
Vol:.(1234567890)

CCF Transactions on High Performance Computing (2023) 5:144–159
https://doi.org/10.1007/s42514-023-00136-0

1 3

REGULAR PAPER

An improved multistage preconditioner on GPUs for compositional
reservoir simulation

Li Zhao1  · Shizhe Li2 · Chen‑Song Zhang2 · Chunsheng Feng1,3,4 · Shi Shu1,3

Received: 11 August 2022 / Accepted: 5 January 2023 / Published online: 1 February 2023
© China Computer Federation (CCF) 2023

Abstract
The compositional model is often used to describe multicomponent multiphase porous media flows in the petroleum industry.
The fully implicit method with strong stability and weak constraints on time-step sizes is commonly used in mainstream
commercial reservoir simulators. In this paper, we develop an efficient multistage preconditioner for the fully implicit
compositional flow simulation. The method employs an adaptive setup phase to improve the parallel efficiency on GPUs.
Furthermore, a multicolor Gauss–Seidel algorithm based on the adjacency matrix is applied in the algebraic multigrid meth-
ods for the pressure part. Numerical results demonstrate that the proposed algorithm achieves good parallel speedup while
yielding the same convergence behavior as the corresponding sequential version.

Keywords  Compositional model · Fully implicit method · multistage preconditioner · multicolor Gauss–Seidel · GPU ·
Compute unified device architecture (CUDA)

AMS Classification  49M20 · 65F10 · 68W10 · 76S05

1  Introduction

The compositional model, which allows the fluids to be
composed of various material components, is a widely-
used mathematical model for describing multiphase flows
in porous media (Aziz and Settari 1979; Chen et al. 2006).
The compositional model is an extension of the black oil
model (Peaceman 1977), which is formed by multiple cou-
pled nonlinear partial differential equations. Some compli-
cated oil displacement technologies can be accurately simu-
lated based on the compositional model, such as polymer
flooding, surfactant and alkali oil displacement agents, and
miscible flooding.

Numerical methods for compositional numerical simula-
tion are abundant; to name a few, IMplicit Pressure Explicit
Concentrations (IMPEC) method (Fussell and Fussell 1979),
Fully Implicit Method (FIM) (Coats 1980), IMplicit Pres-
sure/SATuration and explicit concentrations (IMPSAT)
(Quandalle and Savary 1989), and Adaptive Implicit Method
(AIM) (Collins et al. 1992). In the IMPEC method, pressure
is implicit and other variables are explicit. One of its advan-
tages is that no need to solve coupled linear algebra systems,
but its time stepsize is constrained by the Courant–Frie-
drichs–Lewy (CFL) (Courant et al. 1928) condition. The

 *	 Li Zhao
	 zhaoli@smail.xtu.edu.cn

	 Shizhe Li
	 lishizhe@lsec.cc.ac.cn

	 Chen‑Song Zhang
	 zhangcs@lsec.cc.ac.cn

	 Chunsheng Feng
	 spring@xtu.edu.cn

	 Shi Shu
	 shushi@xtu.edu.cn

1	 School of Mathematics and Computational
Science, Xiangtan University, Xiangtan 411105,
People’s Republic of China

2	 LSEC & NCMIS, Academy of Mathematics and Systems
Science, Chinese Academy of Sciences, and School
of Mathematical Sciences, University of Chinese Academy
of Sciences, Beijing 100190, People’s Republic of China

3	 Hunan Key Laboratory for Computation and Simulation
in Science and Engineering, Xiangtan University,
Xiangtan 411105, People’s Republic of China

4	 National Center for Applied Mathematics in Hunan,
Hunan Shaofeng Institute for Applied Mathematics,
Xiangtan 411105, People’s Republic of China

http://crossmark.crossref.org/dialog/?doi=10.1007/s42514-023-00136-0&domain=pdf
http://orcid.org/0000-0003-3850-4610

145An improved multistage preconditioner on GPUs for compositional reservoir simulation﻿	

1 3

FIM method, on the contrary, is unconditionally stable
concerning time stepsizes because all variables are handled
implicitly. The IMPSAT method is a combination of the
IMPEC and FIM methods, where pressure and saturation
variables are handled implicitly and the molar fractions are
calculated explicitly. The AIM method is also a compromise
between the IMPEC and FIM methods and it also yields
Jacobian algebraic systems that are easier to solve than FIM.

The FIM method possesses the characteristics of good
stability and is widely used in commercial simulators. How-
ever, a coupled nonlinear system of equations needs to be
solved at each time step of FIM. Such systems are usually
linearized using the Newton-type methods, which require
solving a coupled Jacobian linear algebra system during
each iteration. In the numerical simulation, the solution of
these systems is the main computational cost (Zhang 2022).
Therefore, efficient linear solvers are crucial for improving
the efficiency of fully implicit reservoir simulation, espe-
cially for large-scale three-dimensional problems.

The linear solution methods generally consist of a setup
phase (SETUP) and a solve phase (SOLVE). Iterative meth-
ods are widely used in petroleum reservoir simulation due
to their low memory overhead and good parallel scalability.
More specifically, the GMRES and BiCGstab methods (Saad
2003) are exploited to solve the nonsymmetric systems that
arise from the fully implicit discretization of reservoir mod-
els. The preconditioning techniques are crucial to speeding
up the convergence of iterative methods (Zhang 2022). For
large-scale reservoir simulation, multistage precondition-
ers are very competitive. The classical Constrained Pres-
sure Residual (CPR) (Cao et al. 2005; Li et al. 2017; Wallis
1983; Wallis et al. 1985) approach is a well-known two-stage
preconditioner. It utilizes the Algebraic MultiGrid (AMG)
(Brandt et al. 1984; Falgout 2006) method to approximate
the inverse of the pressure matrix in the first stage and the
Incomplete LU (ILU) factorization (Meyerink 1983) to
smooth the overall reservoir matrix in the second stage. The
MultiStage Preconditioner (MSP) (Al-Shaalan et al. 2009;
Hu et al. 2013; Stüben et al. 2007) is a generalization of
the CPR method, which is also widely used in petroleum
reservoir problems.

Parallel computing is an important approach to improv-
ing the speed of simulation and a lot of attention has been
paid to developing efficient parallel algorithms. A Graph-
ics Processing Unit (GPU) with thousands of cores is
a parallel accelerator that is designed to handle images
and graphics originally. Due to its high float-point per-
formance and memory bandwidth (NVIDIA 2022), it has
great potential in petroleum reservoir simulation. In recent
years, research on GPU parallel algorithms has been devel-
oped in (Sudan et al. 2010; Chen et al. 2014; Yang et al.
2016; Kang et al. 2018; Manea and Almani 2019; Middya
et al. 2021; Esler et al. 2022) and the references therein.

For example, (Chen et al. 2014; Yang et al. 2016) devel-
oped a hybrid sparse matrix storage format and the cor-
responding sparse matrix-vector multiplication (SpMV)
kernel. Kang et al. (2018) developed a parallel nonlinear
solver based on OpenACC (OpenACC 2022) using the
domain decomposition method to achieve load balancing.
Finally, Manea and Almani (2019) studied a parallel alge-
braic multiscale solver on GPU architectures to improve
the solution efficiency of the pressure equation.

In this paper, we focus on a GPU-based parallel linear
solver for compositional models, which is an extension of
the recent work for the black oil model (Zhao et al. 2022).
Such an extension is mainly different in the following three
aspects. Firstly, the model and choice of primary variables
are different. For the black oil model, the primary vari-
ables are oil pressure, water saturation, and oil saturation,
while for the compositional model, the primary variables
are reference pressure and overall molar concentration of
components. Potentially they could give rise to different
algebra systems. Secondly, the two models calculate the
physical parameters of the fluid differently. The black oil
model gets the fluid properties by looking up (or interpo-
lating) the tabular data of fluid properties in terms of pres-
sure, while the compositional model solves the equation
of state for them (Peng and Robinson 1977; Chen et al.
2006). Finally, there are a lot of numerical studies on the
algebraic solvers for the fully implicit discretization of
the black oil model (Cao et al. 2005; Li et al. 2017; Wallis
1983; Wallis et al. 1985; Brandt et al. 1984; Falgout 2006;
Meyerink 1983; Al-Shaalan et al. 2009; Hu et al. 2013;
Stüben et al. 2007). On the other hand, to the best of our
knowledge, only a few numerical tests have been done for
the compositional model in the literature. Therefore, we
wish to study the numerical performance of the proposed
solver for the compositional model and compare it with the
widely-used solvers in commercial software. Moreover, in
this work, we developed an improved parallel multistage
preconditioning method for the compositional model for
GPUs. The main contributions of this work are listed as
follows:

•	 We propose a multistage preconditioner with an adap-
tive SETUP procedure, denoted as ASMSP. The pro-
posed method can significantly reduce the number of
SETUP calls, so as to reduce the computational over-
head and improve parallel efficiency.

