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Abstract
The compositional model is often used to describe multicomponent multiphase porous media flows in the petroleum industry. 
The fully implicit method with strong stability and weak constraints on time-step sizes is commonly used in mainstream 
commercial reservoir simulators. In this paper, we develop an efficient multistage preconditioner for the fully implicit 
compositional flow simulation. The method employs an adaptive setup phase to improve the parallel efficiency on GPUs. 
Furthermore, a multicolor Gauss–Seidel algorithm based on the adjacency matrix is applied in the algebraic multigrid meth-
ods for the pressure part. Numerical results demonstrate that the proposed algorithm achieves good parallel speedup while 
yielding the same convergence behavior as the corresponding sequential version.

Keywords Compositional model · Fully implicit method · multistage preconditioner · multicolor Gauss–Seidel · GPU · 
Compute unified device architecture (CUDA)

AMS Classification 49M20 · 65F10 · 68W10 · 76S05

1 Introduction

The compositional model, which allows the fluids to be 
composed of various material components, is a widely-
used mathematical model for describing multiphase flows 
in porous media (Aziz and Settari 1979; Chen et al. 2006). 
The compositional model is an extension of the black oil 
model (Peaceman 1977), which is formed by multiple cou-
pled nonlinear partial differential equations. Some compli-
cated oil displacement technologies can be accurately simu-
lated based on the compositional model, such as polymer 
flooding, surfactant and alkali oil displacement agents, and 
miscible flooding.

Numerical methods for compositional numerical simula-
tion are abundant; to name a few, IMplicit Pressure Explicit 
Concentrations (IMPEC) method (Fussell and Fussell 1979), 
Fully Implicit Method (FIM) (Coats 1980), IMplicit Pres-
sure/SATuration and explicit concentrations (IMPSAT) 
(Quandalle and Savary 1989), and Adaptive Implicit Method 
(AIM) (Collins et al. 1992). In the IMPEC method, pressure 
is implicit and other variables are explicit. One of its advan-
tages is that no need to solve coupled linear algebra systems, 
but its time stepsize is constrained by the Courant–Frie-
drichs–Lewy (CFL) (Courant et al. 1928) condition. The 
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FIM method, on the contrary, is unconditionally stable 
concerning time stepsizes because all variables are handled 
implicitly. The IMPSAT method is a combination of the 
IMPEC and FIM methods, where pressure and saturation 
variables are handled implicitly and the molar fractions are 
calculated explicitly. The AIM method is also a compromise 
between the IMPEC and FIM methods and it also yields 
Jacobian algebraic systems that are easier to solve than FIM.

The FIM method possesses the characteristics of good 
stability and is widely used in commercial simulators. How-
ever, a coupled nonlinear system of equations needs to be 
solved at each time step of FIM. Such systems are usually 
linearized using the Newton-type methods, which require 
solving a coupled Jacobian linear algebra system during 
each iteration. In the numerical simulation, the solution of 
these systems is the main computational cost (Zhang 2022). 
Therefore, efficient linear solvers are crucial for improving 
the efficiency of fully implicit reservoir simulation, espe-
cially for large-scale three-dimensional problems.

The linear solution methods generally consist of a setup 
phase (SETUP) and a solve phase (SOLVE). Iterative meth-
ods are widely used in petroleum reservoir simulation due 
to their low memory overhead and good parallel scalability. 
More specifically, the GMRES and BiCGstab methods (Saad 
2003) are exploited to solve the nonsymmetric systems that 
arise from the fully implicit discretization of reservoir mod-
els. The preconditioning techniques are crucial to speeding 
up the convergence of iterative methods (Zhang 2022). For 
large-scale reservoir simulation, multistage precondition-
ers are very competitive. The classical Constrained Pres-
sure Residual (CPR) (Cao et al. 2005; Li et al. 2017; Wallis 
1983; Wallis et al. 1985) approach is a well-known two-stage 
preconditioner. It utilizes the Algebraic MultiGrid (AMG) 
(Brandt et al. 1984; Falgout 2006) method to approximate 
the inverse of the pressure matrix in the first stage and the 
Incomplete LU (ILU) factorization (Meyerink 1983) to 
smooth the overall reservoir matrix in the second stage. The 
MultiStage Preconditioner (MSP) (Al-Shaalan et al. 2009; 
Hu et al. 2013; Stüben et al. 2007) is a generalization of 
the CPR method, which is also widely used in petroleum 
reservoir problems.

Parallel computing is an important approach to improv-
ing the speed of simulation and a lot of attention has been 
paid to developing efficient parallel algorithms. A Graph-
ics Processing Unit (GPU) with thousands of cores is 
a parallel accelerator that is designed to handle images 
and graphics originally. Due to its high float-point per-
formance and memory bandwidth (NVIDIA 2022), it has 
great potential in petroleum reservoir simulation. In recent 
years, research on GPU parallel algorithms has been devel-
oped in (Sudan et al. 2010; Chen et al. 2014; Yang et al. 
2016; Kang et al. 2018; Manea and Almani 2019; Middya 
et al. 2021; Esler et al. 2022) and the references therein. 

For example, (Chen et al. 2014; Yang et al. 2016) devel-
oped a hybrid sparse matrix storage format and the cor-
responding sparse matrix-vector multiplication (SpMV) 
kernel. Kang et al. (2018) developed a parallel nonlinear 
solver based on OpenACC (OpenACC 2022) using the 
domain decomposition method to achieve load balancing. 
Finally, Manea and Almani (2019) studied a parallel alge-
braic multiscale solver on GPU architectures to improve 
the solution efficiency of the pressure equation.

