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Abstract
Sparse compiler is a promising solution for sparse tensor algebra optimization. In compiler implementation, reduction in 
sparse-dense hybrid algebra plays a key role in performance. Though GPU provides various reduction semantics that can 
better utilize the parallel computing and memory bandwidth capacity, the central question is: how to elevate the flexible 
reduction semantics to sparse compilation theory that assumes serial execution. Specifically, we have to tackle two main 
challenges: (1) there are wasted parallelism by adopting static synchronization granularity (2) static reduction strategy limits 
optimization space exploration. We propose Sgap: s egment g roup and a tomic p arallelism to solve these problems. Atomic 
parallelism captures the flexible reduction semantics to systematically analyze the optimization space of sparse-dense hybrid 
algebra on GPU. It is a new optimization technique beyond current compiler-based and open-source runtime libraries. Seg-
ment group elevates the flexible reduction semantics to suitable levels of abstraction in the sparse compilation theory. It 
adopts changeable group size and user-defined reduction strategy to solve challenge (1) and (2), respectively. Finally, we use 
GPU sparse matrix-matrix multiplication (SpMM) on the TACO compiler as a use case to demonstrate the effectiveness of 
segment group in reduction semantics elevation. We achieve up to 1.2× speedup over the original TACO’s SpMM kernels. 
We also apply new optimization techniques found by atomic parallelism to an open-source state-of-the-art SpMM library 
dgSPARSE. We achieve 1.6× ∼ 2.3× speedup on the algorithm tuned with atomic parallelism.

Keywords Sparse compiler · Sparse tensor algebra · SpMM · GPU

1 Introduction

Sparse tensor algebra has been widely used in many fields, 
including machine learning (Hamilton et al. 2017; Kipf and 
Welling 2016; Liu et al. 2015), data analysis (Kolda and 
Bader 2009), scientific computing (Shantharam et al. 2011; 
Bell et al. 2012), graph processing (Yuster and Zwick 2004). 
However, it is challenging to optimize sparse tensor appli-
cations because of diversity in computation patterns and 
irregularity in memory access behavior. Sparse compilers 
have shown great potential to solve this problem. Sparse 
compilers can use one monolithic theory to express diverse 
data formats and operations, and provide flexible user inter-
face, enabling users to explore the optimization space given 
data and hardware. Therefore, more and more researchers 
are turning to sparse compilers for general solutions (Bik 
and Wijshoff 1993; Venkat et al. 2015; Strout et al. 2018; 
Kjolstad et al. 2017; Kjolstad 2020; Popoola et al. 2021; Bik 
et al. 2022; Ye et al. 2023).
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However, it is challenging to design a sparse compiler 
that can both compile various algebras and generate highly 
optimized code. In particular, sparse-dense hybrid alge-
bra on GPU brings unique challenges to sparse compilers. 
After analysing sparse-dense hybrid algebra’s mathemati-
cal expression, we find out that reduction is its key opera-
tion (Nisa et al. 2019; Huang et al. 2020; Kurt and Raje 
2022). There are several possible ways to do reduction on 
GPUs. Different reduction methods are preferred for dif-
ferent workloads. Choosing the correct reduction method 
can accelerate kernels (Dai et al. 2022; Bell and Garland 
2009). For example, controlled experiments in Dai et al. 
(2022) show that parallel reduction can outperform condi-
tional reduction and vice versa by 2× ∼ 4× . However, cur-
rent sparse compilers lack the abstraction for such flexible 
reduction semantics. That is because they assume the code 
executes serially. GPU reduction is different from the serial 
reduction in that it changes the reduction code’s structure 
(e.g., control-flow and loop basic block). Therefore, it cannot 
be naively generated by directly adding or replacing some 
instructions like the unroll in CPU. Solving this problem 
requires elevating reduction semantics to the sparse compila-
tion theory in a systematic way.

However, elevating the flexible reduction semantics to 
sparse compilation theory faces two main challenges: (1) 
Static synchronization granularity wastes parallelism: 
GPU synchronizes a group of threads whose group size is 
power of 2, which we term as synchronization granularity. 
Threads can pass local register values to another thread in 
the same group. However, static synchronization granular-
ity may waste parallelism when inputs are dynamic. For 
example, if not all threads’ register values are gathered, 
threads that do not influence the reduction result still have 
to wait to be synchronized. In other words, the synchroniza-
tion granularity is too large for such input data, as is shown 

in Fig. 1b. However, current sparse compilers only assume 
synchronization granularity to be 32, which wastes the par-
allelism. This is the limitation of current sparse compilers. 
(2) Static reduction strategy limits optimization space 
exploration: GPU has provided very flexible methods to 
do reduction. Multiple threads in a thread group will write 
back to the final results. We name such thread writeback 
thread. There could be more than one writeback thread in a 
thread group. The thread indices of writeback threads can 
also be decided at runtime and are controlled by the reduc-
tion strategy. Different algorithms favor different reduction 
strategies. For example, as is shown in Fig. 1c, if we assign 
a given number of non-zeros to each thread group, it has to 
use segment reduction. That is because threads need to write 
back according to the coordinate and thus writeback thread 
is decided at runtime. However, in another algorithm where 
all threads in a group are guaranteed to write back to the 
same place, it can use parallel reduction (Bell and Garland 
2009). However, current sparse compilers assume that only 
the first thread in a thread group is the writeback thread and 
use parallel reduction.

To tackle these challenges and build a more efficient 
sparse compiler, we propose atomic parallelism and seg-
ment group in this paper and implement our techniques in 
a real sparse compiler TACO (Kjolstad et al. 2019; Chou 
et al. 2018; Kjolstad et al. 2017; Senanayake et al. 2020). 
Atomic parallelism models the optimization space of sparse-
dense hybrid algebra from the reduction view. It uses the 
minimal data and reduction parallelism to distinguish differ-
ent algorithms of a given algebra. Minimal data are used to 
define reduction strategy and reduction parallelism for syn-
chronization granularity. We use this model to propose new 
optimization techniques. Segment group is a new abstrac-
tion for sparse compilation theory. It captures the dynamic 
synchronization granularity and dynamic reduction strategy. 
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Fig. 1  Sparse compilers suffer from static synchronization granular-
ity and static reduction strategy. a Example reduction with legends in 
latter subfigures. b Parallelism waste caused by improper synchroni-

zation granularity. c One type of segment reduction and one type of 
parallel reduction. Segment reduction has two writeback threads and 
parallel reduction has one
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To be specific, we use flexible group size to solve challenge 
(1) and design full-stack support for user-defined reduction 
strategy, which solves challenge (2). As is shown in Fig. 2, 
segment group extends the expression ability of original 
sparse compilation theory.

