
Vol:.(1234567890)

CCF Transactions on High Performance Computing (2023) 5:210–227
https://doi.org/10.1007/s42514-023-00140-4

1 3

REGULAR PAPER

Sgap: towards efficient sparse tensor algebra compilation for GPU

Genghan Zhang1 · Yuetong Zhao1 · Yanting Tao1 · Zhongming Yu2 · Guohao Dai3 · Sitao Huang4 · Yuan Wen5 ·
Pavlos Petoumenos6 · Yu Wang1

Received: 3 September 2022 / Accepted: 14 March 2023 / Published online: 8 May 2023
© China Computer Federation (CCF) 2023

Abstract
Sparse compiler is a promising solution for sparse tensor algebra optimization. In compiler implementation, reduction in
sparse-dense hybrid algebra plays a key role in performance. Though GPU provides various reduction semantics that can
better utilize the parallel computing and memory bandwidth capacity, the central question is: how to elevate the flexible
reduction semantics to sparse compilation theory that assumes serial execution. Specifically, we have to tackle two main
challenges: (1) there are wasted parallelism by adopting static synchronization granularity (2) static reduction strategy limits
optimization space exploration. We propose Sgap: s egment g roup and a tomic p arallelism to solve these problems. Atomic
parallelism captures the flexible reduction semantics to systematically analyze the optimization space of sparse-dense hybrid
algebra on GPU. It is a new optimization technique beyond current compiler-based and open-source runtime libraries. Seg-
ment group elevates the flexible reduction semantics to suitable levels of abstraction in the sparse compilation theory. It
adopts changeable group size and user-defined reduction strategy to solve challenge (1) and (2), respectively. Finally, we use
GPU sparse matrix-matrix multiplication (SpMM) on the TACO compiler as a use case to demonstrate the effectiveness of
segment group in reduction semantics elevation. We achieve up to 1.2× speedup over the original TACO’s SpMM kernels.
We also apply new optimization techniques found by atomic parallelism to an open-source state-of-the-art SpMM library
dgSPARSE. We achieve 1.6× ∼ 2.3× speedup on the algorithm tuned with atomic parallelism.

Keywords  Sparse compiler · Sparse tensor algebra · SpMM · GPU

1  Introduction

Sparse tensor algebra has been widely used in many fields,
including machine learning (Hamilton et al. 2017; Kipf and
Welling 2016; Liu et al. 2015), data analysis (Kolda and
Bader 2009), scientific computing (Shantharam et al. 2011;
Bell et al. 2012), graph processing (Yuster and Zwick 2004).
However, it is challenging to optimize sparse tensor appli-
cations because of diversity in computation patterns and
irregularity in memory access behavior. Sparse compilers
have shown great potential to solve this problem. Sparse
compilers can use one monolithic theory to express diverse
data formats and operations, and provide flexible user inter-
face, enabling users to explore the optimization space given
data and hardware. Therefore, more and more researchers
are turning to sparse compilers for general solutions (Bik
and Wijshoff 1993; Venkat et al. 2015; Strout et al. 2018;
Kjolstad et al. 2017; Kjolstad 2020; Popoola et al. 2021; Bik
et al. 2022; Ye et al. 2023).

 *	 Guohao Dai
	 daiguohao@sjtu.edu.cn

 *	 Yu Wang
	 yu-wang@tsinghua.edu.cn

1	 Department of Electronic Engineering, Tsinghua University,
Rhom 4101, Beijing 100084, China

2	 Department of Computer Science and Enigeering, University
of California San Diego, Gilman Drive, La Jolla, CA 92093,
USA

3	 Qingyuan Research Institute, Shanghai Jiao Tong University,
Room 318A, Building A No. 930 Jianchuan Road,
Shanghai 200240, China

4	 Department of Electrical Engineering and Computer Science,
University of California Irvine, 3215 Engineering Hall,
Irvine, CA 92697, USA

5	 Department of Computer Science, University of Aberdeen
King’s College, Meston Building, Aberdeen AB24 3UE, UK

6	 Department of Computer Science, University of Manchester,
Kilburn Building, Manchester M13 9PL, UK

http://crossmark.crossref.org/dialog/?doi=10.1007/s42514-023-00140-4&domain=pdf

211Sgap: towards efficient sparse tensor algebra compilation for GPU﻿	

1 3

However, it is challenging to design a sparse compiler
that can both compile various algebras and generate highly
optimized code. In particular, sparse-dense hybrid alge-
bra on GPU brings unique challenges to sparse compilers.
After analysing sparse-dense hybrid algebra’s mathemati-
cal expression, we find out that reduction is its key opera-
tion (Nisa et al. 2019; Huang et al. 2020; Kurt and Raje
2022). There are several possible ways to do reduction on
GPUs. Different reduction methods are preferred for dif-
ferent workloads. Choosing the correct reduction method
can accelerate kernels (Dai et al. 2022; Bell and Garland
2009). For example, controlled experiments in Dai et al.
(2022) show that parallel reduction can outperform condi-
tional reduction and vice versa by 2× ∼ 4× . However, cur-
rent sparse compilers lack the abstraction for such flexible
reduction semantics. That is because they assume the code
executes serially. GPU reduction is different from the serial
reduction in that it changes the reduction code’s structure
(e.g., control-flow and loop basic block). Therefore, it cannot
be naively generated by directly adding or replacing some
instructions like the unroll in CPU. Solving this problem
requires elevating reduction semantics to the sparse compila-
tion theory in a systematic way.

However, elevating the flexible reduction semantics to
sparse compilation theory faces two main challenges: (1)
Static synchronization granularity wastes parallelism:
GPU synchronizes a group of threads whose group size is
power of 2, which we term as synchronization granularity.
Threads can pass local register values to another thread in
the same group. However, static synchronization granular-
ity may waste parallelism when inputs are dynamic. For
example, if not all threads’ register values are gathered,
threads that do not influence the reduction result still have
to wait to be synchronized. In other words, the synchroniza-
tion granularity is too large for such input data, as is shown

in Fig. 1b. However, current sparse compilers only assume
synchronization granularity to be 32, which wastes the par-
allelism. This is the limitation of current sparse compilers.
(2) Static reduction strategy limits optimization space
exploration: GPU has provided very flexible methods to
do reduction. Multiple threads in a thread group will write
back to the final results. We name such thread writeback
thread. There could be more than one writeback thread in a
thread group. The thread indices of writeback threads can
also be decided at runtime and are controlled by the reduc-
tion strategy. Different algorithms favor different reduction
strategies. For example, as is shown in Fig. 1c, if we assign
a given number of non-zeros to each thread group, it has to
use segment reduction. That is because threads need to write
back according to the coordinate and thus writeback thread
is decided at runtime. However, in another algorithm where
all threads in a group are guaranteed to write back to the
same place, it can use parallel reduction (Bell and Garland
2009). However, current sparse compilers assume that only
the first thread in a thread group is the writeback thread and
use parallel reduction.

To tackle these challenges and build a more efficient
sparse compiler, we propose atomic parallelism and seg-
ment group in this paper and implement our techniques in
a real sparse compiler TACO (Kjolstad et al. 2019; Chou
et al. 2018; Kjolstad et al. 2017; Senanayake et al. 2020).
Atomic parallelism models the optimization space of sparse-
dense hybrid algebra from the reduction view. It uses the
minimal data and reduction parallelism to distinguish differ-
ent algorithms of a given algebra. Minimal data are used to
define reduction strategy and reduction parallelism for syn-
chronization granularity. We use this model to propose new
optimization techniques. Segment group is a new abstrac-
tion for sparse compilation theory. It captures the dynamic
synchronization granularity and dynamic reduction strategy.

1/8 = 12.5% waste

11/16 = 56.25% waste

a b c

d e

i

k

f

h

j

�
Sparse array

Dense array

l

m
n

o

g

ai
0

bm
0

co
0

dh
1

ej
1

fm
1

gn
1

0
-1

ai
0

bm
0

co
0

0
-1

dh
1

ej
1

fm
1

gn
1

ai
0

bm
0

co
0

0
-1

0
-1

0
-1

0
-1

0
-1

dh
1

ej
1

fm
1

gn
1

0
-1

0
-1

0
-1

0
-1

ai
0

bm
0

co
0

0
-1

dh
1

ej
1

fm
1

gn
1

val
dim useful data

useless dataval
dim

valid path

invalid path

thread

writeback thread

(a) Example reduction (b) Synchronization granularity (c) Reduction strategy

Segment reduction

Parallel reduction

Fig. 1   Sparse compilers suffer from static synchronization granular-
ity and static reduction strategy. a Example reduction with legends in
latter subfigures. b Parallelism waste caused by improper synchroni-

zation granularity. c One type of segment reduction and one type of
parallel reduction. Segment reduction has two writeback threads and
parallel reduction has one

212	 G. Zhang et al.

1 3

To be specific, we use flexible group size to solve challenge
(1) and design full-stack support for user-defined reduction
strategy, which solves challenge (2). As is shown in Fig. 2,
segment group extends the expression ability of original
sparse compilation theory.

