
Vol.:(0123456789)1 3

CCF Transactions on High Performance Computing (2023) 5:171–190
https://doi.org/10.1007/s42514-023-00135-1

REGULAR PAPER

GCGE: a package for solving large scale eigenvalue problems
by parallel block damping inverse power method

Yu Li1 · Zijing Wang2,3 · Hehu Xie2,3

Received: 8 August 2022 / Accepted: 5 January 2023 / Published online: 7 February 2023
© China Computer Federation (CCF) 2023

Abstract
In this paper, we introduce some strategies to improve the efficiency and scalability of the generalized conjugate gradi-
ent algorithm and build a package GCGE for solving large scale eigenvalue problems. This method is the combination of
damping idea, subspace projection method and inverse power algorithm with dynamic shifts. To reduce the dimensions of
projection subspaces, a moving mechanism is developed when the number of desired eigenpairs is large. The numerical
methods, implementing techniques and the structure of the package are presented. Plenty of numerical results are provided
to demonstrate the efficiency, stability and scalability of the concerned eigensolver and the package GCGE for computing
many eigenpairs of large symmetric matrices arising from applications.

Keywords Large scale eigenvalue problem · Block damping inverse power method · GCGE · Efficiency · Stability ·
Scalability

Mathematics Subject Classification 65N30 · 65N25 · 65L15 · 65B99

1 Introduction

A fundamental and challenging task in modern science and
engineering is to solve large scale eigenvalue problems.
Although high-dimensional eigenvalue problems are ubiq-
uitous in physical sciences, data and imaging sciences, and
machine learning, there is no so many classes of eigensolv-
ers as that of linear solvers. Compared with linear equations,
there are less efficient numerical methods for solving large
scale eigenvalue problems, which poses significant chal-
lenges for scientific computing (Bai et al. 2000). Along with
the development of science and engineer, the eigenvalue
problems from complicated systems bring strong demand for
eigensolvers with good efficiency, stability and scalability.

The Arnoldi and Lanczos methods which are based on the
Krylov subspace are always used to design the eigensolv-
ers (Saad 1992). In order to use explicitly and implicitly
restarted techniques for generalized eigenvalue problems, it
is necessary to solve the included linear equations exactly
to produce upper Hessenberg matrices. But this requirement
is always very difficult for large scale sparse matrices with
poor conditions. Based on this consideration, locally opti-
mal block preconditioned conjugate gradient (LOBPCG) is
designed based on some types of iteration processes which

This research is supported partly by National Key R &D Program
of China 2019YFA0709600, 2019YFA0709601, Science Challenge
Project (No. TZ2016002), the National Center for Mathematics and
Interdisciplinary Science, CAS, and Tianjin Education Commission
Scientific Research Plan (2017KJ236).

 * Hehu Xie
 hhxie@lsec.cc.ac.cn

 Yu Li
 liyu@tjufe.edu.cn

 Zijing Wang
 zjwang@lsec.cc.ac.cn

1 Coordinated Innovation Center for Computable Modeling
in Management Science, Tianjin University of Finance
and Economics, Tianjin 300222, China

2 LSEC, ICMSEC, Academy of Mathematics and Systems
Science, Chinese Academy of Sciences, Beijing 100190,
China

3 School of Mathematical Sciences, University of Chinese
Academy of Sciences, Beijing 100049, China

http://crossmark.crossref.org/dialog/?doi=10.1007/s42514-023-00135-1&domain=pdf
http://orcid.org/0000-0002-1947-9256

172 Y. Li et al.

1 3

do not need to solve the included linear equations exactly
(Knyazev and Neymeyr 2003; Knyazev 2006; Hetmaniuk
and Lehoucq 2006; Knyazev et al. 2007; Duersch et al.
2018). This property makes LOBPCG be a reasonable can-
didate for solving large scale eigenvalue problems on par-
allel computers. But the subspace generating method and
orthogonalization way lead to the unstability of LOBPCG
algorithm (Li et al. 2020; Ning Zhang et al. 2020).

The appearance of high performance computers brings
more possibilities for computing plenty of eigenpairs of
large scale matrices. However, it is harder to design the
eigensolver for large scale eigenvalue problems which has
the same efficiency and scalability as the linearsolver for
large scale linear equations. Solving eigenvalue problems
on high performance computers needs new considerations
such as the stability and scalability of orthogonalization for
plenty of vectors, efficiency and memory costing for com-
puting Rayleigh-Ritz problems. The first aim of this paper
is to introduce new strategies to improve the efficiency and
scalability of generalized conjugate gradient (GCG) method
which is proposed in Li et al. (2020), Ning Zhang et al.
(2020). These strategies include new efficient implementing
techniques for orthogonalization and computing Rayleigh-
Ritz problems. A recursive orthogonalization method with
singular value decomposition (SVD) is proposed to improve
scalability. In addition, we also provide a moving mechanism
to reduce the dimensions of projection subspaces when solv-
ing Rayleigh-Ritz problems. The second aim is to build the
package GCGE for solving large scale eigenvalue problems.
The package Generalized Conjugate Gradient Eigensolver
(GCGE) is written by C language and constructed with the
way of matrix-free and vector-free. The source code can be

downloaded from GitHub with the address https:// github.
com/ Mater ials- Of- Numer ical- Algeb ra/ GCGE.

The rest of the paper is organized as follows. In Sect. 2,
we present the concerned algorithm for eigenvalue prob-
lems. The implementing techniques are designed in Sect. 3.
The package GCGE will be introduced in Sect. 4. In Sect. 5,
plenty of numerical tests are provided to demonstrate the
efficiency, stability and scalability of the proposed algorithm
and the associated package. Concluding remarks are given
in the last section.

2 GCG algorithm

For simplicity, in this paper, we are concerned with the
following generalized algebraic eigenvalue problem: Find
eigenvalue � ∈ ℝ and eigenvector x ∈ ℝ

N such that

where A is a N × N real symmetric matrix and B is a N × N
real symmetric positive definite (SPD) matrix.

The GCG algorithm is a type of subspace projection
method, which uses the damping block inverse power idea
to generate triple blocks [X, P, W], where X saves the current
eigenvector approximation, P saves the information from
previous iteration step, and W saves vectors from the inverse
power iteration with some conjugate gradient (CG) steps to
X. We name this method as generalized conjugate gradient
algorithm since the structure of triple blocks [X, P, W] is
similar to that of conjugate gradient method for linear equa-
tions. The GCG algorithm is defined by Algorithm 1, where
numEigen stands for the number of desired eigenpairs.

(1)Ax = �Bx,

https://github.com/Materials-Of-Numerical-Algebra/GCGE
https://github.com/Materials-Of-Numerical-Algebra/GCGE

173GCGE: a package for solving large scale eigenvalue problems by parallel block damping inverse…

1 3

The main difference of Algorithm 1 from LOBPCG is
the way to generate W and orthogonalization to V. The GCG
algorithm uses the inverse power method with dynamic
shifts to generate W. Meanwhile, the full orthogonalization
to V is implemented in order to guarantee the numerical
stability. In addition, a new type of recursive orthogonaliza-
tion method with SVD will be designed in the next section.