Finally, we use sparse matrix-matrix multiplication 
(SpMM) as an example to demonstrate atomic parallelism 
and segment group. SpMM is one of the most widely used 
sparse-dense hybrid algebra. It is the core operator of many 
emerging applications (Han et al. 2016; Wang et al. 2019; 
Lin et al. 2021; Asgari et al. 2021). It is also the simplest 
form of sparse-dense hybrid algebra.

Therefore, this work manages to push the frontier a step 
forward on these two challenges by a combined method 
involving segment group and atomic parallelism which we 
called Sgap in this paper. Our contributions are as follows: 

1. We propose a framework atomic parallelism to analyse 
sparse-dense hybrid algebra and propose new SpMM 
designs beyond previous works (Yang et al. 2018; Hong 
et al. 2019; Huang et al. 2020; Mehrabi et al. 2021; Dai 
et al. 2022).

2. Based on the atomic parallelism, we point out that 
current sparse compilers miss important optimization 
opportunities. We propose a new abstraction segment 
group for sparse compilers. Segment group can reduce 
parallelism waste and improve workload balance.

3. We implement segment group in TACO and get up 
to 1.2× speedup on average over the original TACO’s 
SpMM kernels. Next, we generalize our findings from 
TACO to dgSPARSE (Dai et al. 2022), an open-source 
state-of-the-art SpMM library. We achieve 1.6× ∼ 2.3× 
speedup over dgSPARSE on the algorithm we tune.

The rest of this paper is organized as follows. Background 
information is provided in Sect. 2. Section 3 introduces atomic 
parallelism and Sect. 4 is for segment group. Then the imple-
mentation of segment group in TACO is detailed in Sect. 5. 
After that, we illustrate the combination of atomic parallelism 

and segment group in TACO. Our evaluation of new SpMM 
algorithms in TACO and generalization to dgSPARSE is pre-
sented in Sect. 7. The paper is concluded in Sect. 8.

2  Background

2.1  Sparse‑dense hybrid algebra

Sparse-dense hybrid algebra can be defined in two equiv-
alent forms: the tensor formulation (TF) in Eq. 1 and the 
database formulation (DF) in Eq. 3. From TF sparse-dense 
hybrid algebra because the operands of it are sparse and 
dense, for example, MTTKRP (Matricized Tensor Times 
Khatri Rao Product) (Nisa et al. 2019), SDDMM (Sam-
pled Dense-Dense Matrix Multiplication) (Yu et al. 2021), 
SpMM (sparse Matrix-Matrix Multiplication) (Huang et al. 
2020), TTM (Tensor Times Matrix Product) (Kurt and Raje 
2022). We use Einstein’s summation to define sparse-dense 
hybrid algebra in AF as Eq. 1.
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are in the same index variable set. M is the mode of output 
tensor, and N is the mode of sparse input tensor. D is the 
number of dense input tensors, and Mj is the mode of dense 
input tensor �j . Specifically, MTTKRP, TTM, SDDMM, and 
SpMM are expressed as: 

We use message-passing to define sparse-dense hybrid 
algebra in DF as Eq. 3.
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Fig. 2  Venn diagram for the relation between atomic parallelism 
and original sparse compilation theory. The element is the point in 
the algorithm design space of a sparse-dense hybrid algebra. Origi-
nal sparse compilation theory can only express parallel reduction with 
group size 32. However, it can also express some optimization points, 
for example, loop reorder, beyond atomic parallelism. The union of 
segment group and original theory creates a new sparse compilation 
theory
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as input and output one object that can be operated by ⊕ . 
The result of ⊕ is written to f(dst) in Q. Sparse-dense hybrid 
algebra is sparse because Q

0
(dst) for all dst are diverse. In 

other words, Q
0
(i)

⋂

Q
0
(i + 1) ∼ Ø . Such algebra is dense 

because values in D,D
1
,D

2
 are scalar, dense vectors, or 

dense matrices.
The core operation of sparse-dense hybrid algebra is 

reduction and reduction in different kernels behaves simi-
larly. This key observation motivates atomic parallelism 
because we only need to optimize the common reduction 
operations and use the compiler to optimize different sparse-
dense hybrid algebra kernels automatically. For example, in 
TF kernels do reduction on l, k dimensions in MTTKRP, k in 
TTM, j in SDDMM and SpMM. The reduction can be along 
one sparse and one dense dimension, as in MTTKRP, TTM, 
and SpMM. It can also be along two dense dimensions, as 
in SDDMM. Figure 3 illustrates these examples and high-
lights the reduction dimensions. We also give concrete code 
examples in Fig. 4. It shows that some of these kernels share 
common reduction codes. For example, MTTKRP contains 
two reductions, each behaving the same as the reduction in 
SpMM.

Such property can also be illustrated in DF. As shown in 
Fig. 5, for the first reduction, the value of D

1
 both are scalar; 

the value of D
2
 both are vectors. For the second reduction 

of MTTKRP, though the value of D
1
 is a vector, which is 

different from SpMM’s first reduction, ⊕ behaves the same 
because ⊗ here is element-wise vector product.

2.2  SpMM optimization

As explained above, the reduction is the core operation of 
sparse-dense tensor algebra and some kernels share the 
same type of reduction. Without loss of generality, we take 
SpMM as an example to optimize the reduction in this paper. 
The optimization techniques can be easily generalized to 
expedite other sparse-dense hybrid algebra kernels. Yang 
et al. (2018) selects between two algorithms to achieve 

respectively even distribution of nnz among parallel proces-
sors and row-splitting among threads. Adaptive Sparse Til-
ing (ASpT) (Hong et al. 2019) aims at improving data local-
ity and thus reduces the total number of accesses to global 
memory. Ge-SpMM (Huang et al. 2020) proposes Coalesced 
Row Caching (CRC) method to enable coalesced memory 
access to both sparse and dense matrices and Coarse-grained 
Warp Merging (CWM) method for SpMM merging work-
loads from different warps to reuses loaded sparse matrix. 
Mehrabi et al. (2021) proposes several row permutation 
strategies for CSR format to enhance load balance and data 
locality. DA-SpMM (Dai et al. 2022) is a data-aware kernel 
selector among 8 algorithms according to 3 dimensions in 
the space dealing with dynamic input data.