Finally, we use sparse matrix-matrix multiplication
(SpMM) as an example to demonstrate atomic parallelism
and segment group. SpMM is one of the most widely used
sparse-dense hybrid algebra. It is the core operator of many
emerging applications (Han et al. 2016; Wang et al. 2019;
Lin et al. 2021; Asgari et al. 2021). It is also the simplest
form of sparse-dense hybrid algebra.

Therefore, this work manages to push the frontier a step
forward on these two challenges by a combined method
involving segment group and atomic parallelism which we
called Sgap in this paper. Our contributions are as follows:

1.	 We propose a framework atomic parallelism to analyse
sparse-dense hybrid algebra and propose new SpMM
designs beyond previous works (Yang et al. 2018; Hong
et al. 2019; Huang et al. 2020; Mehrabi et al. 2021; Dai
et al. 2022).

2.	 Based on the atomic parallelism, we point out that
current sparse compilers miss important optimization
opportunities. We propose a new abstraction segment
group for sparse compilers. Segment group can reduce
parallelism waste and improve workload balance.

3.	 We implement segment group in TACO and get up
to 1.2× speedup on average over the original TACO’s
SpMM kernels. Next, we generalize our findings from
TACO to dgSPARSE (Dai et al. 2022), an open-source
state-of-the-art SpMM library. We achieve 1.6× ∼ 2.3×
speedup over dgSPARSE on the algorithm we tune.

The rest of this paper is organized as follows. Background
information is provided in Sect. 2. Section 3 introduces atomic
parallelism and Sect. 4 is for segment group. Then the imple-
mentation of segment group in TACO is detailed in Sect. 5.
After that, we illustrate the combination of atomic parallelism

and segment group in TACO. Our evaluation of new SpMM
algorithms in TACO and generalization to dgSPARSE is pre-
sented in Sect. 7. The paper is concluded in Sect. 8.

2 � Background

2.1 � Sparse‑dense hybrid algebra

Sparse-dense hybrid algebra can be defined in two equiv-
alent forms: the tensor formulation (TF) in Eq. 1 and the
database formulation (DF) in Eq. 3. From TF sparse-dense
hybrid algebra because the operands of it are sparse and
dense, for example, MTTKRP (Matricized Tensor Times
Khatri Rao Product) (Nisa et al. 2019), SDDMM (Sam-
pled Dense-Dense Matrix Multiplication) (Yu et al. 2021),
SpMM (sparse Matrix-Matrix Multiplication) (Huang et al.
2020), TTM (Tensor Times Matrix Product) (Kurt and Raje
2022). We use Einstein’s summation to define sparse-dense
hybrid algebra in AF as Eq. 1.

� is the output tensor, �j are dense input tensors, and � is the
sparse input tensor. At least one level aN in � does not store
in dense format. y

1
, y

2
,⋯ , yM,a

1
, a

2
,⋯ , aN ,xj

1
, x

j

2
,⋯ , x

j

Mj

are in the same index variable set. M is the mode of output
tensor, and N is the mode of sparse input tensor. D is the
number of dense input tensors, and Mj is the mode of dense
input tensor �j . Specifically, MTTKRP, TTM, SDDMM, and
SpMM are expressed as:

We use message-passing to define sparse-dense hybrid
algebra in DF as Eq. 3.

Q,Q
0
,Q

1
,Q

2
 are queries for the relevant database. We fol-

low the idea of logical-physical storage seperation (Codd
1970). The value of Q(k) is defined as Q(dst) = D(f (dst)) . D
is the relevant database of Q, storing (id, value) in ascending
order of id, where id ∈ ℤ and value ∈ ℝ

n . dst is any hashable
key and f is a function K → ℤ . ⊕ can be any commutative
operation and ⊗ can be any function that takes two objects

(1)�y
1
,y
2
,⋯,yM

= �a
1
,a

2
,⋯,aN

D
∏

i=1

�
j

x
j

1
,x
j

2
,⋅,x

j

Mj

(2a)�i,j = �i,k,l�
1

k,j
�

2

l,j

(2b)�i,j,l = �i,j,k�
1

k,l

(2c)�i,k = �i,k�
1

i,j
�

2

j,k

(2d)�i,k = �i,j�
1

j,k

(3)Q(dst) = ⊕src∈Q
0
(dst){src,⊗(Q

1
(src, dst),Q

2
(dst))}

Segment group
(This work)

Static 32-
thread parallel

reduction

Original
sparse

compilation
 theory

Fig. 2   Venn diagram for the relation between atomic parallelism
and original sparse compilation theory. The element is the point in
the algorithm design space of a sparse-dense hybrid algebra. Origi-
nal sparse compilation theory can only express parallel reduction with
group size 32. However, it can also express some optimization points,
for example, loop reorder, beyond atomic parallelism. The union of
segment group and original theory creates a new sparse compilation
theory

213Sgap: towards efficient sparse tensor algebra compilation for GPU﻿	

1 3

as input and output one object that can be operated by ⊕ .
The result of ⊕ is written to f(dst) in Q. Sparse-dense hybrid
algebra is sparse because Q

0
(dst) for all dst are diverse. In

other words, Q
0
(i)

⋂

Q
0
(i + 1) ∼ Ø . Such algebra is dense

because values in D,D
1
,D

2
 are scalar, dense vectors, or

dense matrices.
The core operation of sparse-dense hybrid algebra is

reduction and reduction in different kernels behaves simi-
larly. This key observation motivates atomic parallelism
because we only need to optimize the common reduction
operations and use the compiler to optimize different sparse-
dense hybrid algebra kernels automatically. For example, in
TF kernels do reduction on l, k dimensions in MTTKRP, k in
TTM, j in SDDMM and SpMM. The reduction can be along
one sparse and one dense dimension, as in MTTKRP, TTM,
and SpMM. It can also be along two dense dimensions, as
in SDDMM. Figure 3 illustrates these examples and high-
lights the reduction dimensions. We also give concrete code
examples in Fig. 4. It shows that some of these kernels share
common reduction codes. For example, MTTKRP contains
two reductions, each behaving the same as the reduction in
SpMM.

Such property can also be illustrated in DF. As shown in
Fig. 5, for the first reduction, the value of D

1
 both are scalar;

the value of D
2
 both are vectors. For the second reduction

of MTTKRP, though the value of D
1
 is a vector, which is

different from SpMM’s first reduction, ⊕ behaves the same
because ⊗ here is element-wise vector product.

2.2 � SpMM optimization

As explained above, the reduction is the core operation of
sparse-dense tensor algebra and some kernels share the
same type of reduction. Without loss of generality, we take
SpMM as an example to optimize the reduction in this paper.
The optimization techniques can be easily generalized to
expedite other sparse-dense hybrid algebra kernels. Yang
et al. (2018) selects between two algorithms to achieve

respectively even distribution of nnz among parallel proces-
sors and row-splitting among threads. Adaptive Sparse Til-
ing (ASpT) (Hong et al. 2019) aims at improving data local-
ity and thus reduces the total number of accesses to global
memory. Ge-SpMM (Huang et al. 2020) proposes Coalesced
Row Caching (CRC) method to enable coalesced memory
access to both sparse and dense matrices and Coarse-grained
Warp Merging (CWM) method for SpMM merging work-
loads from different warps to reuses loaded sparse matrix.
Mehrabi et al. (2021) proposes several row permutation
strategies for CSR format to enhance load balance and data
locality. DA-SpMM (Dai et al. 2022) is a data-aware kernel
selector among 8 algorithms according to 3 dimensions in
the space dealing with dynamic input data.