•	 We investigate a multicolor Gauss–Seidel (GS) algo-
rithm based on algebraic grouping for the smoothing
operator in the AMG methods. This algorithm has been
shown to produce same convergence behavior as the
corresponding sequential algorithm on multicore CPUs
(Zhao et al. 2022).

146	 L. Zhao et al.

1 3

•	 The proposed methods are integrated into the open-
source simulator OpenCAEPoro (OpenCAEPoro 2022)
for multicomponent multiphase flow in porous media.

The rest of the paper is organized as follows. Sect. 2 briefly
introduces the compositional model and its fully implicit dis-
cretization. In Sect. 3, an MSP preconditioner with adaptive
SETUP is developed. In Sect. 4, the parallel implementation
of multicolor GS based on the adjacency matrix is proposed.
In Sect. 5, numerical experiments are performed to evalu-
ate the convergence and parallel speedup of the proposed
method. Section 6 summarizes the work of this paper.

2 � Mathematical model and discretization

2.1 � The compositional model

In this paper, we consider the isothermal multicomponent
compositional model (Aziz and Settari 1979; Chen et al.
2006) containing nc components (hydrocarbon and water)
and np phases (including at least the water phase). The mass
conservation equation for the component i reads

where � is the porosity of the rock, xij is the molar fraction
(dimensionless) of component i in phase j, �j is the molar
concentration of phase j, Sj is the saturation of phase j, uj
is the velocity of phase j, and Qi is source/sink terms of
component i.

Assume that the pore volume of the porous media is filled
with the fluid, the volume balance equation is then

where V is the fluid volume, Vpore is the pore volume, and
Vbulk is the bulk volume.

Assume that the phase j fluid in porous media satisfies
the Darcy’s law:

where � is the absolute permeability, �rj is the relative per-
meability of phase j, �j is the viscosity coefficient of phase
j, Pj is the pressure of phase j, �j is the density of phase j, �
is the gravity acceleration, and z is the depth.

Moreover, the variables Sj , xij and Pj in the Eqs. (1)–(3)
satisfy the following constitutive relations:

(1)

�

�t

(

�

np
∑

j=1

xij�jSj

)

+ ∇ ⋅

(

np
∑

j=1

xij�juj

)

= Qi, i = 1, 2,… , nc,

(2)V = Vpore ∶= �Vbulk ,

(3)uj = −
��rj

�j

(

∇Pj − �j�∇z
)

, j = 1, 2,… , np,

•	 Saturation constraint equation:

•	 Molar fraction constraint equation:

•	 Capillary pressure equation:

where P is the reference pressure, and Pcj(Sj) is the capillary
pressure between the reference phase and phase j, which will
be ignored in the rest of this paper.

2.2 � Discretization method

In this section, we first simplify the compositional model,
then describe the choice of main equations and primary vari-
ables, and finally present the FIM discretization method.

2.2.1 � The choices of primary variables

To begin with, we introduce the overall molar concentration
Ni and molar flux Fi of the component i, which are defined as

Equation (1) can be simplified to

In this paper, we choose the mass conservation Eq. (9)
and the volume balance Eq. (2) as the main equations, and
there are nc + 1 equations in total. The reference pressure P
and the overall molar concentration Ni (i = 1, 2,… , nc) are
used as the primary variables of the discrete method, and
there are nc + 1 variables in total. After solving the primary
variables, the fluid volume state function V(P,N1,… ,Nnc

)
can be obtained by the equation of state and flash calcula-
tion, see (Peng and Robinson 1977; Chen et al. 2006) for
more details.

(4)
np
∑

j=1

Sj = 1.

(5)
nc
∑

i=1

xij = 1, j = 1, 2,… , np.

(6)Pj = P − Pcj(Sj), j = 1, 2,… , np,

(7)Ni = �

np
∑

j=1

xij�jSj,

(8)Fi =

np
∑

j=1

xij�juj.

(9)
�

�t
Ni + ∇⋅Fi = Qi, i = 1, 2,… , nc.

147An improved multistage preconditioner on GPUs for compositional reservoir simulation﻿	

1 3

2.2.2 � Finite volume method and backward Euler method

The finite volume method (FVM) (LeVeque 2002) features
simplicity, conservation, adaptivity to complex geometric
regions, and monotonicity; it is a commonly used discre-
tization method in the petroleum industry. In this paper,
the spatial domain is discretized by using FVM. Suppose
that the spatial domain Ω ⊂ ℝ

3 (an open set) is discre-
tized into m elements set {�k}mk=1 (the shape of the element
is not considered here), which satisfies ∪m

k=1
�k = Ω and

�k ∩ �
�
= ∅, k ≠ �, k,� = 1,… ,m.

using the divergence theorem, we can get

where Sk ∶= ��k is all the surfaces set of element �k and n is
the outer unit normal vector to Sk.

Therefore, the discrete equation on element �k can be
written as

where the discrete flux Fi,s can be defined in various ways
(e.g., Aavatsmark 2002; Aavatsmark et al. 2008), we con-
sider the following form

here, L and d denote the size of the interface and the distance
between two adjacent elements, respectively. �s denotes the
difference between the values on the two adjacent elements.
Because the primary variables of the discrete equations are
defined at the center of element, the harmonic mean value
and the upstream weighted value are usually used to approxi-
mate the value {⋅}s and {⋅}s,up of the physical quantities on
the interface s (Chen et al. 2006; Zhang 2022).

For the semi-discrete Eq. (12), the time derivative term
is discretized by using the backward Euler method, and the
superscripts n and n + 1 denote the time tn and tn+1 , respec-
tively. The fully discrete volume balance equation and mass
conservation equations are

(10)
∫
�k

�

�t
NidV + ∫

�k

∇⋅FidV = ∫
�k

QidV , i = 1, 2,… , nc,

(11)
∫
�k

�

�t
NidV + ∫Sk

Fi ⋅ ndS = ∫
�k

QidV , i = 1, 2,… , nc,

(12)
�

�t
Ni,k +

∑

s∈Sk

Fi,s = Qi,k, i = 1, 2,… , nc,

(13)

Fi,s =
{

L�

d

}

s

np
∑

j=1

(

{

xij�j

�rj

�j

}

s,up

�s(P + Pcj − �j�z)

)

.

(14)Vn+1 − Vn+1
pore

= 0,

respectively. Here the source/sink term is simplified into a
known function; but in practical problems, it is related to
the production mode of the well in the oil field, and is also
strongly coupled with the primary variables. Since the focus
of this paper is not how to handle the well equations, we do
not describe it in detail.

Note that the fully discrete Eqs. (14) and (15) are nonlinear,
and the terms F⋆

i,s
 and Q⋆

i,k
 are subject to be specified. Below,

we will give their expressions.

2.2.3 � Fully implicit method

The FIM scheme is currently commonly used in mainstream
commercial reservoir simulators. This is because the scheme
has the characteristics of strong stability and weak constraint
on the timestep sizes. These characteristics highlight the
advantages of the FIM, especially when the nonlinearity of
the models is relatively strong.

When both F⋆

i,s
 and Q⋆

i,k
 in Eq. (15) take the value of tn+1

time, the fully implicit discrete equations are

Owing to the implicit solution for nc + 1 primary variables,
Eqs. (14) and (16) are strongly coupled nonlinear systems of
equations that need to be linearized. In this work, we exploit
the well-known Newton’s method to linearize Eqs. (14) and
(16). The Jacobian equation for increments �P, �N1,… , �Nnc

can be written as

where the coefficients �P , �i , �i , �iP , and �ik are obtained by
partial derivation of the model coefficients with respect to
P or Ni ; see (Qiao 2015) for details.