In this paper, we focus on a GPU-based parallel linear 
solver for compositional models, which is an extension of 
the recent work for the black oil model (Zhao et al. 2022). 
Such an extension is mainly different in the following three 
aspects. Firstly, the model and choice of primary variables 
are different. For the black oil model, the primary vari-
ables are oil pressure, water saturation, and oil saturation, 
while for the compositional model, the primary variables 
are reference pressure and overall molar concentration of 
components. Potentially they could give rise to different 
algebra systems. Secondly, the two models calculate the 
physical parameters of the fluid differently. The black oil 
model gets the fluid properties by looking up (or interpo-
lating) the tabular data of fluid properties in terms of pres-
sure, while the compositional model solves the equation 
of state for them (Peng and Robinson 1977; Chen et al. 
2006). Finally, there are a lot of numerical studies on the 
algebraic solvers for the fully implicit discretization of 
the black oil model (Cao et al. 2005; Li et al. 2017; Wallis 
1983; Wallis et al. 1985; Brandt et al. 1984; Falgout 2006; 
Meyerink 1983; Al-Shaalan et al. 2009; Hu et al. 2013; 
Stüben et al. 2007). On the other hand, to the best of our 
knowledge, only a few numerical tests have been done for 
the compositional model in the literature. Therefore, we 
wish to study the numerical performance of the proposed 
solver for the compositional model and compare it with the 
widely-used solvers in commercial software. Moreover, in 
this work, we developed an improved parallel multistage 
preconditioning method for the compositional model for 
GPUs. The main contributions of this work are listed as 
follows:

• We propose a multistage preconditioner with an adap-
tive SETUP procedure, denoted as ASMSP. The pro-
posed method can significantly reduce the number of 
SETUP calls, so as to reduce the computational over-
head and improve parallel efficiency.

• We investigate a multicolor Gauss–Seidel (GS) algo-
rithm based on algebraic grouping for the smoothing 
operator in the AMG methods. This algorithm has been 
shown to produce same convergence behavior as the 
corresponding sequential algorithm on multicore CPUs 
(Zhao et al. 2022).
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• The proposed methods are integrated into the open-
source simulator OpenCAEPoro (OpenCAEPoro 2022) 
for multicomponent multiphase flow in porous media.

The rest of the paper is organized as follows. Sect. 2 briefly 
introduces the compositional model and its fully implicit dis-
cretization. In Sect. 3, an MSP preconditioner with adaptive 
SETUP is developed. In Sect. 4, the parallel implementation 
of multicolor GS based on the adjacency matrix is proposed. 
In Sect. 5, numerical experiments are performed to evalu-
ate the convergence and parallel speedup of the proposed 
method. Section 6 summarizes the work of this paper.

2  Mathematical model and discretization

2.1  The compositional model

In this paper, we consider the isothermal multicomponent 
compositional model (Aziz and Settari 1979; Chen et al. 
2006) containing nc components (hydrocarbon and water) 
and np phases (including at least the water phase). The mass 
conservation equation for the component i reads

where � is the porosity of the rock, xij is the molar fraction 
(dimensionless) of component i in phase j, �j is the molar 
concentration of phase j, Sj is the saturation of phase j, uj 
is the velocity of phase j, and Qi is source/sink terms of 
component i.

Assume that the pore volume of the porous media is filled 
with the fluid, the volume balance equation is then

where V is the fluid volume, Vpore is the pore volume, and 
Vbulk is the bulk volume.

Assume that the phase j fluid in porous media satisfies 
the Darcy’s law:

where � is the absolute permeability, �rj is the relative per-
meability of phase j, �j is the viscosity coefficient of phase 
j, Pj is the pressure of phase j, �j is the density of phase j, � 
is the gravity acceleration, and z is the depth.

Moreover, the variables Sj , xij and Pj in the Eqs. (1)–(3) 
satisfy the following constitutive relations:

(1)

�

�t

(

�

np
∑

j=1

xij�jSj

)

+ ∇ ⋅

(

np
∑

j=1

xij�juj

)

= Qi, i = 1, 2,… , nc,

(2)V = Vpore ∶= �Vbulk ,

(3)uj = −
��rj

�j

(

∇Pj − �j�∇z
)

, j = 1, 2,… , np,

• Saturation constraint equation: 

• Molar fraction constraint equation: 

• Capillary pressure equation: 

where P is the reference pressure, and Pcj(Sj) is the capillary 
pressure between the reference phase and phase j, which will 
be ignored in the rest of this paper.

2.2  Discretization method

In this section, we first simplify the compositional model, 
then describe the choice of main equations and primary vari-
ables, and finally present the FIM discretization method.

2.2.1  The choices of primary variables

To begin with, we introduce the overall molar concentration 
Ni and molar flux Fi of the component i, which are defined as

Equation (1) can be simplified to

In this paper, we choose the mass conservation Eq. (9) 
and the volume balance Eq. (2) as the main equations, and 
there are nc + 1 equations in total. The reference pressure P 
and the overall molar concentration Ni (i = 1, 2,… , nc) are 
used as the primary variables of the discrete method, and 
there are nc + 1 variables in total. After solving the primary 
variables, the fluid volume state function V(P,N1,… ,Nnc

) 
can be obtained by the equation of state and flash calcula-
tion, see (Peng and Robinson 1977; Chen et al. 2006) for 
more details.

(4)
np
∑

j=1

Sj = 1.

(5)
nc
∑

i=1

xij = 1, j = 1, 2,… , np.

(6)Pj = P − Pcj(Sj), j = 1, 2,… , np,

(7)Ni = �

np
∑

j=1

xij�jSj,

(8)Fi =

np
∑

j=1

xij�juj.

(9)
�

�t
Ni + ∇⋅Fi = Qi, i = 1, 2,… , nc.
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2.2.2  Finite volume method and backward Euler method

The finite volume method (FVM) (LeVeque 2002) features 
simplicity, conservation, adaptivity to complex geometric 
regions, and monotonicity; it is a commonly used discre-
tization method in the petroleum industry. In this paper, 
the spatial domain is discretized by using FVM. Suppose 
that the spatial domain Ω ⊂ ℝ

3 (an open set) is discre-
tized into m elements set {�k}mk=1 (the shape of the element 
is not considered here), which satisfies ∪m

k=1
�k = Ω and 

�k ∩ �
�
= ∅, k ≠ �, k,� = 1,… ,m.

using the divergence theorem, we can get

where Sk ∶= ��k is all the surfaces set of element �k and n is 
the outer unit normal vector to Sk.

Therefore, the discrete equation on element �k can be 
written as

where the discrete flux Fi,s can be defined in various ways 
(e.g., Aavatsmark 2002; Aavatsmark et al. 2008), we con-
sider the following form

here, L and d denote the size of the interface and the distance 
between two adjacent elements, respectively. �s denotes the 
difference between the values on the two adjacent elements. 
Because the primary variables of the discrete equations are 
defined at the center of element, the harmonic mean value 
and the upstream weighted value are usually used to approxi-
mate the value {⋅}s and {⋅}s,up of the physical quantities on 
the interface s (Chen et al. 2006; Zhang 2022).