2.3 � Sparse compilers

The complexity of optimizing sparse tensor algebra
comes from four directions: data, data format, algebra,
and hardware. Researchers often develop a technique for
one data format, one algebra, and one hardware. Such a
library method heavily relies on experts and engineer-
ing work (Guennebaud and Jacob 2010; Naumov et al.
2010; Wang et al. 2014). However, sparse compilers can
extremely reduce such engineering burden and boost
innovation in this area. Unlike the library method, sparse
compilers aim to use one monolithic theory to express
all data formats, all algebras, and provide flexible user
interface, which enables users to explore the optimiza-
tion space given data and hardware. Research on sparse
compilers can be divided into two categories: (1) Pass-
oriented. Given the imperative code, design compilation
passes to optimize the code (Bik and Wijshoff 1993; Ven-
kat et al. 2015; Strout et al. 2018). (2) Language-oriented.
View sparse compiler as a programming language and
design lowering and scheduling process [15],(Bik et al.
2022; Kjolstad 2020). Especially, TACO is a fundamen-
tal breakthrough on this problem. To the best of our

Fig. 3   Examples of sparse-dense hybrid algebra. The consecutive grey parallelograms or squares represent the reduction modes

214	 G. Zhang et al.

1 3

knowledge, it is the first to propose a practical sparse
compilation theory. MLIR sparse dialect (Bik et al. 2022)
implements TACO’s sparse compilation theory as MLIR
dialect. SparseTIR [15] follows the design philosophy of

TensorIR (Feng et al. 2022), but it still uses some of the
TACO’s concepts such as position and coordinate space.
TACO also motivates innovations on accelerators for
sparse tensor algebra (Qin et al. 2022).

Fig. 4   Code examples of reduction in sparse-dense hybrid algebra in
TF. The colored lines are reduction codes. MTTKRP has two levels
of reduction, colored green and yellow, respectively. The overlapped

region means that the first-level reduction’s output serves as the sec-
ond-level reduction’s input. We follow the naming rules in Kjolstad
(2020) for the storage of A 

215Sgap: towards efficient sparse tensor algebra compilation for GPU﻿	

1 3

2.4 � TACO

TACO (The Tensor Algebra Compiler) is a fast and versa-
tile compiler-based library for sparse linear and tensor alge-
bra (Kjolstad et al. 2017, 2019; Kjolstad 2020; Senanayake
et al. 2020). TACO has three types of inputs: a tensor algebra
expression (in an Einstein summation notation or reduction
notation); level formats of input and output tensor; sched-
ule commands. We will introduce TACO in the front-end,
middle-end, and back-end order. The workflow of TACO is
illustrated in Fig. 6.

2.4.1 � Front‑end

At the front-end, the tensor algebra expression is concre-
tized to concrete index notation (Kjolstad et al. 2019). The
concrete index notation (CIN) is a language that describes
the execution of a tensor algebra. Unlike bare tensor algebra
expression, CIN describes the loop, index variables rela-
tions, workspace, hardware platform, etc. Schedule com-
mands transform the CIN. For example, a precompute sched-
ule will add a where statement to the CIN. Though TACO
provides a clean and powerful scheduling API to transform
CIN, the user can still change the CIN directly. TACO

provides a match function that can take lambda expression as
input. The function can modify CIN when it meets a specific
type of CIN node or a pattern of CIN nodes. Moreover, users
can define a child class of IndexNotationRewriter that can
directly rewrite the CIN. Such technique is used to imple-
ment segment group.

2.4.2 � Middle‑end

At the middle-end, CIN will be transformed to imperative IR
(or low level IR (LLIR)). LLIR describes the basic blocks,
for example, for-loop, while-loop, and if-statement. LLIR is
almost the executable code. The output of the middle-end is
a chain of LLIR. The sparse iteration theory (Kjolstad 2020)
guides the CIN to LLIR process. It ensures that different ten-
sors only coiterate over elements that can generate non-zero
output. Specifically, TACO designs lower functions for every
statement of CIN and lattices in the sparse iteration space.
However, current lower functions only assume serial reduc-
tion is done on the compressed level of sparse tensors. We
will break the serial code assumption to implement segment
group. Moreover, we suggest that more flexible or even user-
defined lowerers should be designed in the future.

Fig. 5   Illustration of common reduction in MTTKRP and SpMM. The equivalent expressions of the same kernel in TF and DF are below each
sub-figure

Fig. 6   Overview of the TACO
workflow

216	 G. Zhang et al.

1 3

2.4.3 � Back‑end

At the back-end, LLIR will be transformed to code for differ-
ent backends. In this paper, we target the CUDA code gen-
eration. TACO CUDA code generator has some assumptions
that previous papers did not thoroughly explore. TACO deals
with CUDA code generation in a nested loop favor (Sena-
nayake et al. 2020). Moreover, it only generates one dimen-
sion of block and thread. That is, it only has blockIdx.x and
threadId.x. When the index variable of a for-loop LLIR is
bound on the GPUBlock, it will use blockIdx.x to index this
index variable. In the CPU case, it will emit a real for-loop.
Such variable is assumed to increment by 1. Index variables
bound on GPUWarp and GPUThread are assumed to be
the outer and inner variables of threadIdx.x. The tile size
depends on the index variable on GPUThread. The mixture
of tiling and synchronization semantics of GPUWarp loses
some optimization opportunities. We will discuss this later
and improve it in our implementation.

3 � Atomic parallelism

3.1 � Computation unit model

We observe that the core operation of sparse-dense hybrid
algebra is the reduction. Therefore, the core of our model is
how many data are reduced and are synchronized in which
way. We model the atomic computation unit as thread. A
thread executes a serial program. All threads execute the
same program independently with each own’s input data and
are distinguished by threadId. Threads can do synchroni-
zation in groups with reduction parallelism of 2, 4, 8, 16,
or 32. We model GPU computation as unlimited parallel
threads and define the number of threads as resource paral-
lelism that GPU can provide. We do not consider the shared
memory, grid level, and the mapping of the thread block
or the streaming processor. Instead, we view them as rea-
sonable implementation details after the basic parallel pat-
tern is decided. In other words, there can be many kinds of
implementation for each algorithm in atomic parallelism.
In this sense, atomic parallelism can encourage more GPU
optimization innovation.

3.2 � Overview of atomic parallelism

To define the parallel pattern concretely, we propose atomic
parallelism. A program with atomic parallelism cannot be
paralleled anymore. In other words, a thread at least exe-
cutes the amount of data denoted by atomic parallelism.
Formally, atomic parallelism is defined as the Cartesian
product of minimal data. Minimal data is the minor data of

one category a thread can execute. Atomic parallelism can
be used to construct the optimization space of any sparse-
dense hybrid algebra under the GPU model, but we focus on
SpMM in this paper.

Indeed, tiling, manipulating shared memory, and thread
mapping (Hidayetoğlu et al. 2020; Mehrabi et al. 2021; Xin
et al. 2021; Huang et al. 2020) are also important for SpMM
on GPU. They are crucial for SpMM, especially with many
dense columns(usually more than 128 columns), because the
computation will be more workload intensive and bounded
by the memory access for dense columns. However, we
focus on SpMM with fewer dense columns(usually less than
8 columns), which are more balance intensive and bounded
by the maximum warp execution cycles.

SpMM has two orthogonal atomic parallelisms: minimal
data can be (1) { 1

g
, 1, g} non-zeros of the sparse matrix and

{
1

c
, 1, c} columns of the dense matrix; (2) { 1

g
, 1, g} rows of

the sparse matrix and { 1

c
, 1, c} columns of the dense matrix.

c ∈ ℤ
+ and g ∈ ℤ

+ are tunable parameters. Though they can
be 1, they have different meanings from 1, because they are
tunable. Therefore, the atomic parallelism space of SpMM
is described in < x nnz, y col > or < x row, y col > . Resource
parallelism only multiplies one element of the atomic paral-
lelism. For example, given resource parallelism r, the
amount of executed data equals < r × x nnz, y col > or
< x nnz, r × y col > . Besides, a fractional amount of data
means multiple threads may execute on the same datum. For
example, < 1

g
row, 1 col > means that g threads execute the

same row collaboratively.

3.3 � SpMM optimization space formalization

We use atomic parallelism and reduction parallelism
{< ... >, r} to define an SpMM kernel. < ... >∈ {

1

g
, 1, g}nnz

×{
1

c
, 1, c}col or { 1

g
, 1, g}row × { 1

c
, 1, c}col . They describe the

minimal data. And the reduction parallel ism
r ∈ {2, 4, 8, 16, 32} assigns how many threads are synchro-
nized each time. Figure 7 illustrates the SpMM optimization
space.

However, not all points in the atomic parallelism space are
legal in optimization space. Figure 8 illustrates the details of
space pruning. There are three rules for legal points:

(1)	
{

<
1

g
nnz, x col >, r

}

 ,
{

< x nnz,
1

c
col >, r

}

 are illegal
because one non-zero must by multiplied by at least one
element in the dense matrix.

(2)	
{

<
1

g
row, x col >, r

}(

r

g
< 1

)

 is illegal because parallel
reduction only has one writeback thread.

217Sgap: towards efficient sparse tensor algebra compilation for GPU﻿	

1 3

(3)	
{

<
1

g
row,

1

c
col >, r

}

 is illegal because it conflicts with
the rule that resource parallelism only multiplies one
element of the atomic parallelism.