2.2.4 � Discrete system

After discretization, the coupled nonlinear algebraic equations
are obtained. Such equations are linearized by adopting the

(15)
Nn+1
i,k

− Nn
i,k

Δt
+
∑

s∈Sk

F
⋆

i,s
= Q⋆

i,k
, i = 1, 2,… , nc,

(16)
Nn+1
i,k

− Nn
i,k

Δt
+
∑

s∈Sk

F
n+1
i,s

= Qn+1
i,k

, i = 1, 2,… , nc.

(17)
1

Δt
�P�P −

1

Δt

nc
∑

i=1

�i�Ni = rP,

(18)

1

Δt
�Ni − ∇⋅ (�i∇�P) − ∇⋅ (�iP∇�P)

−

nc
∑

k=1

∇⋅ (�ik∇�Nk) = ri, i = 1,… , nc,

148	 L. Zhao et al.

1 3

Newton method to form the sparse Jacobian system Ax = b of
the reservoir equation with implicit wells, namely:

where ARR and ARW are the derivatives of the reservoir equa-
tions for reservoir variables and well variables, respectively;
AWR and AWW are the derivatives of the well equations for
reservoir variables and well variables, respectively; xR and
xW are reservoir and bottom-hole flowing pressure variables,
respectively; and bR and bW are the right-hand side vectors
that correspond to the reservoir fields and the implicit wells,
respectively.

The subsystem corresponding to the reservoir equations
in the discrete system (19) is ARRxR = bR ; that is,

where P is reference pressure and Ni (i = 1, 2,… , nc) are the
overall molar concentration.

Remark 1  Our simulator used the classical Peaceman model
(Peaceman 1977) for the well equations. For convenience,
we omit the details of the well equations and refer readers
to Peaceman (1977), Aziz and Settari (1979), Chen et al.
(2006).

(19)
(

ARR ARW

AWR AWW

)(

xR
xW

)

=

(

bR
bW

)

,

(20)

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

A
PP

A
PN1

A
PN2

⋯ A
PN

nc

A
N1P

A
N1N1

A
N1N2

⋯ A
N1Nnc

A
N2P

A
N2N1

A
N2N2

⋯ A
N2Nnc

⋮ ⋮ ⋮ ⋮ ⋮

A
N
nc
P
A
N
nc
N1

A
N
nc
N2

⋯ A
N
nc
N
nc

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎜

⎝

x
P

x1

x2

⋮

x
n
c

⎞

⎟

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎝

b
P

b1

b2

⋮

b
n
c

⎞

⎟

⎟

⎟

⎟

⎟

⎠

,

3 � Parallel multistage preconditioners
with adaptive SETUP

In the compositional model, the primary variables consist
of reference pressure P and overall molar concentration
Ni (i = 1, 2,… , nc) . These variables possess different math-
ematical properties, such as the parabolicity of the pressure
equation and hyperbolicity of the concentration equations.
These properties provide a theoretical basis for the construc-
tion of multiplicative subspace correction methods (Xu
1992, 1996); see Zhang (2022) for a recent review.

3.1 � Multistage preconditioner

We first define two transfer operators of the reservoir matrix,
suppose �N ∶ VN → V and �P ∶ VP → V , where VN and VP
are the overall molar concentration and pressure variables
space, respectively, and V is the variables space of the whole
reservoir. Then, the multiplicative multistage preconditioner
B (Al-Shaalan et al. 2009; Hu et al. 2013; Stüben et al. 2007)
is defined as

where the relaxation operator R employs the Block ILU
(BILU) method, BP and BN are solved by the AMG and
Block GS (BGS) methods, respectively.

Suppose that the mathematical behavior of preconditioner
B acting on a known vector g is

The corresponding multistage preconditioning algorithm
(Feng et al. 2014) is shown in the Algorithm 3.1.

(21)I − BA = (I − RA)(I −�PBP�
T
P
A)(I −�NBN�

T
N
A),

(22)w = Bg.

Algorithm 3.1 MSP preconditioning method
Require: A, g, w,ΠN , ΠP ;

Ensure: w = Bg.

1: r = g −Aw;

2: w = w +ΠNBNΠT
Nr;

3: r = g −Aw;

4: w = w +ΠPBPΠ
T
P r;

5: r = g −Aw;

6: w = w +Rr.

149An improved multistage preconditioner on GPUs for compositional reservoir simulation﻿	

1 3

3.2 � MSP with adaptive SETUP

In this subsection, we utilize an adaptive SETUP strategy
for the MSP preconditioner to improve its parallel efficiency,
denoted as ASMSP. As mentioned earlier, this strategy
has been employged for the black oil model by Zhao et al.
(2022). Assume that the solution objective is A(�)x(�) = b(�) .
It is worth mentioning that superscript � is the number of
Newton iterations. This is because the reservoir model is
a nonlinear system of equations, which is linearized using
Newton’s method here (see Chen et al. (2006) for more
details). Figure 1 presents the algorithm flow chart of adap-
tive SETUP.

In Fig. 1, the main difference from the standard meth-
ods is that the preconditioner B(�) is yielded by an adaptive
strategy. This strategy can be divided into the following two
cases:

(1)	 The preconditioner B(�) inherits the information from
the previous preconditioner B(�−1) . A natural approach is
to use the number of iterations It(�−1) , required by solv-
ing the previous Jacobian system A(�−1)x(�−1) = b(�−1) .
We introduce a threshold � (a non-negative integer); if
It(�−1) ≤ � , the previous preconditioner B(�−1) is used as
the preconditioner B(�).

(2)	 The preconditioner B(�) is regenerated; if � = 1 or
It(𝜄−1) > 𝜇 , the preconditioner B(�) is generated by call-
ing Algorithm 3.1.

Remark 2  If the sizes of A(�−1) and A(�) are not the same, the
preconditioner B(�) must be regenerated for sure.

Below, we illustrate the rationale for this approach.
The number of iterations can evaluate the quality of a
preconditioner. More iterations indicate a poor precon-
ditioner, and fewer iterations indicate a good precon-
ditioner. The It(�−1) ≤ � indicates B(�−1) is an effective
preconditioner for A(�−1)x(�−1) = b(�−1) . In addition, the
structure of these matrices is very similar during New-
ton’s iteration, and the preconditioner does not need to
approximate the inverse of the matrix exactly. So the
preconditioner B(�−1) can also be applied to the Jacobian
system A(�)x(�) = b(�) . The proposed method can improve
the parallel performance of the solver by reducing the
number of SETUP calls and reducing the proportion of
low parallel speedup in the solver.

Finally, we discuss the impact of the threshold � on per-
formance. If � is too small, the number of SETUP calls will
not be significantly reduced, which will not significantly
improve the performance of the solver. In particular, ASMSP
degenerates to standard MSP when � = 0 . Conversely, if �
is too large, too few SETUP calls can also affect the per-
formance, due to the dramatic increase in the number of
iterations. Usually, a suitable � is determined by numerical
experiments.

4 � A multicolor GS based on adjacency
matrix

It is well-known that the GS algorithm, compared to the
Jacobi algorithm, exploits most updated values in the itera-
tive process. Therefore, the GS algorithm brings a better
convergence. However, it is essentially sequential and can-
not be easily parallelized. A popular red-black GS (also
known as multicolor GS) parallel algorithm has attracted a
lot of attention (Saad 2003). Unfortunately, the algorithm
is designed based on structured grids and is not compatible
with unstructured grids.

A hybrid approach that combines the Jacobi and GS
methods can be applied, but its convergence rate also
deteriorates with respect to higher parallelism. In order to
overcome the limitations of the traditional red-black GS
algorithm, a multicolor GS algorithm based on the coef-
ficient matrix of strong connections has been proposed and
analyzed in Zhao et al. (2022). This paper proposes a mul-
ticolor GS algorithm from the algebraic point of view. The
proposed method yields the same convergence behavior as

Begin

Input: A(ι), b(ι), B(ι−1), It(ι−1), µ, ι;

ι > 1 & It(ι−1) ≤ µ

B(ι) = B(ι−1); Setup: B(ι);

B(ι)A(ι)x(ι) = B(ι)b(ι);

Output: B(ι), It(ι);

End

Yes
No

Fig. 1   The algorithm flow chart of adaptive SETUP

150	 L. Zhao et al.

1 3

the corresponding single-threaded algorithm; moreover,
it obtains good parallel performance when using a lot of
threads on GPUs.