In Step 3 of Algorithm 1, solving Rayleigh-Ritz problem
is a sequential process which can not be accelerated by using
normal parallel computing. Furthermore, it is well known
that the computing time is superlinearly dependent on the
number of desired eigenpairs (Saad 1992). Then in order to
accelerate this part, reducing the dimensions of Rayleigh-
Ritz problems is a reasonable way. We will compute the
desired eigenpairs in batches when the number of desired
eigenpairs is large. In each iteration step, the dimensions
of P and W are set to be ��������∕5 or ��������∕10 .
Moreover, a moving mechanism is presented for comput-
ing a large number of desired eigenpairs. These two strate-
gies can further reduce not only the time proportion of the
sequential process for solving Rayleigh-Ritz problems but
also the amount of memory required by STEP 3. In addi-
tion, the Rayleigh-Ritz problem is distributed to multi com-
puting processes and each process only computes a small
part of desired eigenpairs. In other words, the Rayleigh-Ritz
problem is solved in parallel. More details of implementing
techniques will be introduced in Sects. 3.2–3.3 or refer to Li
et al. (2020), Ning Zhang et al. (2020).

In STEP 6 of Algorithm 1, though the matrix A − �B may
not be SPD, the CG iteration method is adopted for solving
the included linear equations due to the warm start X and the
shift � . Please refer to Sect. 3.2 for more details. Further-
more, it is suggested to use the algebraic multigrid method
as the preconditioner for STEP 6 of Algorithm 1 with the
shift � = 0.0 , when the concerned matrices are sparse and
come from the discretization of partial differential operators
by finite element, finite difference or finite volume, etc.

3 Implementing techniques

In this section, we introduce implementing techniques to
improve efficiency, scalability and stability for the concerned
eigensolver in this paper. Based on the discussion in Sect. 2,
we focus on the methods for doing the orthogonalization and
computing Rayleigh-Ritz problems. A recursive orthogo-
nalization method with SVD and a moving mechanism are

presented. In addition, the package GCGE is introduced,
which is written by C language and constructed with the way
of matrix-free and vector-free.

3.1 Improvements for orthogonalization

This subsection is devoted to introducing the orthogonaliza-
tion methods which have been supported by GCGE. So far,
we have provided modified block orthogonalization method
and recursive orthogonalization method with SVD. The cri-
terion for choosing the orthogonalization methods should
be based on the number of desired eigenpairs and the scales
of the concerned matrices. The aim is to keep the balance
among efficiency, stability and scalability.

The modified Gram-Schmidt method (Stewart 2008) is
designed to improve the stability of classical orthogonaliza-
tion method. The modified block orthogonalization method
is the block version of modified Gram-Schmidt method,
which can be defined by Algorithm 3. They have the same
accuracy and stability, but the modified block orthogonaliza-
tion method has better efficiency and scalability.

Let us consider the orthogonalization for X ∈ ℝ
N×m and

assume m = b� in Algorithm 2. We divide X into � blocks,
i.e., X = [X1,X2,… ,X�] , where Xi ∈ ℝ

N×b , i = 1,… ,� . The
orthogonalization process is to make X be orthogonal to X0
and do orthogonalization for X itself, where X0 ∈ ℝ

N×m0 has
already been orthogonalized, i.e., X⊤

0
BX0 = I.

Firstly, in order to maintain the numerical stability, the
process of deflating components in X0 from X is repeated
until the maximum absolute value of elements in X⊤

0
BX is

small enough. Secondly, the columns of X in blocks of �
columns are orthogonalized through the modified Gram-
Schmidt method. For each k = 1,… ,� in Algorithm 2,
when Xk is linear dependent, the rearmost vectors of X are
copied to the corresponding location. In addition, there
are b + 1 global communications in each ��� circle on the
4-th line of Algorithm 2. In other words, the total number
of global communications is

In fact, in modified block orthogonalization method, we
deflate the components in previous orthogonalized vectors
successively for all unorthogonalized vectors in each itera-
tion step. This means Algorithm 2 uses block treatment for
the unorthogonalized vectors to improve efficiency and scal-
ability without loss of stability. As default, b is set to be
min(m∕4, 200).

(b + 1)(� − 1) + b = m + m∕b − 1.

174 Y. Li et al.

1 3

In order to improve efficiency and scalability further, we
design a type of recursive orthogonalization method with
SVD and the corresponding scheme is defined by Algo-
rithm 3. The aim here is to make full use of level-3 BLAS

operations. We also find the paper (Yokozawa et al. 2006) has
discussed the similar orthogonalization method without SVD.
The contribution here is to combine the recursive orthogo-
nalization method and SVD to improve the scalability.

175GCGE: a package for solving large scale eigenvalue problems by parallel block damping inverse…

1 3

Let us consider X ∈ ℝ
N×m and m = 2� in Algorithm 3.

The orthogonalization of X is completed by calling
���������������� recursively. We use X(∶ , � ∶ �) to
stand for the s-th column to e-th column of X. When
������ ≤ c , SVD is applied to do the orthogonalization
to X, where c is set to be min(m, 16) as default. In order to
maintain the numerical stability, the orthogonalization to
X with SVD is repeated until the matrix Λ is close enough
to the identity matrix. Always, the above condition is sat-
isfied after two or three iterations. If M has eigenvalues
close to zero, i.e., the columns of Xk are linearly depend-
ent, the subsequent vectors will be copied to the corre-
sponding location.

If c = 16 and we do the orthogonalization to X with
SVD three times when ������ ≤ c , the total number of
global communications is

which is much smaller than that of Algorithm 2.
The recursive orthogonalization method with SVD is

recommended and it is the default choice in our package
for the orthogonalization. In fact, Algorithms 2 and 3
can both reach the required accuracy for all numerical
examples in this paper. In the case of solving generalized
eigenvalue problems, B-orthogonalization should be con-
sidered. Algorithm 3 is more efficient than Algorithm 2
in most cases, which will be shown in Sect. 5.5.

3.2 Computation reduction for Algorithm 1

In this subsection, let us continue considering the com-
putation reduction for Algorithm 1, i.e., design efficient
ways to compute the Rayleigh-Ritz problem in STEP 3
which include

• Orthogonalizing V = [X,P,W];
• Computing the small scale matrix Ā = V⊤AV ;
• Solving the standard eigenvalue problem Ā�x = �xΛx.

Except for the moving mechanism shown in Sect. 3.3 and
the inverse power method with dynamic shifts for solving
W, the techniques here are almost the same as those in
Li et al. (2020), Ning Zhang et al. (2020). But for easier
understanding and completeness, we also introduce them
here using more concise expressions. In conclusion, the
following main optimization techniques are implemented:

(1) The converged eigenpairs do not participate the subse-
quent iteration;

(2) The sizes of P and W are set to be blockSize, which
is equal to numEigen/5 as default;

20 + 21 + 22 +⋯ + 2�−5 + 3 × 2�−4 =
1

4
m − 1,

(3) The shift is selected dynamically when solving W;
(4) The large scale orthogonalization to V is transformed

into the small scale orthogonalization to P and a large
scale orthogonalization to W;

(5) The submatrix of Ā corresponding to X can be obtained
by Λx;

(6) The submatrix of Ā corresponding to P can be com-
puted by multiplication of small scale dense matrices;

(7) The Rayleigh-Ritz problem Ā�x = �xΛx is solved in paral-
lel;

(8) The moving mechanism is presented to reduce the
dimension of Ā further.