2.3  Sparse compilers

The complexity of optimizing sparse tensor algebra 
comes from four directions: data, data format, algebra, 
and hardware. Researchers often develop a technique for 
one data format, one algebra, and one hardware. Such a 
library method heavily relies on experts and engineer-
ing work (Guennebaud and Jacob 2010; Naumov et al. 
2010; Wang et al. 2014). However, sparse compilers can 
extremely reduce such engineering burden and boost 
innovation in this area. Unlike the library method, sparse 
compilers aim to use one monolithic theory to express 
all data formats, all algebras, and provide flexible user 
interface, which enables users to explore the optimiza-
tion space given data and hardware. Research on sparse 
compilers can be divided into two categories: (1) Pass-
oriented. Given the imperative code, design compilation 
passes to optimize the code (Bik and Wijshoff 1993; Ven-
kat et al. 2015; Strout et al. 2018). (2) Language-oriented. 
View sparse compiler as a programming language and 
design lowering and scheduling process [15],(Bik et al. 
2022; Kjolstad 2020). Especially, TACO is a fundamen-
tal breakthrough on this problem. To the best of our 

Fig. 3  Examples of sparse-dense hybrid algebra. The consecutive grey parallelograms or squares represent the reduction modes
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knowledge, it is the first to propose a practical sparse 
compilation theory. MLIR sparse dialect (Bik et al. 2022) 
implements TACO’s sparse compilation theory as MLIR 
dialect. SparseTIR [15] follows the design philosophy of 

TensorIR (Feng et al. 2022), but it still uses some of the 
TACO’s concepts such as position and coordinate space. 
TACO also motivates innovations on accelerators for 
sparse tensor algebra (Qin et al. 2022).

Fig. 4  Code examples of reduction in sparse-dense hybrid algebra in 
TF. The colored lines are reduction codes. MTTKRP has two levels 
of reduction, colored green and yellow, respectively. The overlapped 

region means that the first-level reduction’s output serves as the sec-
ond-level reduction’s input. We follow the naming rules in Kjolstad 
(2020) for the storage of A 
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2.4  TACO

TACO (The Tensor Algebra Compiler) is a fast and versa-
tile compiler-based library for sparse linear and tensor alge-
bra (Kjolstad et al. 2017, 2019; Kjolstad 2020; Senanayake 
et al. 2020). TACO has three types of inputs: a tensor algebra 
expression (in an Einstein summation notation or reduction 
notation); level formats of input and output tensor; sched-
ule commands. We will introduce TACO in the front-end, 
middle-end, and back-end order. The workflow of TACO is 
illustrated in Fig. 6.

2.4.1  Front‑end

At the front-end, the tensor algebra expression is concre-
tized to concrete index notation (Kjolstad et al. 2019). The 
concrete index notation (CIN) is a language that describes 
the execution of a tensor algebra. Unlike bare tensor algebra 
expression, CIN describes the loop, index variables rela-
tions, workspace, hardware platform, etc. Schedule com-
mands transform the CIN. For example, a precompute sched-
ule will add a where statement to the CIN. Though TACO 
provides a clean and powerful scheduling API to transform 
CIN, the user can still change the CIN directly. TACO 

provides a match function that can take lambda expression as 
input. The function can modify CIN when it meets a specific 
type of CIN node or a pattern of CIN nodes. Moreover, users 
can define a child class of IndexNotationRewriter that can 
directly rewrite the CIN. Such technique is used to imple-
ment segment group.

2.4.2  Middle‑end

At the middle-end, CIN will be transformed to imperative IR 
(or low level IR (LLIR)). LLIR describes the basic blocks, 
for example, for-loop, while-loop, and if-statement. LLIR is 
almost the executable code. The output of the middle-end is 
a chain of LLIR. The sparse iteration theory (Kjolstad 2020) 
guides the CIN to LLIR process. It ensures that different ten-
sors only coiterate over elements that can generate non-zero 
output. Specifically, TACO designs lower functions for every 
statement of CIN and lattices in the sparse iteration space. 
However, current lower functions only assume serial reduc-
tion is done on the compressed level of sparse tensors. We 
will break the serial code assumption to implement segment 
group. Moreover, we suggest that more flexible or even user-
defined lowerers should be designed in the future.

Fig. 5  Illustration of common reduction in MTTKRP and SpMM. The equivalent expressions of the same kernel in TF and DF are below each 
sub-figure

Fig. 6  Overview of the TACO 
workflow



216 G. Zhang et al.

1 3

2.4.3  Back‑end

At the back-end, LLIR will be transformed to code for differ-
ent backends. In this paper, we target the CUDA code gen-
eration. TACO CUDA code generator has some assumptions 
that previous papers did not thoroughly explore. TACO deals 
with CUDA code generation in a nested loop favor (Sena-
nayake et al. 2020). Moreover, it only generates one dimen-
sion of block and thread. That is, it only has blockIdx.x and 
threadId.x. When the index variable of a for-loop LLIR is 
bound on the GPUBlock, it will use blockIdx.x to index this 
index variable. In the CPU case, it will emit a real for-loop. 
Such variable is assumed to increment by 1. Index variables 
bound on GPUWarp and GPUThread are assumed to be 
the outer and inner variables of threadIdx.x. The tile size 
depends on the index variable on GPUThread. The mixture 
of tiling and synchronization semantics of GPUWarp loses 
some optimization opportunities. We will discuss this later 
and improve it in our implementation.