For the semi-discrete Eq. (12), the time derivative term 
is discretized by using the backward Euler method, and the 
superscripts n and n + 1 denote the time tn and tn+1 , respec-
tively. The fully discrete volume balance equation and mass 
conservation equations are

(10)
∫
�k

�

�t
NidV + ∫

�k

∇⋅FidV = ∫
�k

QidV , i = 1, 2,… , nc,

(11)
∫
�k

�

�t
NidV + ∫Sk

Fi ⋅ ndS = ∫
�k

QidV , i = 1, 2,… , nc,

(12)
�

�t
Ni,k +

∑

s∈Sk

Fi,s = Qi,k, i = 1, 2,… , nc,

(13)

Fi,s =
{

L�

d

}

s

np
∑

j=1

(

{

xij�j

�rj

�j

}

s,up

�s(P + Pcj − �j�z)

)

.

(14)Vn+1 − Vn+1
pore

= 0,

respectively. Here the source/sink term is simplified into a 
known function; but in practical problems, it is related to 
the production mode of the well in the oil field, and is also 
strongly coupled with the primary variables. Since the focus 
of this paper is not how to handle the well equations, we do 
not describe it in detail.

Note that the fully discrete Eqs. (14) and (15) are nonlinear, 
and the terms F⋆

i,s
 and Q⋆

i,k
 are subject to be specified. Below, 

we will give their expressions.

2.2.3  Fully implicit method

The FIM scheme is currently commonly used in mainstream 
commercial reservoir simulators. This is because the scheme 
has the characteristics of strong stability and weak constraint 
on the timestep sizes. These characteristics highlight the 
advantages of the FIM, especially when the nonlinearity of 
the models is relatively strong.

When both F⋆

i,s
 and Q⋆

i,k
 in Eq. (15) take the value of tn+1 

time, the fully implicit discrete equations are

Owing to the implicit solution for nc + 1 primary variables, 
Eqs. (14) and (16) are strongly coupled nonlinear systems of 
equations that need to be linearized. In this work, we exploit 
the well-known Newton’s method to linearize Eqs. (14) and 
(16). The Jacobian equation for increments �P, �N1,… , �Nnc

 
can be written as

where the coefficients �P , �i , �i , �iP , and �ik are obtained by 
partial derivation of the model coefficients with respect to 
P or Ni ; see (Qiao 2015) for details.

2.2.4  Discrete system

After discretization, the coupled nonlinear algebraic equations 
are obtained. Such equations are linearized by adopting the 

(15)
Nn+1
i,k

− Nn
i,k

Δt
+
∑

s∈Sk

F
⋆

i,s
= Q⋆

i,k
, i = 1, 2,… , nc,

(16)
Nn+1
i,k

− Nn
i,k

Δt
+
∑

s∈Sk

F
n+1
i,s

= Qn+1
i,k

, i = 1, 2,… , nc.

(17)
1

Δt
�P�P −

1

Δt

nc
∑

i=1

�i�Ni = rP,

(18)

1

Δt
�Ni − ∇⋅ (�i∇�P) − ∇⋅ (�iP∇�P)

−

nc
∑

k=1

∇⋅ (�ik∇�Nk) = ri, i = 1,… , nc,



148 L. Zhao et al.

1 3

Newton method to form the sparse Jacobian system Ax = b of 
the reservoir equation with implicit wells, namely:

where ARR and ARW are the derivatives of the reservoir equa-
tions for reservoir variables and well variables, respectively; 
AWR and AWW are the derivatives of the well equations for 
reservoir variables and well variables, respectively; xR and 
xW are reservoir and bottom-hole flowing pressure variables, 
respectively; and bR and bW are the right-hand side vectors 
that correspond to the reservoir fields and the implicit wells, 
respectively.

The subsystem corresponding to the reservoir equations 
in the discrete system (19) is ARRxR = bR ; that is,

where P is reference pressure and Ni (i = 1, 2,… , nc) are the 
overall molar concentration.

Remark 1 Our simulator used the classical Peaceman model 
(Peaceman 1977) for the well equations. For convenience, 
we omit the details of the well equations and refer readers 
to Peaceman (1977), Aziz and Settari (1979), Chen et al. 
(2006).

(19)
(

ARR ARW

AWR AWW

)(

xR
xW

)

=

(

bR
bW

)

,

(20)

⎛
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P
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⋮

b
n
c

⎞

⎟

⎟

⎟

⎟

⎟

⎠

,

3  Parallel multistage preconditioners 
with adaptive SETUP

In the compositional model, the primary variables consist 
of reference pressure P and overall molar concentration 
Ni (i = 1, 2,… , nc) . These variables possess different math-
ematical properties, such as the parabolicity of the pressure 
equation and hyperbolicity of the concentration equations. 
These properties provide a theoretical basis for the construc-
tion of multiplicative subspace correction methods (Xu 
1992, 1996); see Zhang (2022) for a recent review.

3.1  Multistage preconditioner

We first define two transfer operators of the reservoir matrix, 
suppose �N ∶ VN → V and �P ∶ VP → V , where VN and VP 
are the overall molar concentration and pressure variables 
space, respectively, and V is the variables space of the whole 
reservoir. Then, the multiplicative multistage preconditioner 
B (Al-Shaalan et al. 2009; Hu et al. 2013; Stüben et al. 2007) 
is defined as

where the relaxation operator R employs the Block ILU 
(BILU) method, BP and BN are solved by the AMG and 
Block GS (BGS) methods, respectively.

Suppose that the mathematical behavior of preconditioner 
B acting on a known vector g is

The corresponding multistage preconditioning algorithm 
(Feng et al. 2014) is shown in the Algorithm 3.1. 

(21)I − BA = (I − RA)(I −�PBP�
T
P
A)(I −�NBN�

T
N
A),

(22)w = Bg.

Algorithm 3.1 MSP preconditioning method
Require: A, g, w,ΠN , ΠP ;

Ensure: w = Bg.