According to STEP 2 of Algorithm 1, we decompose X
into three parts

where Xc denotes the converged eigenvectors and [Xn,Xñ]
denotes the unconverged ones. The number of vectors in Xn
is blockSize. Based on the structure of X, the block ver-
sion has the following structure

with V⊤BV = I . And the eigenpairs Λx and x̂ can be decom-
posed into the following form

where Λx is the diagonal matrix.
Then in STEP 3 of Algorithm 1, the small scale eigenvalue

problem

has the following form

where Ā = V⊤AV , �x⊤�x = I and x̂c , x̂n , x̂ñ have following
structures

X =
[
Xc, Xn, Xñ

]
,

V =
[
Xc, Xn, Xñ, P, W

]

(2)Λx =

⎡⎢⎢⎣

Λc O O

O Λn O

O O Λñ

⎤⎥⎥⎦
, x̂ =

�
x̂c, x̂n, x̂ñ

�
,

Ā�x = �xΛx

(3)Ā

⎡
⎢⎢⎢⎢⎢⎣

I O O

O �xnn �xn�n
O �x�nn �x�n�n
O �xpn �xp�n
O �xwn �xw�n

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

I O O

O �xnn �xn�n
O �x�nn �x�n�n
O �xpn �xp�n
O �xwn �xw�n

⎤
⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎣

Λc O O

O Λn O

O O Λ�n

⎤⎥⎥⎦
,

(4)x̂c =

⎡
⎢⎢⎢⎢⎢⎣

I

O

O

O

O

⎤
⎥⎥⎥⎥⎥⎦

, x̂n =

⎡
⎢⎢⎢⎢⎢⎣

O

x̂nn
x̂ñn
x̂pn
x̂wn

⎤
⎥⎥⎥⎥⎥⎦

, x̂ñ =

⎡
⎢⎢⎢⎢⎢⎣

O

x̂nñ
x̂ññ
x̂pñ
x̂wñ

⎤
⎥⎥⎥⎥⎥⎦

.

176 Y. Li et al.

1 3

In addition, Ritz vectors are updated as

In STEP 4 of Algorithm 1, the convergence of the eigenpairs
(Λx,X

���) is checked. Due to (2), we set

and the diagonal of Λn1
 inclues the new converged eigenval-

ues. Then all � convergened eigenvectors are in

and the unconverged ones are in

If � is equal to numEigen, the iteration will stop. Oth-
erwise, 0 ≤ � < �������� and the iteration will continue.
Here, the length of X���

n
 is

In STEP 5 of Algorithm 1, in order to produce P for the
next GCG iteration, from the definition of x̂n in (4) and the
orthonormality of V, i.e., V⊤BV = I , we first set

where

In order to compute P��� to satisfy (X���)⊤BP��� = O , we
come to do the orthogonalization for small scale vectors in
[̂x, p̃] according to the L2 inner product. Since vectors in x̂
are already orthonormal, the orthogonalization only needs
to be done for p̃ against x̂ to get a new vectors p̂ . Thus let
[̂x, p̂] denote the orthogonalized block, i.e.,

Then,

Moreover, it is easy to check that

and

X��� = Vx̂.

x̂n =
[
x̂n1, x̂n2

]
, x̂ñ =

[
x̂ñ1 , x̂ñ2

]
,

Λn =

[
Λn1

O

O Λn2

]
, Λñ =

[
Λñ1

O

O Λñ2

]
,

X���
c

= V
[
x̂c, x̂n1

]
,

X���
n

= V
[
x̂n2 , x̂ñ1

]
and X���

ñ
= Vx̂ñ2 .

��������� = min(��������∕�, �������� − �).

�P = V�xn − Xn(X
⊤
n
BV�xn) = V�p,

(5)p̃ =

⎡
⎢⎢⎢⎢⎢⎣

O

O

x̂ñn
x̂pn
x̂wn

⎤
⎥⎥⎥⎥⎥⎦

.

(6)
[
�x, �p

]⊤ [
�x, �p

]
= I.

P��� = Vp̂.

(X���)⊤BP��� = �x⊤V⊤BV�p = O

In STEP 6 of Algorithm 1, W̃ is obtained by some CG itera-
tions for the linear equations

with the initial guess X���
n

 , where the shift � is related to the
largest converged eigenvalue in the convergence process. It
is noted that the shift is not fixed and the matrix A − �B
may not be SPD, but the initial guess X���

n
 is perpendicular

to the eigenvectors of A − �B corresponding to all negative
eigenvalues, i.e.,

since X���
c

 reaches the convergence criterion. In other words,
A − �B is SPD in the orthogonal complement space of
span (X���

c
) . Then the CG iteration method can be adopted

for solving the included linear equations. Due to the shift � ,
the multiplication of matrix and vector of each CG iteration
takes more time, but the convergence of GCG algorithm
is accelerated. In addition, there is no need to solve linear
equations (7) with high accuracy, and only 10-30 CG itera-
tions are enough during each GCG iteration. In Remark 3.1,
an example is presented to explain why the convergence of
GCG algorithm with dynamic shifts is accelerated after one
CG iteration. In Sect. 5.1, we give some numerical results
to show the performance of GCGE with dynamic shifts and
the convergence procedure under different number of CG
iterations. In order to produce W��� by Algorithm 3 for the
next GCG iteration, we need to do the orthogonalization to
W̃ according to [X���,P���] , i.e.,

Remark 3.1 We give an example to present the accelerating
convergence of GCG algorithm with dynamic shifts after
one CG iteration. Assuming that the first eigenpair (�1, v1)
has been found for the standard eigenvalue problem

we have the approximate eigenvector x0 = a2v2 + a3v3 to the
second eigenvector, where

Since the linear equations

we can obtain the new approximate eigenvector

(P���)⊤BP��� = �p⊤V⊤BV�p = I.

(7)(A − �B)W̃ = BX���
n

[
Λn2

− �I O

O Λñ1
− �I

]

(X���
n

)⊤(A − 𝜃B)X���
c

= O,

[
X���, P���

]⊤
BW��� = O, (W���)⊤BW��� = I.

Ax = �x,

Av2 = 𝜆2v2, Av3 = 𝜆3v3, and 0 < 𝜆1 < 𝜆2 ≤ 𝜆3.

(A − 𝜃I)w = (�̃� − 𝜃)x0 and 0 ≤ 𝜃 < 𝜆2,

177GCGE: a package for solving large scale eigenvalue problems by parallel block damping inverse…

1 3

after the first CG iteration with the initial guess x0 , where
�̃� = x⊤

0
Ax0∕x

⊤
0
x0 . It is noted that the convergence rate is

which is less than that of the case � = 0.

Backing to STEP 2 of Algorithm 1, we denote

During solving the Rayleigh-Ritz problem, we need
to assemble the small scale matrices (V���)⊤AV��� and
(V���)⊤BV��� . Since the orthogonalization to the vectors in
V��� has been done under the inner product deduced by the
matrix B, (V���)⊤BV��� is an identity matrix. Then we only
need to compute the matrix Ā��� , which is equal to

From (3), the submatrix (X���)⊤AX��� does not need to be
computed explicitly since it satisfies the following formula

Based on the basis in V and (6), we have

and

Thus from (8), (9), (10) and (11), we know the matrix Ā���
has the following structure

where

x1 =
a
2

2
+ a

2

3

a
2

3
(�2 − �) + a

2

2
(�3 − �)

(
(�3 − �)a2v2 + (�2 − �)a3v3

)
,

�2 − �

�3 − �
,

V��� =
[
X���, P���, W���

]
=
[
Vx̂, Vp̂, W���

]
.

(8)
⎡⎢⎢⎣

(X���)⊤AX��� (X���)⊤AP��� (X���)⊤AW���

(P���)⊤AX��� (P���)⊤AP��� (P���)⊤AW���

(W���)⊤AX��� (W���)⊤AP��� (W���)⊤AW���

⎤⎥⎥⎦
.