4.1 � Adjacency graph and algorithm principles

The notion of an adjacency graph needs to be introduced
to implement the multicolor GS algorithm algebraically.
An adjacency graph corresponds to a sparse matrix, which
reflects the nonzero pattern of the matrix, i.e., the nonzero
entries of the matrix reflect the connectivity relationship
between the vertices in the adjacency graph.

We develop a multicolor GS algorithm that can be
applied to symmetric and nonsymmetric matrices. For
simplicity, assuming that the sparse matrix A ∈ ℝ

n×n
is a symmetric matrix. Let GA(V ,E) be the adjacency
graph corresponding to the matrix A =

(

aij
)

n×n
 . Here

V =
{

v1, v2,… , vn
}

 and E =
{(

vi, vj
)

∶ ∀ i ≠ j, aij ≠ 0
}

 are
the vertices and edges sets, respectively. It is easy to know
that each nonzero entry aij on the off-diagonal of A cor-
responds to an edge (vi, vj).

Here, we give the principles for designing a multicolor
GS algorithm in this paper:

	 (i)	 The vertices set V is divided into g subsets:
V = V1 ∪ V2 ⋯ ∪ Vg;

	 (ii)	 Any two subsets are disjoint: Vi ∩ Vj = ∅,

i ≠ j, i, j = 1, 2,… , g;
	 (iii)	 Vertices in any subset are not connected by edges:

aij = aji = 0, ∀ vi, vj ∈ V
�
, � = 1, 2,… , g;

	 (iv)	 The number of subsets, g, should be as small as pos-
sible.

It is obvious that the difficulty of grouping and parallel
granularity increase as the number of groups g decreases.
In fact, the red-black GS algorithm satisfies the conditions
for g = 2 . In particular, when g = n , it degenerates to the
classic GS algorithm.

4.2 � multicolor GS algorithm

We define the adjacency matrix S corresponding to the adja-
cency graph GA(V ,E) . Its diagonal entries are zero and off-
diagonal entries are

where Sij = 1 denotes an adjacent edge between vi and vj ,
and Sij = 0 denotes no adjacent edge between vi and vj . To
describe the multicolor GS algorithm, some notations are
introduced in Table 1.

Below, we first present a (greedy) splitting algorithm
for the set of vertices V based on the adjacency matrix S,
denoted as VerticesSplitting (see Algorithm 4.1). Then we
give the vertices grouping algorithm of matrix A, denoted as
VerticesGrouping (see Algorithm 4.2). Finally, a multicolor
parallel GS method is presented in Algorithm 4.3, denoted
as PGS-MC.

(23)Sij =

{

1, if aij ≠ 0,

0, if aij = 0,
∀ i, j = 1, 2,… , n, i ≠ j,

Table 1   The definitions and explanations of some notations

Notation Definition and explanation

Si Si =
{

j ∶ Sij ≠ 0, j = 1, 2,… , n
}

Si denotes the vertex set that is connected to the vertex vi
Si Si =

{

j ∶ j ∈ Si ∪ {i} and color of j is undetermined
}

Si denotes the vertex set that is connected to the vertex vi (including vi ) and whose colors are undetermined

Ŝi Ŝi =
{

j ∶ j ∈ Wi and color of j is undetermined
}

 , where Wi ∶=
{

j ∶ ∀ k ∈ Si, j ∈ Sk∕(Si ∪ {i})
}

Ŝi denotes the vertex set that is the next connected to the vertex vi (the vertices on “the second circle”) and
whose colors are undetermined

|Si| �Si� =
∑

j∈Si
1

The cardinality |Si| denotes the number of entries in the set Si

151An improved multistage preconditioner on GPUs for compositional reservoir simulation﻿	

1 3

Algorithm 4.1 VerticesSplitting method
Require: V, S;
Ensure: W, W .
1: Let W = ∅, W = ∅, Ŵ = ∅;
2: while V �= ∅ do
3: if Ŵ �= ∅ then
4: Any take vi ∈ Ŵ and |Si| ≥ |Sj |, ∀ vi, vj ∈ Ŵ ;
5: else
6: Any take vi ∈ V and |Si| ≥ |Sj |, ∀ vi, vj ∈ V ;
7: end if
8: if vi is not connected to any vertices in W (i.e., Sij = 0,∀ j ∈ W) then
9: W = W ∪ vi, V = V/vi;

10: if vi ∈ Ŵ then
11: Ŵ = Ŵ/vi;
12: end if
13: W = W ∪ Si, V ← V/Si, Ŵ = Ŵ ∪ Ŝi;
14: else
15: W = W ∪ vi, V ← V/vi;
16: if vi ∈ Ŵ then
17: Ŵ = Ŵ/vi;
18: end if
19: end if
20: end while

Algorithm 4.2 VerticesGrouping method
Require: V, S;
Ensure: {V1, V2, . . . , Vg}.
1: Set g = 0;
2: while V �= ∅ do
3: g = g + 1;
4: Get Vg and V g by calling Algorithm4.1;
5: Let V = V g;
6: end while

 In our PGS-MC method, it is worth noting that GA(V ,E) can be split into g subgraphs GA
�

(V
�
,E

�
) by calling Algo-

rithm 4.2, and the adjacency matrice corresponding to these subgraphs are S
�
 ( � = 1,… , g ). It is easy to know that the sub-

matrix A
�
 (corresponding to the subgraph GA

�

(V
�
,E

�
) ) is a diagonal matrix. In summary, the proposed method starts from

the adjacency matrix of the coefficient matrix and designs a vertices grouping algorithm. This method can run in parallel
within the same group. Moreover, the proposed method can be applied to the AMG methods, and the numerical experiments
in the next section also present its parallel performance.

152	 L. Zhao et al.

1 3

Algorithm 4.3 PGS-MC method
Require: A, x, b;
Ensure: x.
1: Create the vertices set V and the adjacency matrix S using the matrix A

and the formula (23);
2: Generate independent vertices subset V� (� = 1, . . . , g) by calling Algo-

rithm4.2;
3: Use V� to split the matrix A into submatrix A�;
4: for � = 1, . . . , g do
5: Call classical GS algorithm in parallel for submatrix A�;
6: end for

5 � Numerical experiments

In this section, benchmark problems based on SPE1, SPE5,
and SPE10 (Odeh 1981; Killough and Kossack 1987; Chris-
tie and Blunt 2001) are considered to demonstrate the per-
formance of the proposed methods. Note that the SPE1 and
SPE10 problems can be solved using a black oil framework
as well; but we solve them using the compositional simulator
OpenCAEPoro. It is worth pointing out that, in our simula-
tor, the traditional hydrostatic equilibrium method is used to

calculate the initial reservoir conditions; see (Schlumberger
2017) for more details.

In the ASMSP-GMRES method, the Unsmoothed Aggre-
gation AMG (UA-AMG) method is used to approximate the
inverse of the pressure coefficient matrix, where the aggre-
gation strategy is the so-called nonsymmetric pairwise
matching aggregation (NPAIR) (Napov and Notay 2012),
the cycle type is the V-cycle, the smoothing operator is PGS-
SCM, the degree of freedom of the coarsest space is set to
be 10000, and the coarsest space solver is a direct solver. For

Fig. 2   Field oil production rate and average pressure for the modified SPE1 problem on GPUs

Table 2   SetupCalls, SetupRatio,
Iter, SolverTime (s), and
Speedup of the different � for
the SPE1 problem

The results with the best performance are shown in bold

Solvers � SetupCalls SetupRatio Iter SolverTime Speedup

ASMSP-GMRES-SEQ 0 1178 14.48% 17486 6094.14 –
ASMSP-GMRES-CUDA 0 1177 61.98% 18343 885.07 6.89

10 1031 61.26% 18529 867.66 7.02
20 236 50.45% 20582 749.23 8.13
30 52 45.46% 22607 750.45 8.12
40 35 43.47% 24217 778.65 7.83

153An improved multistage preconditioner on GPUs for compositional reservoir simulation﻿	

1 3

the restarted GMRES(m) method, the restarting number m
is 30, the maximum number of iterations MaxIt is 1000, and
the tolerance for relative residual tol is 10−5 . Here, Newton
method’s tolerance is 10−3.