The state-of-the-art algorithm space, DA-SpMM (Dai
et al. 2022) is in the atomic parallelism design space.
It proposes a three-dimensional SpMM algorithm
design space. We claim that the design space of DA-
SpMM is included in the atomic parallelism space. To
be specific, EB+PR is {< 1 nnz, c col >, 32} , RB + PR is
{<

1

32
row, c col >, 32} , EB+SR is {< 32 nnz, c col >, 1} ,

and RB + SR is {< 1 row, c col >, 1} . c means coarsen fac-
tor, g means group size. Though real CUDA code with
1 row or 1 nnz may have minimal data greater than one

because of limited resource parallelism, we still label the
algorithm as 1 row or 1 nnz . The RM/CM is the imple-
mentation detail and is included in atomic parallelism
in theory.

4 � Segment group

4.1 � Current warp‑level abstraction

Current sparse tensor compilers with CUDA backend take
warp as the rank of a thread (tiling), a particular paral-
lel unit (synchronization) or just a hardware instruction.
For example, TACO assumes warp and thread to be the
outer and inner loop, and the warpSize depends on the

Fig. 7   SpMM optimization space. The grey area is illegal. The dashed line part of the axis represents hardware dependent end of the axis

Fig. 8   Projections of SpMM optimization space. Grey areas are illegal and hollow circles are legal points. Sub-figures (a–c) correspond to Rule
1, 2, and 3 respectively

218	 G. Zhang et al.

1 3

split factor. It should be noted that no synchronization
behavior is assumed in this case. TACO also takes the
32-thread warp reduction as atomic addition at the GPU-
Warp parallel unit and assumes users will split the last
level loop with warpSize = 32 . In this case, CUDA warp
is taken as a for-loop with extent warpSize and incremen-
tal step 1. Then they will emit CUDA warp primitives
such as __shfl_down_sync to do the reduction. Figure 9
illustrates TACO’s current GPU Warp semantics. On the
contrary, TVM(Chen et al. 2018) only binds on thread and
block level and does not assign any synchronization on the
warp level. Instead, it takes 32 as a hardware feature and
uses such intrinsic to fill in schedule parameters in auto-
scheduler. Besides, it also uses warp as a memory load unit
in TIR(Chen et al. 2018).

4.2 � Overview of segment group

However, at least two existing assumptions should be
improved for sparse compilers. First, the tiling and synchro-
nization semantics of warp should be explicitly separated.
As shown in atomic parallelism, the atomic and reduction
parallelism can be different, and reduction parallelism is not
necessarily 32. Second, synchronization semantics should
be able to express various reduction strategies and flexible
reduction granularity, instead of just parallel reduction for 32
threads. As shown in atomic parallelism, {< 1 nnz, c col >, n}
requires synchronization of n threads with row number of
their own. Therefore, the warp reduction should be able to
reduce to different outputs instead of only one. Such change
not only calls for changing the hand-coded warp level

reduction functions but also for elevating the reduction pat-
tern to higher-level compiler passes. Such semantics lifting
calls for a new organization of basic blocks, new control
flow, and new user-level APIs.

4.3 � Relationship between segment group
and atomic parallelism

Atomic parallelism models the optimization space of sparse-
dense hybrid algebra from the reduction view. We use this
model to propose new optimization techniques. As shown
in Sect. 2, reduction is the key operation of sparse-dense
hybrid algebra, which contains many different tensor alge-
bras such as SpMM, SDDMM, MTTKRP, and TTM. Based
on this observation, we define and explain segment group in
Sect. 3, using SpMM as an example. We show that 3 opens
new optimization space for SpMM. Such benefit can be gen-
eralized to other sparse-dense hybrid algebra. However, it
requires repetitive engineering efforts to optimize case by
case. In response to this issue, we propose segment group,
a new abstraction for sparse compilers to ship performance
benefits brought by atomic parallelism to users with only
several lines of code changed on the user side.

In summary, we propose that sparse compilers for GPU
should have abstraction segment group, that is, a warp that
takes the tiling semantics, and a group that does different
types of reduction synchronization. We will use TACO1 to
illustrate how to implement segment group, but other sparse
compilers can also integrate segment group. Figure 10 illus-
trates the workflow.

Fig. 9   Tiling and synchronization semantics of GPU Warp in TACO

Fig. 10   Overview of segment
group in the TACO workflow

1  We build on commit d0654a8 https://​github.​com/​zhang​677/​taco/​
tree/​d0654​a8413​71698​83973​c40a9​51dfd​b8988​3fd9c.

https://github.com/zhang677/taco/tree/d0654a84137169883973c40a951dfdb89883fd9c
https://github.com/zhang677/taco/tree/d0654a84137169883973c40a951dfdb89883fd9c

219Sgap: towards efficient sparse tensor algebra compilation for GPU﻿	

1 3

5 � Segment group for TACO

The original parallelize transformation is defined as
parallelize(IndexVar i, ParallelUnit pu, OutputRaceStrat-
egy rs) (Senanayake et al. 2020). The transformation does
parallel execution on IndexVar i, using ParallelUnit pu.
And OutputRaceStrategy rs describes the data races during
reductions. For GPU, pu can be GPUThread, GPUWarp, and
GPUBlock. rs can be NoRaces, IgnoreRaces, and Atomics.
We propose two new designs to TACO:

1.	 We add a new PrallelUnit, GPUGroup, to the parallelize
transformation, and change the semantics of ParallelUnit
GPUWarp.

2.	 We break the assumption that other transformations other
than parallelize assumes serial code and design a new lower
process to enable segment reduction.

5.1 � New parallelize transformation

We assign the tiling semantics to GPUWarp and its Atomic Out-
putRaceStrategy will only serve to direct the lowering function
instead of synchronization semantics. Because GPUWarp now
only serves as the outer loop of tiling on threadIdx, it does not
have Atomic semantics. Meanwhile, we add GPUGroup which
has ReductionStrategy and GroupSize attributes instead of
OutputRaceStrategy. ReductionStrategy describes the group’s
reduction type, and GroupSize assigns the reduction parallelism.

5.2 � Reduction semantics elevation

TACO assumes that a sparse algebra compiler should do it best
to ensure that only elements that can generate non-zero output
will be calculated (Kjolstad 2020). However, we point out that
this assumption is not necessarily valid. The previous assump-
tion is the best option for performance because the sparse itera-
tion space theory is built on the assumption that the code runs
serially. For CUDA code, however, such assumption is broken,
which we term as zero extension. Zero extension means that
some “out-of-bound” reduction can be allowed in the sparse
iteration theory because it can later be executed by some warp
primitives faster than for-loop.

5.3 � Segment reduction lowering

//Orig ina l CUDA code
for (k=0;k<B2 dimension ; k++){

pA2 begin=i b l o c k S t a r t s [b lock] ;
pA2 end=i b l o c k S t a r t s [b lock +1] ;
fposA=block 256 ;
i p o s=taco b inarySearchBe fo re (
A2 pos , pA2 begin , pA2 end , fposA) ;
i=i p o s ;
fposA=block 256+ fpos1 ;
i f (fposA>=A2 pos [A1 dimension])

break ;
f=A2 crd [fposA] ;
kB=f B2 dimension+k ;
while (fposA==A2 pos [i p o s +1]){

i p o s=i p o s +1;
i=i p o s ;

}
kC=i C2 dimension+k ;
f loat va l =0.0 ;
va l=A vals [fposA] B vals [kB] ;
atomicAdd(&C vals [kC] , va l) ;

}
Listing 1 Original CUDA code

//Modified CUDA code
for (k=0;k<B2 dimension ; k++){

pA2 begin=i b l o c k S t a r t s [b lock] ;
pA2 end=i b l o c k S t a r t s [b lock +1] ;
fposA=block 256+ fpos1 ;
i p o s=taco b inarySearchBe fo r e (
A2 pos , pA2 begin , pA2 end , fposA) ;
i=i p o s ;
f loat va l =0.0;
i f (fposA>=A2 pos [A1 dimension])

va l =0;
else {

f=A2 crd [fposA] ;
kB=f B2 dimension+k ;
while (fposA==A2 pos [i p o s +1]){

i p o s=i p o s +1;
i=i p o s ;

}
va l=A vals [fposA] B vals [kB] ;

}
kC=i C2 dimension+k ;
segReduceWarp<f loat ,32>(C vals ,
kC , va l) ;

}
Listing 2 Modified CUDA code

Listing 1 and Listing 2 show the difference between codes gen-
erated by the original TACO and the modified TACO. They use
the same schedule, except that code on the right uses segment
reduction of GPUGroup with size 32.

scalar workspace. TACO assumes that the statement and
the assignment of scalar workspace (Kjolstad et al. 2019) are
in the same basic block. However, this assumption is so strong
that it restricts the expressive power of TACO. For example, in
{< 1 nnz, c col >, 32} the scalar workspace should be assigned
in a basic block belonging to an else but stated in the same con-
text with reduction of scalar workspace, outside the assignment
basic block.