(9)(X���)⊤AX��� = �x⊤V⊤AV�x = �x⊤Ā�x = Λx.

(10)(P���)⊤AP��� = �p⊤V⊤AV�p = �p⊤Ā�p

(11)(P���)⊤AX��� = �p⊤V⊤AV�x = �p⊤Ā�x = �p⊤�xΛx = O.

(12)

⎡⎢⎢⎢⎣

Λ0 O O O

O Λ1 O 𝛼1
O O 𝛼0 𝛼2
O 𝛼⊤

1
𝛼⊤
2
𝛼3

⎤
⎥⎥⎥⎦
,

Λ0 =

�
Λc O

O Λn1

�
, Λ1 =

⎡
⎢⎢⎣

Λn2
O O

O Λ�n1
O

O O Λ�n2

⎤
⎥⎥⎦
,

𝛼0 = �p⊤Ā�p, 𝛼1 =
�
X���
n

, X���
�n

�⊤
AW���,

𝛼2 = (P���)⊤AW���, 𝛼3 = (W���)⊤AW���.

It is noted that since X���
c

 reaches the convergence criterion,
we assume the equation

is satisfied. Then

is satisfied approximately since (W���)⊤BX���
c

= O.
After assembling matrix Ā��� , the next task is to solve the

new small scale eigenvalue problem:

in STEP 3. Due to the converged eigenvectors X���
c

 in V��� ,
there are already � converged eigenvectors of Ā��� and they
all have the form

where 1 stays in the position of associated converged eigen-
value. We only need to compute the unconverged eigenpairs
corresponding to [X���

n
,X���

ñ
] for the eigenvalue problem

(13). The subroutine dsyevx from LAPACK (Anderson
et al. 1999) is called to compute the (� + 1)-th to ��������
-th eigenvalues and their associated eigenvectors.

In order to reduce time consuming for solving (13), this task
is distributed to multi computing processes and each process
only computes a small part of desired eigenpairs. After all
processes finish their tasks, the subroutine ���_����������
is adopted to gather all eigenpairs from all processes and
deliver them to all. This way leads to an obvious time reduc-
tion for computing the desired eigenpairs of (13). Since more
processes lead to more communicating time, we choose the
number of used processes for solving (13) such that each pro-
cess computes at least 10 eigenpairs.

Remark 3.2 In order to accelerate the convergence, the
size of X, sizeX, is always chosen to be greater than
numEigen. In GCGE, sizeX is set to be the minimum
of �������� + 3 × ��������� and the dimension of A, as
default.

AX���
c

= BX���
c

Λ���
c

(W���)⊤AX���
c

= (W���)⊤BX���
c

Λ���
c

= O

(13)Ā����x��� = �x���Λ���
x

,

(0, ..., 0, 1, 0, ..., 0)⊤,

Fig. 1 Moving [X, P, W], when 2 × ��������� eigenpairs converged

178 Y. Li et al.

1 3

Remark 3.3 Since the converged eigenpairs (Λc,Xc) do
not participate the subsequent iterations, Ā is computed as
follows

and the corresponding eigenpairs have the forms

In other words, the internal locking (deflation) is imple-
mented to avoid the computation to the converged eigenpairs.

3.3 The moving mechanism

In Algorithm 1, the small scale eigenvalue problem (13) needs
to be solved, in which the dimension of the dense matrix Ā is

where the s ize of X , s i z e X , i s equal to
�������� + 3 × ��������� . When numEigen is large,
e.g., 5000, with ��������� = 200 , dsyevx should
be called to solve 5000 eigenpairs for a dense matrix of
6000-dimension. In this case, the time of STEP 3 of Algo-
rithm 1 is always dominated.

In order to improve efficiency further for comput-
ing plenty of eigenpairs, we present a moving mecha-
nism. Firstly, the maximum project dimension is set to be
���������� = 5 × ��������� in moving procedure, i.e.,
the size of X is set to be 3 × ��������� and the sizes of P
and W are both ��������� . Secondly, when 2 × ���������
eigenpairs converged, all the eigenpairs of Ā will be solved,
i.e, Ā is decomposed into

[
Xn, X�n, P, W

]⊤
A
[
Xn, X�n, P, W

]
,

�
Λn O

O Λñ

�
,

⎡
⎢⎢⎢⎣

x̂nn x̂nñ
x̂ñn x̂ññ
x̂pn x̂pñ
x̂wn x̂wñ

⎤
⎥⎥⎥⎦
.

����� + 2 × ���������,
Fig. 2 Requested memory in each process

Table 1 Supported matrix–vector structures

matrix structure name vector structure name

MATLAB sparse distributed matrix full stored matrix
Hypre hypre_ParCSRMatrix hypre_ParVector
PETSc Mat Vec
PHG MAT VEC
SLEPc Mat BV

Fig. 3 The software structure
of GCGE

179GCGE: a package for solving large scale eigenvalue problems by parallel block damping inverse…

1 3

where

In addition, the new X is equal to V [̂x, p̂, ŵ] , and Λxpw can
be used to construct the new Ā in the next STEP 3. In other
words, P and W have been integrated into X. Then, the new P
and W will be computed and stored behind the new X. When
there are new converged 2 × ��������� eigenpairs again, P
and W will be integrated into X again, and so on. The above
process is shown in Fig. 1. It is noted that the dimension of
the dense matrix Ā is ���������� = 5 × ��������� at most
in the eigenvalue problem (13).

Moreover, the moving mechanism can greatly reduce
memory requirements, which allows more eigenpairs to be
computed under the same memory requirement. Specifically
speaking, the double array, of which the size is

is required to be stored in each process. The first two terms
denote the sizes of the two arrays which are used to store the
eigenpairs and the dense matrix in the small scale eigenvalue
problem (13). The third term is the size of workspace for
dsyevx. The last term is the size of the array which is used
in STEP 5. In Fig. 2, the required memory computed by (14)
is shown with and without the moving mechanism.

4 GCGE package

Based on Algorithm 1 and its implementing techniques pre-
sented in above sections, we develop the package GCGE,
which is written by C language and constructed with the
way of matrix-free and vector-free. So far, the package has
included the eigensolvers for the matrices which are stored
in dense format, compressed row/column sparse format or
are supported in MATLAB, Hypre (Falgout et al. 2006),
PETSc (Balay et al. 1997), PHG (Zhang 2009) and SLEPc
(Hernandez et al. 2005). Table 1 presents the currently sup-
ported matrix–vector structure. It is noted that there is no
need to copy the built-in matrices and the vectors from these
softwares/libraries to the GCGE package.

For understanding, Fig. 3 shows the three levels of struc-
ture of the GCGE package. Level 1 includes all the basic
matrix and vector operations. Level 2 implements the GCG
algorithm with the matrix-free and vector-free way, which
is the main part of GCGE. Level 3 combines the matrix and
vector operations from Level 1 and the GCG algorithm from
Level 2 to build the eigensolver.

Ā =
[
�x, �p, �w

]
Λxpw

[
�x, �p, �w

]−1
,

Ā = V⊤AV , V =
[
X, P, W

]
.

(14)
(����� + 2 × ���������) + 2 × (����������)2

+ 10 × (����������) + ����� × ���������,

A user can also build his own eigensolver by providing
the matrix, vector structures and their operations. The fol-
lowing six matrix–vector operations should be provided by
the user:

(1) VecCreateByMat
(2) VecDestroy
(3) VecLocalInnerProd
(4) VecSetRandomValue
(5) VecAxpby
(6) MatDotVec

They realize creating and destroying vector according to
matrix, computing local inner product of vectors x and
y, setting random values for vector x, computing vec-
tor y = �x + �y , computing vector y = Ax , respectively.
VecInnerProd, i.e., computing inner product of vectors
x and y, has been provided through calling VecLocalIn-
nerProd and MPI_Allreduce.