To better evaluate the performance of the proposed meth-
ods, we also test the same problems with a commercial simu-
lator (2020 version) for comparison. In the commercial sim-
ulator, the default solving method and parameters are used
(i.e., Newton method’s tolerance is 10−3 , and ILU(0)-BiCG-
stab solver’s tolerance is 10−3 and the maximum number of
iterations is 400). Here, we compare the experimental results
of the GPU version for commercial and our simulators. The
numerical experiments are tested on a machine with Intel

Xeon Platinum 8260 CPU (32 cores, 2.40GHz), 128GB
DRAM, and NVIDIA Tesla T4 GPU (16GB Memory).

5.1 � The modified SPE1 problem

The three-phase SPE1 example (Odeh 1981) is a bench-
mark problem for testing ten-year dynamic simulations of
immiscible gas flooding (one gas injection well and one oil
production well). The initial reservoir state is unsaturated.
Given the initial oil-gas and oil-water interface depth, as
the reservoir pressure decreases, the gas will gradually dis-
solve into the oil, and this process will affect the stability
of the simulator. The horizontal direction of the oil field

Table 3   NumTSteps,
NumNSteps, Iter, AvgIter,
TotalTime (s), and Speedup
comparisons of the commercial
and our simulators for the SPE1
problem

The results with the best performance are shown in bold

Simulators � NumTSteps NumNSteps Iter AvgIter TotalTime Speedup

Commercial – 410 838 92373 110.2 3382.00 –
Ours 0 267 1177 18343 15.6 2414.36 1.40

10 267 1177 18529 15.7 2344.43 1.44
20 267 1179 20582 17.5 2228.08 1.52
30 267 1178 22607 19.2 2229.42 1.52
40 267 1178 24217 20.6 2339.99 1.45

Fig. 3   Field oil production rate and average pressure of the SPE10 problem on GPUs

Table 4   SetupCalls, SetupRatio,
Iter, SolverTime (s), and
Speedup of the different � for
the two-phase SPE10 problem

The results with the best performance are shown in bold

Solvers � SetupCalls SetupRatio Iter SolverTime Speedup

ASMSP-GMRES-SEQ 0 219 12.40% 4252 4795.04 –
ASMSP-GMRES-CUDA 0 219 55.11% 5073 716.08 6.70

10 172 51.07% 5081 656.37 7.31
20 118 41.36% 5863 630.31 7.61
30 65 32.92% 6043 566.68 8.46
40 51 27.87% 7055 610.40 7.86

154	 L. Zhao et al.

1 3

is a square with side length of 10000 (ft) and the vertical
thickness is 100 (ft). The grid size of the original problem
is a 10 × 10 × 3 orthogonal grid, and we refine it to get a
grid of 80 × 80 × 40 . Here, we perform numerical tests on
the refined grid. Below, we simulate 10 years (3655.5 days)
using the SPE1 example and test the GPU-based parallel
performance of the proposed solver.

5.1.1 � ASMSP‑GMRES‑GPU method

We investigate the effects of � ( � = 0, 10, 20, 30 , and 40) on
the parallel performance of ASMSP-GMRES-GPU. We first
verify the correctness of ASMSP-GMRES-GPU by compar-
ing our results with commercial simulator. Figure 2 shows
the field oil production rate and average pressure graphs of
five groups �.

From Fig. 2, we can observe that the field oil production
rate and average pressure obtained by our and commercial
simulators are consistent, indicating that the correctness of
our proposed methods is guaranteed.

In addition, to evaluate the parallel performance of the
proposed methods for ASMSP-GMRES-GPU, Table 2 lists
the number of SETUP calls (SetupCalls), the ratio of SETUP
in the total solution time (SetupRatio), the total number of
linear iterations (Iter), the total solver time (SolverTime),
and the parallel speedup (Speedup). ASMSP-GMRES-SEQ
is the sequential program for reference.

As can be seen from Table 2, we observe the ASMSP-
GMRES-CUDA method. As � increases, both the number
of SETUP calls and the ratio of SETUP in the total solu-
tion time decrease, and the parallel speedup first increases
and then decreases (since the number of linear iterations
increases gradually). Compared with ASMSP-GMRES-
SEQ, when � = 0 , the speedup of ASMSP-GMRES-CUDA
reaches 6.89. In particular, the solution time of ASMSP-
GMRES-CUDA with � = 20 is reduced from 885.07s to
749.23s compared with � = 0 . Simultaneously, the speedup
of ASMSP-GMRES-CUDA reaches 8.13 compared to
ASMSP-GMRES-SEQ. Therefore, the proposed methods
can obtain acceleration effects for GPU architecture.

Finally, Table 3 presents the number of time steps (NumT-
Steps), the number of Newton iterations (NumNSteps), the

number of linear iterations (Iter), the average number of lin-
ear iterations per Newton iteration (AvgIter), the total simu-
lator time (TotalTime), and the parallel speedup (Speedup)
for the commercial and our simulators, respectively.

It can be seen from Table 3 that the commercial simulator
requires more numbers of time steps and linear iterations,
as well as more simulation time, compared to our simulator.
They yield the average number of linear iterations per New-
ton iteration of 110.2, about 7 times as ours (when � = 0 ).
When � = 0 , the speedup of our simulator achieves 1.40
compared to the commercial simulator. When � = 20 , the
minimum simulation time is 2228.08s, and the speedup is
1.52. This indicates that the proposed methods can improve
parallel performance. Finally, it is worth noting that we only
parallelize the linear solver in our simulator, while the rest
of the simulator is still sequential.

5.2 � The SPE10 problem

The two-phase SPE10 (Christie and Blunt 2001) benchmark
problem with strong heterogeneity is tested to demonstrate
the effectiveness of the proposed methods. Its model dimen-
sions are 1200 × 2200 × 170 (ft) and the number of grid cells
is 60 × 220 × 80 (the total number of grid cells is 1,122,000
and the number of active cells is 1,094,422). In this example,
the numerical simulation is carried out for 2000 days. We
analyze the effects of � ( � = 0, 10, 20, 30 , and 40) on the
parallel performance of ASMSP-GMRES-GPU.

To begin with, we verify the correctness of ASMSP-
GMRES-GPU by comparing our results with commercial
simulator. The field oil production rate and average pressure
graphs of five groups � are presented in Fig. 3. We note that
the field oil production rate and average pressure obtained
by our and commercial simulators are consistent, indicating
that the proposed methods are corrected.

Furthermore, Table 4 lists the number of SETUP calls
(SetupCalls), the ratio of SETUP in the total solution time
(SetupRatio), the total number of linear iterations (Iter), the
total solver time (SolverTime), and the parallel speedup
(Speedup), to assess the parallel performance of the pro-
posed methods. Also, ASMSP-GMRES-SEQ is the sequen-
tial program for reference.

Table 5   NumTSteps,
NumNSteps, Iter, AvgIter,
TotalTime (s), and Speedup
comparisons of the commercial
and our simulators for the two-
phase SPE10 problem

The results with the best performance are shown in bold

Simulators � NumTSteps NumNSteps Iter AvgIter TotalTime Speedup

Commercial – 1004∗ 1431∗ 170276∗ 119.0∗ 11034.00∗ –
115 286 157708 551.4 3643.00 –

Ours 0 53 219 5073 23.2 1589.62 2.29
10 53 219 5081 23.2 1527.12 2.39
20 53 222 5863 26.4 1534.52 2.37
30 53 222 6043 27.2 1458.14 2.50
40 54 221 7055 31.9 1561.90 2.33

155An improved multistage preconditioner on GPUs for compositional reservoir simulation﻿	

1 3

From Table 4, we observe the ASMSP-GMRES-CUDA
method. As � increases, both the number of SETUP calls
and the ratio of SETUP in the total solution time decrease,
and the parallel speedup first increases and then decreases.
Compared with ASMSP-GMRES-SEQ, when � = 0 , the
speedup of ASMSP-GMRES-CUDA reaches 6.70. In par-
ticular, the solution time of ASMSP-GMRES-CUDA with
� = 30 is reduced from 716.08s to 566.68s compared with
� = 0 . Simultaneously, the speedup of ASMSP-GMRES-
CUDA reaches 8.46 compared to ASMSP-GMRES-SEQ.