3  Atomic parallelism

3.1  Computation unit model

We observe that the core operation of sparse-dense hybrid 
algebra is the reduction. Therefore, the core of our model is 
how many data are reduced and are synchronized in which 
way. We model the atomic computation unit as thread. A 
thread executes a serial program. All threads execute the 
same program independently with each own’s input data and 
are distinguished by threadId. Threads can do synchroni-
zation in groups with reduction parallelism of 2, 4, 8, 16, 
or 32. We model GPU computation as unlimited parallel 
threads and define the number of threads as resource paral-
lelism that GPU can provide. We do not consider the shared 
memory, grid level, and the mapping of the thread block 
or the streaming processor. Instead, we view them as rea-
sonable implementation details after the basic parallel pat-
tern is decided. In other words, there can be many kinds of 
implementation for each algorithm in atomic parallelism. 
In this sense, atomic parallelism can encourage more GPU 
optimization innovation.

3.2  Overview of atomic parallelism

To define the parallel pattern concretely, we propose atomic 
parallelism. A program with atomic parallelism cannot be 
paralleled anymore. In other words, a thread at least exe-
cutes the amount of data denoted by atomic parallelism. 
Formally, atomic parallelism is defined as the Cartesian 
product of minimal data. Minimal data is the minor data of 

one category a thread can execute. Atomic parallelism can 
be used to construct the optimization space of any sparse-
dense hybrid algebra under the GPU model, but we focus on 
SpMM in this paper.

Indeed, tiling, manipulating shared memory, and thread 
mapping (Hidayetoğlu et al. 2020; Mehrabi et al. 2021; Xin 
et al. 2021; Huang et al. 2020) are also important for SpMM 
on GPU. They are crucial for SpMM, especially with many 
dense columns(usually more than 128 columns), because the 
computation will be more workload intensive and bounded 
by the memory access for dense columns. However, we 
focus on SpMM with fewer dense columns(usually less than 
8 columns), which are more balance intensive and bounded 
by the maximum warp execution cycles.

SpMM has two orthogonal atomic parallelisms: minimal 
data can be (1) { 1

g
, 1, g} non-zeros of the sparse matrix and 

{
1

c
, 1, c} columns of the dense matrix; (2) { 1

g
, 1, g} rows of 

the sparse matrix and { 1

c
, 1, c} columns of the dense matrix. 

c ∈ ℤ
+ and g ∈ ℤ

+ are tunable parameters. Though they can 
be 1, they have different meanings from 1, because they are 
tunable. Therefore, the atomic parallelism space of SpMM 
is described in < x nnz, y col > or < x row, y col > . Resource 
parallelism only multiplies one element of the atomic paral-
lelism. For example, given resource parallelism r, the 
amount of executed data equals < r × x nnz, y col > or 
< x nnz, r × y col > . Besides, a fractional amount of data 
means multiple threads may execute on the same datum. For 
example, < 1

g
row, 1 col > means that g threads execute the 

same row collaboratively.

3.3  SpMM optimization space formalization

We use atomic parallelism and reduction parallelism 
{< ... >, r} to define an SpMM kernel. < ... >∈ {

1

g
, 1, g}nnz

×{
1

c
, 1, c}col or { 1

g
, 1, g}row × { 1

c
, 1, c}col . They describe the 

minimal data.  And the reduction parallel ism 
r ∈ {2, 4, 8, 16, 32} assigns how many threads are synchro-
nized each time. Figure 7 illustrates the SpMM optimization 
space.

However, not all points in the atomic parallelism space are 
legal in optimization space. Figure 8 illustrates the details of 
space pruning. There are three rules for legal points: 

(1) 
{

<
1

g
nnz, x col >, r

}

 , 
{

< x nnz,
1

c
col >, r

}

 are illegal 
because one non-zero must by multiplied by at least one 
element in the dense matrix.

(2) 
{

<
1

g
row, x col >, r

}(

r

g
< 1

)

 is illegal because parallel 
reduction only has one writeback thread.
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(3) 
{

<
1

g
row,

1

c
col >, r

}

 is illegal because it conflicts with 
the rule that resource parallelism only multiplies one 
element of the atomic parallelism.

The state-of-the-art algorithm space, DA-SpMM (Dai 
et al. 2022) is in the atomic parallelism design space. 
It proposes a three-dimensional SpMM algorithm 
design space. We claim that the design space of DA-
SpMM is included in the atomic parallelism space. To 
be specific, EB+PR is {< 1 nnz, c col >, 32} , RB + PR is 
{<

1

32
row, c col >, 32} , EB+SR is {< 32 nnz, c col >, 1} , 

and RB + SR is {< 1 row, c col >, 1} . c means coarsen fac-
tor, g means group size. Though real CUDA code with 
1 row or 1 nnz may have minimal data greater than one 

because of limited resource parallelism, we still label the 
algorithm as 1 row or 1 nnz . The RM/CM is the imple-
mentation detail and is included in atomic parallelism 
in theory.

4  Segment group

4.1  Current warp‑level abstraction

Current sparse tensor compilers with CUDA backend take 
warp as the rank of a thread (tiling), a particular paral-
lel unit (synchronization) or just a hardware instruction. 
For example, TACO assumes warp and thread to be the 
outer and inner loop, and the warpSize depends on the 

Fig. 7  SpMM optimization space. The grey area is illegal. The dashed line part of the axis represents hardware dependent end of the axis

Fig. 8  Projections of SpMM optimization space. Grey areas are illegal and hollow circles are legal points. Sub-figures (a–c) correspond to Rule 
1, 2, and 3 respectively
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split factor. It should be noted that no synchronization 
behavior is assumed in this case. TACO also takes the 
32-thread warp reduction as atomic addition at the GPU-
Warp parallel unit and assumes users will split the last 
level loop with warpSize = 32 . In this case, CUDA warp 
is taken as a for-loop with extent warpSize and incremen-
tal step 1. Then they will emit CUDA warp primitives 
such as __shfl_down_sync to do the reduction. Figure 9 
illustrates TACO’s current GPU Warp semantics. On the 
contrary, TVM(Chen et al. 2018) only binds on thread and 
block level and does not assign any synchronization on the 
warp level. Instead, it takes 32 as a hardware feature and 
uses such intrinsic to fill in schedule parameters in auto-
scheduler. Besides, it also uses warp as a memory load unit 
in TIR(Chen et al. 2018).