The default matrix-multi-vector operations are invoked
based on the above matrix–vector operations and the addi-
tional two operations: GetVecFromMultiVec and
RestoreVecForMultiVec, which are getting/restor-
ing one vector from/to multi vectors. For higher efficiency,
it is strongly recommended that users should provide the
following six matrix-multi-vector operations:

(1) MultiVecCreateByMat
(2) MultiVecDestroy
(3) MultiVecLocalInnerProd
(4) MultiVecSetRandomValue
(5) MultiVecAxpby
(6) MatDotMultiVec

In addition, if user-defined multi-vector is stored in dense
format, BLAS library can be used to implement (1)-(5)
operators easily, which has been provided in the GCGE
package. In other words, only one operator, i.e., computing
the multiplication of matrix and multi-vector needs to be
provided by users.

In order to improve the parallel efficiency of computing
inner products of multi-vectors X and Y, i.e., the operation
MultiVecInnerProd, a new MPI data type with the
corresponding reduced operation has been created by

The variable MPI_IN_PLACE is used as the value of
sendbuf in MPI_Allreduce at all processes.

Although SLEPc (Hernandez et al. 2005) provides an
inner product operation for BV structure, we still recom-
mend using our own multi-vector inner product operation.

180 Y. Li et al.

1 3

Let us give an example to illustrate the reason. For
instance, we need to compute the inner products

and the results are stored in the following submatrix

Always, the vectors [xi,⋯ , xj] and [yp,⋯ , yq] come from the
multi-vector

[xi,⋯ , xj]
⊤[yp,⋯ , yq]

(15)
⎡⎢⎢⎣

cip ⋯ ciq
⋮ ⋮

cjp ⋯ cjq

⎤⎥⎥⎦
.

and the dense matrix (15) is one submatrix of the following
matrix

which is stored by column. Thus, it can be noted that the
above mentioned submatrix (15) is not stored continuously.

The result of the SLEPc’s inner product operation,
BVDot, must be stored in a sequential dense matrix with
dimensions n × m at least. In other words, regardless of
the values of i, j, p and q, in each process, the additional
memory space is required, of which the size is n × m . In
general, n and m are set to be ����� + 2 × ��������� in
the GCG algorithm, while s and t are much less than n and
m, respectively.

In the GCGE package, the operation MultiVecInner-
Prod is implemented as follows:

(1) Through MultiVecLocalInnerProd, local inner
products are calculated and stored in the above men-
tioned submatrix for each process;

(2) A new MPI_Datatype named SUBMAT is created by

X = [x1,⋯ , xi,⋯ , xj,⋯ , xn],

Y = [y1,⋯ , yp,⋯ , yq,⋯ , ym].

⎡
⎢⎢⎢⎢⎢⎣

∗ ∗ ⋯ ∗ ∗

∗ cip ⋯ ciq ∗

∗ ⋮ ⋮ ∗

∗ cjp ⋯ cjq ∗

∗ ∗ ⋯ ∗ ∗

⎤
⎥⎥⎥⎥⎥⎦s×t

,

 with

(3) Through MPI_Op_create, the operation of sum of
SUBMAT is created, which is named as SUM_SUBMAT;

(4) Then

 is called with

Table 2 Testing matrices

ID Matrix Dimension Non-zero entries Density

1 Andrews 60,000 760,154 2.11e-4
2 CO 221,119 7,666,057 1.57e-4
3 Ga10As10H30 113,081 6,115,633 4.78e-4
4 Ga19As19H42 133,123 8,884,839 5.01e-4
5 Ga3As3H12 61,349 5,970,947 1.59e-3
6 Ga41As41H72 268,096 18,488,476 2.57e-4
7 Ge87H76 112,985 7,892,195 6.18e-4
8 Ge99H100 112,985 8,451,395 6.62e-4
9 Si34H36 97,569 5,156,379 5.42e-4
10 Si41Ge41H72 185,639 15,011,265 4.36e-4
11 Si5H12 19,896 738,598 1.87e-3
12 Si87H76 240,369 10,661,631 1.85e-4
13 SiO2 155,331 11,283,503 4.68e-4
14 FEM matrices A and B 14,045,759 671,028,055 3.40e-6

181GCGE: a package for solving large scale eigenvalue problems by parallel block damping inverse…

1 3

 to gather values from all processes and distribute the results
back to all processes.

Obviously, no extra workspace is needed here. The memory
requirements are reduced for each process.

5 Numerical results

The numerical experiments in this section are carried out
on LSSC-IV in the State Key Laboratory of Scientific
and Engineering Computing, Chinese Academy of Sci-
ences. Each computing node has two 18-core Intel Xeon
Gold 6140 processors at 2.3 GHz and 192 GB memory.
For more information, please check http:// lsec. cc. ac. cn/
chine se/ lsec/ LSSC- IVint roduc tion. pdf. We use num-
Proc to denote the number of processes in numerical
experiments.

In this section, the GCG algorithm defined by Algo-
rithm 1 and the implementing techniques in Sect. 3 are inves-
tigated for thirteen standard eigenvalue problems and one
generalized eigenvalue problem. The first thirteen matrices

Fig. 4 ��� = 10−8 , �������� = 800 , and ������� = 36

Table 3 The total number of GCG iterations

ID Matrix Dynamic shifts No shift Ratio

1 Andrews 102 281 36.29%
2 CO 97 195 49.74%
3 Ga10As10H30 105 213 49.29%
4 Ga19As19H42 110 216 50.92%
5 Ga3As3H12 81 165 49.09%
6 Ga41As41H72 133 236 56.35%
7 Ge87H76 78 212 36.79%
8 Ge99H100 77 206 37.37%
9 Si34H36 79 207 38.16%
10 Si41Ge41H72 87 208 41.82%
11 Si5H12 86 201 42.78%
12 Si87H76 89 232 38.36%
13 SiO2 90 164 54.87%

Table 4 FEM matrices with �������� = 800 , ��� = 10−12 and
������� = 576

The total number CPU time
(in sec-
onds)

of GCG iterations

Dynamic shifts 83 1669.19
No shift 88 1777.87
Ratio 94.31% 93.88%

http://lsec.cc.ac.cn/chinese/lsec/LSSC-IVintroduction.pdf
http://lsec.cc.ac.cn/chinese/lsec/LSSC-IVintroduction.pdf

182 Y. Li et al.

1 3

are available in Suite Sparse Matrix Collection1, which have
clustered eigenvalues and many negative eigenvalues. The
first matrix named Andrews is provided by Stuart Andrews
at Brown University, which has seemingly random sparsity
pattern. The second to the thirteenth matrices are generated
by the pseudo-potential algorithm for real-space electronic
structure calculations (Kronik et al. 2006; Natan et al. 2008;
Saad et al. 2010). The FEM matrices A and B come from

the finite element discretization for the following Laplace
eigenvalue problem: Find (�, u) ∈ ℝ × H1

0
(Ω) such that

where Ω = (0, 1) × (0, 1) × (0, 1) . The discretization of the
eigenvalue problem (16) by the conforming cubic finite ele-
ment (P3 element) with 3,145,728 elements leads to the
stiffness matrix A and the mass matrix B. The concerned
matrices are listed in Table 2, where the density is defined by

(16)
{

−Δu = �u, in Ω,

u = 0, on �Ω,

Fig. 5 Convergence procedure (left), average time of each GCG step (middle) and Figure4-1total time (right) of GCGE for SiO2 with
��� = 10−8

Fig. 6 Convergence procedure (left), average time of each GCG step (middle) and total time (right) of GCGE for FEM matrices with ��� = 10−8

1 https:// sparse. tamu. edu.

https://sparse.tamu.edu

183GCGE: a package for solving large scale eigenvalue problems by parallel block damping inverse…

1 3

The proposed GCG algorithm given by Algorithm 1 based
on BV structure from SLEPc is adopted to solve eigenpairs
of the concerned matrices in Table 2.