1: r = g −Aw;

2: w = w +ΠNBNΠT
Nr;

3: r = g −Aw;

4: w = w +ΠPBPΠ
T
P r;

5: r = g −Aw;

6: w = w +Rr.
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3.2  MSP with adaptive SETUP

In this subsection, we utilize an adaptive SETUP strategy 
for the MSP preconditioner to improve its parallel efficiency, 
denoted as ASMSP. As mentioned earlier, this strategy 
has been employged for the black oil model by Zhao et al. 
(2022). Assume that the solution objective is A(�)x(�) = b(�) . 
It is worth mentioning that superscript � is the number of 
Newton iterations. This is because the reservoir model is 
a nonlinear system of equations, which is linearized using 
Newton’s method here (see Chen et al. (2006) for more 
details). Figure 1 presents the algorithm flow chart of adap-
tive SETUP.

In Fig. 1, the main difference from the standard meth-
ods is that the preconditioner B(�) is yielded by an adaptive 
strategy. This strategy can be divided into the following two 
cases: 

(1) The preconditioner B(�) inherits the information from 
the previous preconditioner B(�−1) . A natural approach is 
to use the number of iterations It(�−1) , required by solv-
ing the previous Jacobian system A(�−1)x(�−1) = b(�−1) . 
We introduce a threshold � (a non-negative integer); if 
It(�−1) ≤ � , the previous preconditioner B(�−1) is used as 
the preconditioner B(�).

(2) The preconditioner B(�) is regenerated; if � = 1 or 
It(𝜄−1) > 𝜇 , the preconditioner B(�) is generated by call-
ing Algorithm 3.1.

Remark 2 If the sizes of A(�−1) and A(�) are not the same, the 
preconditioner B(�) must be regenerated for sure.

Below, we illustrate the rationale for this approach. 
The number of iterations can evaluate the quality of a 
preconditioner. More iterations indicate a poor precon-
ditioner, and fewer iterations indicate a good precon-
ditioner. The It(�−1) ≤ � indicates B(�−1) is an effective 
preconditioner for A(�−1)x(�−1) = b(�−1) . In addition, the 
structure of these matrices is very similar during New-
ton’s iteration, and the preconditioner does not need to 
approximate the inverse of the matrix exactly. So the 
preconditioner B(�−1) can also be applied to the Jacobian 
system A(�)x(�) = b(�) . The proposed method can improve 
the parallel performance of the solver by reducing the 
number of SETUP calls and reducing the proportion of 
low parallel speedup in the solver.

Finally, we discuss the impact of the threshold � on per-
formance. If � is too small, the number of SETUP calls will 
not be significantly reduced, which will not significantly 
improve the performance of the solver. In particular, ASMSP 
degenerates to standard MSP when � = 0 . Conversely, if � 
is too large, too few SETUP calls can also affect the per-
formance, due to the dramatic increase in the number of 
iterations. Usually, a suitable � is determined by numerical 
experiments.

4  A multicolor GS based on adjacency 
matrix

It is well-known that the GS algorithm, compared to the 
Jacobi algorithm, exploits most updated values in the itera-
tive process. Therefore, the GS algorithm brings a better 
convergence. However, it is essentially sequential and can-
not be easily parallelized. A popular red-black GS (also 
known as multicolor GS) parallel algorithm has attracted a 
lot of attention (Saad 2003). Unfortunately, the algorithm 
is designed based on structured grids and is not compatible 
with unstructured grids.

A hybrid approach that combines the Jacobi and GS 
methods can be applied, but its convergence rate also 
deteriorates with respect to higher parallelism. In order to 
overcome the limitations of the traditional red-black GS 
algorithm, a multicolor GS algorithm based on the coef-
ficient matrix of strong connections has been proposed and 
analyzed in Zhao et al. (2022). This paper proposes a mul-
ticolor GS algorithm from the algebraic point of view. The 
proposed method yields the same convergence behavior as 

Begin

Input: A(ι), b(ι), B(ι−1), It(ι−1), µ, ι;

ι > 1 & It(ι−1) ≤ µ

B(ι) = B(ι−1); Setup: B(ι);

B(ι)A(ι)x(ι) = B(ι)b(ι);

Output: B(ι), It(ι);

End

Yes
No

Fig. 1  The algorithm flow chart of adaptive SETUP
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the corresponding single-threaded algorithm; moreover, 
it obtains good parallel performance when using a lot of 
threads on GPUs.

4.1  Adjacency graph and algorithm principles

The notion of an adjacency graph needs to be introduced 
to implement the multicolor GS algorithm algebraically. 
An adjacency graph corresponds to a sparse matrix, which 
reflects the nonzero pattern of the matrix, i.e., the nonzero 
entries of the matrix reflect the connectivity relationship 
between the vertices in the adjacency graph.

We develop a multicolor GS algorithm that can be 
applied to symmetric and nonsymmetric matrices. For 
simplicity, assuming that the sparse matrix A ∈ ℝ

n×n 
is a symmetric matrix. Let GA(V ,E) be the adjacency 
graph corresponding to the matrix A =

(

aij
)

n×n
 . Here 

V =
{

v1, v2,… , vn
}

 and E =
{(

vi, vj
)

∶ ∀ i ≠ j, aij ≠ 0
}

 are 
the vertices and edges sets, respectively. It is easy to know 
that each nonzero entry aij on the off-diagonal of A cor-
responds to an edge (vi, vj).

Here, we give the principles for designing a multicolor 
GS algorithm in this paper: 

 (i) The vertices set V is divided into g subsets: 
V = V1 ∪ V2 ⋯ ∪ Vg;

 (ii) Any two subsets are disjoint: Vi ∩ Vj = ∅,

i ≠ j, i, j = 1, 2,… , g;
 (iii) Vertices in any subset are not connected by edges: 

aij = aji = 0, ∀ vi, vj ∈ V
�
, � = 1, 2,… , g;

 (iv) The number of subsets, g, should be as small as pos-
sible.

It is obvious that the difficulty of grouping and parallel 
granularity increase as the number of groups g decreases. 
In fact, the red-black GS algorithm satisfies the conditions 
for g = 2 . In particular, when g = n , it degenerates to the 
classic GS algorithm.

4.2  multicolor GS algorithm

We define the adjacency matrix S corresponding to the adja-
cency graph GA(V ,E) . Its diagonal entries are zero and off-
diagonal entries are

where Sij = 1 denotes an adjacent edge between vi and vj , 
and Sij = 0 denotes no adjacent edge between vi and vj . To 
describe the multicolor GS algorithm, some notations are 
introduced in Table 1.

