2 2.950 0.398 4.925 0.226 1.043
8.296 7.044 8.142 3.594 2.812
517 2138 2503 1090 566
11.246 7.442 13.067 3.820 3.855

T2em 24.440 1.004 N/A 0.089 0.634
2.657 2.756 N/A 2.718 2.753
409 746 N/A 755 573
27.097 3.760 N/A 2.807 3.387

Thermal2 5.234 0.594 / 0.423 2.901
63.285 13.675 / 11.721 10.516
2047 2094 >10000 2086 1399
68.519 14.269 / 12.144 13.417

Atmosmodd 5.580 0.669 6.123 0.385 1.002
2.031 0.985 0.549 1.065 0.650
76 169 91 135 78
7.611 1.654 6.672 1.450 1.652

Nv2 16.307 N/A N/A / 25.343
64.807 N/A N/A / 1.101
1072 N/A N/A >10000 38
81.114 N/A N/A / 26.444

G3_circuit 4.881 0.698 / 0.161 1.018
14.114 23.335 / 2.887 2.358
303 3682 >10000 468 324
18.995 24.033 / 3.048 3.376

Ss 14.791 N/A N/A / 29.012
4.779 N/A N/A / 2.651
79 N/A N/A >10000 81
19.570 N/A N/A / 31.663

Stokes 214.791 N/A N/A / 223.134
84.821 N/A N/A / 65.367
1087 N/A N/A >10000 775
299.612 N/A N/A / 288.501
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Table 8  Execution time of all preconditioning algorithms and GPUPBICGSTAB on RTX3090

Matrix CSRILU+ ISAI+ S-VCL+ SSPAI+ HeuriSPAI+
GPUPBICGSTAB GPUPBICGSTAB GPUPBICGSTAB GPUPBICGSTAB GPUPBICGSTAB

Af23560 / 0.014 / / 0.781
/ 0.131 / / 0.121
>10000 743 >10000 >10000 291
/ 0.145 / / 0.902

Zhao2 0.167 / 0.595 / 0.043
1.576 / 0.512 / 0.309
7009 >10000 1848 >10000 1269
1.743 / 1.107 / 0.352

Venkat01 0.691 N/A 1.748 0.783 0.809
0.296 N/A 0.206 0.101 0.093
11 N/A 48 35 21
0.987 N/A 1.954 0.884 0.902

Imagesensor / 0.031 / 0.200 0.353
/ 2.087 / 0.110 0.086
>10000 4809 >10000 52 31
/ 2.118 / 0.310 0.439

Apache2 1.780 0.162 2.061 0.130 0.432
4.628 2.938 3.353 1.170 0.917
517 2138 2503 1090 566
6.408 3.100 5.414 1.300 1.349

T2em 6.983 1.015 N/A 0.044 0.138
1.759 1.099 N/A 0.929 0.946
409 746 N/A 755 573
8.742 2.114 N/A 0.973 1.084

Thermal2 3.096 0.197 / 0.262 0.996
35.188 6.081 / 3.755 3.432
2047 2094 >10000 2086 1399
38.284 6.278 / 4.017 4.424

Atmosmodd 3.329 0.233 3.148 0.232 0.404
0.912 0.422 0.384 0.339 0.249
76 169 91 135 78
4.241 0.655 3.532 0.571 0.653

Nv2 9.059 N/A N/A / 14.079
36.004 N/A N/A / n0.734
1072 N/A N/A >10000 38
45.063 N/A N/A / 14.813

G3_circuit 3.073 0.329 / 0.094 0.403
8.755 n9.365 / 0.994 0.803
303 3682 >10000 468 324
11.828 9.694 / 1.088 1.206

Ss 8.701 N/A N/A / 16.117
2.811 N/A N/A / 1.559
79 N/A N/A >10000 81
11.512 N/A N/A / 17.676

Stokes 126.347 N/A N/A / 131.703
47.123 N/A N/A / 38.451
1087 N/A N/A >10000 775
173.470 N/A N/A / 170.154



169HeuriSPAI: a heuristic sparse approximate inverse preconditioning algorithm on GPU  