The convergence criterion is set to be

for the first thirteen matrices and

the number of non-zero entries

dimension × dimension
.

‖Ax − 𝜆x‖2∕‖x‖2 < ���

‖Ax − 𝜆Bx‖2∕(𝜆‖B1∕2x‖2) < ���

for FEM matrices, where the tolerance, tol, is set to be 10−8
as default. Moreover, we set ��������� = ��������∕10 for
the first thirteen matrices and ��������� = ��������∕5
for FEM matrices. In addition, we choose the parameters:

such that the LOBPCG has the best efficiency for
comparison.

In order to confirm the efficiency, stability and scalability
of GCGE, we investigate the numerical comparison between

Fig. 7 ��� = 10−4 , �������� = 800 , and ������� = 36

Fig. 8 ��� = 10−8 , �������� = 800 , and ������� = 36

184 Y. Li et al.

1 3

GCGE and LOBPCG. We will find that GCGE has better
efficiency, stability than LOBPCG and they have almost the
same good scalability. In addition, Krylov-Schur method is
also compared in Sects. 5.2 and 5.5.

5.1 About dynamic shifts and the number of CG
iterations

In this subsection, we give some numerical results to show
the performance of GCGE with dynamic shifts and the con-
vergence procedure under different number of CG iterations.

In STEP 6 of Algorithm 1, the linear equations (7)
are solved by some CG iterations. Due to the shift � , the

multiplication of matrix and vector of each CG iteration
takes more time, but the convergence of GCG algorithm
is accelerated. For the standard eigenvalue problems, i.e.,
B = I , because the additional computation is only the lin-
ear operations on vectors, each GCG iteration with dynamic
shifts takes a little more time than the case of no shift. As
shown in Fig. 4, the performance of GCGE with dynamic
shifts is greatly improved. In addition, the total number of
GCG iterations is presented in Table 3.

For the generalized eigenvalue problems, there is no
significant improvement for the overall performance of
GCGE with dynamic shifts by the additional computation
of the multiplication of matrix B and vectors. When the

Fig. 9 ��� = 10−12 , �������� = 800 , and ������� = 36

Fig. 10 Convergence procedure (left) and absolute residual of the first non-converged eigenpair(right) for the first thirteen matrices with
��� = 10−12 , �������� = 800 , and ������� = 36

185GCGE: a package for solving large scale eigenvalue problems by parallel block damping inverse…

1 3

matrix A can be modified, we recommend users to generate
A − �B explicitly and do CG steps for A − �B directly. In
this event, GCGE with dynamic shifts will perform better
for the generalized eigenvalue problem and the results for

�������� = 800 and numEigen = 5000 are shown in
Tables 4 and 7, respectively.

In addition, the GCG algorithm does not need to solve
linear equations exactly in STEP 6. In the rest of this sub-
section, the total time of GCGE and the average time per
each GCG iteration are presented under different number
of CG iterations. Because the first thirteen matrices have
similar density, we choose SiO2 with ������� = 36 and
FEM matrices with ������� = 576 for the test.

For SiO2 with �������� = 400 and 800, as shown in
Fig. 5, when the number of CG iterations is increased from
5 to 35 in each GCG iteration, the number of GCG itera-
tions decreases and the average time per each GCG itera-
tion increases. And the total time reaches a minimum near

Fig. 11 Convergence procedure (left) and absolute residual of the first non-converged eigenpair(right) for the FEM matrices with
�������� = 200 and ������� = 576

Fig. 12 CPU time of GCGE (left) and LOBPCG (middle) for the first thirteen matrices with ��� = 10−8 and ������� = 36 , CPU time for FEM
matrices (right) with ��� = 10−8 and ������� = 576

Table 5 CPU time for FEM matrices (P1 element) with ��� = 10−8
and ������� = 36

Method 50 100 200

GCGE 20.15 38.98 71.49
Krylov-Schur 1032.33 1360.56 2180.28
LOBPCG 63.99 114.65 286.67

186 Y. Li et al.

1 3

15 CG iterations according to the right subfigure in Fig. 5.
In fact, the examples from Andrews to SiO2 have similar
conclusions.

Figure 6 shows the corresponding results for FEM matri-
ces with �������� = 100 and 200. When the number of CG
iterations is increased from 10 to 70, the number of GCG
iterations decreases and the average time per each GCG iter-
ation increases. The best performance is achieved at 30–40
CG iterations as shown in the right subfigure in Fig. 6.

It is noted that the number of CG iterations in each GCG
iteration affects the efficiency of the algorithm deeply as pre-
sented in Figs. 5 and 6. The average time per each GCG itera-
tion is linearly associated with the number of CG iterations.
So, the number of CG iterations is a key parameter for trading
off between the number of GCG iterations and the average
time for each GCG iteration. In fact, the total time of GCG
algorithm is nearly equal to the multiplication of the number
of GCG iterations and the average time of GCG iterations. In

other words, though increasing the number of CG iterations
can accelerate convergence, it takes more time in each GCG
iteration.

In fact, the sparsity, the condition number and the dimen-
sion of the matrix all affect the convergence rate of the CG
iteration. In the GCGE package, we set two stop conditions
of the CG iteration. When the residual of the solution is less
than one percent of the initial residual, or the number of CG
iterations is greater than 30, the CG iteration will be stopped.

5.2 About different tolerances

In this subsection, we will compare the performance of
GCGE, LOBPCG and Krylov-Schur methods under differ-
ent tolerances.

Table 6 Small scale matrices with ��� = 10−8 and �������� = 800

numProc Method Andrews Ga3As3H12 Si5H12

36 GCGE 37.28 60.32 9.38
Krylov-Schur 54.66 69.90 11.95
LOBPCG 447.09 650.75 113.48

72 GCGE 26.09 39.85 7.65
Krylov-Schur 26.34 34.13 5.30
LOBPCG 247.59 353.91 62.59

144 GCGE 22.69 26.54 7.11
Krylov-Schur 14.82 15.73 2.90
LOBPCG 155.08 193.54 44.10

288 GCGE 34.55 20.36 8.64
Krylov-Schur 16.22 8.49 2.69
LOBPCG 162.46 115.88 34.98

Fig. 13 CPU time of GCGE (left), Krylov-Schur (middle) and LOBPCG (right) for the first thirteem matroces with ��� = 10−8 and
�������� = 800

Fig. 14 CPU time for FEM matrices with ��� = 10−8

187GCGE: a package for solving large scale eigenvalue problems by parallel block damping inverse…

1 3

In Figs. 7 and 8, GCGE, LOBPCG and Krylov-
Schur methods with ������� = 36 are compared under
��� = 10−4 and 10−8 , respectively. Under the tolerance
10−12 , LOBPCG can not converge after 3000 iterations,
which means that the LOBPCG has no good stability. So
only the performance of GCGE and Krylov-Schur meth-
ods are compared under ��� = 10−12 and the results are
presented in Fig. 9. Here, MUMPS (Amestoy et al. 2001,
2019) is used as linear solver for Krylov-Schur method.