Below, we first present a (greedy) splitting algorithm 
for the set of vertices V based on the adjacency matrix S, 
denoted as VerticesSplitting (see Algorithm 4.1). Then we 
give the vertices grouping algorithm of matrix A, denoted as 
VerticesGrouping (see Algorithm 4.2). Finally, a multicolor 
parallel GS method is presented in Algorithm 4.3, denoted 
as PGS-MC.

(23)Sij =

{

1, if aij ≠ 0,

0, if aij = 0,
∀ i, j = 1, 2,… , n, i ≠ j,

Table 1  The definitions and explanations of some notations

Notation Definition and explanation

Si Si =
{

j ∶ Sij ≠ 0, j = 1, 2,… , n
}

Si denotes the vertex set that is connected to the vertex vi
Si Si =

{

j ∶ j ∈ Si ∪ {i} and color of j is undetermined
}

Si denotes the vertex set that is connected to the vertex vi (including vi ) and whose colors are undetermined

Ŝi Ŝi =
{

j ∶ j ∈ Wi and color of j is undetermined
}

 , where Wi ∶=
{

j ∶ ∀ k ∈ Si, j ∈ Sk∕(Si ∪ {i})
}

Ŝi denotes the vertex set that is the next connected to the vertex vi (the vertices on “the second circle”) and 
whose colors are undetermined

|Si| �Si� =
∑

j∈Si
1

The cardinality |Si| denotes the number of entries in the set Si
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Algorithm 4.1 VerticesSplitting method
Require: V, S;
Ensure: W, W .
1: Let W = ∅, W = ∅, Ŵ = ∅;
2: while V �= ∅ do
3: if Ŵ �= ∅ then
4: Any take vi ∈ Ŵ and |Si| ≥ |Sj |, ∀ vi, vj ∈ Ŵ ;
5: else
6: Any take vi ∈ V and |Si| ≥ |Sj |, ∀ vi, vj ∈ V ;
7: end if
8: if vi is not connected to any vertices in W (i.e., Sij = 0,∀ j ∈ W ) then
9: W = W ∪ vi, V = V/vi;

10: if vi ∈ Ŵ then
11: Ŵ = Ŵ/vi;
12: end if
13: W = W ∪ Si, V ← V/Si, Ŵ = Ŵ ∪ Ŝi;
14: else
15: W = W ∪ vi, V ← V/vi;
16: if vi ∈ Ŵ then
17: Ŵ = Ŵ/vi;
18: end if
19: end if
20: end while

Algorithm 4.2 VerticesGrouping method
Require: V, S;
Ensure: {V1, V2, . . . , Vg}.
1: Set g = 0;
2: while V �= ∅ do
3: g = g + 1;
4: Get Vg and V g by calling Algorithm4.1;
5: Let V = V g;
6: end while

 In our PGS-MC method, it is worth noting that GA(V ,E) can be split into g subgraphs GA
�

(V
�
,E

�
) by calling Algo-

rithm 4.2, and the adjacency matrice corresponding to these subgraphs are S
�
 ( � = 1,… , g ). It is easy to know that the sub-

matrix A
�
 (corresponding to the subgraph GA

�

(V
�
,E

�
) ) is a diagonal matrix. In summary, the proposed method starts from 

the adjacency matrix of the coefficient matrix and designs a vertices grouping algorithm. This method can run in parallel 
within the same group. Moreover, the proposed method can be applied to the AMG methods, and the numerical experiments 
in the next section also present its parallel performance.
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Algorithm 4.3 PGS-MC method
Require: A, x, b;
Ensure: x.
1: Create the vertices set V and the adjacency matrix S using the matrix A

and the formula (23);
2: Generate independent vertices subset V� (� = 1, . . . , g) by calling Algo-

rithm4.2;
3: Use V� to split the matrix A into submatrix A�;
4: for � = 1, . . . , g do
5: Call classical GS algorithm in parallel for submatrix A�;
6: end for

5  Numerical experiments

In this section, benchmark problems based on SPE1, SPE5, 
and SPE10 (Odeh 1981; Killough and Kossack 1987; Chris-
tie and Blunt 2001) are considered to demonstrate the per-
formance of the proposed methods. Note that the SPE1 and 
SPE10 problems can be solved using a black oil framework 
as well; but we solve them using the compositional simulator 
OpenCAEPoro. It is worth pointing out that, in our simula-
tor, the traditional hydrostatic equilibrium method is used to 

calculate the initial reservoir conditions; see (Schlumberger 
2017) for more details.

In the ASMSP-GMRES method, the Unsmoothed Aggre-
gation AMG (UA-AMG) method is used to approximate the 
inverse of the pressure coefficient matrix, where the aggre-
gation strategy is the so-called nonsymmetric pairwise 
matching aggregation (NPAIR) (Napov and Notay 2012), 
the cycle type is the V-cycle, the smoothing operator is PGS-
SCM, the degree of freedom of the coarsest space is set to 
be 10000, and the coarsest space solver is a direct solver. For 

Fig. 2  Field oil production rate and average pressure for the modified SPE1 problem on GPUs

Table 2  SetupCalls, SetupRatio, 
Iter, SolverTime (s), and 
Speedup of the different � for 
the SPE1 problem

The results with the best performance are shown in bold

Solvers � SetupCalls SetupRatio Iter SolverTime Speedup

ASMSP-GMRES-SEQ 0 1178 14.48% 17486 6094.14 –
ASMSP-GMRES-CUDA 0 1177 61.98% 18343 885.07 6.89

10 1031 61.26% 18529 867.66 7.02
20 236 50.45% 20582 749.23 8.13
30 52 45.46% 22607 750.45 8.12
40 35 43.47% 24217 778.65 7.83
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the restarted GMRES(m) method, the restarting number m 
is 30, the maximum number of iterations MaxIt is 1000, and 
the tolerance for relative residual tol is 10−5 . Here, Newton 
method’s tolerance is 10−3.

To better evaluate the performance of the proposed meth-
ods, we also test the same problems with a commercial simu-
lator (2020 version) for comparison. In the commercial sim-
ulator, the default solving method and parameters are used 
(i.e., Newton method’s tolerance is 10−3 , and ILU(0)-BiCG-
stab solver’s tolerance is 10−3 and the maximum number of 
iterations is 400). Here, we compare the experimental results 
of the GPU version for commercial and our simulators. The 
numerical experiments are tested on a machine with Intel 

Xeon Platinum 8260 CPU (32 cores, 2.40GHz), 128GB 
DRAM, and NVIDIA Tesla T4 GPU (16GB Memory).