4.2  Overview of segment group

However, at least two existing assumptions should be 
improved for sparse compilers. First, the tiling and synchro-
nization semantics of warp should be explicitly separated. 
As shown in atomic parallelism, the atomic and reduction 
parallelism can be different, and reduction parallelism is not 
necessarily 32. Second, synchronization semantics should 
be able to express various reduction strategies and flexible 
reduction granularity, instead of just parallel reduction for 32 
threads. As shown in atomic parallelism, {< 1 nnz, c col >, n} 
requires synchronization of n threads with row number of 
their own. Therefore, the warp reduction should be able to 
reduce to different outputs instead of only one. Such change 
not only calls for changing the hand-coded warp level 

reduction functions but also for elevating the reduction pat-
tern to higher-level compiler passes. Such semantics lifting 
calls for a new organization of basic blocks, new control 
flow, and new user-level APIs.

4.3  Relationship between segment group 
and atomic parallelism

Atomic parallelism models the optimization space of sparse-
dense hybrid algebra from the reduction view. We use this 
model to propose new optimization techniques. As shown 
in Sect. 2, reduction is the key operation of sparse-dense 
hybrid algebra, which contains many different tensor alge-
bras such as SpMM, SDDMM, MTTKRP, and TTM. Based 
on this observation, we define and explain segment group in 
Sect. 3, using SpMM as an example. We show that 3 opens 
new optimization space for SpMM. Such benefit can be gen-
eralized to other sparse-dense hybrid algebra. However, it 
requires repetitive engineering efforts to optimize case by 
case. In response to this issue, we propose segment group, 
a new abstraction for sparse compilers to ship performance 
benefits brought by atomic parallelism to users with only 
several lines of code changed on the user side.

In summary, we propose that sparse compilers for GPU 
should have abstraction segment group, that is, a warp that 
takes the tiling semantics, and a group that does different 
types of reduction synchronization. We will use TACO1 to 
illustrate how to implement segment group, but other sparse 
compilers can also integrate segment group. Figure 10 illus-
trates the workflow.

Fig. 9  Tiling and synchronization semantics of GPU Warp in TACO

Fig. 10  Overview of segment 
group in the TACO workflow

1 We build on commit d0654a8 https:// github. com/ zhang 677/ taco/ 
tree/ d0654 a8413 71698 83973 c40a9 51dfd b8988 3fd9c.

https://github.com/zhang677/taco/tree/d0654a84137169883973c40a951dfdb89883fd9c
https://github.com/zhang677/taco/tree/d0654a84137169883973c40a951dfdb89883fd9c
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5  Segment group for TACO

The original parallelize transformation is defined as 
parallelize(IndexVar i, ParallelUnit pu, OutputRaceStrat-
egy rs) (Senanayake et al. 2020). The transformation does 
parallel execution on IndexVar i, using ParallelUnit pu. 
And OutputRaceStrategy rs describes the data races during 
reductions. For GPU, pu can be GPUThread, GPUWarp, and 
GPUBlock. rs can be NoRaces, IgnoreRaces, and Atomics. 
We propose two new designs to TACO: 

1. We add a new PrallelUnit, GPUGroup, to the parallelize 
transformation, and change the semantics of ParallelUnit 
GPUWarp.

2. We break the assumption that other transformations other 
than parallelize assumes serial code and design a new lower 
process to enable segment reduction.

5.1  New parallelize transformation

We assign the tiling semantics to GPUWarp and its Atomic Out-
putRaceStrategy will only serve to direct the lowering function 
instead of synchronization semantics. Because GPUWarp now 
only serves as the outer loop of tiling on threadIdx, it does not 
have Atomic semantics. Meanwhile, we add GPUGroup which 
has ReductionStrategy and GroupSize attributes instead of 
OutputRaceStrategy. ReductionStrategy describes the group’s 
reduction type, and GroupSize assigns the reduction parallelism.

5.2  Reduction semantics elevation

TACO assumes that a sparse algebra compiler should do it best 
to ensure that only elements that can generate non-zero output 
will be calculated (Kjolstad 2020). However, we point out that 
this assumption is not necessarily valid. The previous assump-
tion is the best option for performance because the sparse itera-
tion space theory is built on the assumption that the code runs 
serially. For CUDA code, however, such assumption is broken, 
which we term as zero extension. Zero extension means that 
some “out-of-bound” reduction can be allowed in the sparse 
iteration theory because it can later be executed by some warp 
primitives faster than for-loop.

5.3  Segment reduction lowering

//Orig ina l CUDA code
for ( k=0;k<B2 dimension ; k++){

pA2 begin=i b l o c k S t a r t s [ b lock ] ;
pA2 end=i b l o c k S t a r t s [ b lock +1] ;
fposA=block 256 ;
i p o s=taco b inarySearchBe fo re (
A2 pos , pA2 begin , pA2 end , fposA ) ;
i=i p o s ;
fposA=block 256+ fpos1 ;
i f ( fposA>=A2 pos [ A1 dimension ] )

break ;
f=A2 crd [ fposA ] ;
kB=f B2 dimension+k ;
while ( fposA==A2 pos [ i p o s +1]){

i p o s=i p o s +1;
i=i p o s ;

}
kC=i C2 dimension+k ;
f loat va l =0.0 ;
va l=A vals [ fposA ] B vals [ kB ] ;
atomicAdd(&C vals [ kC ] , va l ) ;

}
Listing 1 Original CUDA code

//Modified CUDA code
for ( k=0;k<B2 dimension ; k++){

pA2 begin=i b l o c k S t a r t s [ b lock ] ;
pA2 end=i b l o c k S t a r t s [ b lock +1] ;
fposA=block 256+ fpos1 ;
i p o s=taco b inarySearchBe fo r e (
A2 pos , pA2 begin , pA2 end , fposA ) ;
i=i p o s ;
f loat va l =0.0;
i f ( fposA>=A2 pos [ A1 dimension ] )

va l =0;
else {

f=A2 crd [ fposA ] ;
kB=f B2 dimension+k ;
while ( fposA==A2 pos [ i p o s +1]){

i p o s=i p o s +1;
i=i p o s ;

}
va l=A vals [ fposA ] B vals [ kB ] ;

}
kC=i C2 dimension+k ;
segReduceWarp<f loat ,32>( C vals ,
kC , va l ) ;

}
Listing 2 Modified CUDA code

Listing 1 and Listing 2 show the difference between codes gen-
erated by the original TACO and the modified TACO. They use 
the same schedule, except that code on the right uses segment 
reduction of GPUGroup with size 32.

scalar workspace. TACO assumes that the statement and 
the assignment of scalar workspace (Kjolstad et al. 2019) are 
in the same basic block. However, this assumption is so strong 
that it restricts the expressive power of TACO. For example, in 
{< 1 nnz, c col >, 32} the scalar workspace should be assigned 
in a basic block belonging to an else but stated in the same con-
text with reduction of scalar workspace, outside the assignment 
basic block.