Obviously, GCGE is always more efficient than
LOBPCG under different tolerances. In addition, when
��� = 10−4 and 10−8 , GCGE is much faster than Krylov-
Schur method. Under tolerances 10−12 , the CPU time of
GCGE and Krylov-Schur method is similar and GCGE is
slightly faster.

In addition, the convergence procedure of GCG algo-
rithm with ��� = 10−12 for the first thirteen matrices is
shown in the left subfigure of Fig. 10. As the number
of GCG iterations increases, the number of converged

eigenpairs increases. In the right subfigure of Fig. 10,
the absolute residual of the first unconverged eigenpair
is presented.

For FEM matrices, the performances of GCGE are
shown in Fig. 11. Due to ��������� = ��������∕5 = 40 ,
there are four noticeable pauses for the case of ��� = 10−12
when the number of converged eigenpairs is close to
1 × 40 , 2 × 40 , 3 × 40 , and 4 × 40 at around the 40th, 60th,
80th, and 100th GCG iteration. Roughly speaking, the
40 eigenpairs can be converged once every twenty GCG
iterations.

5.3 Scaling for the number of eigenpairs

Here, we investigate the dependence of computing time on
the number of desired eigenpairs. For this aim, we compute
the first 50-800 eigenpairs of matrices listed in Table 2.

The test for the first thirteen matrices is performed on
a single node with 36 processes. The results in Fig. 12

Fig. 15 ��� = 10−12 , ��������� = 100 , and ������� = 36

Table 7 The performance
for FEM matrices with
�������� = 5000 , ��� = 10−8 ,
��������� = 200 , and
������� = 1152

Without moving mechanism With moving mechanism With moving mechanism

Without dynamic shifts Without dynamic shifts With dynamic shifts

Time Percentage Time Percentage Time Percentage

STEP 2 445.05 5.33% 20.02 0.48% 20.03 0.62%
STEP 3 4727.57 56.65% 729.12 17.79% 605.75 18.67%
STEP 4 78.94 0.95% 41.54 1.01% 30.39 0.94%
STEP 5 281.12 3.37% 122.68 2.99% 99.29 3.06%
STEP 6 2811.89 33.70% 3185.45 77.72% 2489.61 76.72%
Total time 8344.57 100.00% 4098.83 100.00% 3245.07 100.00%
Ratio 100.00% 49.12% 38.89%

188 Y. Li et al.

1 3

show that just like LOBPCG, GCGE has almost linear scal-
ing property, which means the computing time is linearly
dependent on the number of desired eigenpairs. Moreover,
GCGE has better efficiency than LOBPCG. From Andrews
to SiO2, the total time (the summation of CPU time over all
cases) ratios of GCGE to LOBPCG are

Since the scales of FEM matrices are large, the test is
performed with 576 processes on 16 nodes. The depend-
ence of CPU time (in seconds) for FEM matrices on the
number of eigenpairs is shown in the right subfigure of
Fig. 12, which implies that GCGE has better efficiency
than LOBPCG for large scale matrices. Moreover, GCGE
and LOBPCG both have almost linear scaling property for
large scale FEM matrices.

Remark 5.1 In fact, Krylov-Schur method is low effi-
cient for FEM matrices on multi-nodes. In Table 5, for
�������� = 50, 100, 200 , the generalized eigenvalue prob-
lem is tested, which is the discretization of the eigenvalue
problem (16) for the conforming linear finite element (P1
element) with 3,145,728 elements. The dimensions of the
matrices A and B are both 512,191.

5.4 Scalability test

In order to do the scalability test, we use 36-288 processes
to compute the first 800 eigenpairs of the first thirteen
matrices listed in Table 2. The comparisons of the scal-
ability of GCGE and LOBPCG are shown in Fig. 13 and
Table 6. It is noted that GCGE, LOBPCG, and Krylov-
Schur methods have similar scalability for the first thirteen
matrices, but the total time (the summation of CPU time
over all cases) ratios of GCGE to LOBPCG are

from Andrews to SiO2. In other words, GCGE has better
efficiency than LOBPCG. In addition, the total time (the
summation of CPU time over all cases) ratios of GCGE to
Krylov-Schur method are

17.59%, 19.17%, 16.70%, 15.02%, 19.35%, 15.46%,

14.67%, 14.43%, 15.85%, 14.44%, 28.82%, 14.15%, 19.55%.

11.92%, 10.10%, 9.61%, 8.79%, 11.19%, 8.37%,

7.88%, 8.10%, 8.86%, 7.93%, 12.85%, 7.82%, 11.36%,

107.63%, 50.08%, 80.26%, 73.64%, 114.66%, 57.77%,

69.20%, 73.86%, 75.06%, 64.07%, 143.52%, 51.67%, 70.54%,

from Andrews to SiO2. Only for small scale matrices
Andrews (60,000), Ga3As3H12 (61,349), and Si34H36
(97,567), the Krylov-Schur method is more efficient than
GCGE, which are shown in Table 6.

About the large scale FEM matrices, we use 36-1152
processes for computing the lowest 100 and 200 eigen-
pairs. In Fig. 14, we can find that GCGE and LOBPCG
have similar scalability for large scale matrices, but GCGE
has better efficiency. And the total time ratio of GCGE to
LOBPCG is about 10%.

5.5 The performance of GCGE with large
numEigen

In this subsection, the performance of the moving mecha-
nism presented in Sect. 3.3 is tested. The maximum project
dimensions, ���������� , are set to 1000 and 2000 for
the first thirteen matrices and FEM matrices, respectively.

In Fig. 15, the performance of GCGE with the moving
mechanism is shown for the first thirteen matrices. For
Krylov-Schur method, we set �������� to be 2000 and
4000 and the parameters are

 and

respectively, such that Krylov-Schur method has best effi-
ciency for comparison. Figure 15 shows that GCGE has better
efficiency than Krylov-Schur. From Andrews to SiO2, the total
time (the summation of CPU time over �������� = 2000 and
4000) ratios of GCGE to Krylov-Schur are

For FEM matrices with �������� = 5000 , without the
moving mechanism, the time of STEP 3 is dominated as
shown in Table 7. And with the moving mechanism, the
total time is reduced by about 50% . In addition, the total time
with dynamic shifts is reduced by about 20% again due to the
reduction of the total number of GCG iterations.

32.04%, 27.49%, 41.38%, 41.70%, 54.18%, 36.60%, 33.72%,

34.02%, 31.76%, 33.35%, 50.08%, 24.71%, 35.05%,

189GCGE: a package for solving large scale eigenvalue problems by parallel block damping inverse…

1 3

6 Concluding remarks

This paper highlights some new issues for computing plenty
of eigenpairs of large scale matrices on high performance
computers. The GCGE package is presented which is built
with the damping block inverse power method with dynamic
shifts for symmetric eigenvalue problems. Furthermore, in
order to improve the efficiency, stability and scalability of
the concerned package, the new efficient implementing
techniques are designed for updating subspaces, orthogo-
nalization and computing Rayleigh-Ritz problems. Plenty of
numerical tests are provided to validate the proposed pack-
age GCGE, which can be downloaded from https:// github.
com/ Mater ials- Of- Numer ical- Algeb ra/ GCGE.

Declarations

Conflict of interest All authors declare that they have no conflict of
interest.