5.1  The modified SPE1 problem

The three-phase SPE1 example (Odeh 1981) is a bench-
mark problem for testing ten-year dynamic simulations of 
immiscible gas flooding (one gas injection well and one oil 
production well). The initial reservoir state is unsaturated. 
Given the initial oil-gas and oil-water interface depth, as 
the reservoir pressure decreases, the gas will gradually dis-
solve into the oil, and this process will affect the stability 
of the simulator. The horizontal direction of the oil field 

Table 3  NumTSteps, 
NumNSteps, Iter, AvgIter, 
TotalTime (s), and Speedup 
comparisons of the commercial 
and our simulators for the SPE1 
problem

The results with the best performance are shown in bold

Simulators � NumTSteps NumNSteps Iter AvgIter TotalTime Speedup

Commercial – 410 838 92373 110.2 3382.00 –
Ours 0 267 1177 18343 15.6 2414.36 1.40

10 267 1177 18529 15.7 2344.43 1.44
20 267 1179 20582 17.5 2228.08 1.52
30 267 1178 22607 19.2 2229.42 1.52
40 267 1178 24217 20.6 2339.99 1.45

Fig. 3  Field oil production rate and average pressure of the SPE10 problem on GPUs

Table 4  SetupCalls, SetupRatio, 
Iter, SolverTime (s), and 
Speedup of the different � for 
the two-phase SPE10 problem

The results with the best performance are shown in bold

Solvers � SetupCalls SetupRatio Iter SolverTime Speedup

ASMSP-GMRES-SEQ 0 219 12.40% 4252 4795.04 –
ASMSP-GMRES-CUDA 0 219 55.11% 5073 716.08 6.70

10 172 51.07% 5081 656.37 7.31
20 118 41.36% 5863 630.31 7.61
30 65 32.92% 6043 566.68 8.46
40 51 27.87% 7055 610.40 7.86
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is a square with side length of 10000 (ft) and the vertical 
thickness is 100 (ft). The grid size of the original problem 
is a 10 × 10 × 3 orthogonal grid, and we refine it to get a 
grid of 80 × 80 × 40 . Here, we perform numerical tests on 
the refined grid. Below, we simulate 10 years (3655.5 days) 
using the SPE1 example and test the GPU-based parallel 
performance of the proposed solver.

5.1.1  ASMSP‑GMRES‑GPU method

We investigate the effects of � ( � = 0, 10, 20, 30 , and 40) on 
the parallel performance of ASMSP-GMRES-GPU. We first 
verify the correctness of ASMSP-GMRES-GPU by compar-
ing our results with commercial simulator. Figure 2 shows 
the field oil production rate and average pressure graphs of 
five groups �.

From Fig. 2, we can observe that the field oil production 
rate and average pressure obtained by our and commercial 
simulators are consistent, indicating that the correctness of 
our proposed methods is guaranteed.

In addition, to evaluate the parallel performance of the 
proposed methods for ASMSP-GMRES-GPU, Table 2 lists 
the number of SETUP calls (SetupCalls), the ratio of SETUP 
in the total solution time (SetupRatio), the total number of 
linear iterations (Iter), the total solver time (SolverTime), 
and the parallel speedup (Speedup). ASMSP-GMRES-SEQ 
is the sequential program for reference.

As can be seen from Table 2, we observe the ASMSP-
GMRES-CUDA method. As � increases, both the number 
of SETUP calls and the ratio of SETUP in the total solu-
tion time decrease, and the parallel speedup first increases 
and then decreases (since the number of linear iterations 
increases gradually). Compared with ASMSP-GMRES-
SEQ, when � = 0 , the speedup of ASMSP-GMRES-CUDA 
reaches 6.89. In particular, the solution time of ASMSP-
GMRES-CUDA with � = 20 is reduced from 885.07s to 
749.23s compared with � = 0 . Simultaneously, the speedup 
of ASMSP-GMRES-CUDA reaches 8.13 compared to 
ASMSP-GMRES-SEQ. Therefore, the proposed methods 
can obtain acceleration effects for GPU architecture.

Finally, Table 3 presents the number of time steps (NumT-
Steps), the number of Newton iterations (NumNSteps), the 

number of linear iterations (Iter), the average number of lin-
ear iterations per Newton iteration (AvgIter), the total simu-
lator time (TotalTime), and the parallel speedup (Speedup) 
for the commercial and our simulators, respectively.

It can be seen from Table 3 that the commercial simulator 
requires more numbers of time steps and linear iterations, 
as well as more simulation time, compared to our simulator. 
They yield the average number of linear iterations per New-
ton iteration of 110.2, about 7 times as ours (when � = 0 ). 
When � = 0 , the speedup of our simulator achieves 1.40 
compared to the commercial simulator. When � = 20 , the 
minimum simulation time is 2228.08s, and the speedup is 
1.52. This indicates that the proposed methods can improve 
parallel performance. Finally, it is worth noting that we only 
parallelize the linear solver in our simulator, while the rest 
of the simulator is still sequential.

5.2  The SPE10 problem

The two-phase SPE10 (Christie and Blunt 2001) benchmark 
problem with strong heterogeneity is tested to demonstrate 
the effectiveness of the proposed methods. Its model dimen-
sions are 1200 × 2200 × 170 (ft) and the number of grid cells 
is 60 × 220 × 80 (the total number of grid cells is 1,122,000 
and the number of active cells is 1,094,422). In this example, 
the numerical simulation is carried out for 2000 days. We 
analyze the effects of � ( � = 0, 10, 20, 30 , and 40) on the 
parallel performance of ASMSP-GMRES-GPU.

To begin with, we verify the correctness of ASMSP-
GMRES-GPU by comparing our results with commercial 
simulator. The field oil production rate and average pressure 
graphs of five groups � are presented in Fig. 3. We note that 
the field oil production rate and average pressure obtained 
by our and commercial simulators are consistent, indicating 
that the proposed methods are corrected.

Furthermore, Table 4 lists the number of SETUP calls 
(SetupCalls), the ratio of SETUP in the total solution time 
(SetupRatio), the total number of linear iterations (Iter), the 
total solver time (SolverTime), and the parallel speedup 
(Speedup), to assess the parallel performance of the pro-
posed methods. Also, ASMSP-GMRES-SEQ is the sequen-
tial program for reference.