Macro instruction. It is important to emit code in a mod-
ular way. Therefore, we design two new macro instructions 
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atomicAddGroup<T,G>(T* array, int idx, T value) and 
segReducWarp<T,G>(T* array, int idx, T value). They are 
template device functions that takes in the output array, the 
index of the output and the value reduced to the output.2 
They will do some kind of reduction on G threads, and G 
equals GroupSize. They will be stated in the header file and 
used as macro instructions in the final CUDA code. In fact, 
we borrow the group concept from the cooperative group in 
CUDA. Since CUDA 11.0, it has supported an easy-to-use 
API called cooperative group3 that makes it only one-line-
code effort to change reduction granularity to less than 32 
threads.

6  TACO’s support for four SpMM algorithms

This section will illustrate the atomic parallelism design 
space and our implementation of segment group. We first 
reexamine two SpMM algorithms proposed by TACO (Sena-
nayake et  al. 2020). They use TACO to generate 
{< g nnz, c col >, 1} and {< x row, c col >, 1} . We then use 

another  two examples ,  {<
1

g
row, c col >, r} and 

{< 1 nnz, c col >, r} to illustrate how the CIN is changed. The 
tensor algebra expression is C(i, k) = A(i, j) ∗ B(j, k) . A’s first 
level is dense and the second level is compressed. B and C 
are both dense matrices. A, B, and C all are row-major. We 
assume N = 4 and that thread per block (resource parallel-
ism p) equals 256. We explicitly fill p, g, N, c into the CIN 
to show their arithmetic relations with CIN parameters. The 
actual CIN will not have undetermined variables.

6.1  TACO SpMM reexamination

Currently, TACO supports two algorithms in atomic paral-
lelism. They don’t need synchronization semantics and only 
tune on the tiling semantics. The implementation by TACO 
is shown in Listing  3 and  4. They force the synchroniza-
tion granularity to be 1 which presents limited capability in 
reduction.

Concrete Index Notation for {< g nnz, c col >, 1} is:

suchthat ( f o r a l l ( block , f o r a l l (warp , f o r a l l ( thread ,
f o r a l l ( dense va l , where (C( i , k)+=tnnzC , f o r a l l ( nnz ,
tnnzC+=A( i , j ) B( j , k ) ) ) ) , GPUThread , Atomics ) ,
GPUWarp, NoRaces ) ,GPUBlock , NoRaces ) ,
f u s e ( i , j , f ) and pos ( f , fpos ,A( i , j ) ) and
s p l i t ( fpos , block , fpos1 , ( p g /(N/c ) ) ) and
s p l i t ( fpos1 , warp , nnz , g ) and s p l i t (k , ko , thread , c )
and bound (ko , dense va l ,N/c , MaxExact ) )

Listing 3 CIN for {< g nnz, c col >, 1}

2 We do not actually integrate these macro instructions into TACO, 
because it is fairly straightforward and purely engineering. When test-
ing the kernels, we just replace the atomicAdd with the new macro 
instructions. We open-source the modified TACO https:// github. com/ 
zhang 677/ taco/ tree/ paral lelre ducti on.
3 https:// docs. nvidia. com/ cuda/ cuda-c- progr amming- guide/ index. 
html# coope rative- groups.

https://github.com/zhang677/taco/tree/parallelreduction
https://github.com/zhang677/taco/tree/parallelreduction
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#cooperative-groups
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#cooperative-groups
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Actually, TACO’s precompute schedule fails to gener-
ate this CIN, so we use the IndexNotationRewriter tech-
nique mentioned in Sect. 2.4.1 to get the CIN above. In the 
evaluation section of Senanayake et al. (2020) it assumes 
N = 128, g = 16, c = 4, p = 512 , which is a point in the 
{< g nnz, c col >, 1}.

Concrete Index Notation for {< g row, c col >, 1} is:

suchthat ( f o r a l l ( block , f o r a l l (warp , f o r a l l ( row ,
f o r a l l ( thread , f o r a l l ( co l , where (C( i , k)+=tjC ,
f o r a l l ( j , tjC+=A( i , j ) B( j , k ) ) ) ) , GPUThread , NoRaces ) ) ,
GPUWarp, NoRaces ) ,GPUBlock , NoRaces ) , s p l i t ( i , block , io ,
p g /(N/c ) )and s p l i t ( io , warp , row , g ) and s p l i t (k , ko , co l , c )
and bound (ko , thread ,N/c , MaxExact ) )

Listing 4 CIN for {< g row, c col >, 1}

The generated code can be directly executed. In the 
evaluation section of Senanayake et al. (2020) it assumes 
N = 128, g = 1, c = 4, p = 512 , which is also a point in the 

{< g nnz, c col >, 1} . These two algorithms only use the til-
ing semantics of GPUWarp.

6.2  Two new algorithms

We introduce two algorithms to overcome the restricted 
scheme forced by TACO to improve workload balance. The 

algorithms provide functionality to change group size and 
reduction strategy through tuning nnz and rows. Listing 5 
and 6 show the implementation.