Macro instruction. It is important to emit code in a mod-
ular way. Therefore, we design two new macro instructions

220	 G. Zhang et al.

1 3

atomicAddGroup<T,G>(T* array, int idx, T value) and
segReducWarp<T,G>(T* array, int idx, T value). They are
template device functions that takes in the output array, the
index of the output and the value reduced to the output.2
They will do some kind of reduction on G threads, and G
equals GroupSize. They will be stated in the header file and
used as macro instructions in the final CUDA code. In fact,
we borrow the group concept from the cooperative group in
CUDA. Since CUDA 11.0, it has supported an easy-to-use
API called cooperative group3 that makes it only one-line-
code effort to change reduction granularity to less than 32
threads.

6 � TACO’s support for four SpMM algorithms

This section will illustrate the atomic parallelism design
space and our implementation of segment group. We first
reexamine two SpMM algorithms proposed by TACO (Sena-
nayake et al. 2020). They use TACO to generate
{< g nnz, c col >, 1} and {< x row, c col >, 1} . We then use

another two examples , {<
1

g
row, c col >, r} and

{< 1 nnz, c col >, r} to illustrate how the CIN is changed. The
tensor algebra expression is C(i, k) = A(i, j) ∗ B(j, k) . A’s first
level is dense and the second level is compressed. B and C
are both dense matrices. A, B, and C all are row-major. We
assume N = 4 and that thread per block (resource parallel-
ism p) equals 256. We explicitly fill p, g, N, c into the CIN
to show their arithmetic relations with CIN parameters. The
actual CIN will not have undetermined variables.

6.1 � TACO SpMM reexamination

Currently, TACO supports two algorithms in atomic paral-
lelism. They don’t need synchronization semantics and only
tune on the tiling semantics. The implementation by TACO
is shown in Listing 3 and 4. They force the synchroniza-
tion granularity to be 1 which presents limited capability in
reduction.

Concrete Index Notation for {< g nnz, c col >, 1} is:

suchthat (f o r a l l (block , f o r a l l (warp , f o r a l l (thread ,
f o r a l l (dense va l , where (C(i , k)+=tnnzC , f o r a l l (nnz ,
tnnzC+=A(i , j) B(j , k)))) , GPUThread , Atomics) ,
GPUWarp, NoRaces) ,GPUBlock , NoRaces) ,
f u s e (i , j , f) and pos (f , fpos ,A(i , j)) and
s p l i t (fpos , block , fpos1 , (p g /(N/c))) and
s p l i t (fpos1 , warp , nnz , g) and s p l i t (k , ko , thread , c)
and bound (ko , dense va l ,N/c , MaxExact))

Listing 3 CIN for {< g nnz, c col >, 1}

2  We do not actually integrate these macro instructions into TACO,
because it is fairly straightforward and purely engineering. When test-
ing the kernels, we just replace the atomicAdd with the new macro
instructions. We open-source the modified TACO https://​github.​com/​
zhang​677/​taco/​tree/​paral​lelre​ducti​on.
3  https://​docs.​nvidia.​com/​cuda/​cuda-c-​progr​amming-​guide/​index.​
html#​coope​rative-​groups.

https://github.com/zhang677/taco/tree/parallelreduction
https://github.com/zhang677/taco/tree/parallelreduction
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#cooperative-groups
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#cooperative-groups

221Sgap: towards efficient sparse tensor algebra compilation for GPU﻿	

1 3

Actually, TACO’s precompute schedule fails to gener-
ate this CIN, so we use the IndexNotationRewriter tech-
nique mentioned in Sect. 2.4.1 to get the CIN above. In the
evaluation section of Senanayake et al. (2020) it assumes
N = 128, g = 16, c = 4, p = 512 , which is a point in the
{< g nnz, c col >, 1}.

Concrete Index Notation for {< g row, c col >, 1} is:

suchthat (f o r a l l (block , f o r a l l (warp , f o r a l l (row ,
f o r a l l (thread , f o r a l l (co l , where (C(i , k)+=tjC ,
f o r a l l (j , tjC+=A(i , j) B(j , k)))) , GPUThread , NoRaces)) ,
GPUWarp, NoRaces) ,GPUBlock , NoRaces) , s p l i t (i , block , io ,
p g /(N/c))and s p l i t (io , warp , row , g) and s p l i t (k , ko , co l , c)
and bound (ko , thread ,N/c , MaxExact))

Listing 4 CIN for {< g row, c col >, 1}

The generated code can be directly executed. In the
evaluation section of Senanayake et al. (2020) it assumes
N = 128, g = 1, c = 4, p = 512 , which is also a point in the

{< g nnz, c col >, 1} . These two algorithms only use the til-
ing semantics of GPUWarp.

6.2 � Two new algorithms

We introduce two algorithms to overcome the restricted
scheme forced by TACO to improve workload balance. The

algorithms provide functionality to change group size and
reduction strategy through tuning nnz and rows. Listing 5
and 6 show the implementation.

Concrete Index Notation for {< 1

g
row, c col >, r} is:

Fig. 11   Newly generated SpMM kernels performance compared with original TACO’s best SpMM kernel for different number of dense matrix
columns N. Density is defined as the number of non-zeros divided by the multiplication of the number of rows and cols for sparse matrix

222	 G. Zhang et al.

1 3

suchthat (f o r a l l (ko , f o r a l l (warp , f o r a l l (k i i , where (C(i , k)+=tjpos1C ,
f o r a l l (jpos1 , f o r a l l (jpos0 , tjpos1C+=A(i , j) B(j , k)) ,GPUThread ,
Para l l e lReduct i on))) ,GPUWarp, Atomics) ,GPUBlock , NoRaces) ,
f u s e (i , k , i o) and s p l i t (io , ko , ki , c p/g) and s p l i t (ki , warp , k i i , c)
and pos (j , jpos ,A(i , j)) and s p l i t (jpos , jpos0 , jpos1 , g) and
p a r a l l e l i z e (jpos1 ,GPUGroup , r , Atomics))

Listing 5 CIN for {< 1
g
row, c col >, r}

We find that TACO can support g = 32, r = 32 , but it is
not explored in the autoscheduling paper4. GPUGroup is
bound on the indexVar that does the reduction. Generated
macro-instruction, atomicAddWarp<Type>, is changed to
atomicAddGroup<Type, G> to enable more fine-grained
thread synchronization.

Concrete Index Notation for {< 1 nnz, c col >, r} is:

suchthat (f o r a l l (block , f o r a l l (warp , f o r a l l (ki , f o r a l l (fpos1 , where (
C(i , k)+=tmp , tmp=A(i , j) B(j , k)) ,GPUThread , Atomics)) ,GPUWarp, NoRaces) ,
GPUBlock , IgnoreRaces) , f u s e (i , j , f) and pos (f , fpos ,A(i , j)) and
s p l i t (fpos , block , fpos1 , p/(N/c)) and s p l i t (k , ko , ki , c) and bound (ko ,
warp ,N/c , MaxExact) and p a r a l l e l i z e (jpos1 ,GPUGroup , r , Segment))

Listing 6 CIN for {< 1nnz, c col >, r}

This algorithm has no counterpart in the original
TACO. We change the originally emitted atomicAdd to
segReduceGroup<Type,G>, and the grouped segment reduc-
tion is done in the macro instruction. The lowerer of scalar
workspace is changed to emit the code ready for segmented
reduction.

7 � Evaluation

Experiment settings. We evaluate the implementation and
the generalization on three architectures:

•	 NVIDIA RTX 3090. Compute Capability 8.6 (68 Ampere
SMs at 1.395 GHz, 24 GB GDDR6x, 936 GB/s band-
width).

•	 NVIDIA RTX 2080. Compute Capability 7.5 (46 Turing
SMs at 1.515 GHz, 8 GB GDDR6, 448 GB/s bandwidth).

•	 NVIDIA Tesla V100. Compute Capability 7.0 (80 Volta
SMs at 1.370 GHz, 16 GB HBM2, 900 GB/s bandwidth).