Table 5  NumTSteps, 
NumNSteps, Iter, AvgIter, 
TotalTime (s), and Speedup 
comparisons of the commercial 
and our simulators for the two-
phase SPE10 problem

The results with the best performance are shown in bold

Simulators � NumTSteps NumNSteps Iter AvgIter TotalTime Speedup

Commercial – 1004∗ 1431∗ 170276∗ 119.0∗ 11034.00∗ –
115 286 157708 551.4 3643.00 –

Ours 0 53 219 5073 23.2 1589.62 2.29
10 53 219 5081 23.2 1527.12 2.39
20 53 222 5863 26.4 1534.52 2.37
30 53 222 6043 27.2 1458.14 2.50
40 54 221 7055 31.9 1561.90 2.33
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From Table 4, we observe the ASMSP-GMRES-CUDA 
method. As � increases, both the number of SETUP calls 
and the ratio of SETUP in the total solution time decrease, 
and the parallel speedup first increases and then decreases. 
Compared with ASMSP-GMRES-SEQ, when � = 0 , the 
speedup of ASMSP-GMRES-CUDA reaches 6.70. In par-
ticular, the solution time of ASMSP-GMRES-CUDA with 
� = 30 is reduced from 716.08s to 566.68s compared with 
� = 0 . Simultaneously, the speedup of ASMSP-GMRES-
CUDA reaches 8.46 compared to ASMSP-GMRES-SEQ.

Finally, Table  5 presents the number of time steps 
(NumTSteps), the number of Newton iterations (NumN-
Steps), the number of linear iterations (Iter), the average 
number of linear iterations per Newton iteration (AvgIter), 
the total simulator time (TotalTime), and the parallel 

speedup (Speedup) for the commercial and our simula-
tors, respectively.

In Table 5, the results marked with superscript ∗ of the 
commercial simulator indicate that the default param-
eters are used (i.e., Newton method’s tolerance is 10−3 , 
and ILU(0)-BiCGstab solver’s tolerance is 10−3 and the 
maximum number of iterations is 400). The commercial 
simulator does not recommend to change these param-
eters. The SPE10 test is strongly heterogeneous and the 
default parameters lead to non-convergence of the solver 
(i.e., iteration reaching the maximum number of itera-
tion) in many Newton steps. This will increase number 
of Newton iterations and number of time steps. Hence, 
we test this example using various combinations of tol-
erance and MaxIt in the commercial software; the best 

Fig. 4  Field oil production rate and average pressure of the SPE5 problem on GPUs

Table 6  SetupCalls, SetupRatio, 
Iter, SolverTime (s), and 
Speedup of the different � for 
the SPE5 problem

The results with the best performance are shown in bold

Solvers � SetupCalls SetupRatio Iter SolverTime Speedup

ASMSP-GMRES-SEQ 0 389 16.30% 3747 2601.11 –
ASMSP-GMRES-CUDA 0 389 51.43% 3969 341.25 7.62

10 186 34.59% 4064 324.76 8.01
15 44 21.72% 4508 313.23 8.30
20 12 18.01% 4747 314.50 8.27

Table 7  NumTSteps, 
NumNSteps, Iter, AvgIter, 
TotalTime (s), and Speedup 
comparisons of the commercial 
and our simulators for the SPE5 
problem

The results with the best performance are shown in bold

Simulators � NumTSteps NumNSteps Iter AvgIter TotalTime Speedup

Commercial – 382 748 47027 62.9 2339.00 –
Ours 0 147 389 3969 10.2 2178.78 1.07

10 147 389 4064 10.4 2159.22 1.08
15 147 389 4508 11.6 2142.22 1.09
20 147 389 4747 12.2 2143.47 1.09
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possible choice in our tests are tol = 10−5 (consistent with 
ours) and MaxIt = 2000 . Moreover, according to Table 5, 
the commercial simulator requires more numbers of time 
steps, Newton iterations, and linear iterations compared 
to our simulator. The average number of linear iterations 
per Newton iteration is 551.4 (over 23 times as ours when 
� = 0 ), and the simulation time is 3643.00s. When � = 0 , 
the speedup of our simulator achieves 2.29 compared to 
the commercial simulator. When � = 30 , the minimum 
simulation time is 1458.14s, and the speedup reaches 2.50. 
These results show that the parallel performance of the 
proposed methods outperforms commercial simulators.

5.3  The modified SPE5 problem

The SPE5  (Killough and Kossack 1987) example is a 
compositional reservoir problem, including six com-
ponents ( C1 , C3 , C6 , C10 , C15 , and C20 ), injection well 
(water alternating gas), and production well. Its res-
ervoir domain is 3500 × 3500 × 100 (ft), the original 
orthogonal grid is 7 × 7 × 3 , and the simulation period is 
20 years. Here, to evaluate the performance of the pro-
posed methods for compositional reservoir, we refine the 
original grid to obtain a 70 × 70 × 30 orthogonal grid, 
and simulate a period of 2 years. We test the effects of 

� ( � = 0, 10, 15 , and 20) on the parallel performance of 
ASMSP-GMRES-GPU.

Firstly, we verify the correctness of ASMSP-GMRES-
GPU by comparing our results with the commercial simu-
lator. The field oil production rate and average pressure 
graphs of different � are presented in Fig. 4. We can see 
the difference in the field oil production rate and aver-
age pressure obtained by our and commercial simulators 
are consistent, indicating that the proposed methods are 
corrected.

Furthermore, Table 6 lists the number of SETUP calls 
(SetupCalls), the ratio of SETUP in the total solution 
time (SetupRatio), the total number of linear iterations 
(Iter), the total solver time (SolverTime), and the parallel 
speedup (Speedup), to assess the parallel performance of 
the proposed methods. Also, ASMSP-GMRES-SEQ is the 
sequential program for reference.