Concrete Index Notation for {< 1

g
row, c col >, r} is:

Fig. 11  Newly generated SpMM kernels performance compared with original TACO’s best SpMM kernel for different number of dense matrix 
columns N. Density is defined as the number of non-zeros divided by the multiplication of the number of rows and cols for sparse matrix
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suchthat ( f o r a l l ( ko , f o r a l l (warp , f o r a l l ( k i i , where (C( i , k)+=tjpos1C ,
f o r a l l ( jpos1 , f o r a l l ( jpos0 , tjpos1C+=A( i , j ) B( j , k ) ) ,GPUThread ,
Para l l e lReduct i on ) ) ) ,GPUWarp, Atomics ) ,GPUBlock , NoRaces ) ,
f u s e ( i , k , i o ) and s p l i t ( io , ko , ki , c p/g ) and s p l i t ( ki , warp , k i i , c )
and pos ( j , jpos ,A( i , j ) ) and s p l i t ( jpos , jpos0 , jpos1 , g ) and
p a r a l l e l i z e ( jpos1 ,GPUGroup , r , Atomics ) )

Listing 5 CIN for {< 1
g
row, c col >, r}

We find that TACO can support g = 32, r = 32 , but it is 
not explored in the autoscheduling paper4. GPUGroup is 
bound on the indexVar that does the reduction. Generated 
macro-instruction, atomicAddWarp<Type>, is changed to 
atomicAddGroup<Type, G> to enable more fine-grained 
thread synchronization.

Concrete Index Notation for {< 1 nnz, c col >, r} is:

suchthat ( f o r a l l ( block , f o r a l l (warp , f o r a l l ( ki , f o r a l l ( fpos1 , where (
C( i , k)+=tmp , tmp=A( i , j ) B( j , k ) ) ,GPUThread , Atomics ) ) ,GPUWarp, NoRaces ) ,
GPUBlock , IgnoreRaces ) , f u s e ( i , j , f ) and pos ( f , fpos ,A( i , j ) ) and
s p l i t ( fpos , block , fpos1 , p/(N/c ) ) and s p l i t (k , ko , ki , c ) and bound (ko ,
warp ,N/c , MaxExact ) and p a r a l l e l i z e ( jpos1 ,GPUGroup , r , Segment ) )

Listing 6 CIN for {< 1nnz, c col >, r}

This algorithm has no counterpart in the original 
TACO. We change the originally emitted atomicAdd to 
segReduceGroup<Type,G>, and the grouped segment reduc-
tion is done in the macro instruction. The lowerer of scalar 
workspace is changed to emit the code ready for segmented 
reduction.

7  Evaluation

Experiment settings. We evaluate the implementation and 
the generalization on three architectures:

• NVIDIA RTX 3090. Compute Capability 8.6 (68 Ampere 
SMs at 1.395 GHz, 24 GB GDDR6x, 936 GB/s band-
width).

• NVIDIA RTX 2080. Compute Capability 7.5 (46 Turing 
SMs at 1.515 GHz, 8 GB GDDR6, 448 GB/s bandwidth).

• NVIDIA Tesla V100. Compute Capability 7.0 (80 Volta 
SMs at 1.370 GHz, 16 GB HBM2, 900 GB/s bandwidth).

We use NVCC 11.6 and CUDA 11.6 with the same compila-
tion flags as Senanayake et al. (2020) when testing TACO 
and the same compilation flag as Dai et al. (2022) when test-
ing the generalized tuning. We carry 25 tests for each kernel 
to get the average execution time when evaluating TACO’s 
generated CUDA kernels. We use nsight-compute5 to get 

the execution time of tuned dgSPARSE kernels. We use the 
same sparse matrices as Dai et al. (2022). We evaluate on 
three different architectures to show that our techniques are 
not limited to specific traits on certain generations of GPU, 
but are valid on common SIMT architectures.

7.1  Performance of two new algorithms for TACO

This experiment aims to prove that segment group can 
improve the sparse compiler’s expression ability and boost 
the performance of SpMM kernels generated by TACO. The 
dense input matrices have N = 4.6

Against the static group size 32.  We use 
{<

1

g
row, c col >, r} to show the improvement brought by 

flexible group size r. Current TACO only supports 
g = 32, r = 32 , so we keep the same g with TACO and 
change r. In Table 1 we show that r = 8 and r = 4 can bring 
over 2.0x speedup on average. We also measure the normal-
ized speedup. Normalized speedup of A over B means that 

4 Senanayake et  al. (2020)’s authors shared their code with us. We 
also use a similar code base to test our kernels in Sect. 7.

5 https:// docs. nvidia. com/ nsight- compu te/ Nsigh tComp ute/ index. 
html.
6 We open source the testing code at https:// github. com/ zhang 677/ 
segTA CO.

https://drive.google.com/file/d/1qZbP7tY5N35N54JlmYkBHxY97HbgFSHE/view?usp=sharing
https://docs.nvidia.com/nsight-compute/NsightCompute/index.html
https://docs.nvidia.com/nsight-compute/NsightCompute/index.html
https://github.com/zhang677/segTACO
https://github.com/zhang677/segTACO
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if A performs better than B, we count the speedup; other-
wise, we assume the user can choose the better algorithm, 
and the speedup is counted as 1.

Against  the  or ig inal  reduct ion.  We use 
{< 1 nnz, c col >, r} to illustrate the speedup brought by flex-
ible reduction. Because they have different data types (nnz 
vs. row), we control c and r, and compare the execution of 
{< 1 nnz, c col >, r} with the best g configuration of 
{<

1

g
row, c col >, r} each dataset. We only do this experi-

ment on RTX 3090 and record the normalized speedup here. 
In Table 2 we show that segment reduction can bring up to 
1.3 × speedup over atomicWarp reduction. Limited by the 

number of threads per warp in GPU, r can only be 
1, 2, 4, 8, 16, 32. Therefore, users can try these values to 
tune r in practice.

Against the original TACO SpMM algorithms. In this 
experiment, we compare the performance between TACO’s 
original SpMM algorithms {< g nnz, c col >, 1} and 
{< x row, c col >, 1} (Senanayake et al. 2020) and two algo-
r i thms proposed by us,  {< 1

g
row, c col >, r} and 

{< 1 nnz, c col >, r} . We assign reasonable values to 
g, c, x, and r, and tune these parameters. We record the best 
performance of each algorithm on each dataset. From 
Table 3 we conclude that segment group brings 1.1x∼1.2x 
normalized speedup. Figure 11 shows the detailed data.