We use NVCC 11.6 and CUDA 11.6 with the same compila-
tion flags as Senanayake et al. (2020) when testing TACO
and the same compilation flag as Dai et al. (2022) when test-
ing the generalized tuning. We carry 25 tests for each kernel
to get the average execution time when evaluating TACO’s
generated CUDA kernels. We use nsight-compute5 to get

the execution time of tuned dgSPARSE kernels. We use the
same sparse matrices as Dai et al. (2022). We evaluate on
three different architectures to show that our techniques are
not limited to specific traits on certain generations of GPU,
but are valid on common SIMT architectures.

7.1 � Performance of two new algorithms for TACO

This experiment aims to prove that segment group can
improve the sparse compiler’s expression ability and boost
the performance of SpMM kernels generated by TACO. The
dense input matrices have N = 4.6

Against the static group size 32. We use
{<

1

g
row, c col >, r} to show the improvement brought by

flexible group size r. Current TACO only supports
g = 32, r = 32 , so we keep the same g with TACO and
change r. In Table 1 we show that r = 8 and r = 4 can bring
over 2.0x speedup on average. We also measure the normal-
ized speedup. Normalized speedup of A over B means that

4  Senanayake et al. (2020)’s authors shared their code with us. We
also use a similar code base to test our kernels in Sect. 7.

5  https://​docs.​nvidia.​com/​nsight-​compu​te/​Nsigh​tComp​ute/​index.​
html.
6  We open source the testing code at https://​github.​com/​zhang​677/​
segTA​CO.

https://drive.google.com/file/d/1qZbP7tY5N35N54JlmYkBHxY97HbgFSHE/view?usp=sharing
https://docs.nvidia.com/nsight-compute/NsightCompute/index.html
https://docs.nvidia.com/nsight-compute/NsightCompute/index.html
https://github.com/zhang677/segTACO
https://github.com/zhang677/segTACO

223Sgap: towards efficient sparse tensor algebra compilation for GPU﻿	

1 3

if A performs better than B, we count the speedup; other-
wise, we assume the user can choose the better algorithm,
and the speedup is counted as 1.

Against the or ig inal reduct ion. We use
{< 1 nnz, c col >, r} to illustrate the speedup brought by flex-
ible reduction. Because they have different data types (nnz
vs. row), we control c and r, and compare the execution of
{< 1 nnz, c col >, r} with the best g configuration of
{<

1

g
row, c col >, r} each dataset. We only do this experi-

ment on RTX 3090 and record the normalized speedup here.
In Table 2 we show that segment reduction can bring up to
1.3 × speedup over atomicWarp reduction. Limited by the

number of threads per warp in GPU, r can only be
1, 2, 4, 8, 16, 32. Therefore, users can try these values to
tune r in practice.

Against the original TACO SpMM algorithms. In this
experiment, we compare the performance between TACO’s
original SpMM algorithms {< g nnz, c col >, 1} and
{< x row, c col >, 1} (Senanayake et al. 2020) and two algo-
r i thms proposed by us, {< 1

g
row, c col >, r} and

{< 1 nnz, c col >, r} . We assign reasonable values to
g, c, x, and r, and tune these parameters. We record the best
performance of each algorithm on each dataset. From
Table 3 we conclude that segment group brings 1.1x∼1.2x
normalized speedup. Figure 11 shows the detailed data.

7.2 � Generalization of atomic parallelism

In this experiment, we implement our atomic parallelism to
dgSPARSE library,7 an open-source state-of-the-art SpMM
and SDDMM library. We achieve up to 2.7 × speedup on a
certain SpMM algorithm. We keep the same sparse input
matrix format (CSR) with dgSPARSE. After profiling, we
find that row-major algorithms consistently outperform the
col-major algorithms. Therefore, we target row-major. We
are left with 4 algorithms: EB + SR + RM, EB + PR +
RM, RB + SR + RM, RB + PR + RM. We will introduce
the details of tuning RB + PR + RM and show the speedup.

To tune an actual GPU SpMM kernel, we require more
fine-grained parameters than those in atomic parallelism.
Parallelism is now two-fold: block-level and thread-level,
instead of homogeneous threads. Besides, the memory hier-
archy, such as the shared memory should be considered.

Table 1   Flexible group size speedup

Hardware r = 8 r = 8 norm r = 4 r = 4 norm

RTX 2080 2.451 2.478 2.456 2.483
RTX 3090 2.236 2.284 2.259 2.307
Tesla V100 2.086 2.143 2.094 2.150

Table 2   Segment reduction
normalized speedup

c r = 4 r = 8 r = 16 r = 32

1 1.008 1.025 1.085 1.272
2 1.019 1.045 1.102 1.291
4 1.063 1.095 1.205 1.381

Table 3   Normalized performance of new algorithms

RTX 3090 RTX 2080 Tesla V100

Speedup 1.191 1.098 1.223

Table 4   Speedup over original implementation

a We use geometric mean to reduce outlier bias

Hardware geomean1a max N

RTX 3090 2.295 4.316 128
2.181 4.432 64
1.997 4.271 16
2.046 7.819 4

RTX 2080 1.938 4.379 128
1.927 4.430 64
1.995 5.019 16
2.307 8.582 4

Tesla V100 1.874 3.724 128
1.824 3.846 64
1.693 3.388 16
1.852 6.114 4

Table 5   Speedup over static implementation

Hardware geomean N Best static

RTX 3090 1.124 128 < 8, 256, 8, 1∕2 >

1.114 64 < 4, 256, 8, 1∕2 >

1.310 16 < 8, 256, 8, 1∕2 >

1.406 4 < 8, 256, 8, 1 >

RTX 2080 1.095 128 < 4, 256, 8, 1∕2 >

1.114 64 < 4, 256, 8, 1∕2 >

1.276 16 < 4, 256, 8, 1∕2 >

1.310 4 < 4, 256, 8, 1∕2 >

Tesla V100 1.137 128 < 8, 256, 8, 1∕2 >

1.177 64 < 8, 256, 8, 1∕2 >

1.367 16 < 8, 256, 8, 1 >

1.326 4 < 8, 256, 8, 1 >

7  https://​github.​com/​dgSPA​RSE.

https://github.com/dgSPARSE

224	 G. Zhang et al.

1 3

Moreover, parallelism is limited in the physical world. For
example, the largest thread-level parallelism is 1024 because
a block has at most 1024 threads. The largest block-level
parallelism is also finite(less than 232 − 1 ). GridSize can be
arbitrary because the extra blocks will be taken care of by
GPU scheduler.

Tuning parameters for RB + PR + RM can be divided into
two categories. The first is how many workers are assigned
to process one chunk of data. The second is how many
chunks of data are assigned to one worker. RB + PR + RM
has 7 tunable parameters. A block process tileSz real col-
umns. workerSz threads process one vectorized column and
threadRw sparse rows. groupSz threads are synchronized.
blockSz denotes the number of threads per threadblock.
workerDimR denotes the block parallelism of sparse rows. A
vectorized column has coarsenSz consecutive real columns.
If the overall sparse row parallelism is less than the number
of rows in the sparse matrix, one thread may process more
than one row. The tiling is“Dense major”; dense columns
are fully parallelized. Specifically, blockDim.x = min(N,
tileSz) / coarsenSz * workerSz. Full source parallelism of one
block is max(blockSz, blockDim.x * 2). In the dgSPARSE
implementation, tileSz = workerSz = groupSz = 32 , work-
erDimR equals the number of rows of the sparse matrix,
threadRw = 1 , blockSz = 256 , and coarsenSz=(N%4==0)?
4:(N%2==0)?2:1.

Based on the insights of this paper, we should sepa-
rate tiling and synchronization, add finer-grained par-
allelism, and more flexible workload of each thread.
Therefore, we propose to tune four parameters:
< groupSz, blockSz, tileSz,workerDimR > . Actually, work-
erDimR can be arbitrary. However, we set it to be power
of 2 or reciprocal power of 2 times of the original value
in order to explore the local area in the design space. As
in atomic parallelism we set groupSz as 2, 4, 8, 16, or 32.
tileSz is power of 2 larger than groupSz, and depends on N.
blockSz is set 128,256, or 512 which are common values
for the number of threads per threadblock. We tune the RB
+ PR + RM kernel for N = 4, 16, 64, 128 . From Table 4 we
conclude that tuning can bring 1.6 × ∼2.3 × speedup over
the original implementation.8

Because DA-SpMM introduces a decision tree model
to choose the best configuration for a given sparse matrix,
we further explore the maximum speedup that dynamic
choices can bring. This experiment examines the necessity
of designing a new model to choose the best parameters.
From Table 5 we conclude that the most significant speedup
of dynamic choices is 1.1x∼1.4x.