From Table 6, we observe the ASMSP-GMRES-CUDA 
method. As � increases, both the number of SETUP calls 
and the ratio of SETUP in the total solution time decrease, 
and the parallel speedup first increases and then decreases. 
Compared with ASMSP-GMRES-SEQ, when � = 0 , the 
speedup of ASMSP-GMRES-CUDA reaches 7.62. In par-
ticular, the solution time of ASMSP-GMRES-CUDA with 
� = 15 is reduced from 341.25s to 313.23s compared with 

Table 8  Iter and SolverTime 
(s) of the three solvers for 
the SPE1, SPE10, and SPE5 
problems

Solvers SPE1 SPE10 SPE5

Iter SolverTime Iter SolverTime Iter SolverTime

MSP-GMRES-PJAC-NO 20880 920.83 7600 813.61 4387 362.04
MSP-GMRES-PGS-NO 19339 888.69 5855 729.38 4099 336.99
MSP-GMRES-PGS-MC 18343 885.07 5073 716.08 3969 333.36

Table 9  NumVerts and 
NumColors of each level in the 
AMG method for the SPE1, 
SPE10, and SPE5 problems

AMG SPE1 SPE10 SPE5

Level NumVerts NumColors NumVerts NumColors NumVerts NumColors

0 256002 3 1094426 4 147001 3
1 64002 3 218724 8 36751 6
2 19202 3 62320 9 9800 –
3 6402 – 19660 10 – –
4 – – 6646 – – –

Table 10  NumVerts and 
NumColors of each level 
(excluding the coarsest grid) 
in the AMG method using 
five vertices sequences for the 
SPE10 problem

Level NumVerts NumColors

Seq1 Seq2 Seq3 Seq4 Seq5

0 1094426 4 4 8 7 7
1 218724 8 7 8 9 8
2 62320 9 5 9 9 9
3 19660 10 5 10 9 9
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� = 0 . Simultaneously, the speedup of ASMSP-GMRES-
CUDA reaches 8.30 compared to ASMSP-GMRES-SEQ.

Finally, Table 7 presents the number of time steps (NumT-
Steps), the number of Newton iterations (NumNSteps), the 
number of linear iterations (Iter), the average number of lin-
ear iterations per Newton iteration (AvgIter), the total simu-
lator time (TotalTime), and the speedup (Speedup) for the 
commercial and our simulators, respectively.

According to Table 7, the commercial simulator requires 
more numbers of time steps, Newton iterations, and linear 
iterations compared to our simulator. The average number 
of linear iterations per Newton iteration is 62.9 (over 6 times 
as ours when � = 0 ), and the simulation time is 2339.00s. 
When � = 0 , the speedup of our simulator achieves 1.07 
compared to the commercial simulator. When � = 15 , the 
minimum simulation time is 2142.22s, and the speedup 
reaches 1.09. Finally, we discuss the reasons for the low 
speedup in this example. As the number of components 
increases in the compositional model, the complexity of the 
kernel algorithms increases. Moreover, we only parallelize 
the linear solver in our simulator, while the rest of the simu-
lator is still sequential. As a result, the parallel solver time is 
only about 15% of the total simulation time in this example. 
Hence the linear solver part is not the main computational 
bottleneck.

5.4  PGS‑MC method

To investigate the convergence behavior and parallel per-
formance of the proposed PGS-MC method, we compared 
it with the parallel GS and Jacobi methods based on natural 
ordering, denoted as PGS-NO and PJAC-NO, respectively. 
The MSP-GMRES method is used as a solver for petro-
leum reservoir simulation. In the MSP preconditioner, the 
smoothing operator of the AMG method uses PJAC-NO, 
PGS-NO, and PGS-MC, denoted as MSP-GMRES-PJAC-
NO, MSP-GMRES-PGS-NO, and MSP-GMRES-PGS-MC, 
respectively. Below, we test the GPU-based parallel perfor-
mance of the three solvers for the SPE1, SPE10, and SPE5 
examples.

Table 8 presents the total numbers of linear iterations 
(Iter) and total solver time (SolverTime) of the three solvers 
for the SPE1, SPE10, and SPE5 examples. We can observe 
that MSP-GMRES-PJAC-NO requires more iterations and 
MSP-GMRES-PGS-MC requires less number of iterations. 
This shows that MSP-GMRES-PGS-MC produces the 
same convergence behavior as the corresponding single-
thread algorithm [this conclusion is also confirmed by the 
OpenMP version (Zhao et al. 2022)]. We observed that the 
solution time of MSP-GMRES-PGS-MC is only slightly less 
than that of MSP-GMRES-PGS-NO. This is because MSP-
GMRES-PGS-MC reduces parallel granularity on coarse 

levels and increases SETUP time. On the other hand, based 
on our previous numerical tests, if the number of threads 
increases, the PGS-NO algorithm usually takes more and 
more iterations, while PGS-MC is more robust.

In addition, we give the number of colors produced by 
PGS-MC. Table 9 shows the number of vertices (NumVerts) 
and the number of colors (NumColors) on each level in the 
AMG method. It can be seen from Table 9 that the num-
ber of colors increases when the number of AMG levels 
increases. This is due to the coarse levels usually associated 
with the denser coefficient matrices, which makes multicolor 
grouping more difficult.

Finally, to check the dependence of the coloring algorithm 
on the ordering of the vertices, we compare the effects of five 
numbering sequences on the coloring results. The five num-
bering sequences are denoted as Seq1, Seq2,..., and Seq5, 
respectively. Seq1 is the natural order (from small to large, 
default choice), and Seq2 is the reverse order (from large 
to small). The last three sequences Seq3–Seq5 are random 
sequences, generated by a random function. Table 10 lists 
the number of colors generated by five vertices sequences 
for the SPE10 problem. According to Table 10, the different 
vertex numbering produces different colors, which indicates 
that our coloring algorithm depends on vertex numbering. 
If too many colors are generated, the parallel granularity 
will be reduced. In future work, it is worth further studying.

6  Conclusions

In this work, we developed a parallel multistage precon-
ditioner for the system of linear algebraic equations aris-
ing from the fully implicit approach for the compositional 
model. We proposed an efficient multistage preconditioner 
with an adaptive SETUP to improve the parallel perfor-
mance of the preconditioner. Furthermore, we developed 
an improved parallel GS algorithm based on the adjacency 
matrix. This algorithm can be applied to the smoothing 
operator of the AMG methods and yields the same conver-
gence behavior as the corresponding single-threaded algo-
rithm. We believe the proposed parallel solver framework 
will provide a feasible approach to the efficient numerical 
solution of various application problems. In the future, we 
will further improve the proposed solver and parallelize our 
compositional simulator OpenCAEPoro.
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