References

Amestoy, P.. R., Buttari, A., L’Excellent, J.. Y., Mary, T.: Performance
and scalability of the block low-rank multifrontal factorization
on multicore architectures. ACM Trans. Math. Software 45(1),
21–226 (2019)

Amestoy, Patrick. R., Duff, Iain S., Koster, Jacko, L’Excellent,
Jean Yves: fully asynchronous multifrontal solver using distrib-
uted dynamic scheduling. SIAM Journal on Matrix Analysis &
Applications 23(1), 15–41 (2001)

Anderson, E., Bai, Z., Bischof, C., Blackford, S., Demmel, J., Don-
garra, J., Du Croz, J., GreenBaum, A., Hammarling, S., Mcken-
ney, A., Sorensen, D.: LAPACK Users’ Guide. SIAM (1999)

Bai, Zhaojun, Demmel, James, Dongarra, Jack, Ruhe, Axel, van der
Vorst, Henk: Templates for the Solution of Algebraic Eigenvalue
Problems: A Practical Guide. Vol. 11. SIAM (2000)

Balay, Satish, Gropp, William D., McInnes, Lois Curfman, Smith,
Barry F.: Efficient management of parallelism in object oriented
numerical software libraries. In Modern Software Tools in Sci-
entific Computing. . Birkhäuser Press (1997)

Duersch, Meiyue, amd Shao, Jed A., Yang, Chao: Robust and Efficient
Implementation of LOBPCG. SIAM Journal on Scientific Com-
puting 40(5), 655–676 (2018)

Falgout, Robert D , Jones, Jim E, Yang, Ulrike Meier: The design and
implementation of hypre, a library of parallel high performance
preconditioners. In Numerical Solution of Partial Differential
Equations on Parallel Computers. Springer, 267–294 (2006)

Hernandez, Vicente, Roman, Jose E., Vidal, Vicente: SLEPc: A scal-
able and flexible toolkit for the solution of eigenvalue problems.
ACM Trans. Math. Software 31(3), 351–362 (2005)

Hetmaniuk, U., Lehoucq, R.: Basis selection in LOBPCG. J. Comput.
Phys. 218(1), 324–332 (2006)

Knyazev, Andrew V.: Toward the optimal preconditioned eigensolver:
locally optimal block preconditioned conjugate gradient method.
SIAM Journal on Scientific Computing 23(2), 517–541 (2006)

Knyazev, Andrew V., Argentati, Merico E., Lashuk, Ilya, Ovtchin-
nikov, Evgueni E.: Block locally optimal preconditioned eigen-
value xolvers (BLOPEX) in HYPRE and PETSc. SIAM Journal
on Scientific Computing 29(5), 2224–2239 (2007)

Knyazev, Andrew V., Neymeyr, Klaus: Efficient solution of symmetric
eigenvalue problems using multigrid preconditioners in the locally
optimal block conjugate gradient method. Electronic Transactions
on Numerical Analysis 15(2003), 38–55 (2003)

Kronik, Leeor, Makmal, Adi, Tiago, Murilo L., Alemany, M..M..G.,
Jain, Manish, Huang, Xiangyang, Saad, Yousef, Chelikowsky,
James R.: PARSEC – the pseudopotential algorithm for real-
space electronic structure calculations: recent advances and novel
applications to nano-structures. Physica Status Solidi 243(5),
1063–1079 (2006)

Li, Yu., Xie, Hehu, Ran, Xu., You, Chun’Guang., Zhang, Ning: A
parallel generalized conjugate gradient method for large scale
eigenvalue problems. CCF Transactions on High Performance
Computing 2(2020), 111–122 (2020)

Natan, Amir, Benjamini, Ayelet, Naveh, Doron, Kronik, Leeor, Tiago,
Murilo L., Beckman, Scott P., Chelikowsky, James R.: Real-space
pseudopotential method for first principles calculations of general
periodic and partially periodic systems. Physical Review B 78(7),
75–109 (2008)

Saad, Youcef : Numerical Methods for Large Eigenvalue Problems.
Vol. 158. SIAM (1992)

Saad, Yousef, Chelikowsky, James R., Shontz, Suzanne M.: Numerical
methods for electronic structure calculations of materials. SIAM
Rev. 52(1), 3–54 (2010)

Stewart, G.W.: Block Gram-Schmidt Orthogonalization. SIAM Journal
on Entific Computing 31(1), 761–775 (2008)

Yokozawa, Takuya, Takahashi, Daisuke, Boku, Taisuke, Sato, Mit-
suhisa: Efficient parallel implementation of classical Gram-
Schmidt orthogonalization using matrix multiplication. In Pro-
ceedings of Fourth International Workshop on Parallel matrix
Algorithms and Applications (PMAA’06). 37–38 (2006)

Zhang, Linbo: A parallel algorithm for adaptive local refinement of tet-
rahedral meshes using bisection. Numerical Mathematics: Theory,
Methods and Applications 2(2009), 65–89 (2009)

Zhang, N.Y., Li, H.X., Ran, X., You, C.: A generalized conjugate gra-
dient method for eigenvalue problems. Sci. Sin. Math. 50(12),
1–24 (2020)

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of
such publishing agreement and applicable law.

Yu Li received the B.S. degree in
computational mathematics from
Xiamen University, Fujian,
China, in 2009, and the Ph.D.
degree in computational mathe-
matics from the Academy of
Mathematics and Systems Sci-
ence, Chinese Academy of Sci-
ences, Beijing, China, in 2014.
Since October 2014, he has
worked at Coordinated Innova-
tion Center for Computable
Modeling in Management Sci-
ence, Tianjin University of
Finance and Economics, Tianjin,
China. His current research

interests include numerical methods for PDEs, eigenvalue problems,
and stochastic optimal control.

https://github.com/Materials-Of-Numerical-Algebra/GCGE
https://github.com/Materials-Of-Numerical-Algebra/GCGE

190 Y. Li et al.

1 3

Zijing Wang is currently a Ph.D.
student in Academy of Mathe-
matics and Systems Science,
Chinese Academy of Sciences.
She received the B.S. degree in
school of mathematics from
Hefei University of Technology,
Anhui, China, in 2019, and the
M.S. degree in computational
mathematics from the Academy
of Mathematics and Systems
Science, Chinese Academy of
Sciences, Beijing, China, in
2022. Her current research inter-
ests include numerical methods
for eigenvalue problems, and

parallel computing.

Hehu Xie received the B.S.
degree in computational mathe-
matics from Peking University,
Beijing, China, in 2003, and the
Ph.D. degree in computational
mathematics from the Academy
of Mathematics and Systems
Science, Chinese Academy of
Sciences, Beijing, China, in
2008. Since June 2008, he has
worked at Academy of Mathe-
matics and Systems Science,
Chinese Academy of Sciences,
Beijing, China. His current
research interests include numer-
ical methods for PDEs, eigen-

value problems, and machine learning method for high dimensional
PDEs.

	GCGE: a package for solving large scale eigenvalue problems by parallel block damping inverse power method
	Abstract
	1 Introduction
	2 GCG algorithm
	3 Implementing techniques
	3.1 Improvements for orthogonalization
	3.2 Computation reduction for Algorithm 1
	3.3 The moving mechanism

	4 GCGE package
	5 Numerical results
	5.1 About dynamic shifts and the number of CG iterations
	5.2 About different tolerances
	5.3 Scaling for the number of eigenpairs
	5.4 Scalability test
	5.5 The performance of GCGE with large numEigen

	6 Concluding remarks
	References