1 3

1.7.1 library(Rupp et al. 2016), and a recent sparse approxi-
mate inverse preconditioning algorithm (denoted by SSPAI) 
He et al. (2020). We choose CSRILU because CUSPARSE 
is an open popular library for NVIDIA GPUs and ILU0 
is a classic incomplete factorization method and has been 
widely applied as the preconditioner. ISAI is chosen because 
MAGMA is an open popular library for GPU and mutlicore 
architectures and ISAI preconditioner is a new one. S-VCL, 
D-VCL and SSPAI are chosen because D-VCL is the only 
existing dynamic sparse approximate inverse precondition-
ing algorithm on GPU and S-VCL and SSPAI both are one 
of the latest static sparse approximate inverse precondition-
ing algorithms on GPU. GPUPBICGSTAB with CSRILU, 
GPUPBICGSTAB with S-VCL/D-VCL and GPUPBICG-
STAB with ISAI are implemented using the functions in 
CUBLAS and CUSPARSE, ViennaCL, MAGMA, respec-
tively. GPUPBICGSTAB with SSPAI is implemented based 
on CUBLAS and CUSPARSE. The last 12 large matrices 
in Table 3 are used for this test. Tables 7 and 8 show the 
comparison results of all algorithms on GTX1070 and 
RTX3090, respectively. In each table, for each matrix and 
the preconditioner, the first row is the execution time of the 
preconditioning algorithms, the second and third rows are 
the execution time of GPUPBICGSTAB and the number 
of iterations when GPUPBICGSTAB converges to the 1e−7 
residual error in 10,000 iterations, and the fourth row is 
the total of the execution time of the preconditioning algo-
rithm and GPUPBICGSTAB. If the number of iterations for 
GPUPBICGSTAB exceeds 10,000 for a matrix, the corre-
sponding rows will be denoted by "/" except that the third 
row is denoted by ">10000". If GPUPBICGSTAB encoun-
ters the error that the size of system is too large for ISAI L 
or the floating point exception or the out-of-memory error, 
the four rows will be denoted by "N/A". The time unit is s.

From Tables 7 and 8, we observe that on the two GPUs, 
for the chosen 12 large matrices except for venkat01, ss, 
and stokes, HeuriSPAI has smaller execution time than 
CSRILU. Furthermore, the total execution time of HeuriS-
PAI and GPUPBICGSTAB is less than that of CSRILU and 
GPUPBICGSTAB for the chosen 12 large matrices except 
for ss. This verifies that HeuriSPAI is better than CSRILU in 
general for the test cases. Compared to ISAI, the total time of 
HeuriSPAI and GPUPBICGSTAB is less than that of ISAI 
and GPUPBICGSTAB, and GPUPBICGSTAB with HeuriS-
PAI has smaller number of iterations than GPUPBICGSTAB 
with ISAI for the 12 large matrices except for af23560. Espe-
cially, GPUPBICGSTAB with ISAI encounters the error that 
the size of system is too large for ISAI L for venkat01, nv2, 
ss, and storkes, and cannot convergence in 10,000 itera-
tions for Zhao2 while GPUPBICGSTAB with HeuriSPAI 
can converge to the 1e−7 residual error in 10,000 iterations. 
This shows that HeuriSPAI usually has better behavior than 
ISAI for the test cases. GPUPBICGSTAB with D-VCL is 

not applicable for the 12 large matrices because of the out-
of-memory error while GPUPBICGSTAB with HeuriSPAI 
can converge in 10,000 iterations. This further validates the 
fact that HeuriSPAI can alleviate the drawback of D-VCL. 
Because D-VCL always encounters the out-of-memory 
error for the 12 large matrices, its results are not shown in 
Tables 7 and 8. As compared to S-VCL, whether the num-
ber of iterations or the total time of the preconditioner and 
GPUPBICGSTAB, HeuriSPAI outperforms S-VCL. As 
compared to SSPAI, GPUPBICGSTAB with HeuriSPAI 
can converge to the 1e−7 residual error in 10,000 iterations 
for all test cases. However, for the five matrices such as 
af23560, Zhao2, nv2, ss, and stokes, GPUPBICGSTAB with 
SSPAI cannot converge to the 1e−7 residual error in 10,000 
iterations. For venkat01, imagesensor, apache2, t2em, ther-
mal2, atmosmodd, and G3_circuit, GPUPBICGSTAB with 
HeuriSPAI has much smaller number of iterations than 
GPUPBICGSTAB with SSPAI, and although the total time 
of HeuriSPAI and GPUPBICGSTAB is more than that of 
SSPAI and GPUPBICGSTAB, their difference are slight. 
Therefore, we can conclude that as compared to SSPAI, 
HeuriSPAI can in general decrease the iteration count of 
iterative solvers significantly, and can alleviate the drawback 
that SSPAI cannot converge for some matrices.

4  Conclusion

In this paper, we present a parallel heuristic dynamic sparse 
approximate inverse (SPAI) preconditioning algorithm on 
GPU, called HeuriSPAI. HeuriSPAI fuses the advantages 
of static and dynamic SPAI preconditioning algorithms, 
and alleviates the drawbacks of the existing dynamic SPAI 
preconditioning algorithms on GPU that can encounter the 
out-of-memory error for large matrices. Experimental results 
validate the effectiveness and high parallelism of the pro-
posed HeuriSPAI.

Next, we will further do research in this field, and apply 
the proposed HeuriSPAI to more practical problems to 
improve it.
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