7.2  Generalization of atomic parallelism

In this experiment, we implement our atomic parallelism to 
dgSPARSE library,7 an open-source state-of-the-art SpMM 
and SDDMM library. We achieve up to 2.7 × speedup on a 
certain SpMM algorithm. We keep the same sparse input 
matrix format (CSR) with dgSPARSE. After profiling, we 
find that row-major algorithms consistently outperform the 
col-major algorithms. Therefore, we target row-major. We 
are left with 4 algorithms: EB + SR + RM, EB + PR + 
RM, RB + SR + RM, RB + PR + RM. We will introduce 
the details of tuning RB + PR + RM and show the speedup.

To tune an actual GPU SpMM kernel, we require more 
fine-grained parameters than those in atomic parallelism. 
Parallelism is now two-fold: block-level and thread-level, 
instead of homogeneous threads. Besides, the memory hier-
archy, such as the shared memory should be considered. 

Table 1  Flexible group size speedup

Hardware r = 8 r = 8 norm r = 4 r = 4 norm

RTX 2080 2.451 2.478 2.456 2.483
RTX 3090 2.236 2.284 2.259 2.307
Tesla V100 2.086 2.143 2.094 2.150

Table 2  Segment reduction 
normalized speedup

c r = 4 r = 8 r = 16 r = 32

1 1.008 1.025 1.085 1.272
2 1.019 1.045 1.102 1.291
4 1.063 1.095 1.205 1.381

Table 3  Normalized performance of new algorithms

RTX 3090 RTX 2080 Tesla V100

Speedup 1.191 1.098 1.223

Table 4  Speedup over original implementation

a We use geometric mean to reduce outlier bias

Hardware geomean1a max N

RTX 3090 2.295 4.316 128
2.181 4.432 64
1.997 4.271 16
2.046 7.819 4

RTX 2080 1.938 4.379 128
1.927 4.430 64
1.995 5.019 16
2.307 8.582 4

Tesla V100 1.874 3.724 128
1.824 3.846 64
1.693 3.388 16
1.852 6.114 4

Table 5  Speedup over static implementation

Hardware geomean N Best static

RTX 3090 1.124 128 < 8, 256, 8, 1∕2 >

1.114 64 < 4, 256, 8, 1∕2 >

1.310 16 < 8, 256, 8, 1∕2 >

1.406 4 < 8, 256, 8, 1 >

RTX 2080 1.095 128 < 4, 256, 8, 1∕2 >

1.114 64 < 4, 256, 8, 1∕2 >

1.276 16 < 4, 256, 8, 1∕2 >

1.310 4 < 4, 256, 8, 1∕2 >

Tesla V100 1.137 128 < 8, 256, 8, 1∕2 >

1.177 64 < 8, 256, 8, 1∕2 >

1.367 16 < 8, 256, 8, 1 >

1.326 4 < 8, 256, 8, 1 >

7 https:// github. com/ dgSPA RSE.

https://github.com/dgSPARSE
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Moreover, parallelism is limited in the physical world. For 
example, the largest thread-level parallelism is 1024 because 
a block has at most 1024 threads. The largest block-level 
parallelism is also finite(less than 232 − 1 ). GridSize can be 
arbitrary because the extra blocks will be taken care of by 
GPU scheduler.

Tuning parameters for RB + PR + RM can be divided into 
two categories. The first is how many workers are assigned 
to process one chunk of data. The second is how many 
chunks of data are assigned to one worker. RB + PR + RM 
has 7 tunable parameters. A block process tileSz real col-
umns. workerSz threads process one vectorized column and 
threadRw sparse rows. groupSz threads are synchronized. 
blockSz denotes the number of threads per threadblock. 
workerDimR denotes the block parallelism of sparse rows. A 
vectorized column has coarsenSz consecutive real columns. 
If the overall sparse row parallelism is less than the number 
of rows in the sparse matrix, one thread may process more 
than one row. The tiling is“Dense major”; dense columns 
are fully parallelized. Specifically, blockDim.x = min(N, 
tileSz) / coarsenSz * workerSz. Full source parallelism of one 
block is max(blockSz, blockDim.x * 2). In the dgSPARSE 
implementation, tileSz = workerSz = groupSz = 32 , work-
erDimR equals the number of rows of the sparse matrix, 
threadRw = 1 , blockSz = 256 , and coarsenSz=(N%4==0)?
4:(N%2==0)?2:1.

Based on the insights of this paper, we should sepa-
rate tiling and synchronization, add finer-grained par-
allelism, and more flexible workload of each thread. 
Therefore, we propose to tune four parameters: 
< groupSz, blockSz, tileSz,workerDimR > . Actually, work-
erDimR can be arbitrary. However, we set it to be power 
of 2 or reciprocal power of 2 times of the original value 
in order to explore the local area in the design space. As 
in atomic parallelism we set groupSz as 2, 4, 8, 16, or 32. 
tileSz is power of 2 larger than groupSz, and depends on N. 
blockSz is set 128,256, or 512 which are common values 
for the number of threads per threadblock. We tune the RB 
+ PR + RM kernel for N = 4, 16, 64, 128 . From Table 4 we 
conclude that tuning can bring 1.6 × ∼2.3 × speedup over 
the original implementation.8

Because DA-SpMM introduces a decision tree model 
to choose the best configuration for a given sparse matrix, 
we further explore the maximum speedup that dynamic 
choices can bring. This experiment examines the necessity 
of designing a new model to choose the best parameters. 
From Table 5 we conclude that the most significant speedup 
of dynamic choices is 1.1x∼1.4x.

8  Conclusion

We propose atomic parallelism to analyze sparse-dense 
hybrid algebra and propose new SpMM designs. Based on 
atomic parallelism propose a new abstraction segment group 
to sparse compilers and remedy the missing optimization 
opportunities. First, we implement the new abstraction in 
TACO and achieve up to 1.2 × speedup over TACO’s origi-
nal SpMM kernels. Then, we use atomic parallelism to tune 
an SpMM algorithm in dgSPARSE and get 1.6 × ∼ 2.3 × 
speedup on the tuned algorithm. In the future, atomic paral-
lelism can be exposed as an auto-tuning API for users to 
explore different synchronization granularity and reduction 
strategy for sparse-dense hybrid algebra.
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