Finally, Table 5 presents the number of time steps
(NumTSteps), the number of Newton iterations (NumN-
Steps), the number of linear iterations (Iter), the average
number of linear iterations per Newton iteration (AvgIter),
the total simulator time (TotalTime), and the parallel

speedup (Speedup) for the commercial and our simula-
tors, respectively.

In Table 5, the results marked with superscript ∗ of the
commercial simulator indicate that the default param-
eters are used (i.e., Newton method’s tolerance is 10−3 ,
and ILU(0)-BiCGstab solver’s tolerance is 10−3 and the
maximum number of iterations is 400). The commercial
simulator does not recommend to change these param-
eters. The SPE10 test is strongly heterogeneous and the
default parameters lead to non-convergence of the solver
(i.e., iteration reaching the maximum number of itera-
tion) in many Newton steps. This will increase number
of Newton iterations and number of time steps. Hence,
we test this example using various combinations of tol-
erance and MaxIt in the commercial software; the best

Fig. 4   Field oil production rate and average pressure of the SPE5 problem on GPUs

Table 6   SetupCalls, SetupRatio,
Iter, SolverTime (s), and
Speedup of the different � for
the SPE5 problem

The results with the best performance are shown in bold

Solvers � SetupCalls SetupRatio Iter SolverTime Speedup

ASMSP-GMRES-SEQ 0 389 16.30% 3747 2601.11 –
ASMSP-GMRES-CUDA 0 389 51.43% 3969 341.25 7.62

10 186 34.59% 4064 324.76 8.01
15 44 21.72% 4508 313.23 8.30
20 12 18.01% 4747 314.50 8.27

Table 7   NumTSteps,
NumNSteps, Iter, AvgIter,
TotalTime (s), and Speedup
comparisons of the commercial
and our simulators for the SPE5
problem

The results with the best performance are shown in bold

Simulators � NumTSteps NumNSteps Iter AvgIter TotalTime Speedup

Commercial – 382 748 47027 62.9 2339.00 –
Ours 0 147 389 3969 10.2 2178.78 1.07

10 147 389 4064 10.4 2159.22 1.08
15 147 389 4508 11.6 2142.22 1.09
20 147 389 4747 12.2 2143.47 1.09

156	 L. Zhao et al.

1 3

possible choice in our tests are tol = 10−5 (consistent with
ours) and MaxIt = 2000 . Moreover, according to Table 5,
the commercial simulator requires more numbers of time
steps, Newton iterations, and linear iterations compared
to our simulator. The average number of linear iterations
per Newton iteration is 551.4 (over 23 times as ours when
� = 0 ), and the simulation time is 3643.00s. When � = 0 ,
the speedup of our simulator achieves 2.29 compared to
the commercial simulator. When � = 30 , the minimum
simulation time is 1458.14s, and the speedup reaches 2.50.
These results show that the parallel performance of the
proposed methods outperforms commercial simulators.

5.3 � The modified SPE5 problem

The SPE5 (Killough and Kossack 1987) example is a
compositional reservoir problem, including six com-
ponents ( C1 , C3 , C6 , C10 , C15 , and C20 ), injection well
(water alternating gas), and production well. Its res-
ervoir domain is 3500 × 3500 × 100 (ft), the original
orthogonal grid is 7 × 7 × 3 , and the simulation period is
20 years. Here, to evaluate the performance of the pro-
posed methods for compositional reservoir, we refine the
original grid to obtain a 70 × 70 × 30 orthogonal grid,
and simulate a period of 2 years. We test the effects of

� ( � = 0, 10, 15 , and 20) on the parallel performance of
ASMSP-GMRES-GPU.

Firstly, we verify the correctness of ASMSP-GMRES-
GPU by comparing our results with the commercial simu-
lator. The field oil production rate and average pressure
graphs of different � are presented in Fig. 4. We can see
the difference in the field oil production rate and aver-
age pressure obtained by our and commercial simulators
are consistent, indicating that the proposed methods are
corrected.

Furthermore, Table 6 lists the number of SETUP calls
(SetupCalls), the ratio of SETUP in the total solution
time (SetupRatio), the total number of linear iterations
(Iter), the total solver time (SolverTime), and the parallel
speedup (Speedup), to assess the parallel performance of
the proposed methods. Also, ASMSP-GMRES-SEQ is the
sequential program for reference.

From Table 6, we observe the ASMSP-GMRES-CUDA
method. As � increases, both the number of SETUP calls
and the ratio of SETUP in the total solution time decrease,
and the parallel speedup first increases and then decreases.
Compared with ASMSP-GMRES-SEQ, when � = 0 , the
speedup of ASMSP-GMRES-CUDA reaches 7.62. In par-
ticular, the solution time of ASMSP-GMRES-CUDA with
� = 15 is reduced from 341.25s to 313.23s compared with

Table 8   Iter and SolverTime
(s) of the three solvers for
the SPE1, SPE10, and SPE5
problems

Solvers SPE1 SPE10 SPE5

Iter SolverTime Iter SolverTime Iter SolverTime

MSP-GMRES-PJAC-NO 20880 920.83 7600 813.61 4387 362.04
MSP-GMRES-PGS-NO 19339 888.69 5855 729.38 4099 336.99
MSP-GMRES-PGS-MC 18343 885.07 5073 716.08 3969 333.36

Table 9   NumVerts and
NumColors of each level in the
AMG method for the SPE1,
SPE10, and SPE5 problems

AMG SPE1 SPE10 SPE5

Level NumVerts NumColors NumVerts NumColors NumVerts NumColors

0 256002 3 1094426 4 147001 3
1 64002 3 218724 8 36751 6
2 19202 3 62320 9 9800 –
3 6402 – 19660 10 – –
4 – – 6646 – – –

Table 10   NumVerts and
NumColors of each level
(excluding the coarsest grid)
in the AMG method using
five vertices sequences for the
SPE10 problem

Level NumVerts NumColors

Seq1 Seq2 Seq3 Seq4 Seq5

0 1094426 4 4 8 7 7
1 218724 8 7 8 9 8
2 62320 9 5 9 9 9
3 19660 10 5 10 9 9

157An improved multistage preconditioner on GPUs for compositional reservoir simulation﻿	

1 3

� = 0 . Simultaneously, the speedup of ASMSP-GMRES-
CUDA reaches 8.30 compared to ASMSP-GMRES-SEQ.

Finally, Table 7 presents the number of time steps (NumT-
Steps), the number of Newton iterations (NumNSteps), the
number of linear iterations (Iter), the average number of lin-
ear iterations per Newton iteration (AvgIter), the total simu-
lator time (TotalTime), and the speedup (Speedup) for the
commercial and our simulators, respectively.

According to Table 7, the commercial simulator requires
more numbers of time steps, Newton iterations, and linear
iterations compared to our simulator. The average number
of linear iterations per Newton iteration is 62.9 (over 6 times
as ours when � = 0 ), and the simulation time is 2339.00s.
When � = 0 , the speedup of our simulator achieves 1.07
compared to the commercial simulator. When � = 15 , the
minimum simulation time is 2142.22s, and the speedup
reaches 1.09. Finally, we discuss the reasons for the low
speedup in this example. As the number of components
increases in the compositional model, the complexity of the
kernel algorithms increases. Moreover, we only parallelize
the linear solver in our simulator, while the rest of the simu-
lator is still sequential. As a result, the parallel solver time is
only about 15% of the total simulation time in this example.
Hence the linear solver part is not the main computational
bottleneck.

5.4 � PGS‑MC method

To investigate the convergence behavior and parallel per-
formance of the proposed PGS-MC method, we compared
it with the parallel GS and Jacobi methods based on natural
ordering, denoted as PGS-NO and PJAC-NO, respectively.
The MSP-GMRES method is used as a solver for petro-
leum reservoir simulation. In the MSP preconditioner, the
smoothing operator of the AMG method uses PJAC-NO,
PGS-NO, and PGS-MC, denoted as MSP-GMRES-PJAC-
NO, MSP-GMRES-PGS-NO, and MSP-GMRES-PGS-MC,
respectively. Below, we test the GPU-based parallel perfor-
mance of the three solvers for the SPE1, SPE10, and SPE5
examples.