8 � Conclusion

We propose atomic parallelism to analyze sparse-dense
hybrid algebra and propose new SpMM designs. Based on
atomic parallelism propose a new abstraction segment group
to sparse compilers and remedy the missing optimization
opportunities. First, we implement the new abstraction in
TACO and achieve up to 1.2 × speedup over TACO’s origi-
nal SpMM kernels. Then, we use atomic parallelism to tune
an SpMM algorithm in dgSPARSE and get 1.6 × ∼ 2.3 ×
speedup on the tuned algorithm. In the future, atomic paral-
lelism can be exposed as an auto-tuning API for users to
explore different synchronization granularity and reduction
strategy for sparse-dense hybrid algebra.

References

Asgari, B., Hadidi, R., Cao, J., Lim, S.-K., Kim, H., et al.: Fafnir:
Accelerating sparse gathering by using efficient near-memory
intelligent reduction. In: 2021 IEEE International Symposium on
High-Performance Computer Architecture (HPCA), pp. 908–920
(2021). IEEE

Bell, N., Garland, M.: Implementing sparse matrix-vector multiplica-
tion on throughput-oriented processors. In: Proceedings of the
Conference on High Performance Computing Networking, Stor-
age and Analysis, pp. 1–11 (2009)

Bell, N., Dalton, S., Olson, L.N.: Exposing fine-grained parallelism
in algebraic multigrid methods. SIAM J. Sci. Comput. 34(4),
123–152 (2012)

Bik, A.J., Koanantakool, P., Shpeisman, T., Vasilache, N., Zheng, B.,
Kjolstad, F.: Compiler support for sparse tensor computations in
mlir. arXiv:​2202.​04305 (2022)

Bik, A.J., Wijshoff, H.A.: Compilation techniques for sparse matrix
computations. In: Proceedings of the 7th International Conference
on Supercomputing, pp. 416–424 (1993)

Chen, T., Moreau, T., Jiang, Z., Zheng, L., Yan, E., Shen, H., Cowan,
M., Wang, L., Hu, Y., Ceze, L., et al.: Tvm: An automated end-
to-end optimizing compiler for deep learning. In: 13th USENIX
Symposium on Operating Systems Design and Implementation
(OSDI 18), pp. 578–594 (2018)

Chou, S., Kjolstad, F., Amarasinghe, S.: Format abstraction for sparse
tensor algebra compilers. Proc. ACM Program. Lang. 2(OOP-
SLA), 123–112330 (2018). https://​doi.​org/​10.​1145/​32764​93

Codd, E.F.: A relational model of data for large shared data banks.
Commun. ACM 13(6), 377–387 (1970)

Dai, G., Huang, G., Yang, S., Yu, Z., Zhang, H., Ding, Y., Xie, Y.,
Yang, H., Wang, Y.: Heuristic adaptability to input dynamics for
spmm on gpus. arXiv:​2202.​08556 (2022)

Feng, S., Hou, B., Jin, H., Lin, W., Shao, J., Lai, R., Ye, Z., Zheng, L.,
Yu, C.H., Yu, Y., et al.: Tensorir: An abstraction for automatic
tensorized program optimization. arXiv:​2207.​04296 (2022)

Guennebaud, G., Jacob, B., et al.: Eigen. 3 http://eigen. tuxfamily.org
(2010)

Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning
on large graphs. Adv. Neural Inf. Process. Syst. 30 (2017)

Han, S., Liu, X., Mao, H., Pu, J., Pedram, A., Horowitz, M.A., Dally, W.J.:
Eie: efficient inference engine on compressed deep neural network.
ACM SIGARCH Comput. Archit. News 44(3), 243–254 (2016)

Hidayetoğlu, M., Pearson, C., Mailthody, V.S., Ebrahimi, E., Xiong,
J., Nagi, R., Hwu, W.-m.: At-scale sparse deep neural network

8  We open source our implementation at https://​github.​com/​dgSPA​
RSE/​dgSPA​RSE-​Libra​ry/​commit/​9e3e4​c18f4​0e76b​97a80​5b8a9​
73325​8f7e9​edeb6.

http://arxiv.org/abs/2202.04305
https://doi.org/10.1145/3276493
http://arxiv.org/abs/2202.08556
http://arxiv.org/abs/2207.04296
https://github.com/dgSPARSE/dgSPARSE-Library/commit/9e3e4c18f40e76b97a805b8a9733258f7e9edeb6
https://github.com/dgSPARSE/dgSPARSE-Library/commit/9e3e4c18f40e76b97a805b8a9733258f7e9edeb6
https://github.com/dgSPARSE/dgSPARSE-Library/commit/9e3e4c18f40e76b97a805b8a9733258f7e9edeb6

225Sgap: towards efficient sparse tensor algebra compilation for GPU﻿	

1 3

inference with efficient gpu implementation. In: 2020 IEEE High
Performance Extreme Computing Conference (HPEC), pp. 1–7
(2020). IEEE

Hong, C., Sukumaran-Rajam, A., Nisa, I., Singh, K., Sadayappan, P.:
Adaptive sparse tiling for sparse matrix multiplication. In: Pro-
ceedings of the 24th Symposium on Principles and Practice of
Parallel Programming, pp. 300–314 (2019)

Huang, G., Dai, G., Wang, Y., Yang, H.: Ge-spmm: general-purpose
sparse matrix-matrix multiplication on gpus for graph neural net-
works. In: SC20: International Conference for High Performance
Computing, Networking, Storage and Analysis, pp. 1–12 (2020).
IEEE

Kipf, T.N., Welling, M.: Semi-supervised classification with graph
convolutional networks. arXiv:​1609.​02907 (2016)

Kjolstad, F., Ahrens, P., Kamil, S., Amarasinghe, S.: Tensor algebra
compilation with workspaces, 180–192 (2019)

Kjolstad, F., Kamil, S., Chou, S., Lugato, D., Amarasinghe, S.: The
tensor algebra compiler. Proc. ACM Program. Lang. 1(OOPSLA),
77–17729 (2017). https://​doi.​org/​10.​1145/​31339​01

Kjolstad, F.: Sparse tensor algebra compilation. Ph.d. thesis, Massa-
chusetts Institute of Technology, Cambridge, MA (2020). http://​
tensor-​compi​ler.​org/​files/​kjols​tad-​phd-​thesis-​taco-​compi​ler.​pdf

Kolda, T.G., Bader, B.W.: Tensor decompositions and applications.
SIAM Rev. 51(3), 455–500 (2009)

Kurt, S.E., Raje, S., Sukumaran-Rajam, A., Sadayappan, P.: Sparsity-
aware tensor decomposition. In: 2022 IEEE International Parallel
and Distributed Processing Symposium (IPDPS), pp. 952–962
(2022). IEEE

Lin, C.-Y., Luo, L., Ceze, L.: Accelerating spmm kernel with cache-
first edge sampling for graph neural networks. arXiv:​2104.​10716
(2021)

Liu, B., Wang, M., Foroosh, H., Tappen, M., Pensky, M.: Sparse convo-
lutional neural networks. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp. 806–814 (2015)

Mehrabi, A., Lee, D., Chatterjee, N., Sorin, D.J., Lee, B.C., O’Connor,
M.: Learning sparse matrix row permutations for efficient spmm
on gpu architectures. In: 2021 IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS), pp.
48–58 (2021). IEEE

Naumov, M., Chien, L., Vandermersch, P., Kapasi, U.: Cusparse library.
In: GPU Technology Conference (2010)

Nisa, I., Li, J., Sukumaran-Rajam, A., Vuduc, R., Sadayappan, P.:
Load-balanced sparse mttkrp on gpus. In: 2019 IEEE Interna-
tional Parallel and Distributed Processing Symposium (IPDPS),
pp. 123–133 (2019). IEEE

Popoola, T., Shankar, R., Rift, A., Singh, S., Davis, E.C., Strout, M.M.,
Olschanowsky, C.: An object-oriented interface to the sparse
polyhedral library. In: 2021 IEEE 45th Annual Computers, Soft-
ware, and Applications Conference (COMPSAC), pp. 1825–1831
(2021). IEEE

Qin, E., Garg, R., Bambhaniya, A., Pellauer, M., Parashar, A., Raja-
manickam, S., Hao, C., Krishna, T.: Enabling flexibility for sparse
tensor acceleration via heterogeneity. arXiv:​2201.​08916 (2022)

Senanayake, R., Hong, C., Wang, Z., Wilson, A., Chou, S., Kamil, S.,
Amarasinghe, S., Kjolstad, F.: A sparse iteration space transfor-
mation framework for sparse tensor algebra. Proc. ACM Program.
Lang. 4(OOPSLA) (2020). https://​doi.​org/​10.​1145/​34282​26