Table 8 presents the total numbers of linear iterations
(Iter) and total solver time (SolverTime) of the three solvers
for the SPE1, SPE10, and SPE5 examples. We can observe
that MSP-GMRES-PJAC-NO requires more iterations and
MSP-GMRES-PGS-MC requires less number of iterations.
This shows that MSP-GMRES-PGS-MC produces the
same convergence behavior as the corresponding single-
thread algorithm [this conclusion is also confirmed by the
OpenMP version (Zhao et al. 2022)]. We observed that the
solution time of MSP-GMRES-PGS-MC is only slightly less
than that of MSP-GMRES-PGS-NO. This is because MSP-
GMRES-PGS-MC reduces parallel granularity on coarse

levels and increases SETUP time. On the other hand, based
on our previous numerical tests, if the number of threads
increases, the PGS-NO algorithm usually takes more and
more iterations, while PGS-MC is more robust.

In addition, we give the number of colors produced by
PGS-MC. Table 9 shows the number of vertices (NumVerts)
and the number of colors (NumColors) on each level in the
AMG method. It can be seen from Table 9 that the num-
ber of colors increases when the number of AMG levels
increases. This is due to the coarse levels usually associated
with the denser coefficient matrices, which makes multicolor
grouping more difficult.

Finally, to check the dependence of the coloring algorithm
on the ordering of the vertices, we compare the effects of five
numbering sequences on the coloring results. The five num-
bering sequences are denoted as Seq1, Seq2,..., and Seq5,
respectively. Seq1 is the natural order (from small to large,
default choice), and Seq2 is the reverse order (from large
to small). The last three sequences Seq3–Seq5 are random
sequences, generated by a random function. Table 10 lists
the number of colors generated by five vertices sequences
for the SPE10 problem. According to Table 10, the different
vertex numbering produces different colors, which indicates
that our coloring algorithm depends on vertex numbering.
If too many colors are generated, the parallel granularity
will be reduced. In future work, it is worth further studying.

6 � Conclusions

In this work, we developed a parallel multistage precon-
ditioner for the system of linear algebraic equations aris-
ing from the fully implicit approach for the compositional
model. We proposed an efficient multistage preconditioner
with an adaptive SETUP to improve the parallel perfor-
mance of the preconditioner. Furthermore, we developed
an improved parallel GS algorithm based on the adjacency
matrix. This algorithm can be applied to the smoothing
operator of the AMG methods and yields the same conver-
gence behavior as the corresponding single-threaded algo-
rithm. We believe the proposed parallel solver framework
will provide a feasible approach to the efficient numerical
solution of various application problems. In the future, we
will further improve the proposed solver and parallelize our
compositional simulator OpenCAEPoro.

Acknowledgements  This work was supported by the Postgradu-
ate Scientific Research Innovation Project of Hunan Province (No.
CX20210607) and Postgraduate Scientific Research Innovation Project
of Xiangtan University (No. XDCX2021B110). Li and Zhang were
partially supported by the National Science Foundation of China (No.
11971472). Feng was partially supported by the Excellent Youth Foun-
dation of SINOPEC (No. P20009). Shu was partially supported by the
National Science Foundation of China (No. 11971414).

158	 L. Zhao et al.

1 3

Declarations 

Conflict of interest  On behalf of all authors, the corresponding author
states that there is no conflict of interest.

References

Aavatsmark, I.: An introduction to multipoint flux approximations for
quadrilateral grids. Comput. Geosci. 6, 405–432 (2002). https://​
doi.​org/​10.​1023/A:​10212​91114​475

Aavatsmark, I., Eigestad, G.T., Mallison, B.T., Nordbotten, J.M.: A
compact multipoint flux approximation method with improved
robustness. Numer. Methods Partial Differ. Equ. 24(5), 1329–1360
(2008). https://​doi.​org/​10.​1002/​num.​20320

Al-Shaalan, T.M., Klie, H.M., Dogru, A.H., Wheeler, M.F.: Studies
of robust two stage preconditioners for the solution of fully
implicit multiphase flow problems. In: SPE Reservoir Simula-
tion Symposium (2009). https://​doi.​org/​10.​2118/​118722-​MS

Aziz, K., Settari, A.: Petroleum reservoir simulation, p. 687. Applied
Science Publishers, London (1979)

Brandt, A., Mccormick, S.F., Ruge, J.W.: Algebraic multigrid (AMG)
for sparse matrix equations. In: Sparsity and its applications, pp.
257–284. Cambridge University Press, Cambridge (1984)

Cao, H., Tchelepi, H.A., Wallis, J.R., Yardumian, H.E.: Parallel scal-
able unstructured CPR-Type linear solver for reservoir simula-
tion. In: SPE Annual Technical Conference and Exhibition, vol.
SPE-96809 (2005). https://​doi.​org/​10.​2118/​96809-​MS

Chen, Z.X., Huan, G.R., Ma, Y.L.: Computational methods for
multiphase flows in porous media. Society for Industrial and
Applied Mathematics, New York (2006). https://​doi.​org/​10.​
1137/1.​97808​98718​942

Chen, Z., Liu, H., Yu, S., Hsieh, B., Shao, L.: GPU-based parallel
reservoir simulators. In: Domain decomposition methods in sci-
ence and engineering XXI, pp. 199–206. Springer, Cham (2014)

Christie, M.A., Blunt, M.J.: Tenth SPE comparative solution project:
a comparison of upscaling techniques. SPE Reserv. Eval. Eng.
4(04), 308–317 (2001). https://​doi.​org/​10.​2118/​72469-​PA

Coats, K.H.: An equation of state compositional model. Soc. Petrol.
Eng. J. 20(05), 363–376 (1980)

Collins, D.A., Nghiem, L.X., Li, Y.K., Grabonstotter, J.E.: An effi-
cient approach to adaptive-implicit compositional simulation
with an equation of state. SPE Reserv. Eng. 7(02), 259–264
(1992). https://​doi.​org/​10.​2118/​15133-​PA

Courant, R., Friedrichs, K., Lewy, H.: Über die partiellen differ-
enzengleichungen der mathematischen physik. Mathematische
Annalen 100(1), 32–74 (1928). https://​doi.​org/​10.​1007/​BF014​
48839

Esler, K., Gandham, R., Patacchini, L., Garipov, T., Samardzic, A.,
Panfili, P., Caresani, F., Pizzolato, A., Cominelli, A.: A Graph-
ics Processing Unit-based, industrial grade compositional res-
ervoir simulator. SPE J. 27(01), 597–612 (2022). https://​doi.​
org/​10.​2118/​203929-​PA

Falgout, R.D.: An introduction to algebraic multigrid computing.
Comput. Sci. Eng. 8(6), 24–33 (2006). https://​doi.​org/​10.​1109/​
MCSE.​2006.​105

Feng, C.S., Shu, S., Xu, J.C., Zhang, C.S.: A multi-stage precondi-
tioner for the black oil model and its OpenMP implementation.
In: Lecture Notes in Computational Science and Engineering
98, 141–153 (2014)

Fussell, L.T., Fussell, D.D.: An iterative technique for compositional
reservoir models. Soc. Petrol. Eng. J. 19(04), 211–220 (1979)

Hu, X.Z., Xu, J.C., Zhang, C.S.: Application of auxiliary space
preconditioning in field-scale reservoir simulation. Sci. China
Math. 56(12), 2737–2751 (2013). https://​doi.​org/​10.​1007/​
s11425-​013-​4737-3

Kang, Z., Deng, Z., Han, W., Zhang, D.: Parallel reservoir simula-
tion with OpenACC and domain decomposition. Algorithms
11(12), 213 (2018)

Killough, J., Kossack, C.: Fifth comparative solution project: evalu-
ation of miscible flood simulators. In: SPE Symposium on Res-
ervoir Simulation (1987). https://​doi.​org/​10.​2118/​16000-​MS

LeVeque, R.J.: Finite volume methods for hyperbolic problems. Mec-
canica 39, 88–89 (2002)