Shantharam, M., Srinivasmurthy, S., Raghavan, P.: Characterizing the
impact of soft errors on iterative methods in scientific computing.
In: Proceedings of the International Conference on Supercomput-
ing, pp. 152–161 (2011)

Strout, M.M., Hall, M., Olschanowsky, C.: The sparse polyhedral
framework: composing compiler-generated inspector-executor
code. Proc. IEEE 106(11), 1921–1934 (2018)

Venkat, A., Hall, M., Strout, M.: Loop and data transformations for
sparse matrix code. ACM SIGPLAN Not. 50(6), 521–532 (2015)

Wang, Z., Wohlwend, J., Lei, T.: Structured pruning of large language
models. arXiv:​1910.​04732 (2019)

Wang, E., Zhang, Q., Shen, B., Zhang, G., Lu, X., Wu, Q., Wang, Y.:
Intel math kernel library. In: High-Performance Computing on the
Intel® Xeon PhiTM , pp. 167–188. Springer, Cham (2014)

Xin, J., Ye, X., Zheng, L., Wang, Q., Huang, Y., Yao, P., Yu, L., Liao,
X., Jin, H.: Fast sparse deep neural network inference with flex-
ible spmm optimization space exploration. In: 2021 IEEE High
Performance Extreme Computing Conference (HPEC), pp. 1–7
(2021). IEEE

Yang, C., Buluç, A., Owens, J.D.: Design principles for sparse matrix
multiplication on the gpu. In: European Conference on Parallel
Processing, pp. 672–687 (2018). Springer

Ye, Z., Lai, R., Shao, J., Chen, T., Ceze, L.: Sparsetir: composable
abstractions for sparse compilation in deep learning

Yu, Z., Dai, G., Huang, G., Wang, Y., Yang, H.: Exploiting online
locality and reduction parallelism for sampled dense matrix mul-
tiplication on gpus. In: 2021 IEEE 39th International Conference
on Computer Design (ICCD), pp. 567–574 (2021). IEEE

Yuster, R., Zwick, U.: Detecting short directed cycles using rectangular
matrix multiplication and dynamic programming. In: SODA, vol.
4, pp. 254–260 (2004). Citeseer

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of
such publishing agreement and applicable law.

Genghan Zhang  is a fourth-year
undergraduate student in Tsing-
hua University Department of
Electronic Engineering. His
research interests lie in domain-
specific language and computer
architecture.

Yuetong Zhao  born in 2002. She
is an undergraduate of Tsinghua
University. Her major is elec-
tronic engineering.

http://arxiv.org/abs/1609.02907
https://doi.org/10.1145/3133901
http://tensor-compiler.org/files/kjolstad-phd-thesis-taco-compiler.pdf
http://tensor-compiler.org/files/kjolstad-phd-thesis-taco-compiler.pdf
http://arxiv.org/abs/2104.10716
http://arxiv.org/abs/2201.08916
https://doi.org/10.1145/3428226
http://arxiv.org/abs/1910.04732

226	 G. Zhang et al.

1 3

Yanting Tao  born in 2002. She is
an undergraduate of Tsinghua
University. Her major is elec-
tronic engineering.

Zhongming Yu  is a Ph.D. student
advised by Prof. Jishen Zhao in
the Computer Science and Engi-
neering Department of UC San
Diego, starting from 2022. His
interests lie in the intersection
between efficient systems and
machine learning, with a focus
on a memory-centric perspec-
tive. Before coming to UCSD, he
received his B.E. degree from
the Department of Electronic
Engineer ing a t Tsinghua
University.

Guohao Dai  received the B.S. and
Ph.D. (with honor) degrees from
Tsinghua University, Beijing, in
2014 and 2019. He is joining
Shanghai Jiao Tong University,
Shanghai, China, as an Associate
Professor. Guohao's research
mainly focuses on large-scale
sparse graph computing, hetero-
geneous hardware computing,
emerging hardware architecture,
etc. He has received Best Paper
Award in ASP-DAC 2019, and
Best Paper Nomination in DAC
2022 and DATE 2018. He is the
winner of the NeurIPS Billion-

Scale Approximate Nearest Neighbor Search Challenge in 2021, and
the recipient of the Outstanding Ph.D. Dissertation Award of Tsinghua
University in 2019. Currently, he serves as PI/Co-PI for several projects
with a personal share of over RMB 6 million.

Sitao Huang  is an assistant pro-
fessor in the Department of Elec-
trical Engineering and Computer
Science at the University of Cali-
fornia, Irvine. He received his
Ph.D. degree and M.S. degree in
Electrical and Computer Engi-
neering from University of Illi-
nois at Urbana-Champaign in
2021 and 2017 respectively. He
received his B.S. degree in Elec-
tronics Engineering from Tsing-
hua University in 2014. His
research interests include hard-
ware accelerators, compilers for
accelerators, and heterogeneous

systems. He is a 2022 DARPA Forward Riser. His research won the
Best Paper Award at IDEAL 2021, Best Paper Nomination at ASP-
DAC 2021, and the Student Innovation Award at the 2018 IEEE HPEC
Graph Challenge.

Yuan Wen  is an Assistant Profes-
sor at the University of Aber-
deen. He received his PhD from
the Informatics School of the
University of Edinburgh. Prior to
his current job, He has been a
Research Fellow at the Univer-
sity of Edinburgh and Trinity
College Dublin. His research
interests include AI/ML work-
loads optimization, efficient
code generation, and software-
hardware co-design. The
research targets creating high-
performance code and hardware
logic for heterogeneous systems

of different scales, from data centres to battery-powered wearable
devices.

Pavlos Petoumenos  is an Assis-
tant Professor in the University
of Manchester, UK, and a
Research Fellow of the Royal
Academy of Engineering. He
received his Diploma and his
PhD from the University of
Patras, Greece, in 2005 and 2011
respectively. Later, he joined the
University of Edinburgh as a
post-doctoral researcher. His
work covers a range of topics in
Architecture and Compilers,
from CPU cache replacements
policies to deep learned heuris-
tics for compiler optimizations.

His papers have received awards in multiple IEEE and ACM confer-
ences (IISWC, CGO, PACT, ISSTA).

227Sgap: towards efficient sparse tensor algebra compilation for GPU﻿	

1 3

Yu Wang  received the B.S. and
Ph.D. (with honor) degrees from
Tsinghua University, Beijing, in
2002 and 2007. He is currently a
tenured professor with the
Department of Electronic Engi-
neering, Tsinghua University.
His research interests include
brain inspired computing, paral-
lel circuit analysis, application
specific acceleration, power/reli-
ability aware circuit, and system
design methodology. He has
authored and co-authored more
than 350 papers in refereed jour-
nals and conferences. He has

received Best Paper Award in ASP-DAC 2019, FPGA 2017, NVMSA
2017, ISVLSI 2012, Best Poster Award in HEART 2012, and 11 Best
Paper Nominations (DAC22, ICT18, DATE18, DAC17, ASPDAC16,
ASPDAC14, ASPDAC12, 2 in ASPDAC10, ISLPED09, CODES09).
He is a recipient of the Alexander von Humboldt Fellowship (2019),
the DAC Under-40 Innovators Award (2018), and the IBM X10 Faculty
Award (2010). He served as TPC chair for ICFPT 2019 and 2011,
ISVLSI 2018, finance chair for ISLPED 2012-2016, track chair for
DATE 2017-2019 and GLSVLSI 2018, and served as a program com-
mittee member for leading conferences in these areas, including top
EDA conferences such as DAC, DATE, ICCAD, ASP-DAC, and top
FPGA conferences such as FPGA and FPT. Currently, he serves as
associate editor of the IEEE TCAD, the ACM TODAES, and the IEEE
TCSVT.

	Sgap: towards efficient sparse tensor algebra compilation for GPU
	Abstract
	1 Introduction
	2 Background
	2.1 Sparse-dense hybrid algebra
	2.2 SpMM optimization
	2.3 Sparse compilers
	2.4 TACO
	2.4.1 Front-end
	2.4.2 Middle-end
	2.4.3 Back-end

	3 Atomic parallelism
	3.1 Computation unit model
	3.2 Overview of atomic parallelism
	3.3 SpMM optimization space formalization

	4 Segment group
	4.1 Current warp-level abstraction
	4.2 Overview of segment group
	4.3 Relationship between segment group and atomic parallelism

	5 Segment group for TACO
	5.1 New parallelize transformation
	5.2 Reduction semantics elevation
	5.3 Segment reduction lowering

	6 TACO’s support for four SpMM algorithms
	6.1 TACO SpMM reexamination
	6.2 Two new algorithms

	7 Evaluation
	7.1 Performance of two new algorithms for TACO
	7.2 Generalization of atomic parallelism

	8 Conclusion
	References