Li, Z., Wu, S.H., Zhang, C.S., Xu, J.C., Feng, C.S., Hu, X.Z.: Numer-
ical studies of a class of linear solvers for fine-scale petroleum
reservoir simulation. Comput. Vis. Sci. 18(2–3), 93–102 (2017).
https://​doi.​org/​10.​1007/​s00791-​016-​0273-3

Manea, A.M., Almani, T.: A massively parallel algebraic multiscale
solver for reservoir simulation on the GPU architecture. In: SPE
Reservoir Simulation Conference (2019)

Meyerink, J.A.: Iterative methods for the solution of linear equa-
tions based on incomplete block factorization of the matrix. In:
SPE Reservoir Simulation Symposium, vol. SPE-12262 (1983).
https://​doi.​org/​10.​2118/​12262-​MS

Middya, U., Manea, A., Alhubail, M., Ferguson, T., Byer, T., Dogru,
A.: A massively parallel reservoir simulator on the GPU archi-
tecture. In: SPE Reservoir Simulation Conference (2021).
https://​doi.​org/​10.​2118/​203918-​MS

Napov, A., Notay, Y.: An algebraic multigrid method with guaran-
teed convergence rate. SIAM J. Sci. Comput. 34(2), 1079–1109
(2012). https://​doi.​org/​10.​1137/​10081​8509

NVIDIA: CUDA C++ programming guide (2022). https://​docs.​
nvidia.​com/​cuda/​pdf/​CUDA_C_​Progr​amming_​Guide.​pdf

Odeh, A.S.: Comparison of solutions to a three-dimensional black-oil
reservoir simulation problem. J Petrol Technol 33(01), 13–25
(1981). https://​doi.​org/​10.​2118/​9723-​PA

OpenACC: OpenACC programming and best practices guide (2022).
http://​www.​opena​cc.​org/

OpenCAEPoro: mlticomponent multiphase porous media flow simu-
lator (2022). https://​faspd​evteam.​github.​io/​OpenC​AEPoro

Peaceman, D.W.: Fundamentals of numerical reservoir simula-
tion. In: Developments in petroleum science, p. 190. Elsevier,
Amsterdam (1977)

Peng, D., Robinson, D.B.: A rigorous method for predicting the criti-
cal properties of multicomponent systems from an equation of
state. AIChE J. 23(2), 137–144 (1977). https://​doi.​org/​10.​1002/​
aic.​69023​0202

Qiao, C.: General purpose compositional simulation for multiphase
reactive flow with a fast linear solver. PhD thesis, The Pennsyl-
vania State University (2015)

Quandalle, P., Savary, D.: An implicit in pressure and saturations
approach to fully compositional simulation. In: SPE Symposium
on Reservoir Simulation (1989)

Saad, Y.: Iterative methods for sparse linear systems, 2nd edn. Soci-
ety for Industrial and Applied Mathematics, New York (2003).
https://​doi.​org/​10.​1137/1.​97808​98718​003

Schlumberger: ECLIPSE Technical Description Version 2017.2
(2017). https://​www.​softw​are.​slb.​com/​produ​cts/​eclip​se

Stüben, K., Clees, T., Klie, H., Lu, B., Wheeler, M.F.: Algebraic
multigrid methods (AMG) for the efficient solution of fully
implicit formulations in reservoir simulation. In: SPE Reser-
voir Simulation Symposium (2007). https://​doi.​org/​10.​2118/​
105832-​MS

Sudan, H., Klie, H., Li, R., Saad, Y.: High performance manycore
solvers for reservoir simulation. In: European Conference on the

https://doi.org/10.1023/A:1021291114475
https://doi.org/10.1023/A:1021291114475
https://doi.org/10.1002/num.20320
https://doi.org/10.2118/118722-MS
https://doi.org/10.2118/96809-MS
https://doi.org/10.1137/1.9780898718942
https://doi.org/10.1137/1.9780898718942
https://doi.org/10.2118/72469-PA
https://doi.org/10.2118/15133-PA
https://doi.org/10.1007/BF01448839
https://doi.org/10.1007/BF01448839
https://doi.org/10.2118/203929-PA
https://doi.org/10.2118/203929-PA
https://doi.org/10.1109/MCSE.2006.105
https://doi.org/10.1109/MCSE.2006.105
https://doi.org/10.1007/s11425-013-4737-3
https://doi.org/10.1007/s11425-013-4737-3
https://doi.org/10.2118/16000-MS
https://doi.org/10.1007/s00791-016-0273-3
https://doi.org/10.2118/12262-MS
https://doi.org/10.2118/203918-MS
https://doi.org/10.1137/100818509
https://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
https://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
https://doi.org/10.2118/9723-PA
http://www.openacc.org/
https://faspdevteam.github.io/OpenCAEPoro
https://doi.org/10.1002/aic.690230202
https://doi.org/10.1002/aic.690230202
https://doi.org/10.1137/1.9780898718003
https://www.software.slb.com/products/eclipse
https://doi.org/10.2118/105832-MS
https://doi.org/10.2118/105832-MS

159An improved multistage preconditioner on GPUs for compositional reservoir simulation﻿	

1 3

Mathematics of Oil Recovery (2010). https://​doi.​org/​10.​3997/​
2214-​4609.​20144​961

Wallis, J.R.: Incomplete gaussian elimination as a preconditioning
for generalized conjugate gradient acceleration. In: SPE Res-
ervoir Simulation Symposium (1983). https://​doi.​org/​10.​2118/​
12265-​MS

Wallis, J.R., Kendall, R.P., Little, T.E.: Constrained residual accel-
eration of conjugate residual methods. In: SPE Reservoir Simu-
lation Symposium (1985). https://​doi.​org/​10.​2118/​13536-​MS

Xu, J.C.: Iterative methods by space decomposition and subspace
correction. SIAM Rev. 34(4), 581–613 (1992)

Xu, J.C.: The auxiliary space method and optimal multigrid precon-
ditioning techniques for unstructured grids. Computing 56(3),
215–235 (1996)

Yang, B., Liu, H., Chen, Z.X.: Accelerating linear solvers for res-
ervoir simulation on GPU workstations. Society for Computer

Simulation International 1, 1–8 (2016). https://​doi.​org/​10.​
22360/​Sprin​gSim.​2016.​HPC.​007

Zhang, C.S.: Linear solvers for petroleum reservoir simulation. J.
Numer. Methods Comput. Appl. 43(1), 1–26 (2022). https://​
doi.​org/​10.​12288/​szjs.​s2021-​0813

Zhao, L., Feng, C.S., Zhang, C.S., Shu, S.: Parallel multi-stage
preconditioners with adaptive setup for the black oil model.
Comput. Geosci. 168, 105230 (2022). https://​doi.​org/​10.​1016/j.​
cageo.​2022.​105230

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of
such publishing agreement and applicable law.

https://doi.org/10.3997/2214-4609.20144961
https://doi.org/10.3997/2214-4609.20144961
https://doi.org/10.2118/12265-MS
https://doi.org/10.2118/12265-MS
https://doi.org/10.2118/13536-MS
https://doi.org/10.22360/SpringSim.2016.HPC.007
https://doi.org/10.22360/SpringSim.2016.HPC.007
https://doi.org/10.12288/szjs.s2021-0813
https://doi.org/10.12288/szjs.s2021-0813
https://doi.org/10.1016/j.cageo.2022.105230
https://doi.org/10.1016/j.cageo.2022.105230

	An improved multistage preconditioner on GPUs for compositional reservoir simulation
	Abstract
	1 Introduction
	2 Mathematical model and discretization
	2.1 The compositional model
	2.2 Discretization method
	2.2.1 The choices of primary variables
	2.2.2 Finite volume method and backward Euler method
	2.2.3 Fully implicit method
	2.2.4 Discrete system

	3 Parallel multistage preconditioners with adaptive SETUP
	3.1 Multistage preconditioner
	3.2 MSP with adaptive SETUP

	4 A multicolor GS based on adjacency matrix
	4.1 Adjacency graph and algorithm principles
	4.2 multicolor GS algorithm

	5 Numerical experiments
	5.1 The modified SPE1 problem
	5.1.1 ASMSP-GMRES-GPU method

	5.2 The SPE10 problem
	5.3 The modified SPE5 problem
	5.4 PGS-MC method

	6 Conclusions
	Acknowledgements
	References

